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ABSTRACT. Let X be a Banach space, I an infinite set, 7 an infinite cardinal
and p € [1,00). In contrast to a classical c¢g result due independently to
Cembranos and Freniche, we prove that if the cofinality of 7 is greater than
the cardinality of I, then the injective tensor product EP(I)®5X contains a
complemented copy of co(7) if and only if X does. This result is optimal for
every regular cardinal 7.

On the other hand, we provide a generalization of a cg result of Oya by
proving that if 7 is an infinite cardinal, then the projective tensor product
£,(I)® X contains a complemented copy of co(7) if and only if X does.

These results are obtained via useful descriptions of tensor products as
convenient generalized sequence spaces.

1. Introduction

We use standard set-theoretical and Banach space theory terminology as may
be found, e.g., in [14] and [15] respectively. We denote by Bx the closed unit ball
of the Banach space X. If X and Y are Banach spaces, we denote by £(X,Y) the
space of all bounded linear operators from X to Y and by K(X,Y") the subspace of
all compact linear operators. We say that Y contains a copy (resp. a complemented
copy) of X, and write X — Y (resp. X N Y), if X is isomorphic to a subspace

(resp. complemented subspace) of Y. If X and Y are isometrically isomorphic
Banach spaces, we write X =Y.

We shall denote the projective and injective tensor norms by | - || and || - |-
respectively. The projective (resp. injective) tensor product of X and Y is the
completion of X ® Y with respect to || - ||x (resp. || - ||c) and will be denoted by

X®,Y (resp. X®.Y).

Given X a Banach space, I an infinite set and (z;)ier € X I the notation
x =), x; means that, for every € > 0, there exists a finite subset @ # Fy C I such
that, for every finite subset F' of I with Fy C F, we have ||a: — EieinH <e.

For a non-empty set I', ¢o(T") denotes the Banach space of all real-valued maps
f on I' with the property that for each ¢ > 0, the set {y € T : |f(vy)| > €} is
finite, equipped with the supremum norm. We will refer to ¢o(I") as ¢o(7) when the
cardinality of T' (denoted by |T'|) is equal to 7. This space will be denoted by ¢
when 7 = Ng.
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Given p € [1,00), we denote

0,(1,X) = {(xi)ie, e XY P < oo} ,
iel
equipped with the complete norm

1
[zl = [Z |xi||p] :
il
for each T = (z;)ier € ¢,(I,X). These spaces will be denoted by £,(I) when X = R.

If I =N, we will write £,.

By ¢ (I) we will denote the Banach space of all bounded real-valued maps on
I, with the supremum norm. This space will be denoted by /., when I = N.

Recall that if 7 is an infinite cardinal then the cofinality of 7, denoted by cf(7),
is the least cardinal a such that there exists a family of ordinals {3; : j € a}
satisfying 5, < 7 for all j € «, and sup{B; : j € a} = 7. A cardinal 7 is said to be
reqular when cf(7) = 7; otherwise, it is said to be singular.

An immediate consequence of the classical Cembranos-Freniche Theorem [3,
Main Theorem]|, [11, Corollary 2.5] is the following result.

THEOREM 1.1. For each p € [1,00) we have ¢ N ﬂpéi)g(oo.

However, it is well known that cg 7£> Lo (see, e. g., [9, Corollary 11, p. 156]).
On the other hand, Oya proved the following theorem.

THEOREM 1.2 ([18], Theorem 2). If X is a Banach space and p € [1,00), then
Co ‘i> gp@)ﬂ—X = (o ‘i> X.
These facts motivate the following problems.

PROBLEM 1.3. Let X be a Banach space, I be an infinite set, p € [1,00) and T
be an infinite cardinal. What assumptions on T and I yield

(1) S (NS X <= co(r) < X?

PROBLEM 1.4. Given X a Banach space, I an infinite set, p € [1,00) and T an
infinite cardinal, is it true that

co(1) S 41N X < co(r) S X7

In this paper, we provide a partial solution to Problem 1.3 and a complete
solution to Problem 1.4. More precisely, we will prove that for every Banach space
X, infinite set I, p € [1,00) and infinite cardinal 7, one has

(1) S 6,10 X <= co(r) > X.
Additionally, if the cf(7) > |I|, then one also has
(1.1) (1) S (DB X <= co(r) = X.

REMARK 1.5. The equivalence (1.1) cannot be extended to the case p = oo.
Setting I = N and 7 = Ny, by [13, Theorem 5.3] we know that

CO(NI) é goo@)egoo(Nl)a
although ¢o(R1) %5 Lo (R1) by [9, Corollary 11, p. 156].
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REMARK 1.6. (1.1) is optimal for every infinite regular cardinal . Indeed,
setting I = k, again by [13, Theorem 4.5] we have

co(K) < Ly(R)Beloo (),
but ¢g(k) 7& ¢ (T) once again by [9, Corollary 11, p. 156].

