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Abstract. Let X be a Banach space, I an infinite set, τ an infinite cardinal
and p ∈ [1,∞). In contrast to a classical c0 result due independently to

Cembranos and Freniche, we prove that if the cofinality of τ is greater than
the cardinality of I, then the injective tensor product `p(I)⊗̂εX contains a

complemented copy of c0(τ) if and only if X does. This result is optimal for

every regular cardinal τ .
On the other hand, we provide a generalization of a c0 result of Oya by

proving that if τ is an infinite cardinal, then the projective tensor product

`p(I)⊗̂πX contains a complemented copy of c0(τ) if and only if X does.
These results are obtained via useful descriptions of tensor products as

convenient generalized sequence spaces.

1. Introduction

We use standard set-theoretical and Banach space theory terminology as may
be found, e.g., in [14] and [15] respectively. We denote by BX the closed unit ball
of the Banach space X. If X and Y are Banach spaces, we denote by L(X,Y ) the
space of all bounded linear operators from X to Y and by K(X,Y ) the subspace of
all compact linear operators. We say that Y contains a copy (resp. a complemented

copy) of X, and write X ↪→ Y (resp. X
c
↪→ Y ), if X is isomorphic to a subspace

(resp. complemented subspace) of Y . If X and Y are isometrically isomorphic
Banach spaces, we write X ≡ Y .

We shall denote the projective and injective tensor norms by ‖ · ‖π and ‖ · ‖ε
respectively. The projective (resp. injective) tensor product of X and Y is the
completion of X ⊗ Y with respect to ‖ · ‖π (resp. ‖ · ‖ε) and will be denoted by
X⊗̂πY (resp. X⊗̂εY ).

Given X a Banach space, I an infinite set and (xi)i∈I ∈ XI , the notation
x =

∑
i xi means that, for every ε > 0, there exists a finite subset ∅ 6= F0 ⊂ I such

that, for every finite subset F of I with F0 ⊂ F, we have
∥∥x−∑i∈F xi

∥∥ < ε.
For a non-empty set Γ, c0(Γ) denotes the Banach space of all real-valued maps

f on Γ with the property that for each ε > 0, the set {γ ∈ Γ : |f(γ)| ≥ ε} is
finite, equipped with the supremum norm. We will refer to c0(Γ) as c0(τ) when the
cardinality of Γ (denoted by |Γ|) is equal to τ . This space will be denoted by c0
when τ = ℵ0.

2010 Mathematics Subject Classification. Primary 46B03, 46E15; Secondary 46E40, 46B25.
Key words and phrases. Complemented subspaces, c0(Γ) spaces, `p(I) spaces, injective tensor

product, projective tensor product.

1
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Given p ∈ [1,∞), we denote

`p(I,X) =

{
(xi)i∈I ∈ XI :

∑
i∈I
‖xi‖p <∞

}
,

equipped with the complete norm

‖x‖p =

[∑
i∈I
‖xi‖p

] 1
p

,

for each x = (xi)i∈I ∈ `p(I,X). These spaces will be denoted by `p(I) when X = R.
If I = N, we will write `p.

By `∞(I) we will denote the Banach space of all bounded real-valued maps on
I, with the supremum norm. This space will be denoted by `∞ when I = N.

Recall that if τ is an infinite cardinal then the cofinality of τ , denoted by cf(τ),
is the least cardinal α such that there exists a family of ordinals {βj : j ∈ α}
satisfying βj < τ for all j ∈ α, and sup{βj : j ∈ α} = τ . A cardinal τ is said to be
regular when cf(τ) = τ ; otherwise, it is said to be singular.

An immediate consequence of the classical Cembranos-Freniche Theorem [3,
Main Theorem], [11, Corollary 2.5] is the following result.

Theorem 1.1. For each p ∈ [1,∞) we have c0
c
↪→ `p⊗̂ε`∞.

However, it is well known that c0 6
c
↪→ `∞ (see, e. g., [9, Corollary 11, p. 156]).

On the other hand, Oya proved the following theorem.

Theorem 1.2 ([18], Theorem 2). If X is a Banach space and p ∈ [1,∞), then

c0
c
↪→ `p⊗̂πX ⇐⇒ c0

c
↪→ X.

These facts motivate the following problems.

Problem 1.3. Let X be a Banach space, I be an infinite set, p ∈ [1,∞) and τ
be an infinite cardinal. What assumptions on τ and I yield

c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X?

Problem 1.4. Given X a Banach space, I an infinite set, p ∈ [1,∞) and τ an
infinite cardinal, is it true that

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ X?

In this paper, we provide a partial solution to Problem 1.3 and a complete
solution to Problem 1.4. More precisely, we will prove that for every Banach space
X, infinite set I, p ∈ [1,∞) and infinite cardinal τ , one has

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ X.

Additionally, if the cf(τ) > |I|, then one also has

(1.1) c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X.

Remark 1.5. The equivalence (1.1) cannot be extended to the case p = ∞.
Setting I = N and τ = ℵ1, by [13, Theorem 5.3] we know that

c0(ℵ1)
c
↪→ `∞⊗̂ε`∞(ℵ1),

although c0(ℵ1) 6 c↪→ `∞(ℵ1) by [9, Corollary 11, p. 156].
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Remark 1.6. (1.1) is optimal for every infinite regular cardinal κ. Indeed,
setting I = κ, again by [13, Theorem 4.5] we have

c0(κ)
c
↪→ `p(κ)⊗̂ε`∞(κ),

but c0(κ) 6 c↪→ `∞(τ) once again by [9, Corollary 11, p. 156].

