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Three-dimensional quadrics in extended con-
formal geometric algebras of higher dimen-
sions from control points, implicit equations
and axis alignment

Stéphane Breuils, Laurent Fuchs, Eckhard Hitzer, Vincent
Nozick and Akihiro Sugimoto

Abstract. We introduce the quadric conformal geometric algebra (QCGA) in-
side the algebra of R9,6. In particular, this paper presents how three-dimensional
quadratic surfaces can be defined by the outer product of conformal geomet-
ric algebra points in higher dimensions, or alternatively by a linear combination
of basis vectors with coefficients straight from the implicit quadratic equation.
These multivector expressions code all types of quadratic surfaces in arbitrary
scale, location, and orientation. Furthermore, we investigate two types of defini-
tions of axis aligned quadric surfaces, from contact points and dually from linear
combinations of R9,6 basis vectors.

1. Introduction
Geometric algebra provides convenient and intuitive tools to represent, transform,
and intersect geometric objects. Deeply explored by physicists, it has been used in
quantum mechanics and electromagnetism [9, 8] as well as in classical mechan-
ics [10]. Geometric algebra has also found interesting applications in geographic
data manipulations [16, 20]. Among them, geometric algebra is used within the
computer graphics community. More precisely, it is used not only in basis geometric
primitive manipulations [19] but also in complex illumination processes as in [17]
where spherical harmonics are substituted by geometric algebra entities. Finally, in
data and image analysis, we can find the usefulness of geometric algebra in mathe-
matical morphology [4] and in neural networking [3, 12]. In the geometric algebra
community, quadratic surfaces gain more and more attention and some frameworks
have been proposed in order to represent, transform, and intersect these quadratic
surfaces.
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There exist three main approaches to deal with quadratic surfaces. The first
one, introduced in [6], is called double conformal geometric algebra of G8,2. It is
capable of representing quadratic surfaces from the coefficients of their implicit
form. The second one is double perspective geometric algebra of G4,4 whose defini-
tion was firstly introduced in [7]. It has been further developed in [5]. This approach
is based on a duplication of R3 and also represents quadratic surfaces from the coef-
ficients of their implicit form, as bivectors. The third one was introduced in [2] and
is denoted as quadric conformal geometric algebra (QCGA). QCGA allows us to
define general quadratic surfaces from nine control points, and to represent the ob-
jects in low dimensional subspaces of the algebra. With slight modifications, QCGA
is also capable of constructing quadratic surfaces either using control points or im-
plicit equations as 1-vector. QCGA also offers the possibility to transform quadratic
surfaces using versors for rotation, translation and scaling [13].

In order to enhance usefulness of QCGA for geometry and computer graphics
community, the QCGA framework must be further equipped with convenient tools
and handy notations. This is the main purpose of this paper.

All the examples and computations are based upon the efficient geometric
algebra library generator Garamon [1]. The code of this library generator is freely
available online1.

The paper is organized as follows. Section 2 defines QCGA following [2],
and the modifications introduced in [13]. It also includes a concise set of important
algebraic relations in QCGA, handy for the computations in the rest of this work.
Section 3 defines the fundamental notion of point in QCGA (identical to the one
given in [2] and [13]), and reviews how the well-known range of geometric objects
of conformal geometric algebra (CGA) can be successfully embedded, constructed
and computed with in QCGA. Section 4 then introduces the general algebraic con-
struction of quadratic surfaces from contact points. Next, the first main Section 5
concentrates on presenting the treatment of axis aligned quadratic surfaces defined
from suitable contact points and null basis infinity vectors. The second main Section
6 treats the dual representation of quadratic surfaces in QCGA, which proves ideal
for the straightforward definition of quadratic surfaces in terms of dual 1-vectors,
simply constituting of linear combinations of basis vectors of R9,6 with coefficients
from their implicit scalar equations. For completeness, Section 7 briefly reviews the
way quadratic surfaces can be intersected in QCGA. Section 8 concludes the paper
followed by acknowledgments and references.

1.1. Contributions
We provide new tools for QCGA that bring easier definition of conformal geometric
algebra objects. With this construction, the definition of quadratic surfaces becomes
more intuitive. We also show that QCGA is capable of defining both degenerate and
non-degenerate centred axis-aligned quadratic surfaces from the minimum number
of necessary control points. We also present an alternative way of definition, that
makes direct use of the coefficients of the implicit quadratic equations.

1git clone https://git.renater.fr/garamon.git
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1.2. Notation conventions
Throughout this paper, the following notation is used: Lower-case bold letters de-
note basis blades and multivectors (multivector a). Italic lower-case letters refer to
multivector components (a1,x,y2, · · · ). For example, ai is the ith coordinate of the
multivector a. Constant scalars are denoted using lower-case default text font (con-
stant radius r) or simply r. The superscripts star used in x∗ represents the dualization
of the multivector x. Moreover, subscript ε on xε concerns the Euclidean vector as-
sociated with the vector x of QCGA. Finally, subscript C refers to the embedding of
Conformal Geometric Algebra of the entity.

Note that when used in the geometric algebra inner product, the contraction
and the outer product have priority over the full geometric product. For instance,
a∧bI = (a∧b)I.