2. Preliminary results and notations

We will denote by (e;);e- the unit-vector basis of c¢y(7) or ¢,(7) for p € [1,00),
that is, e;(j) = 1 and e;(k) = 0 for each j,k € 7, j # k. If " is a subset of 7, we
identify ¢o(I") with the closed subspace of ¢y(7) consisting of the maps g on 7 such
that g(j) = 0 for each j € 7\ T.

We begin by recalling the following classical result by H.P. Rosenthal.

THEOREM 2.1. ([19, Remark following Theorem 3.4]) Let X be a Banach space
and T an infinite cardinal. Let T : c¢o(7) = X be a bounded linear operator such
that

inf{||T(e;)|| : 5 € 7} > 0.
Then there exists a subset I' C 7 such that || = 7 and Tj,(ry is an isomorphism
onto its image.

We recall that a family (27);je, in the dual space X* is said to be weak”™-null

if for each € X we have
(@} ())jer € co(T).

Recall also that a family (z;),c- in a Banach space X is said to be equivalent
to the canonical basis of ¢o(7) if there exists T : ¢o(7) — X an isomorphism onto
its image satisfying T'(e;) = «;, for each j € 7.

The main characterization of complemented copies of ¢o(7) we will use is the
following result obtained in [7].

THEOREM 2.2. Let X be a Banach space and T be an infinite cardinal. The
following are equivalent:

(1) X contains a complemented copy of co(T).
(2) There exist a family (z;)er equivalent to the unit-vector basis of co(T) in
X and a weak™ -null family (x75)jer in X* such that, for each j,k € T,

zi (1) = 0jk-

(3) There exist a family (z;);er equivalent to the unit-vector basis of c¢o(T) in
X and a weak™-null family (x5 )jer in X such that

inf |27 (a;)| > 0.
We will also use the following two simple lemmas.

LEMMA 2.3. Let I be an infinite set and J be a non-empty set. Let {I;};c; be
a family of subsets of I such that \J,.;I; = I. If cf(|I|) > |J|, then there exists
Jo € J such that |L;,| = |I].

jed

PROOF. Suppose that the conclusion does not hold. Then we have |I;| < |I|
for each ¢ € J and thus, by the definition of cofinality,

sup{| ;] : j € J} < 1]
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Since |J| < c¢f(]I]) < |I|, we obtain

11 = [ 1] < max(|J], sup{|L;] : j € J}) < |1,
JEJ

a contradiction that finishes the proof. O

LEMMA 2.4. Let I be an infinite set and J be a non-empty, finite set. For each
i €1, let (a;;)jes be a family of positive real numbers. Suppose that there exists

6 > 0 satisfying, for alli € I,
Zam Z 0.

jeJ

Then there exist jo € J and I' C I such that |I'| = |I] and
5
i 5o 2 m, Vi € I/.
PROOF. By hypothesis, for each i € I there exists j(i) € J such that
)

%) 2 7]
Let J' = {j(i) : ¢ € I} and for each j € J’, consider I; = {t € I : j(i) = j}. Since
I = ;e I; is infinite and J' is finite, by Lemma 2.3 there exists jo € J such that
|Lj,| = |I|. Setting I’ = I;,, the proof is complete. O

3. Spaces s/,(I,X), F,(I,X) and ¢,(I,X)

In this section we shall introduce some generalized sequence spaces which will
be of interest.

Let X be a Banach space, I be an infinite set and p € [1, 00). Following [21],
we denote

slp(I,X) = {(l‘i)ie] e x!: Z|x*(xz)\p < o0, for all z* € X*}.
iel

It is straightforward to check that the function

1

|1Z||s¢, = sup [Z |x*(mi)|p] :z* € Bx- p,
il

where T = (2;)ier € s¢p(I, X), is a complete norm on s¢,(I, X). For each i € I, we

denote by R; : X — X' the canonical inclusion defined by R;(x) = (§;x2)rer, for

each € X. Our interest lies in the closed subspace

F,(I,X) = {x = (zi)ies € slp([,X): T =Y Ri(xi)}
iel
of st,(I,X).
Given p € (1,00) and ¢ € (1,00) the conjugate index of p, there exists a
canonical isometric isomorphism between s¢,, (I, X) and L({4(I), X) which maps an
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element T = (z;)ier € slp(I,X) to the bounded linear operator S € L(¢4(I),X)

defined by
S(E) = Z a; T,
iel
for all @ = (a;)ier € ¢4(I). This isometry identifies F,(I,X) and the subspace
K(ly(I),X) of compact linear operators from ¢,(I) to X.

In a similar way, in the case p = 1 there exists an isometric isomorphism
between siy (I, X) and L(co(I), X) which identifies Fy (I, X) and K(co(I), X).