2. Preliminary results and notations

We will denote by (ej)j∈τ the unit-vector basis of c0(τ) or `p(τ) for p ∈ [1,∞),
that is, ej(j) = 1 and ej(k) = 0 for each j, k ∈ τ , j 6= k. If Γ is a subset of τ , we
identify c0(Γ) with the closed subspace of c0(τ) consisting of the maps g on τ such
that g(j) = 0 for each j ∈ τ \ Γ.

We begin by recalling the following classical result by H.P. Rosenthal.

Theorem 2.1. ([19, Remark following Theorem 3.4]) Let X be a Banach space
and τ an infinite cardinal. Let T : c0(τ) → X be a bounded linear operator such
that

inf{‖T (ej)‖ : j ∈ τ} > 0.

Then there exists a subset Γ ⊂ τ such that |Γ| = τ and T|c0(Γ) is an isomorphism
onto its image.

We recall that a family (x∗j )j∈τ in the dual space X∗ is said to be weak∗-null
if for each x ∈ X we have

(x∗j (x))j∈τ ∈ c0(τ).

Recall also that a family (xj)j∈τ in a Banach space X is said to be equivalent
to the canonical basis of c0(τ) if there exists T : c0(τ) → X an isomorphism onto
its image satisfying T (ej) = xj , for each j ∈ τ .

The main characterization of complemented copies of c0(τ) we will use is the
following result obtained in [7].

Theorem 2.2. Let X be a Banach space and τ be an infinite cardinal. The
following are equivalent:

(1) X contains a complemented copy of c0(τ).
(2) There exist a family (xj)j∈τ equivalent to the unit-vector basis of c0(τ) in

X and a weak∗-null family (x∗j )j∈τ in X∗ such that, for each j, k ∈ τ ,

x∗j (xk) = δjk.

(3) There exist a family (xj)j∈τ equivalent to the unit-vector basis of c0(τ) in
X and a weak∗-null family (x∗j )j∈τ in X∗ such that

inf
j∈τ
|x∗j (xj)| > 0.

We will also use the following two simple lemmas.

Lemma 2.3. Let I be an infinite set and J be a non-empty set. Let {Ij}j∈J be
a family of subsets of I such that

⋃
j∈J Ij = I. If cf(|I|) > |J |, then there exists

j0 ∈ J such that |Ij0 | = |I|.

Proof. Suppose that the conclusion does not hold. Then we have |Ij | < |I|
for each i ∈ J and thus, by the definition of cofinality,

sup{|Ij | : j ∈ J} < |I|.
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Since |J | < cf(|I|) ≤ |I|, we obtain

|I| =

∣∣∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣∣∣ ≤ max(|J |, sup{|Ij | : j ∈ J}) < |I|,

a contradiction that finishes the proof. �

Lemma 2.4. Let I be an infinite set and J be a non-empty, finite set. For each
i ∈ I, let (ai,j)j∈J be a family of positive real numbers. Suppose that there exists
δ > 0 satisfying, for all i ∈ I, ∑

j∈J
ai,j ≥ δ.

Then there exist j0 ∈ J and I ′ ⊂ I such that |I ′| = |I| and

ai,j0 ≥
δ

|J |
, ∀i ∈ I ′.

Proof. By hypothesis, for each i ∈ I there exists j(i) ∈ J such that

ai,j(i) ≥
δ

|J |
.

Let J ′ = {j(i) : i ∈ I} and for each j ∈ J ′, consider Ij = {i ∈ I : j(i) = j}. Since
I =

⋃
j∈J′ Ij is infinite and J ′ is finite, by Lemma 2.3 there exists j0 ∈ J ′ such that

|Ij0 | = |I|. Setting I ′ = Ij0 , the proof is complete. �

3. Spaces s`p(I,X), Fp(I,X) and `p〈I,X〉

In this section we shall introduce some generalized sequence spaces which will
be of interest.

Let X be a Banach space, I be an infinite set and p ∈ [1,∞). Following [21],
we denote

s`p(I,X) =

{
(xi)i∈I ∈ XI :

∑
i∈I
|x∗(xi)|p <∞, for all x∗ ∈ X∗

}
.

It is straightforward to check that the function

‖x‖s`p = sup


[∑
i∈I
|x∗(xi)|p

] 1
p

: x∗ ∈ BX∗

 ,

where x = (xi)i∈I ∈ s`p(I,X), is a complete norm on s`p(I,X). For each i ∈ I, we
denote by Ri : X → XI the canonical inclusion defined by Ri(x) = (δikx)k∈I , for
each x ∈ X. Our interest lies in the closed subspace

Fp(I,X) =

{
x = (xi)i∈I ∈ s`p(I,X) : x =

∑
i∈I

Ri(xi)

}
of s`p(I,X).

Given p ∈ (1,∞) and q ∈ (1,∞) the conjugate index of p, there exists a
canonical isometric isomorphism between s`p(I,X) and L(`q(I), X) which maps an
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element x = (xi)i∈I ∈ s`p(I,X) to the bounded linear operator S ∈ L(`q(I), X)
defined by

S(a) =
∑
i∈I

aixi,

for all a = (ai)i∈I ∈ `q(I). This isometry identifies Fp(I,X) and the subspace
K(`q(I), X) of compact linear operators from `q(I) to X.

In a similar way, in the case p = 1 there exists an isometric isomorphism
between sl1(I,X) and L(c0(I), X) which identifies F1(I,X) and K(c0(I), X).