2. QCGA definition and algebraic relations
2.1. QCGA basis and metric
The algebraic equations in this section can be either computed by hand through
expanding all blades in terms of basis vectors [11], or computed using a software
such as the Clifford toolbox for MATLAB[18]. Further algebraic details and rela-
tionships may be found in Section 2 of [13]. The QCGA Cl(9,6) is defined over
the 15-dimensional vector space R9,6. The base vectors of the space are naturally
divided into three groups: {e1,e2,e3} (corresponding to Euclidean vectors of R3),
{eo1, eo2, eo3, eo4, eo5, eo6}, and {e∞1,e∞2,e∞3,e∞4,e∞5,e∞6}. The inner products
between them are defined in Table 1.

TABLE 1. Inner product between QCGA basis vectors.

e1 e2 e3 eo1 e∞1 eo2 e∞2 eo3 e∞3 eo4 e∞4 eo5 e∞5 eo6 e∞6

e1 1 0 0 · · · · · · · · · · · ·
e2 0 1 0 · · · · · · · · · · · ·
e3 0 0 1 · · · · · · · · · · · ·

eo1 · · · 0 −1 · · · · · · · · · ·
e∞1 · · · −1 0 · · · · · · · · · ·
eo2 · · · · · 0 −1 · · · · · · · ·
e∞2 · · · · · −1 0 · · · · · · · ·
eo3 · · · · · · · 0 −1 · · · · · ·
e∞3 · · · · · · · −1 0 · · · · · ·
eo4 · · · · · · · · · 0 −1 · · · ·
e∞4 · · · · · · · · · −1 0 · · · ·
eo5 · · · · · · · · · · · 0 −1 · ·
e∞5 · · · · · · · · · · · −1 0 · ·
eo6 · · · · · · · · · · · · · 0 −1
e∞6 · · · · · · · · · · · · · −1 0

For efficient computations, a diagonal metric matrix may furthermore be use-
ful. The algebra Cl(9,6) generated by the Euclidean basis {e1,e2,e3}, and six basis
vectors {e+1,e+2,e+3,e+4,e+5,e+6} squaring to +1 along with six other basis vec-
tors {e−1, e−2, e−1,e−4, e−5, e−6} squaring to −1, would correspond to a diagonal
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metric matrix. Following the approach of [13] for a successful formulation of ver-
sors for rotation, translation and scaling, the transformation from the diagonal metric
basis to that of Table 1 can consistently be defined for 1≤ i, j ≤ 6 as follows:

e∞i =
1√
2
(e+i + e−i), eoi =

1√
2
(e−i− e+i), e∞i · eoi =−1, (2.1)

e∞ = 1
3 (e∞1 + e∞2 + e∞3), eo = eo1 + eo2 + eo3, (2.2)

e∞ · eo =−1, e2
o = e2

∞ = 0, (2.3)

with bivectors Ei, E, defined by

Ei = e∞i∧ eoi = e+ie−i, E2
i = 1, EiE j = E jEi, (2.4)

eoiEi =−Eieoi =−eoi, e∞iEi =−Eie∞i = e∞i, (2.5)

E = e∞∧ eo, E2 = 1, eoE =−Eeo =−eo, e∞E =−Ee∞ = e∞. (2.6)

For clarity, we also define the following blades:

I∞a = e∞1e∞2e∞3, I∞b = e∞4e∞5e∞6, I∞ = I∞aI∞b, (2.7)
Ioa = eo1eo2eo3, Iob = eo4eo5eo6, Io = IoaIob, (2.8)

I∞o = I∞∧ Io =−E1E2E3E4E5E6, I2
∞o = 1, (2.9)

IoI∞o = I∞oIo =−Io, I∞I∞o = I∞oI∞ =−I∞, (2.10)

I�∞a = (e∞1− e∞2)∧ (e∞2− e∞3), I�∞ = I�∞aI∞b, (2.11)

I�oa = (eo1− eo2)∧ (eo2− eo3), I�o = I�oaIob, I� = I�∞ ∧ I�o . (2.12)

We note that

I∞a∧ Ioa =−E1E2E3, I∞b∧ Iob =−E4E5E6, (2.13)

I� = I�∞a∧ I�oa I∞b∧ Iob =−I�∞a∧ I�oa E4E5E6, (2.14)

(I�)2 = (I�∞a∧ I�oa)
2 = 9, (I�)−1 = 1

9 I�, (2.15)

(I�∞a∧ I�oa)
−1 = 1

9 I�∞a∧ I�oa, (2.16)

I�∞ · I�o = I�o · I�∞ = I�∞ cI�o = I�∞ bI�o =−3. (2.17)

We have the following outer products

I∞a = e∞1∧ I�∞a = e∞2∧ I�∞a = e∞3∧ I�∞a = e∞∧ I�∞a = e∞ I�∞a, (2.18)

Ioa = eo1∧ I�oa = eo2∧ I�oa = eo3∧ I�oa =
1
3 eo∧ I�oa =

1
3 eo I�oa, (2.19)

I∞a∧ Ioa = E1∧ I�∞a∧ I�oa = E2∧ I�∞a∧ I�oa = E3∧ I�∞a∧ I�oa

= 1
3 E ∧ I�∞a∧ I�oa =

1
3 E I�∞a∧ I�oa. (2.20)
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And we have the following inner products

I�oa =−3e∞ · Ioa, I�o =−3e∞ · Io, (2.21)

I�∞a =−eo · I∞a, I�∞ =−eo · I∞, (2.22)