Next, let p € (1,00) and ¢ € (1,00) be the conjugate index of p. Following
[1, 5], we denote

(I, X) = {x: (z3)icr € X1 : Z|xf(xl)\ < o0, for all (2] );er € sﬁq(LX*)}'
iel

It is straightforward to check that the function

IZ]le,(x) = sup {Z 27 (@3)] : T° = (27 )ier € Bseq(Lx*)} )

iel

where T = (2;)ier € (I, X), is a complete norm on £,(I, X).

We will summarize the main properties of those spaces in our next results. Our
statements and proofs are simple modifications of those found in [1, 2, 5].

PROPOSITION 3.1. Let X be a Banach space, I be an infinite set and p € [1,00).
(1) £,(I,X) C Fp(I,X) and ||[Z||se, < ||T|p, for all T € £,(1,X);
(2) Forp>1, 6,(I,X) CL,(I, X) and ||Z|l, < |Zle,(x), for all T € £,(1, X).
PrROOF. Statement (1) follows immediately from the definitions of ¢,(I,X)
and s¢,(I,X). Let us show (2). Given T = (z;)ier € £p(I,X), we fix, for every
i € I, 7 € Bx- such that [|z;|| = z}(z;). For every (\;)ier € By, (1) We have
(A} )ier € Bg,(x+) and so

D i@l =Y il el < Iz, cx)-
icl i€l

Therefore

1
<Z IIwillp> = [IZlly < IZlle,x)

icl

and the proof is complete. ([

We will denote the canonical inclusion of € X in X** by Z. The proof of the
following proposition is straightforward.

PROPOSITION 3.2. Let X be a Banach space, I be an infinite set, p € [1,00),
Z = (z;)ier € X! and y = (£3)ier € (X**)!. Then T € sl,(I,X) if, and only if,
g € sly(I,X*). Furthermore, ||T||se, = ||[7llse, -
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4. Generalized sequence spaces and tensor products

The goal of this section is to establish a connection between the generalized
sequence spaces defined in the previous section and the projective and injective
tensor products £,(I)®,X and ¢,(I)®.X.

It is obvious that for every @ = (a;)ier € R! and € X we have (a;x);er € X!
and furthermore the operator £,(I) x X > (@, ) = (a;v);e; € X' is bilinear. This
bilinear operator induces a linear operator T : £,(I) ® X — X! [20, Proposition
1.4]. Tt is also obvious that Im(T") C ¢,(I, X) N sf,(I,X). We summarize the main
properties of this operator in the following proposition.

PROPOSITION 4.1. Given p € [1,00), we have:
(1) Im(T") contains all finitely non-zero families in £,(I,X);
(2) 1T (w)llse,(x) = llulle, for each u € £,(I) ® X;
(3) Ifp € (1,00), then ||T(u)l¢,(x) < |[ullx, for each u € £,(I) ® X.

PROOF. Given z € X and i € I, notice that T'(e; ® ) = (;;x)jer. This shows
statement (1).
Next, let u € £,(I) @ X be given and fix a representation u = "

n=1an X X,
where a,, = (a})ic;. Then we have

m Plp
T (w)llse, (x) = sup [Z Za?x*(xn) ] 12" € Bx~
1€l |n=1
m
=sup | S o (@a)an|| :a* € By f = lull.
n=1 P

This proves (2).

Finally, suppose that p € (1,00) and let us show (3). Let ¢ € (1,00) be the
conjugate index of p. Given T* = (¥} )icr € Bay,(1,x+), @ = (ai)ier € £p(I), and
x € X, by Holder’s Inequality we have

" Jaia? (@) < (Zw)p (Zw(x)w " < Yall el

iel iel iel
Hence, the bilinear operator £,(I) x X 3 (a,x) — (a;x)ier € ¢p(I, X) has norm at
most 1. By [20, Theorem 2.9], we obtain
IT@)le,x) < llullx,
for every u € £,(I) ® X, as desired. O

COROLLARY 4.2. Let X be a Banach space, I be an infinite set and p € [1,00).
Let T : £,(I) @ X — X' be the linear map defined on Proposition 4.1.

(1) T admits an unique linear extension Ts to £,(I)®.X, which is an isometry
onto F,(I,X);

(2) If p e (1,00), then T admits an unique linear extension of same norm Ty
from £,(I)@X to £,(I, X).

PROOF. Let us first show (1). By the density of £,(I) ® X in £,(I)®.X and
Proposition 4.1, T' admits an unique linear extension T : Zp(I)@)sX — F,(I,X),
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which is an isometry onto its image. Given T = (x;)ier € Fp(I, X), by Proposition
4.1 we have

T = ZRz(mz) = ZT(@Z X Jii) € Im(T) e Im(TE) .
i€l i€l

This proves that T is onto F,(I, X).