Next, let p ∈ (1,∞) and q ∈ (1,∞) be the conjugate index of p. Following
[1, 5], we denote

`p〈I,X〉 =

{
x = (xi)i∈I ∈ XI :

∑
i∈I
|x∗i (xi)| <∞, for all (x∗i )i∈I ∈ s`q(I,X∗)

}
·

It is straightforward to check that the function

‖x‖`p〈X〉 = sup

{∑
i∈I
|x∗i (xi)| : x∗ = (x∗i )i∈I ∈ Bs`q(I,X∗)

}
,

where x = (xi)i∈I ∈ `p〈I,X〉, is a complete norm on `p〈I,X〉.

We will summarize the main properties of those spaces in our next results. Our
statements and proofs are simple modifications of those found in [1, 2, 5].

Proposition 3.1. Let X be a Banach space, I be an infinite set and p ∈ [1,∞).

(1) `p(I,X) ⊂ Fp(I,X) and ‖x‖s`p ≤ ‖x‖p, for all x ∈ `p(I,X);
(2) For p > 1, `p〈I,X〉 ⊂ `p(I,X) and ‖x‖p ≤ ‖x‖`p〈X〉, for all x ∈ `p〈I,X〉.

Proof. Statement (1) follows immediately from the definitions of `p(I,X)
and s`p(I,X). Let us show (2). Given x = (xi)i∈I ∈ `p〈I,X〉, we fix, for every
i ∈ I, x∗i ∈ BX∗ such that ‖xi‖ = x∗i (xi). For every (λi)i∈I ∈ B`q(I) we have
(λix

∗
i )i∈I ∈ Bslq(X∗) and so∑

i∈I
|λix∗i (xi)| =

∑
i∈I
|λi| ‖xi‖ ≤ ‖x‖`p〈X〉.

Therefore (∑
i∈I
‖xi‖p

) 1
p

= ‖x‖p ≤ ‖x‖`p〈X〉

and the proof is complete. �

We will denote the canonical inclusion of x ∈ X in X∗∗ by x̂. The proof of the
following proposition is straightforward.

Proposition 3.2. Let X be a Banach space, I be an infinite set, p ∈ [1,∞),
x = (xi)i∈I ∈ XI and y = (x̂i)i∈I ∈ (X∗∗)I . Then x ∈ s`p(I,X) if, and only if,
y ∈ s`p(I,X∗∗). Furthermore, ‖x‖s`p = ‖y‖s`p .
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4. Generalized sequence spaces and tensor products

The goal of this section is to establish a connection between the generalized
sequence spaces defined in the previous section and the projective and injective
tensor products `p(I)⊗̂πX and `p(I)⊗̂εX.

It is obvious that for every a = (ai)i∈I ∈ RI and x ∈ X we have (aix)i∈I ∈ XI

and furthermore the operator `p(I)×X 3 (a, x) 7→ (aix)i∈I ∈ XI is bilinear. This
bilinear operator induces a linear operator T : `p(I) ⊗ X → XI [20, Proposition
1.4]. It is also obvious that Im(T ) ⊂ `p〈I,X〉 ∩ s`p(I,X). We summarize the main
properties of this operator in the following proposition.

Proposition 4.1. Given p ∈ [1,∞), we have:

(1) Im(T ) contains all finitely non-zero families in `p(I,X);
(2) ‖T (u)‖s`p(X) = ‖u‖ε, for each u ∈ `p(I)⊗X;
(3) If p ∈ (1,∞), then ‖T (u)‖`p〈X〉 ≤ ‖u‖π, for each u ∈ `p(I)⊗X.

Proof. Given x ∈ X and i ∈ I, notice that T (ei ⊗ x) = (δijx)j∈I . This shows
statement (1).

Next, let u ∈ `p(I) ⊗X be given and fix a representation u =
∑m
n=1 an ⊗ xn,

where an = (ani )i∈I . Then we have

‖T (u)‖s`p(X) = sup


[∑
i∈I

∣∣∣∣∣
m∑
n=1

ani x
∗(xn)

∣∣∣∣∣
p ] 1

p

: x∗ ∈ BX∗


= sup


∥∥∥∥∥
m∑
n=1

x∗(xn)an

∥∥∥∥∥
p

: x∗ ∈ BX∗

 = ‖u‖ε .

This proves (2).
Finally, suppose that p ∈ (1,∞) and let us show (3). Let q ∈ (1,∞) be the

conjugate index of p. Given x∗ = (x∗i )i∈I ∈ Bs`q(I,X∗), a = (ai)i∈I ∈ `p(I), and
x ∈ X, by Hölder’s Inequality we have

∑
i∈I
|aix∗i (x)| ≤

(∑
i∈I
|ai|p

) 1
p
(∑
i∈I
|x∗i (x)|q

) 1
q

≤ ‖a‖p‖x‖.

Hence, the bilinear operator `p(I)×X 3 (a, x) 7→ (aix)i∈I ∈ `p〈I,X〉 has norm at
most 1. By [20, Theorem 2.9], we obtain

‖T (u)‖`p〈X〉 ≤ ‖u‖π,

for every u ∈ `p(I)⊗X, as desired. �

Corollary 4.2. Let X be a Banach space, I be an infinite set and p ∈ [1,∞).
Let T : `p(I)⊗X → XI be the linear map defined on Proposition 4.1.

(1) T admits an unique linear extension Tε to `p(I)⊗̂εX, which is an isometry
onto Fp(I,X);

(2) If p ∈ (1,∞), then T admits an unique linear extension of same norm Tπ
from `p(I)⊗̂πX to `p〈I,X〉.