(eoi · I∞) · Io =−eoi, (e∞i · Io) · I∞ =−e∞i, (2.23)

(eo · I∞) · Io =−eo, (e∞ · Io) · I∞ =−e∞ (2.24)

e∞ · I∞o =− 1
3 I∞∧ I�o , eo · I∞o =−I�∞ ∧ Io, (2.25)

e∞i · I�∞a = 0, e∞i · I�∞ = 0, e∞ · I�∞a = 0, e∞ · I�∞ = 0, (2.26)

eoi · I�oa = 0, eoi · I�o = 0, eo · I�oa = 0, eo · I�o = 0, (2.27)

e∞ · I�oa = 0, e∞ · I�o = 0, eo · I�∞a = 0, eo · I�∞ = 0, (2.28)

e∞ · I� = 0, eo · I� = 0, E · I� = 0. (2.29)

As the consequence, we obtain

I∞ = e∞I�∞ = e∞∧ I�∞ , I∞∧ I�o = e∞I� = e∞∧ I� = I� e∞, (2.30)

3Io = eoI�o = eo∧ I�o , −3I�∞ ∧ Io = eoI� = eo∧ I� = I� eo, (2.31)

−3I∞o = E I� = E ∧ I� = I�E. (2.32)

We can summarize the important set of relations

{1,eo,e∞,E}∧ I�∞ ∧ I�o = {1,eo,e∞,E}I�∞ ∧ I�o = I�∞ ∧ I�o {1,eo,e∞,E}. (2.33)

We define the pseudo-scalar Iε in R3 by

Iε = e1e2e3, I2
ε =−1, I−1

ε =−Iε , (2.34)

and the conformal pseudo-scalar IC in R4,1 by

IC = e1e2e3 e∞∧ eo = Iε E, I2
C =−1, I−1

C =−IC, (2.35)

as well as the full 15-blade pseudo-scalar I of Cl(9,6) and its inverse I−1 (used for
dualization x→ x∗):

I = Iε I∞o =−Iε E1E2E3E4E5E6, I2 =−1, I−1 =−I. (2.36)

The dual of a multivector indicates the division by the pseudo-scalar, e.g., a∗ =−aI,
a = a∗I. From eq. (1.19) in [14], we have the useful duality between outer and inner
products of non-scalar blades A,B in geometric algebra:

(A∧B)∗ = A ·B∗, A∧ (B∗) = (A ·B)∗ ⇔ A∧ (BI) = (A ·B)I, (2.37)

which indicates that

A∧B = 0 ⇔ A ·B∗ = 0, A ·B = 0 ⇔ A∧B∗ = 0. (2.38)

Using (2.23) and (2.24), useful duality relationships are

(I∞∧ Io)
∗ =−Iε , (I∞∧ I�o )∗ =−3Iε e∞, (2.39)(

Iε(eoi · I∞)∧ Io
)∗

=−eoi,
(
Iε I∞∧ (e∞i · Io)

)∗
=−e∞i, (2.40)(

Iε(eo · I∞)∧ Io
)∗

=−eo,
(
Iε I∞∧ (e∞ · Io)

)∗
=−e∞. (2.41)
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3. Points and embedded CGA objects in QCGA
QCGA is an extension of conformal geometric algebra (CGA). Thus, objects de-
fined in CGA are also defined in QCGA. The following sections introduce the im-
portant definition of a general point in QCGA, and show how all round and flat geo-
metric objects (point pairs, flat points, circles, lines, spheres and planes) of CGA
can be straightforwardly embedded in QCGA.

3.1. Point in QCGA
The point x of QCGA corresponding to the Euclidean point xε = xe1 + ye2 + ze3 ∈
R3 is defined as

x = xε +
1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ xye∞4 + xze∞5 + yze∞6 + eo. (3.1)

Note that the null vectors eo4,eo5,eo6 are not present in the definition of the point.
This is merely to keep the convenient properties of the CGA points, namely, the
inner product between two points is identical with the squared distance between
them. Let x1 and x2 be two points. Then, their inner product is

x1 ·x2 =

(x1ε +
1
2 x2

1e∞1 +
1
2 y2

1e∞2 +
1
2 z2

1e∞3 + x1y1e∞4 + x1z1e∞5 + y1z1e∞6 + eo) (3.2)

· (x2ε +
1
2 x2

2e∞1 +
1
2 y2

2e∞2 +
1
2 z2

2e∞3 + x2y2e∞4 + x2z2e∞5 + y2z2e∞6 + eo).

from which together with Table 1, it follows that

x1 ·x2 = x1ε ·x2ε − 1
2 (x

2
1 + y2

1 + z2
1 + x2

2 + y2
2 + z2

2) =− 1
2 (x1ε −x2ε)

2. (3.3)

We see that the inner product is equivalent to minus half of the squared Euclidean
distance between the two points x1 and x2.