~

Similarly, if p € (1, 00), the density of £,(I) ® X in £,(I)®,X and Proposition
4.1 imply that T admits an unique linear extension Ty : £,(I)&,X — £,(I,X)
satisfying || = ||T|| < 1. O

As in the countable case, we will show that T, is a linear isometry from
£,(I)®-X onto £,(I, X). We will use the following key lemma.

LEMMA 4.3. Let X be a Banach space, I be an infinite set and p € (1,00).
Given u € £,(I)®,X, there exists a family (z;)icr in X such that

u = g e; Qx;.
iel

PROOF. Let g € (1, 00) be the conjugate index of p and (e} );c be the unit basis
of £,(I). For each i € I consider the bounded linear operator m; : £,(I) — £,(I)
defined by

mi(a) = e;(a)e;,
for each a = (a;) er € £,(I), and for every finite subset @ # F C I write
PF = Z -
JEF
Let u € £,(I)®,X be given and let us prove that
(4.1) u:Z(m@I)(u).
iel
By [20, Proposition 2.8] there exist bounded sequences (ay,)n>1 in €,(I) and (yn)n>1
in X satisfying

oo oo
U = Zan ® yn and Z llanllpllyn |l < oo
n=1 n=1
We may suppose that ||y, || = 1 for every n > 1. Given € > 0, take N > 1 such that

oo

S
E < -.
||a”ﬂ”p -3

n=N+1

It is clear that

<

N
€
U — g apn ® Yp, §
n=1 T

There exists a finite subset @ # Fy C I such that for every finite subset F' C I
satisfying Fy C F and every 1 < n < N we have

g
| Pr(an) — an”p < 3N
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Thus,

lu— (Pr @ D)(u)] <

U_Zan®yn

N
Zan@yn ZPFan ®yn
n=1 n=1

N

Z (an) @ Yn — (Pr @ I)(u)

s

<e.

™

This shows that (4.1) holds.
Finally, since

(m @ I)( Zm (an) @ yn = Z lan)ei @yn =€ @ (Z ef(an)yn> ;
n=1

n=1

for each i € I, it follows that

oo
Ty = Z e;'k (an)yn
n=1

satisfies the desired properties. O
We are now in a position to show that T is an isometry onto £,(I, X).

THEOREM 4.4. Let X be a Banach space, I be an infinite set and p € (1,00).
The operator Ty is an isometric isomorphism from £,(I)®@,X onto £,(I,X).

Proor. We have shown that
1 Tx(W)le, xy < [Jull,

for every u € £,(I)&;X. In order to prove that T} is isometric, it is sufficient to
prove the reverse inequality on span{ e;®x : i € I,z € X }. Given v € span{ e;®@x :
i € I,z € X }, there exist a finite subset @ # Iy C I and a finite family (y;);cz, of
elements of X such that

v = Z e; @ y;.

i€ly
By [20, p. 24] and the Hahn-Banach Theorem, there exists a bounded linear
operator b € L(£,(I), X*) = [(,(I)®,X]* satisfying
] =1 and Jlvfl- =) b(e
i€ly
Setting y; = 0 for each ¢ € I\ Iy, it is clear that T (v) = (y;)ier and
1T (0)lle, x) = V]l

as desired.
Let us show next that T is onto. Given T = (x;)ier € £p(I, X), we will show
that the family (e; ® x;);es is summable in @,(I)@WX and

(4.2) z="T; (Z e; &Q :I?l) .

icl
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For every T° = (x)ier € sly(I, X*) we have

> i (w)

iel

Hence, the linear functional 6 defined on sl,(I, X*) = L(¢,(I), X*) by
6(z") = i),

i€l

<|Zlle, xy 17|51, (x7)-

for each T° = (2 )ier € (I, X™*), is bounded. Let us denote by 6, its restriction
to the subspace K(£,(I), X*).

Let g € (1,00) be the conjugate index of p. Recall that the space ¢,(I) has the
approximation property [20, p. 73], and therefore
(4.3) K(lp(I), X") = L(1)B: X",
by [20, Corollary 4.13]. Moreover, since £,(I) also has the Radon-Nikodym property
[20, Corollary 5.45], by (4.3) and [20, Theorem 5.33] we know that

L(D@ X = [L(D@ X" = [K(6,(1), X))
It follows from Lemma 4.3 that there exists a family (2;*);c; in X** such that
9,,, = Z e; ® (L':f*
iel

We observe that for every ¢ € I and for every z* € X* we have

zi"(27) = Or(ef @ 2¥) = 2" (z4),
and so x* = Z;. Thus, the family (e; ® Z;);cs is summable in Ep(I)QA@,rX** and
hence, the family (e; ® x;);er in £,(1)®, X, by [8, Corollary 14, p. 238]. Finally, it
is clear that (4.2) holds. O

REMARK 4.5. We observe that Ty (e; ® ;) = R;(z;), for each i € I. Therefore,
for each T = (;)ier € (I, X), the family (R;(x;));es is summable in £,(I, X) and

iel
REMARK 4.6. By Proposition 3.1, every family T = (x;);er € £,{(I, X) has only
countably many non-zero coordinates. Hence, by the previous remark, the subspace
L={y= (yi)ier € £,{I,X) : {i €l : y; =0} is finite}
is dense in £, (I, X).