Proof. Let us first show (1). By the density of `p(I) ⊗ X in `p(I)⊗̂εX and

Proposition 4.1, T admits an unique linear extension Tε : `p(I)⊗̂εX → Fp(I,X),
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which is an isometry onto its image. Given x = (xi)i∈I ∈ Fp(I,X), by Proposition
4.1 we have

x =
∑
i∈I

Ri(xi) =
∑
i∈I

T (ei ⊗ xi) ∈ Im(T ) = Im(Tε) .

This proves that Tε is onto Fp(I,X).

Similarly, if p ∈ (1,∞), the density of `p(I)⊗X in `p(I)⊗̂πX and Proposition

4.1 imply that T admits an unique linear extension Tπ : `p(I)⊗̂πX → `p〈I,X〉
satisfying ‖Tπ‖ = ‖T‖ ≤ 1. �

As in the countable case, we will show that Tπ is a linear isometry from
`p(I)⊗̂πX onto `p〈I,X〉. We will use the following key lemma.

Lemma 4.3. Let X be a Banach space, I be an infinite set and p ∈ (1,∞).
Given u ∈ `p(I)⊗̂πX, there exists a family (xi)i∈I in X such that

u =
∑
i∈I

ei ⊗ xi.

Proof. Let q ∈ (1,∞) be the conjugate index of p and (e∗i )i∈I be the unit basis
of `q(I). For each i ∈ I consider the bounded linear operator πi : `p(I) → `p(I)
defined by

πi(a) = e∗i (a)ei,

for each a = (aj)j∈I ∈ `p(I), and for every finite subset ∅ 6= F ⊂ I write

PF =
∑
j∈F

πj .

Let u ∈ `p(I)⊗̂πX be given and let us prove that

(4.1) u =
∑
i∈I

(πi ⊗ I)(u).

By [20, Proposition 2.8] there exist bounded sequences (an)n≥1 in `p(I) and (yn)n≥1

in X satisfying

u =

∞∑
n=1

an ⊗ yn and

∞∑
n=1

‖an‖p‖yn‖ <∞.

We may suppose that ‖yn‖ = 1 for every n ≥ 1. Given ε > 0, take N ≥ 1 such that

∞∑
n=N+1

‖an‖p ≤
ε

3
.

It is clear that ∥∥∥∥∥u−
N∑
n=1

an ⊗ yn

∥∥∥∥∥
π

≤ ε

3
.

There exists a finite subset ∅ 6= F0 ⊂ I such that for every finite subset F ⊂ I
satisfying F0 ⊂ F and every 1 ≤ n ≤ N we have

‖PF (an)− an‖p ≤
ε

3N
.
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Thus,

‖u− (PF ⊗ I)(u)‖ ≤

∥∥∥∥∥u−
N∑
n=1

an ⊗ yn

∥∥∥∥∥
π

+

∥∥∥∥∥
N∑
n=1

an ⊗ yn −
N∑
n=1

PF (an)⊗ yn

∥∥∥∥∥
π

+

∥∥∥∥∥
N∑
n=1

PF (an)⊗ yn − (PF ⊗ I)(u)

∥∥∥∥∥
π

≤ ε.

This shows that (4.1) holds.
Finally, since

(πi ⊗ I)(u) =

∞∑
n=1

πi(an)⊗ yn =

∞∑
n=1

e∗i (an)ei ⊗ yn = ei ⊗

( ∞∑
n=1

e∗i (an)yn

)
,

for each i ∈ I, it follows that

xi =

∞∑
n=1

e∗i (an)yn

satisfies the desired properties. �

We are now in a position to show that Tπ is an isometry onto `p〈I,X〉.

Theorem 4.4. Let X be a Banach space, I be an infinite set and p ∈ (1,∞).
The operator Tπ is an isometric isomorphism from `p(I)⊗̂πX onto `p〈I,X〉.

Proof. We have shown that

‖Tπ(u)‖`p〈X〉 ≤ ‖u‖π,

for every u ∈ `p(I)⊗̂πX. In order to prove that Tπ is isometric, it is sufficient to
prove the reverse inequality on span{ ei⊗x : i ∈ I, x ∈ X }. Given v ∈ span{ ei⊗x :
i ∈ I, x ∈ X }, there exist a finite subset ∅ 6= I0 ⊂ I and a finite family (yi)i∈I0 of
elements of X such that

v =
∑
i∈I0

ei ⊗ yi.

By [20, p. 24] and the Hahn-Banach Theorem, there exists a bounded linear
operator b ∈ L(`p(I), X∗) ≡ [`p(I)⊗̂πX]∗ satisfying

‖b‖ = 1 and ‖v‖π =
∑
i∈I0

b(ei)(yi).

Setting yi = 0 for each i ∈ I \ I0, it is clear that Tπ(v) = (yi)i∈I and

‖Tπ(v)‖`p〈X〉 ≥ ‖v‖π,

as desired.
Let us show next that Tπ is onto. Given x = (xi)i∈I ∈ `p〈I,X〉, we will show

that the family (ei ⊗ xi)i∈I is summable in `p(I)⊗̂πX and

(4.2) x = Tπ

(∑
i∈I

ei ⊗ xi

)
.
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For every x∗ = (x∗i )i∈I ∈ s`q(I,X∗) we have∣∣∣∣∣∑
i∈I

x∗i (xi)

∣∣∣∣∣ ≤ ‖x‖`p〈X〉 ‖x∗‖slq(X∗).

Hence, the linear functional θ defined on slq(I,X
∗) ≡ L(`p(I), X∗) by

θ(x∗) =
∑
i∈I

x∗i (xi),

for each x∗ = (x∗i )i∈I ∈ s`q(I,X∗), is bounded. Let us denote by θr its restriction
to the subspace K(`p(I), X∗).