In the remainder of this paper, the following result will be useful, because
it relates a point in QCGA to the representation in CGA R4,1 with vector basis
{eo,e1,e2,e3,e∞}.

x∧ I�∞ =
(

xε +
1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ eo

)
∧ I�∞

= (xε + eo)∧ I�∞ + 1
2 (x

2e∞1 + y2e∞2 + z2e∞3)∧ I�∞
= (xε + eo)∧ I�∞ + 1

2 (x
2 + y2 + z2)e∞∧ I�∞ (3.4)

= (xε + eo)∧ I�∞ + 1
2 x2

ε e∞∧ I�∞
= (xε +

1
2 x2

ε e∞ + eo)∧ I�∞ = xC∧ I�∞ = xC I�∞ ,

where we have dropped in the first line the cross terms xye∞4 + xze∞5 + yze∞6, be-
cause wedging with I∞b = e∞4∧e∞5∧e∞6, a factor in I�∞ = I�∞aI∞b, eliminates them.
Therefore, if a point in QCGA appears wedged with I�∞ , we can always replace it
by the form

xC = xε +
1
2 x2

ε e∞ + eo =− 1
3 x∧ I�∞ bI�o . (3.5)

This, in turn, means that we can embed in QCGA the known CGA representations
[14] in Cl(4,1) of round and flat objects, by taking the outer products of between
one and five points with I�∞ , as further shown below.
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3.2. Round and flat objects in QCGA
We refer points, point pairs, circles, and spheres with uniform curvature as round
objects. Similar to CGA, these can be defined by the outer product of one to four
points with I�∞ . Their centre cC, radius r and Euclidean carrier D can be easily ex-
tracted. Moreover, they can be directly constructed from their centre cC, radius r
and Euclidean carrier D.

Wedging any round object with the point at infinity e∞, gives the correspond-
ing flat object multivector. From it the orthogonal distance to the origin cε⊥ and the
Euclidean carrier D can easily be extracted.

We now briefly review the CGA description of round and flat objects embed-
ded in QCGA. The round objects are

P = x∧ I�∞ = xC I�∞ , (3.6)

Pp = x1∧x2∧ I�∞ = x1C∧x2C I�∞ , (3.7)

Circle = x1∧x2∧x3∧ I�∞ = x1C∧x2C∧x3C I�∞ , (3.8)

Sphere = x1∧x2∧x3∧x4∧ I�∞ = x1C∧x2C∧x3C∧x4C I�∞ . (3.9)

The corresponding flat objects are

Flat p =−P∧ e∞ = x∧ e∞∧ I�∞ = xC∧ e∞ I�∞ , (3.10)

Line =−Pp∧ e∞ = x1∧x2∧ e∞∧ I�∞ = x1∧x2∧ e∞∧ I∞

= x1C∧x2C∧ e∞ I�∞ , (3.11)

Plane =−Circle∧ e∞ = x1∧x2∧x3∧ e∞∧ I�∞ = x1C∧x2C∧x3C∧ e∞ I�∞ , (3.12)

Space =−Sphere∧ e∞ = x1∧x2∧x3∧x4∧ e∞∧ I�∞ (3.13)

= x1C∧x2C∧x3C∧x4C∧ e∞ I�∞ .

The above embeddings by means of the outer product with I�∞ , allow to use
standard CGA results found in [14]. All embedded round entities of point, point
pair, circle, and sphere (spheres in zero, one, two and three dimensions) have one
common multivector form2

S =
(

D∧ cε +
[ 1

2 (c
2
ε + r2)D− cε cεcD

]
e∞ +Deo +Dbcε E

)
I�∞ = SC I�∞ ,

SC =− 1
3 SbI�o . (3.14)

The Euclidean carriers D are for each object are Euclidean scalar, vector, bivector
and trivector, respectively,

D =


1, point x

dε , point pair Pp
ic, circle Circle
Iε , sphere Sphere

, (3.15)

where the unit point pair connection direction vector is dε = (x1ε −x2ε)/2r and the
Euclidean circle plane bivector is ic. The radius r of a round object and its centre cC

2Note that the product symbols c and b express left- and right contraction, respectively.
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are generally determined by

r2 =
SCS̃C

(SC∧ e∞)(SC∧ e∞)̃
, cC = SC e∞ SC, (3.16)

where the tilde symbol indicates the reverse operator.
All embedded flat entities of flat point, line, plane, and space have one com-

mon multivector form

F =−S∧ e∞ = (D∧ cε e∞−DE)I�∞ = (Dcε⊥e∞−DE)I�∞ = FC I�∞ ,

FC =−SC∧ e∞ = 1
3 FbI�o , (3.17)

where the orthogonal Euclidean distance of the flat object from the origin is

cε⊥ =


xε , finite-infinite point pair Flat p

cε⊥, line Line
cε⊥, plane Plane

0, 3D space Space

. (3.18)

The Euclidean carrier blade D, and the orthogonal Euclidean distance vector of F
from the origin, can both be directly determined from the flat object multivector as

D = FCbE , cε⊥ = D−1(FC∧ eo)bE . (3.19)

For a further detailed description of lines, planes and spheres in QCGA, we refer
to [2].

4. Quadratic surfaces from contact points
This section describes how QCGA handles quadratic surfaces. All the embedded
CGA objects in QCGA defined in Section 3 are thus a part of a more general frame-
work algebraic.