5. Dual spaces of (,(I,X) and F,(I, X)

We now turn our attention to convenient identifications of the spaces £, (I, X)
and F,(I, X) and of their duals.

THEOREM 5.1. Let X be a Banach space, I be an infinite set, p € (1,00) and
q € (1,00) be the conjugate index of p. Then there exists an isometric isomorphism
from £,(I, X)* onto sly(I, X*) which maps ¢ € £,(I,X)* to (x})icr € sly(I,X"),

where
p(@) =) xi(),
iel
for every T = (x;)icr € £p(I, X).
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PROOF. Let T, be the canonical isometric isomorphism from £,(I)®,X onto
¢,(I,X) considered in Corollary 4.2. Then T is also an isometric isomorphism
from £, (I, X)* onto [¢,(I)&,X]*. By [20, p. 24], we have

[ (DR X]* = L(6,(I), X*) = sby(1, X7).

Given ¢ € £,(I, X)*, let (x})ier € sly(I, X*) be the unique element corresponding
to T () € [¢,(1)®X]* via the above identifications. By Remark 4.5, for each

T=(zi)ier = »_ Ri(wi) =Y Tule; @ ;) € (I, X),
icl i€l
we have
o(T) = Z(gp oTy)(e; ® x;) ZT* (e; @) = fo(mz),
icl icl jel

and the proof is complete. ([

REMARK 5.2. For every ¢ = (x]);er € £,(I, X)*, we have

”90” - Sup{ZLT 1‘1 %)zel € By (X)}

el

THEOREM 5.3. Let X be a Banach space, I be an infinite set, p € (1,00) and

q € (1,00) be the conjugate index of p. Then there exists an isometric isomorphism
from F,(I,X)* onto £y(I, X*) which maps ¢ € F,(I,X)* to (x})ier € L4{I,X"),

where
V(@) =) a(@),
i€l
for every T = (2;)icr € Fp(I,X).
PROOF. Let T, be the canonical isometric isomorphism from ZP(I)®EX onto
F,(I,X) considered in Corollary 4.2. Since the space ¢,(I) has both the approxi-

mation property and the Radon-Nikodym property, by [20, Theorem 5.33] we know
that

[lp(DBX]" = £,(1)®, X"
By Theorem 4.4 and Remark 4.5, the operator
LI, X%) 3 (x))ier = Y ei @] € Ly()B X
i€l
is also an isometric isomorphism.
Given ¢ € F,(I, X)*, there exists an unique (z});es € €4(I, X*) corresponding
to T2 () € [¢,(I)&.X]* via the above identifications. For each

T = (v)ier = Yy Ri(w;) =Y T(e; @) € Fy(I,X),
iel icl

@) =D (WoT)(es@a) =Y Tr(¥)(ei®x;) =Y x}(x),

iel icl jeI

we have

and the proof is complete. [
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6. Complemented copies of cy(7) in £,(1)®, X and £,(I)®.X

This section is devoted to the study of the complemented copies of ¢ (7) in the
projective and injective tensor products fp(I)@x\)ﬁX and EP(I)@)EX. We begin with
the former space.

LEMMA 6.1. Let X be a Banach space, I be an infinite set, p € (1,00) and T be
an infinite cardinal. Let (T;)jer = ((@i,5)icr)jer be a family of ,(I,X) equivalent
to the unit basis of co(T) and let (p;)jer = (@i j)icr)jer be a bounded family of
L,(I,X)*. Then, for each € > 0, there exists a finite subset F. C I satisfying, for
every j €T,

> pigmig)| <e.

i€I\F.

PROOF. Let M = sup,c, [l¢;ll. We may assume |||, x) = 1 for every j € 7.
Suppose that the conclusion does not hold; then there exists € > 0 such that, for
every finite subset F' C I, there exists j € 7 with

D eijmig)| > e

iZF

We will show that this leads to a contradiction.
We construct by induction a sequence (ji)k>1 in 7 and a sequence of pairwise
disjoint finite subsets (Fj)x>1 of I such that

Z Pijx ('T’i,jk)

i€ Fy

(6.1) >, Wk > 1.

€
2 b
Put Fy = 9. By hypothesis, there exists j; € 7 such that

> i (@ig)

icl

> e.