Let q ∈ (1,∞) be the conjugate index of p. Recall that the space `q(I) has the
approximation property [20, p. 73], and therefore

(4.3) K(`p(I), X∗) ≡ `q(I)⊗̂εX∗,
by [20, Corollary 4.13]. Moreover, since `p(I) also has the Radon-Nikodým property
[20, Corollary 5.45], by (4.3) and [20, Theorem 5.33] we know that

`p(I)⊗̂πX∗∗ ≡ [`q(I)⊗̂εX∗]∗ ≡ [K(`p(I), X∗)]∗.

It follows from Lemma 4.3 that there exists a family (x∗∗i )i∈I in X∗∗ such that

θr =
∑
i∈I

ei ⊗ x∗∗i .

We observe that for every i ∈ I and for every x∗ ∈ X∗ we have

x∗∗i (x∗) = θr(e
∗
i ⊗ x∗) = x∗(xi),

and so x∗∗i = x̂i. Thus, the family (ei ⊗ x̂i)i∈I is summable in `p(I)⊗̂πX∗∗ and

hence, the family (ei ⊗ xi)i∈I in `p(I)⊗̂πX, by [8, Corollary 14, p. 238]. Finally, it
is clear that (4.2) holds. �

Remark 4.5. We observe that Tπ(ei⊗ xi) = Ri(xi), for each i ∈ I. Therefore,
for each x = (xi)i∈I ∈ `p〈I,X〉, the family (Ri(xi))i∈I is summable in `p〈I,X〉 and

x =
∑
i∈I

Ri(xi).

Remark 4.6. By Proposition 3.1, every family x = (xi)i∈I ∈ `p〈I,X〉 has only
countably many non-zero coordinates. Hence, by the previous remark, the subspace

L = {y = (yi)i∈I ∈ `p〈I,X〉 : {i ∈ I : yi = 0} is finite}
is dense in `p〈I,X〉.

5. Dual spaces of `p〈I,X〉 and Fp(I,X)

We now turn our attention to convenient identifications of the spaces `p〈I,X〉
and Fp(I,X) and of their duals.

Theorem 5.1. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and
q ∈ (1,∞) be the conjugate index of p. Then there exists an isometric isomorphism
from `p〈I,X〉∗ onto s`q(I,X

∗) which maps ϕ ∈ `p〈I,X〉∗ to (x∗i )i∈I ∈ s`q(I,X∗),
where

ϕ(x) =
∑
i∈I

x∗i (xi),

for every x = (xi)i∈I ∈ `p〈I,X〉.
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Proof. Let Tπ be the canonical isometric isomorphism from `p(I)⊗̂πX onto
`p〈I,X〉 considered in Corollary 4.2. Then T ∗π is also an isometric isomorphism

from `p〈I,X〉∗ onto [`p(I)⊗̂πX]∗. By [20, p. 24], we have

[`p(I)⊗̂πX]∗ ≡ L(`p(I), X∗) ≡ s`q(I,X∗).

Given ϕ ∈ `p〈I,X〉∗, let (x∗i )i∈I ∈ s`q(I,X∗) be the unique element corresponding

to T ∗π (ϕ) ∈ [`p(I)⊗̂πX]∗ via the above identifications. By Remark 4.5, for each

x = (xi)i∈I =
∑
i∈I

Ri(xi) =
∑
i∈I

Tπ(ei ⊗ xi) ∈ `p〈I,X〉,

we have

ϕ(x) =
∑
i∈I

(ϕ ◦ Tπ)(ei ⊗ xi) =
∑
i∈I

T ∗π (ϕ)(ei ⊗ xi) =
∑
j∈I

x∗i (xi),

and the proof is complete. �

Remark 5.2. For every ϕ = (x∗i )i∈I ∈ `p〈I,X〉∗, we have

‖ϕ‖ = sup

{∑
i∈I
|x∗i (xi)| : (xi)i∈I ∈ B`p〈X〉

}
.

Theorem 5.3. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and
q ∈ (1,∞) be the conjugate index of p. Then there exists an isometric isomorphism
from Fp(I,X)∗ onto `q〈I,X∗〉 which maps ψ ∈ Fp(I,X)∗ to (x∗i )i∈I ∈ `q〈I,X∗〉,
where

ψ(x) =
∑
i∈I

x∗i (xi),

for every x = (xi)i∈I ∈ Fp(I,X).

Proof. Let Tε be the canonical isometric isomorphism from `p(I)⊗̂εX onto
Fp(I,X) considered in Corollary 4.2. Since the space `q(I) has both the approxi-
mation property and the Radon-Nikodým property, by [20, Theorem 5.33] we know
that

[`p(I)⊗̂εX]∗ ≡ `q(I)⊗̂πX∗.
By Theorem 4.4 and Remark 4.5, the operator

`q〈I,X∗〉 3 (x∗i )i∈I 7→
∑
i∈I

ei ⊗ x∗i ∈ `q(I)⊗̂πX∗

is also an isometric isomorphism.
Given ψ ∈ Fp(I,X)∗, there exists an unique (x∗i )i∈I ∈ `q〈I,X∗〉 corresponding

to T ∗ε (ϕ) ∈ [`p(I)⊗̂εX]∗ via the above identifications. For each

x = (xi)i∈I =
∑
i∈I

Ri(xi) =
∑
i∈I

Tε(ei ⊗ xi) ∈ Fp(I,X),

we have

ψ(x) =
∑
i∈I

(ψ ◦ Tε)(ei ⊗ xi) =
∑
i∈I

T ∗ε (ψ)(ei ⊗ xi) =
∑
j∈I

x∗i (xi),

and the proof is complete. �
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6. Complemented copies of c0(τ) in `p(I)⊗̂πX and `p(I)⊗̂εX

This section is devoted to the study of the complemented copies of c0(τ) in the
projective and injective tensor products `p(I)⊗̂πX and `p(I)⊗̂εX. We begin with
the former space.