A quadratic surface in R3 is implicitly formulated as

F(x,y,z) = ax2 +by2 + cz2 +dxy+ exz+ fyz+gx+hy+ iz+ j = 0. (4.1)

A quadratic surface is constructed by the outer product of nine contact points as
follows

q = x1∧x2∧·· ·∧x9. (4.2)

Note that in [2], the definition of q additionally included wedging with I�o (thus
forming a pseudovector of grade 14 in Cl(9,6)), but as found in [13], this would
seriously impede the use of versor operators for geometric transformations of ro-
tation, translation and scaling, due to the lack of transformation invariance of I�o .
The multivector q corresponds to the primal form of a quadratic surface in QCGA,
with grade nine and twelve components. Again three of these components have the
same coefficient and can be combined together in a form defined by only ten coeffi-
cients a, b, ..., j, and we obtain a quadratic surface q and the related computationally
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efficient dual vector of (q∧ I�o )∗ as

q∧ I�o = Iε

((
2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6

)
· I∞

)
∧ Io

+
(
ge1 +he2 + ie3

)
Iε I∞o + jIε I∞∧ (e∞ · Io)

=
(
−
(
2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6

)
+
(
ge1 +he2 + ie3

)
− je∞

)
I

= (q∧ I�o )∗ I, (4.3)

where in the second equality we used the duality relationships of (2.40). The ex-
pression for the dual vector (q∧ I�o )∗ is therefore

(q∧ I�o )∗ =−
(
2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6

)
+
(
ge1 +he2 + ie3

)
− je∞. (4.4)

Proposition 4.1. A point x lies on the quadratic surface q, if and only if x∧q∧I�o =
0.

Proof.

x∧ (q∧ I�o ) = x∧
(
(q∧ I�o )∗I

)
= x · (q∧ I�o )∗ I

= x ·
(
−
(
2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6

)
+
(
ge1 +he2 + ie3

)
− je∞

)
I (4.5)

=
(
ax2 +by2 + cz2 +dxy+ exz+ fyz+gx+hy+ iz+ j

)
I.

This corresponds to the implicit formula (4.1) representing a general quadratic sur-
face. �

The dualization of the primal quadratic surface (4.2) wedged with I�o leads
to the dual 1-vector (q∧ I�o )∗ of (4.4). Dualization of (4.5) gives us the following
corollary.

Corollary 4.2. A point x lies on the dual quadratic surface q∗ if and only if x · (q∧
I�o )∗ = 0.

5. Aligned quadratic surfaces from contact points
Up to now, we defined general quadratic surfaces using the outer product of nine
points. For simplicity purpose, one might sometimes prefer to define axis-aligned
quadratic surfaces from fewer points. The implicit equation of an axis-aligned qua-
dratic surface is as follows:

F(x,y,z) = ax2 +by2 + cz2 +gx+hy+ iz+ j = 0. (5.1)

On one hand, this equation has seven coefficients and six degrees of freedom.
An axis-aligned quadratic surface can then be constructed by computing the outer
product of six points. On the other hand, one has to remove the cross terms xy,xz,yz
in the representation of points to be able to satisfy equation (5.1). To achieve this,
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our solution is to compute the outer product with e∞4,e∞5,e∞6, i.e. with I∞b = e∞4∧
e∞5∧ e∞6. Indeed, one finds that any point x satisfies

x∧ e∞4∧ e∞5∧ e∞6 = x∧ I∞b =
(
eo +xε +

1
2 (x

2e∞1 + y2e∞2 + z2e∞3)
)
∧ I∞b. (5.2)

Thus, one can consider that an axis aligned quadratic surface is a general quadratic
surface where three points are sent to infinity e∞4,e∞5,e∞6 in the following way:

q = x1∧x2∧x3∧x4∧x5∧x6∧ I∞b. (5.3)

This grade nine multivector blade q corresponds to the primal form of a quadratic
surface, outer product of six points with three e∞i, i = 4,5,6, basis vector factors
in I∞b, and this quadratic surface has nine components. For the same reason as in
the construction of the general quadratic surface, we can combine three components
having the same coefficient. Furthermore, computing the outer product with I∞b =
e∞4 ∧ e∞5 ∧ e∞6 removes the components e∞4, e∞5, e∞6 of each of the six points.
Combining the outer product of such points with null basis vectors and wedging
with I�o , results in the form defined by the seven coefficients a, b, c, g, h, i, j as

q∧ I�o = Iε

(
(2aeo1 +2beo2 +2ceo3) · I∞

)
∧ Io

+(ge1 +he2 + ie3)Iε I∞∧ Io + jI∞∧ (e∞ · Io).
(5.4)

Proposition 5.1. A point x lies on an axis-aligned quadratic surface q, iff x∧q∧
I�o = 0.

Proof.

x∧q∧ I�o = x∧
(
(q∧ I�o )∗I

)
= x · (q∧ I�o )∗ I

=
(

x ·
(
−2(aeo1 +beo2 + ceo3)+ge1 +he2 + ie3− je∞

))
I

= (ax2 +by2 + cz2 +gx+hy+ iz+ j)I. (5.5)

This corresponds to the formula (5.1) representing an axis-aligned quadratic surface.
�

Now it is easy to construct an axis-aligned quadratic surface by properly
choosing the contact points that lie on the chosen axis-aligned quadratic surface.
The next sections present some examples of chosen axis-aligned quadratic surfaces,
with some chosen points that lie on these quadratic surfaces.

5.1. Representation of a primal axis-aligned paraboloid
We can construct the axis-aligned elliptic paraboloid using six points that lie on it.
For example, the points:

x1(0.0,0.0,0.0), x2(−0.39,0.1,0.33), x3(0.0,−0.41,0.5),
x4(0.0,0.23,0.17), x5(0.47,0.0,0.45), x6(0.29,−0.27,0.4),

lie on an axis-aligned elliptic paraboloid. The result of equation (5.3) applied to
these points is shown in Figure 1.
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FIGURE 1. Result of one paraboloid from six points.