Since

> lpi (gl < M,
i€l
there exists a finite subset @ # Fy C I such that

g
> e (i)l < 2

1€\ Fy
and hence
€
> i (@ig,)] > 7
i€ Fy
Next, let £ > 1 be given and suppose we have constructed ji,...,jr and Fy,..., F}

as desired. Put A = UF_| F}. By hypothesis, there exists jx.1 € 7 such that

Z Pijrt1 (J:iyjk+1) > €.

i€I\A



12 VINICIUS MORELLI CORTES, ELOI MEDINA GALEGO, AND CHRISTIAN SAMUEL

There exists a finite subset @ # Fi11 C (I \ A) such that
€
Z |<pi7jk+1 (xi7.jk+1)| < 57

i€T\(AUFj11)

and so

e
E : Wi,jk+1(xi7jk+1) > 5
1€F L1

It follows from the construction that j; # ji for [ # k.
For each k > 1 and i € I we denote

D, leGFk
1/)i,k: op e
0 ifiel\ Fy,

and ¥ = (i k)ier- It is obvious that (¢)r>1 is a bounded sequence in F, (I, X*) =
£,(I, X**), where ¢ € (1,00) is the conjugate index of p. We claim that (v;)r>1 is
a weakly-null sequence. Indeed, by Remark 4.6, the subspace

L={0"=(0;")icr € Lp,(I,X™) : {i el : 6" =0} is finite}

is dense in £,(I, X**). Given 0** = (0*),e; € L, there exists ky > 1 such that
07* =0, for all ¢ € Fy, k > ko, and hence,

lim 07 () = i 5 (4 1) = 0.
Jdim 07 () = Jim > 07 (i) =0
i€ Fy
The density of L then establishes our claim.
The sequence (T;, )x>1 is equivalent to the unit basis of ¢y and furthermore

@) 2 5

for each k > 1, in contradiction with the Dunford-Pettis Property of ¢y [12, p.
596]. O

We are now in a position to prove the first main result of this section.

THEOREM 6.2. Given X a Banach space, I an infinite set, p € (1,00) and T
an infinite cardinal, we have

co(1) S 6,10 X <= co(r) > X.

PROOF. Suppose first that co(r) < 0,(I®-X = €,(I,X). By Theorem 2.2,
there exist (Z;);er = ((%ij)ier)jer equivalent to the canonical basis of ¢o(7) in
0,(I,X), and (¢;)jer a weak*-null family in £,(I, X)* satisfying ¢,(x;) = 1 for all
j € 7. By Theorem 5.1, for each j € 7, there exists a family (¢; ;)ier in X* such

that
1=¢i(T) = ) ¢i(@i)-
el
By the Uniform Boundedness Principle, (¢;)je- is bounded, and so there exists
M > 0 such that ||¢;|| < M for each j € 7.
An appeal to Lemma 6.1 yields a finite subset F' C I satisfying

Y viilzig)| <

i€I\F

, Vjer.

N | =
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Therefore, F' # & and
1 .
D (@) > 3 Vier
i€F
Next, Lemma 2.4 implies that there exist ig € F and 71 C 7 satisfying |7 | = 7 and

1 .
(6.2) |Pio,5 (%o, )| > M,VJ € 71.
‘We have )
m < |90i07j('ri07j)| < MHxio,jH’ VJ € 71,
and thus
1
6.3 i i — Yy .
(63) 051> 377 ¥ € 7

Consider the bounded linear operator m;, : £(I, X) — X defined by m;, (T) =
x;, for each @ = (2;)ier € £,(I, X). By hypothesis, there exists T : ¢o(7) — £,(I, X)
an isomorphism onto its image such that T'(e;) = T, for all j € 7. By (6.3), we
have

(i © T)(e5)ll > vj €,

1
2M|F|’
and therefore, by Theorem 2.1, there exists 72 C 7 such that |r2| = |71| = 7 and
Tio © Ticy(rp) is an isomorphism onto its image. Thus, (z4,,;) er, is equivalent to the
unit basis of co(72) in X. The family (¢;);e- is weak*-null and hence, (¢;,.;)jer

is a weak*-null family in X*. Theorem 2.2 and (6.2) then imply that co(r) <> X.
For the converse, it is sufficient to notice that £,(I, X) contains a complemented
copy of X. O

We now turn our attention to complemented copies of ¢o(7) in the injective
tensor product £,(I)®.X.

THEOREM 6.3. Let X be a Banach space, I be an infinite set, p € [1,00) and
T be an infinite cardinal. If cf(r) > |I|, then

(1) S 6,(1NS.X <= co(r) > X.