Lemma 6.1. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and τ be
an infinite cardinal. Let (xj)j∈τ = ((xi,j)i∈I)j∈τ be a family of `p〈I,X〉 equivalent
to the unit basis of c0(τ) and let (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ be a bounded family of
`p〈I,X〉∗. Then, for each ε > 0, there exists a finite subset Fε ⊂ I satisfying, for
every j ∈ τ, ∣∣∣∣∣∣

∑
i∈I\Fε

ϕi,j(xi,j)

∣∣∣∣∣∣ < ε .

Proof. Let M = supj∈τ ‖ϕj‖. We may assume ‖xj‖`p〈X〉 = 1 for every j ∈ τ.
Suppose that the conclusion does not hold; then there exists ε > 0 such that, for
every finite subset F ⊂ I, there exists j ∈ τ with∣∣∣∣∣∣

∑
i6∈F

ϕi,j(xi,j)

∣∣∣∣∣∣ ≥ ε.
We will show that this leads to a contradiction.

We construct by induction a sequence (jk)k≥1 in τ and a sequence of pairwise
disjoint finite subsets (Fk)k≥1 of I such that

(6.1)

∣∣∣∣∣∑
i∈Fk

ϕi,jk(xi,jk)

∣∣∣∣∣ ≥ ε

2
, ∀k ≥ 1.

Put F0 = ∅. By hypothesis, there exists j1 ∈ τ such that∣∣∣∣∣∑
i∈I

ϕi,j1(xi,j1)

∣∣∣∣∣ ≥ ε.
Since ∑

i∈I
|ϕi,j1(xi,j1)| ≤M,

there exists a finite subset ∅ 6= F1 ⊂ I such that∑
i∈I\F1

|ϕi,j1(xi,j1)| ≤ ε

2
,

and hence ∑
i∈F1

|ϕi,j1(xi,j1)| ≥ ε

2
.

Next, let k ≥ 1 be given and suppose we have constructed j1, . . . , jk and F1, . . . , Fk
as desired. Put A = ∪kl=1Fl. By hypothesis, there exists jk+1 ∈ τ such that∣∣∣∣∣∣

∑
i∈I\A

ϕi,jk+1
(xi,jk+1

)

∣∣∣∣∣∣ ≥ ε .
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There exists a finite subset ∅ 6= Fk+1 ⊂ (I \A) such that∑
i∈I\(A∪Fk+1)

|ϕi,jk+1
(xi,jk+1

)| ≤ ε

2
,

and so ∣∣∣∣∣∣
∑

i∈Fk+1

ϕi,jk+1
(xi,jk+1

)

∣∣∣∣∣∣ ≥ ε

2
.

It follows from the construction that jl 6= jk for l 6= k.
For each k ≥ 1 and i ∈ I we denote

ψi,k =

{
ϕi,jk if i ∈ Fk
0 if i ∈ I \ Fk,

and ψk = (ψi,k)i∈I . It is obvious that (ψk)k≥1 is a bounded sequence in Fq(I,X
∗) ≡

`p〈I,X∗∗〉, where q ∈ (1,∞) is the conjugate index of p. We claim that (ψk)k≥1 is
a weakly-null sequence. Indeed, by Remark 4.6, the subspace

L = {θ∗∗ = (θ∗∗i )i∈I ∈ `p〈I,X∗∗〉 : {i ∈ I : θ∗∗i = 0} is finite}
is dense in `p〈I,X∗∗〉. Given θ∗∗ = (θ∗∗i )i∈I ∈ L, there exists k0 ≥ 1 such that
θ∗∗i = 0, for all i ∈ Fk, k ≥ k0, and hence,

lim
k→∞

θ∗∗(ψk) = lim
k→∞

∑
i∈Fk

θ∗∗i (ψi,k) = 0.

The density of L then establishes our claim.
The sequence (xjk)k≥1 is equivalent to the unit basis of c0 and furthermore

|ψk(xjk)| ≥ ε

2
,

for each k ≥ 1, in contradiction with the Dunford-Pettis Property of c0 [12, p.
596]. �

We are now in a position to prove the first main result of this section.

Theorem 6.2. Given X a Banach space, I an infinite set, p ∈ (1,∞) and τ
an infinite cardinal, we have

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ X.

Proof. Suppose first that c0(τ)
c
↪→ `p(I)⊗̂πX ≡ `p〈I,X〉. By Theorem 2.2,

there exist (xj)j∈τ = ((xi,j)i∈I)j∈τ equivalent to the canonical basis of c0(τ) in
`p〈I,X〉, and (ϕj)j∈τ a weak∗-null family in `p〈I,X〉∗ satisfying ϕj(xj) = 1 for all
j ∈ τ. By Theorem 5.1, for each j ∈ τ, there exists a family (ϕi,j)i∈I in X∗ such
that

1 = ϕj(xj) =
∑
i∈I

ϕi,j(xi,j).

By the Uniform Boundedness Principle, (ϕj)j∈τ is bounded, and so there exists
M > 0 such that ‖ϕj‖ ≤M for each j ∈ τ.