5.2. Representation of a primal axis-aligned hyperbolic paraboloid
Using the same equation, and replacing the contact points by some that lie on an
axis-aligned hyperbolic paraboloid

x1(0.0,0.0,0.0), x2(0.45,−0.01,0.2), x3(0.34,−0.37,−0.17),
x4(−0.47,−0.18,0.15), x5(−0.36,0.12,0.1), x6(0.18,0.13,0.0),

results in the axis-aligned hyperbolic paraboloid shown in Figure 2.

FIGURE 2. Result of one hyperbolic paraboloid from six points.

5.3. Representation of a primal axis-aligned cylinder
An axis-aligned cylinder is an axis-aligned quadratic surface where one of the squared
components is removed with respect to the axis of the cylinder.

On one hand, this supposes that an axis-aligned cylinder can be constructed
using only five points. On the other hand, this means that the considered component
of each point taken to construct the quadratic surface has to be removed. In a QCGA
point, the squared components lie in the e∞1, e∞2, e∞3 components. Thus, replacing
one point in equation (5.3) by a point at infinity with respect to the desired alignment
axis (choosing from {e∞1, e∞2,e∞3} for x-, y-, or z-axis alignment, respectively) de-
fines the desired axis-aligned cylinder. For example, one can define an axis-aligned
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cylinder along the z-axis from only five points. Therefore, in equation (5.3), we can
replace a point by one of the points at infinity, i.e., e∞3 for a z-axis aligned centred
cylinder. For example, we choose the following five points

x1(−0.2,0.1,0.3), x2(0.4,0.1,0.2), x3(0.1,0.4,0.1),
x4(0.1,−0.2,0.4), x5(0.1,−0.2,−0.4),

and the outer product between these five points and e∞3 with I∞b (for axis alignment)
as

q = x1∧x2∧x3∧x4∧x5∧ e∞3∧ I∞b. (5.6)
The cylinder whose axis is the (Oy) axis can be constructed by replacing e∞3 in the
above equation by e∞2:

q = x1∧x2∧x3∧x4∧x5∧ e∞2∧ I∞b. (5.7)

And finally, the cylinder whose axis is the (Ox) axis is obtained by replacing e∞3 by
e∞1:

q = x1∧x2∧x3∧x4∧x5∧ e∞1∧ I∞b. (5.8)
Figure 3 shows three cylinders: one along (Ox), another along (Oy), and the third
one along (Oz).

FIGURE 3. Construction of three cylinders along (Ox) in
blue,(Oy) in green and Oz) in red, applying (5.8), (5.7) and (5.6).
Each cylinder is constructed from five points and has the same
diameter.

5.4. Representation of a primal axis-aligned elliptic cylinder
As five points are enough to uniquely define a cylinder, five points define also an
axis-aligned elliptic cylinder whose main axis is given by the null basis vector re-
placing the sixth point. For example, an axis-aligned elliptic cylinder whose main
axis is (Oz) can be defined with the following five points lying on it

x1(−0.44,0.0,0.0), x2(0.0,−0.2,0.0), x3(0.3,0.15,0.15),
x4(0.0,0.2,0.3), x5(0.44,0.0,0.4).

The result is represented in Figure 4.
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FIGURE 4. Construction of one elliptic cylinder from five points.

5.5. Representation of a primal axis-aligned spheroid
A spheroid is characterized as an ellipsoid having two of its axes whose length
is equal. Again, this property supposes that an axis-aligned spheroid can be con-
structed from five points. Furthermore, one has to constrain each point such that the
squared components along the two of its axes have the same length. This is achieved
by the outer product of the points and the vector e∞i− e∞ j, where i and j 6= i, spec-
ify the two equal length axes. This 1-vector e∞i− e∞ j can be geometrically seen as
the bisecting plane at infinity along the two considered axes, leading to some new
geometric interpretations in the algebra.

Further geometric understanding of the algebraic operation of the outer prod-
uct with e∞i− e∞ j, i and j 6= i, can be gained from expanding the five blade I�∞ , that
is instrumental for embedding CGA objects in QCGA, as explained in Section 3.2.
The expansion gives

I�∞ = I�∞a∧ I∞b = (e∞1− e∞2)∧ (e∞2− e∞3)∧ I∞b

= (e∞2− e∞3)∧ (e∞3− e∞1)∧ I∞b

= (e∞1∧ e∞2 + e∞2∧ e∞3 + e∞3∧ e∞1)∧ I∞b, (5.9)

where we see that the three factors e∞1−e∞2, e∞2−e∞3 and e∞3−e∞1, are all factors
of I�∞ , thus producing circles in every coordinate plane and in every dimension,
and the second trivector blade factor I∞b forces axis alignment, as discussed at the
beginning of the current section. In that sense we understand that wedging four
points in (3.9) with I�∞ , necessarily leads to a sphere with circular cross sections in
every coordinate plane, and with axis alignment, even though this latter fact is subtle
for isotropic objects, like spheres. In CGA a plane is the limiting case of a sphere
with infinite radius. The other objects of circle and line, point pair and flat point,
are simply the lower dimensional versions of the spherical and planar case in three
dimensions.