PROOF. Suppose first that co(7) <> 0,(I)®-X = F,(I, X). By Theorem 2.2,
there exists (Z;) je- = ((¢i,j)ier) jer equivalent to the unit basis of ¢o(7) in F,, (I, X),
and a weak*-null family (¢;)jer = ((¢i,j)ier)jer of Fp(I, X)* satisfying

1=;(T) =Y i lxi), Vi€
iel
For each j € 7, there exists a finite subset @ # F; C I such that

1
(6.4) > i) > 3
i€ F;
Let F = {F; : j € 7}, and for each F' € F, consider 7(F) ={j € 7 : F; = F}.
Since 7 = (Jper 7r and cf(7) > [I| > | F|, by Lemma 2.3 there exists Go € F such
that |7(Go)| = 7. Setting 7 = 7(Go), by (6.4) we obtain

1 .
> i (@ig)| > 3 Viem.
i€Go
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Next, an appeal to Lemma 2.4 yields ig € Gy and 7o C 7y satisfying || = |71| =7
and
(65) 610, (Fio)| > g Vi €
. 0. i\ Lio . 5 — T2.
Pio,j\Tig,j 2| G0| J 2
By the Uniform Boundedness Principle, (¢;);je, is bounded, and so there exists
M > 0 such that ||¢;|| < M, for each j € 7. Therefore we have

1 .
3Gol < |@ig,i (Tig,j)| < Mllwig 5, V5 € T2,

and thus

(66) Hxio,j” > V] € To.

1
2M|Go|’

Consider the bounded linear operator m;, : s, (I, X) — X defined by =, (%) =
x;, for each T = (x;)ier € sp(I,X). By hypothesis, there exists T' : ¢o(7) —
F,(I,X) an isomorphism onto its image such that T'(e;) = Z;, for all i € 7. By
(6.6), we have

1(i © T)(e5)ll > Vj €7,

1
2M|Gol’
and therefore, by Theorem 2.1, there exists 73 C 75 such that |75] = |72| = 7 and
Tio © Tlco(ry) is an isomorphism onto its image. Thus, (2, ;);jer, is equivalent to the
unit basis of co(73) in X. The family (¢;),e- is weak*-null and hence, (¢;,.;)jer

is weak*-null in X*. Theorem 2.2 and (6.5) then imply co(7) <> X.
For the converse, it suffices to notice that F,(I,X) contains a complemented
copy of X. O

Our next step is to obtain a result analogue to Theorem 6.3 without assump-
tions on the cofinality of 7. In this direction, we begin with the following lemma.

LEMMA 6.4. Let X be a Banach space, I be an infinite set, p € (1,00) and T be
an infinite cardinal. Let (ZT7)jer = ((xij)icr)jer be a family of F,(I,X) equivalent
to the unit basis of co(T) and let (p;)jer = ((@ij)icr)jer be a bounded family of
Fo(I,X)* =,(I,X*), where q € (1,00) is the conjugate index of p. Suppose that

/C(fq(f),X**) = ﬁ(ﬁq(I),X**).
Then, for each € > 0, there exists a finite subset F. C I satisfying

Z gpi,j(xi,j) <e¢g, VJ cT.
i€I\F.

PRrROOF. By hypothesis and Theorem 5.3, there exists M > 0 such that
(6.7) M = |lg;ll = I(pig)ierlle,x=y, Vi€

Suppose by contradiction that the result does not hold. As in the proof of
Lemma 6.1, there exist ¢ > 0, a sequence of distinct indexes (jx)r>1 of 7, and a
sequence (F))x>1 of finite, non-empty and pairwise disjoint subsets of I satisfying

Z Pi,jk (]"ivjk)

i€ Fy,

(6.8) >e, Vk> 1.
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Consider ¥y, = (Yix)ier € £g(I, X*), where
Vi = {%’jk lfz < L
0 ifi eI\ Fy.
By (6.7) we have
(6.9) l1Vklle,xoy < (@i )ierlle,x=y = llpsll < M, Vk > 1.
We claim that (¢;)r>1 is a weakly-null sequence in £,(I, X*). Recall that
L (I, X7) = sb,(I, X)) = L(L,(I), X™™),
and
Fy(I,X™) = K(£,(I), X™).
Thus, by hypothesis, we have
0,1, X" = F, (I, X*).
The subspace
L={0""=(0)ier € F,(I,X™) : {iel : 0 =0} is finite}

is dense in F,(I, X**). Observe that if 6** = (6;*);cr € L, there exists ky > 1 such
that 07* = 0, for all 7 € F}, k > ko, and hence,

Jim 07 () = lim Y07 (k) = 0.
i€ F),
The density of L then establishes our claim.
Now, notice that

¥w(T5)| =

Z Vi k(i)

el

=D pig (i)

1€ Fy

3
-, Vk>1
>27 - &

by construction. On the other hand, since the sequence (9y)x>1 is weakly-null in
F,(I,X)* and (%;,)k>1 is, by hypothesis, equivalent to the unit basis of ¢y, by
the Dunford-Pettis Property of ¢y [12, p. 596] we know that ¢y(z;,) — 0, a
contradiction that finishes the proof. O

THEOREM 6.5. Let X be a Banach space, I be an infinite set, p € (1,00) and
T be an infinite cardinal. Suppose that
K(ly(I), X**) = L(L,(I), X™),
where q € (1,00) is the conjugate index of p. Then
co(T) S Ly(DBX = co(r) = X.