An appeal to Lemma 6.1 yields a finite subset F ⊂ I satisfying∣∣∣∣∣∣
∑
i∈I\F

ϕi,j(xi,j)

∣∣∣∣∣∣ < 1

2
, ∀j ∈ τ.
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Therefore, F 6= ∅ and ∑
i∈F
|ϕi,j(xi,j)| >

1

2
, ∀j ∈ τ.

Next, Lemma 2.4 implies that there exist i0 ∈ F and τ1 ⊂ τ satisfying |τ1| = τ and

(6.2) |ϕi0,j(xi0,j)| >
1

2|F |
,∀j ∈ τ1.

We have
1

2|F |
< |ϕi0,j(xi0,j)| ≤M‖xi0,j‖, ∀j ∈ τ1,

and thus

(6.3) ‖xi0,j‖ >
1

2M |F |
, ∀j ∈ τ1.

Consider the bounded linear operator πi0 : `p〈I,X〉 → X defined by πi0(x) =
xi0 for each x = (xi)i∈I ∈ `p〈I,X〉. By hypothesis, there exists T : c0(τ)→ `p〈I,X〉
an isomorphism onto its image such that T (ej) = xj , for all j ∈ τ . By (6.3), we
have

‖(πi0 ◦ T )(ej)‖ >
1

2M |F |
, ∀j ∈ τ1,

and therefore, by Theorem 2.1, there exists τ2 ⊂ τ1 such that |τ2| = |τ1| = τ and
πi0 ◦T|c0(τ2) is an isomorphism onto its image. Thus, (xi0,j)j∈τ2 is equivalent to the
unit basis of c0(τ2) in X. The family (ϕj)j∈τ is weak∗-null and hence, (ϕi0,j)j∈τ2
is a weak∗-null family in X∗. Theorem 2.2 and (6.2) then imply that c0(τ)

c
↪→ X.

For the converse, it is sufficient to notice that `p〈I,X〉 contains a complemented
copy of X. �

We now turn our attention to complemented copies of c0(τ) in the injective
tensor product `p(I)⊗̂εX.

Theorem 6.3. Let X be a Banach space, I be an infinite set, p ∈ [1,∞) and
τ be an infinite cardinal. If cf(τ) > |I|, then

c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X.

Proof. Suppose first that c0(τ)
c
↪→ `p(I)⊗̂πX ≡ Fp(I,X). By Theorem 2.2,

there exists (xj)j∈τ = ((xi,j)i∈I)j∈τ equivalent to the unit basis of c0(τ) in Fp(I,X),
and a weak∗-null family (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ of Fp(I,X)∗ satisfying

1 = ϕj(xj) =
∑
i∈I

ϕi,j(xi,j), ∀j ∈ τ.

For each j ∈ τ , there exists a finite subset ∅ 6= Fj ⊂ I such that

(6.4)
∑
i∈Fj

|ϕi,j(xi,j)| >
1

2
.

Let F = {Fj : j ∈ τ}, and for each F ∈ F , consider τ(F ) = {j ∈ τ : Fj = F}.
Since τ =

⋃
F∈F τF and cf(τ) > |I| ≥ |F|, by Lemma 2.3 there exists G0 ∈ F such

that |τ(G0)| = τ . Setting τ1 = τ(G0), by (6.4) we obtain∑
i∈G0

|ϕi,j(xi,j)| >
1

2
, ∀j ∈ τ1.
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Next, an appeal to Lemma 2.4 yields i0 ∈ G0 and τ2 ⊂ τ1 satisfying |τ2| = |τ1| = τ
and

(6.5) |ϕi0,j(xi0,j)| >
1

2|G0|
,∀j ∈ τ2.

By the Uniform Boundedness Principle, (ϕj)j∈τ is bounded, and so there exists
M > 0 such that ‖ϕj‖ ≤M , for each j ∈ τ . Therefore we have

1

2|G0|
< |ϕi0,j(xi0,j)| ≤M‖xi0,j‖, ∀j ∈ τ2,

and thus

(6.6) ‖xi0,j‖ >
1

2M |G0|
, ∀j ∈ τ2.

Consider the bounded linear operator πi0 : s`p(I,X)→ X defined by πi0(x) =
xi0 for each x = (xi)i∈I ∈ s`p(I,X). By hypothesis, there exists T : c0(τ) →
Fp(I,X) an isomorphism onto its image such that T (ej) = xj , for all i ∈ τ . By
(6.6), we have

‖(πi0 ◦ T )(ej)‖ >
1

2M |G0|
, ∀j ∈ τ2,

and therefore, by Theorem 2.1, there exists τ3 ⊂ τ2 such that |τ3| = |τ2| = τ and
πi0 ◦T|c0(τ3) is an isomorphism onto its image. Thus, (xi0,j)j∈τ3 is equivalent to the
unit basis of c0(τ3) in X. The family (ϕj)j∈τ is weak∗-null and hence, (ϕi0,j)j∈τ3
is weak∗-null in X∗. Theorem 2.2 and (6.5) then imply c0(τ)

c
↪→ X.

For the converse, it suffices to notice that Fp(I,X) contains a complemented
copy of X. �

Our next step is to obtain a result analogue to Theorem 6.3 without assump-
tions on the cofinality of τ . In this direction, we begin with the following lemma.

Lemma 6.4. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and τ be
an infinite cardinal. Let (xj)j∈τ = ((xi,j)i∈I)j∈τ be a family of Fp(I,X) equivalent
to the unit basis of c0(τ) and let (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ be a bounded family of
Fp(I,X)∗ ≡ `q〈I,X∗〉, where q ∈ (1,∞) is the conjugate index of p. Suppose that

K(`q(I), X∗∗) = L(`q(I), X∗∗).