Thus, we can construct a spheroid having equal length axis Ox and Oy by

x1∧x2∧x3∧x4∧x5∧ (e∞1− e∞2)∧ I∞b. (5.10)
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Note that the sixth point is replaced by (e∞1− e∞2). As an example, we construct
the axis-aligned prolate (elongated in the z-axis) spheroid passing through the five
following points lying on a prolate spheroid

x1(−0.26,0.0,0.0), x2(0.03,0.22,0.24), x3(−0.2,−0.1,−0.23),
x4(0.0,0.26,0.0), x5(0.0,0.0,0.45).

The resulting surface is shown in Figure 5.

FIGURE 5. Construction of axis-aligned prolate spheroid from
five points.

5.6. Representation of a primal axis-aligned pair of planes
Sending one point of a sphere to infinity e∞ results in the plane passing through the
remaining points. Now by sending two points of an ellipsoid to infinity, we obtain
a pair of parallel planes. This indicates that an axis-aligned pair of planes can be
constructed from four points. Then, this can be achieved by the outer product of
four points x1,x2,x3,x4 and two points at infinity e∞1,e∞2 in the following equation

x1∧x2∧x3∧x4∧ e∞1∧ e∞2∧ I∞b. (5.11)

5.7. Representation of a primal axis-aligned curve
Two points define a bi-cylindrical curve, meaning that the curve obtained by the
intersection of two cylinders. Therefore, given two points and three points at infinity,
it is possible to construct a bi-cylindrical curve as follows

x1∧x2∧ e∞1∧ e∞2∧ e∞3∧ I∞b = x1∧x2∧ I∞. (5.12)

Looking back, we see that the above expression can also be developed from the CGA
point pair (3.7) or understood as another geometric interpretation of the embedding
of the CGA line (3.11). Note that the computer algebra construction of all these enti-
ties is available using the recently developed software plugin qc3gaTools.hpp3.

3git clone https://git.renater.fr/garamon.git
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6. Dual quadratic surface representation and implicit equations
The dualization of a primal quadratic surface 9-blade q after the outer product with
I�o leads to the dual 1-vector quadratic surface representation (q∧ I�o )∗ of (4.4).
Corollary 4.2 can be rephrased as

Proposition 6.1. A point x lies on the dual quadratic surface (q∧ I�o )∗ iff x · (q∧
I�o )∗ = 0.

This dualization enables us to define axis-aligned quadratic surfaces as vectors
in R9,6 by simply using the coefficients of their conventional implicit equations.

6.1. Some examples of dual quadratic surface representations
This subsection presents the construction of some specific quadratic surfaces.

6.1.1. Representation of a dual axis-aligned ellipsoid. First, an axis-aligned el-
lipsoid can be computed as follows:

(q∧ I�o )∗ =
1
a2 eo1 +

1
b2 eo2 +

1
c2 eo3 +

1
2 e∞, (6.1)

where a,b,c are the semi-axis parameters of the ellipsoid. This construction is fur-
ther illustrated in Figure 6.

FIGURE 6. Construction of an axis-aligned ellipsoid.

6.1.2. Representation of a dual axis-aligned elliptic cylinder. Another example
of a quadratic surface is the cylinder. An elliptic axis-aligned cylinder can easily be
defined. A cylinder whose main axis is (Oz) and whose cross section semi-axis are
a and b can be defined as follows

(q∧ I�o )∗ =
1
a2 eo1 +

1
b2 eo2− 1

2 e∞. (6.2)

Note that a non-axis aligned elliptic cylinder can be constructed as the outer product
of nine points as shown in Figure 7, or it could be obtained from (6.2), applying the
geometric transformation versors of [13].
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FIGURE 7. Construction of a generalized cylinder from nine points.

6.1.3. Representation of a dual axis-aligned hyperbolic paraboloid. Another
example of axis-aligned quadratic surface is the hyperbolic paraboloid, also called
saddle. It can be defined as:

(q∧ I�o )∗ =
1
a2 eo1−

1
b2 eo2 +

1
2 e3. (6.3)

An axis-aligned cone can be dually represented in QCGA as follows:

(q∧ I�o )∗ =
1
a2 eo1 +

1
b2 eo2− eo3. (6.4)

6.1.4. Representation of a dual axis-aligned hyperboloid. An axis-aligned hy-
perboloid of one sheet can be constructed as follows:

(q∧ I�o )∗ =
1
a2 eo1 +

1
a2 eo2−

1
c2 eo3− 1

2 e∞ (6.5)

An example of such a quadratic surface is shown in Figure 8. Changing the sign of

FIGURE 8. Construction of a dual hyperboloid of one sheet.

1
2 e∞, the definition of an axis-aligned hyperboloid of two sheets is given by

(q∧ I�o )∗ =
1
a2 eo1 +

1
a2 eo2−

1
c2 eo3 +

1
2 e∞. (6.6)

6.1.5. Representation of a dual axis-aligned elliptic paraboloid. An axis-aligned
elliptic paraboloid can be defined as

(q∧ I�o )∗ =
1
a2 eo1 +

1
b2 eo2 +

1
2 e3. (6.7)
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6.1.6. Representation of a dual axis-aligned degenerate quadratic surfaces. As
previously seen, degenerate quadratic surfaces can also be defined. For example, a
pair of planes can be defined as:

(q∧ I�o )∗ = eo1− eo2. (6.8)

An illustration of such a pair of planes using QCGA is shown in Figure 9.