PROOF. Suppose first that co(r) <> £,(1)&.X = F,(I,X). By Theorem 2.2,
there exist (7;)jer = ((¢45)icr)jer equivalent to the unit basis of ¢o(7) in F, (1, X),
and a weak*-null family (¢;)jer = ((¢i;)ier)jer of Fp(I, X)* satisfying

1=9;(®) =Y ¢ij(xij), Vi€
iel
By the Uniform Boundedness Principle, (¢;)je- is bounded, and so there exists
M > 0 such that

(6.10) lpill < M, Vj €.
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An appeal to Lemma 6.4 yields a finite subset F' C I satisfying

, Vjer.

DN =

> i) <

i€I\F

Therefore, F' # & and

> pij@iy)

icF

1.
> — Z cpi’j(a?i’j) > Q,VJ e T.

i€I\F

> i)

icl

> lpig(ig)| >

icF

Next, Lemma 2.4 implies that there exist ig € F and 7y C 7 satisfying |71| = 7 and
1 .
(6.11) i, (Tig,5)| > SF] Vj €T

By (6.10), we have

1
s < @io.i (Tig )| < Mlig i

S @0l < 1ol a0 31} < Mllzig 31, V5 € 71,
and thus
1
6.12 il > —=——,Vj € 1.
( ) ||l' OJH 2M|F| j T1

Consider the bounded linear operator m;, : F,(I, X) — X defined by m;,(Z) =
x;, for each T = (2;)icr € Fp(I,X). By hypothesis, there exists T : ¢y(7) —
F,(I,X) an isomorphism onto its image such that T'(e;) = T;, for all j € 7. By
(6.12), we have

(i © T)(e5)ll > vj €,

1
2M|F|’
and therefore, by Theorem 2.1, there exists 72 C 7 such that |72| = |11| = 7 and
Tio © Ticy(rp) is an isomorphism onto its image. Thus, (z4,,j) e, is equivalent to the
unit basis of ¢o(72) in X.

Next, given x € X, we have

(@i0,j(x))jer, € co(T2),

since, by hypothesis, (;);c- is weak*-null. This proves that (v;, ;)jer, is weak*-

null in X*. Theorem 2.2 and (6.11) then imply that co(7) <> X.
For the converse, it is sufficient to notice that F},(I, X') contains a complemented
copy of X. O

7. Final remarks and open problems

By adapting the proofs of Lemma 6.1 and Theorem 6.2, one can prove the
following.

THEOREM 7.1. Given X a Banach space, I an infinite set, p € [1,00) and T
an infinite cardinal, we have

(1) S 6,1, X) <= co(1) S X,

The above theorem extends to the uncountable case a ¢ result by Bombal [4,
Theorem 4.3.1]. Moreover, since ¢1(I)®, X is isometrically isomorphic to £;(I, X)
[20, p. 19], the next corollary follows immediately from Theorems 6.2 and 7.1.
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COROLLARY 7.2. Given X a Banach space, I an infinite set, p € [1,00) and T
an infinite cardinal, we have

(1) S 6,(1N0X <= co(1) > 6,(1,X) <= co(1) > X.

However, observe that the space ¢,(I, X) cannot be exchanged by the usual
Banach space of Lebesque integrable functions L,([0,1],X) in the statement of
Theorem 7.1, even in the case 7 = Ng. Indeed, recall the following result due to
Emmanuelle [10, Main Theorem].

THEOREM 7.3. Let X be a Banach space and p € [1,00). Then
o= X = o> Ly([0,1], X).

Thus, we have
co <> Lp([0,1], o) but co &5 lo.

These facts arise naturally the following question.

PROBLEM 7.4. Let X be a Banach space, p € [1,00) and T be an infinite
cardinal. What assumptions on T yield

co(T) < £,([0,1], X) <= co(7) <> X7
We do not know if Theorem 6.2 can be extended to the case p = co. That is:

PrROBLEM 7.5. Let X be a Banach space and T be an infinite cardinal. Is it
true that
o(T) S Loao®rX = co(T) = X?

Finally, we also do not know if Theorem 6.3 is optimal for any cardinal 7. In
particular, the following problem is unsolved.

PROBLEM 7.6. Let X be a Banach space and p € [1,00). Does it follow that

co(Ry) S £,0.X = co(Ry) <> X7
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