FIGURE 9. Construction of a axis-aligned pair of planes.

Tables 2 and 3 summarize the dual definition of CGA objects, as well as axis-
aligned quadratic surfaces and degenerate quadratic surfaces.

TABLE 2. Definition of dual CGA objects embedded in QCGA,
computed from SC and FC of Section 3.2, using IC of (2.35). Nota-
tion: cε is the Euclidean center position of the sphere, nε the unit
normal vector to the plane, d is the distance of the plane from the
origin, aε the direction vector of the line, mε the bivector moment
of the line.

Geometric objects Dual definition

Sphere s∗C = cε − 1
2 r2e∞

Plane π∗C = nε +de∞

Line l∗C = aε Iε + e∞mε Iε

l∗C = π∗C1∧π∗C2

Circle o∗C = s∗C1∧ s∗C1

o∗C = s∗C∧πC

Point pair p∗pC = s∗C∧ l∗C
p∗pC = o∗C1∧o∗C2

p∗pC = s∗C1∧ s∗C2∧ s∗C3
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TABLE 3. Definition of dual axis-aligned quadratic surfaces us-
ing QCGA.

Geometric object Dual vector definition

Ellipsoid (q∧ I�o )∗ = 1
a2 eo1 +

1
b2 eo2 +

1
c2 eo3 +

1
2 e∞

Cone (q∧ I�o )∗ = 1
a2 eo1 +

1
b2 eo2− eo3

Cylinder (q∧ I�o )∗ = 1
a2 eo1 +

1
b2 eo2− 1

2 e∞

Hyperbolic paraboloid (q∧ I�o )∗ = 1
a2 eo1− 1

b2 eo2 +
1
2 e3

Elliptic paraboloid (q∧ I�o )∗ = 1
a2 eo1 +

1
b2 eo2 +

1
2 e3

Hyperboloid

one sheet (q∧ I�o )∗ =− 1
a2 eo1− 1

a2 eo2 +
1
c2 eo3 +

1
2 e∞

two sheets (q∧ I�o )∗ =− 1
a2 eo1− 1

a2 eo2 +
1
c2 eo3− 1

2 e∞

Pair of planes q∗ = eo1− eo2

Table 4 details a class of objects that can be handled using QCGA. Table 5
summarizes some definitions of axis-aligned primal objects constructed from points
in QCGA.

TABLE 4. Definition of primal geometric objects using QCGA.

Round object (sphere, circle, . . .) q = x1∧x2∧·· ·∧ I�∞
Flat object (plane, line, . . .) q = x1∧x2∧·· ·∧ e∞∧ I�∞
Axis-aligned quadratic surface q = x1∧·· ·∧x6∧ I∞b

General quadratic surface q = x1∧x2∧x2 · · ·∧x9

The construction of axis aligned and origin centred quadratic surfaces based
on their implicit equation coefficients is seen to be very straightforward. The avail-
ability of versors for rotation, translation and scaling [13] allows then to begin with
aligned quadratic surfaces centred at the origin and to subsequently move them to
arbitrary position, freely change their orientation by rotation, and moreover scale
them arbitrarily.

7. Intersections
One of the most fascinating properties of QCGA, is that like in CGA, all objects
can be intersected by simply taking the outer products of their duals. That is, any
number of linearly independent round or flat embedded CGA objects in QCGA
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TABLE 5. Definition of some primal axis-aligned quadratic sur-
faces using QCGA.

Ellipsoids

q = x1∧·· ·∧x6∧ I∞bParaboloids

Hyperbolic paraboloids

Spheroids q = x1∧·· ·∧x5∧ (e∞1− e∞2)∧ I∞b

Cylinders
q = x1∧x2∧x3∧x4∧x5∧ e∞3∧ I∞b

Elliptic cylinders

and any number of quadratic surfaces after wedging with I�o , can be intersected by
computing the dual of the outer product of duals as follows (see [13])

(intersect∧ I�o )∗ = (A∧ I�o )∗∧ (B∧ I�o )∗∧ . . .∧ (Z∧ I�o )∗. (7.1)

The criterion for a general point x to be on the intersection is

x · (intersect∧ I�o )∗ = 0, intersect =− 1
3

(
(intersect∧ I�o )∗I

)
bI�∞ . (7.2)

For cases in which one object is completely included in another object (like a line
in a plane), the proper meet operation has to be defined by taking into account the
subspace spanned by the join of the two objects [15].

8. Conclusion
This paper presented a development of QCGA to represent and manipulate qua-
dratic surfaces in extended geometric algebras, in particular, aligned or symmetric
quadratic surfaces. After recalling the main ideas of QCGA [2], together with the
null basis vector modifications of [13], we presented a detailed set of algebraic con-
structions and notations. This then allowed us to represent both embedded objects of
CGA and quadratic surfaces of QCGA in a constructive and intuitive way. Further-
more, quadratic surfaces are now represented more concisely and efficiently from
either their implicit forms, implicit axis aligned and origin centred forms followed
by geometric versor transformations, or their control points. The intersection of all
these objects can easily be computed. In the future, we plan to extend this approach
to represent quadratic surfaces also to cubic surfaces. Finally, note that the examples
presented in this paper were computed and visualized efficiently using the new C++
library called Garamon in [1].
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