Then, for each ε > 0, there exists a finite subset Fε ⊂ I satisfying∣∣∣∣∣∣
∑

i∈I\Fε

ϕi,j(xi,j)

∣∣∣∣∣∣ < ε, ∀j ∈ τ.

Proof. By hypothesis and Theorem 5.3, there exists M > 0 such that

(6.7) M ≥ ‖ϕj‖ = ‖(ϕi,j)i∈I‖`q〈X∗〉, ∀j ∈ τ.

Suppose by contradiction that the result does not hold. As in the proof of
Lemma 6.1, there exist ε > 0, a sequence of distinct indexes (jk)k≥1 of τ , and a
sequence (Fk)k≥1 of finite, non-empty and pairwise disjoint subsets of I satisfying

(6.8)

∣∣∣∣∣∑
i∈Fk

ϕi,jk(xi,jk)

∣∣∣∣∣ > ε, ∀k ≥ 1.
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Consider ψk = (ψi,k)i∈I ∈ `q〈I,X∗〉, where

ψi,k =

{
ϕi,jk if i ∈ Fk

0 if i ∈ I \ Fk.

By (6.7) we have

(6.9) ‖ψk‖`q〈X∗〉 ≤ ‖(ϕi,jk)i∈I‖`q〈X∗〉 = ‖ϕjk‖ ≤M, ∀k ≥ 1.

We claim that (ψk)k≥1 is a weakly-null sequence in `q〈I,X∗〉. Recall that

`q〈I,X∗〉∗ ≡ s`p(I,X∗∗) ≡ L(`q(I), X∗∗),

and

Fp(I,X
∗∗) ≡ K(`q(I), X∗∗).

Thus, by hypothesis, we have

`q〈I,X∗〉∗ ≡ Fp(I,X∗∗).
The subspace

L = {θ∗∗ = (θ∗∗i )i∈I ∈ Fp(I,X∗∗) : {i ∈ I : θ∗∗i = 0} is finite}
is dense in Fp(I,X

∗∗). Observe that if θ∗∗ = (θ∗∗i )i∈I ∈ L, there exists k0 ≥ 1 such
that θ∗∗i = 0, for all i ∈ Fk, k ≥ k0, and hence,

lim
k→∞

θ∗∗(ψk) = lim
k→∞

∑
i∈Fk

θ∗∗i (ψi,k) = 0.

The density of L then establishes our claim.
Now, notice that

|ψk(xjk)| =

∣∣∣∣∣∑
i∈I

ψi,k(xi,jk)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈Fk

ϕi,jk(xi,jk)

∣∣∣∣∣ > ε

2
, ∀k ≥ 1,

by construction. On the other hand, since the sequence (ψk)k≥1 is weakly-null in
Fp(I,X)∗ and (xjk)k≥1 is, by hypothesis, equivalent to the unit basis of c0, by
the Dunford-Pettis Property of c0 [12, p. 596] we know that ψk(xjk) −→ 0, a
contradiction that finishes the proof. �

Theorem 6.5. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and
τ be an infinite cardinal. Suppose that

K(`q(I), X∗∗) = L(`q(I), X∗∗),

where q ∈ (1,∞) is the conjugate index of p. Then

c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X.

Proof. Suppose first that c0(τ)
c
↪→ `p(I)⊗̂εX ≡ Fp(I,X). By Theorem 2.2,

there exist (xj)j∈τ = ((xi,j)i∈I)j∈τ equivalent to the unit basis of c0(τ) in Fp(I,X),
and a weak∗-null family (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ of Fp(I,X)∗ satisfying

1 = ϕj(xj) =
∑
i∈I

ϕi,j(xi,j), ∀j ∈ τ.

By the Uniform Boundedness Principle, (ϕj)j∈τ is bounded, and so there exists
M > 0 such that

(6.10) ‖ϕj‖ ≤M,∀j ∈ τ.
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An appeal to Lemma 6.4 yields a finite subset F ⊂ I satisfying∣∣∣∣∣∣
∑
i∈I\F

ϕi,j(xi,j)

∣∣∣∣∣∣ < 1

2
, ∀j ∈ τ.

Therefore, F 6= ∅ and

∑
i∈F
|ϕi,j(xi,j)| ≥

∣∣∣∣∣∑
i∈F

ϕi,j(xi,j)

∣∣∣∣∣ ≥
∣∣∣∣∣∑
i∈I

ϕi,j(xi,j)

∣∣∣∣∣−
∣∣∣∣∣∣
∑
i∈I\F

ϕi,j(xi,j)

∣∣∣∣∣∣ > 1

2
,∀j ∈ τ.

Next, Lemma 2.4 implies that there exist i0 ∈ F and τ1 ⊂ τ satisfying |τ1| = τ and

(6.11) |ϕi0,j(xi0,j)| >
1

2|F |
, ∀j ∈ τ1.

By (6.10), we have

1

2|F |
< |ϕi0,j(xi0,j)| ≤ ‖ϕi0,j‖ ‖xi0,j‖ ≤ ‖ϕj‖ ‖xi0,j‖ ≤M‖xi0,j‖, ∀j ∈ τ1,

and thus

(6.12) ‖xi0,j‖ >
1

2M |F |
,∀j ∈ τ1.

Consider the bounded linear operator πi0 : Fp(I,X)→ X defined by πi0(x) =
xi0 for each x = (xi)i∈I ∈ Fp(I,X). By hypothesis, there exists T : c0(τ) →
Fp(I,X) an isomorphism onto its image such that T (ej) = xj , for all j ∈ τ . By
(6.12), we have

‖(πi0 ◦ T )(ej)‖ >
1

2M |F |
, ∀j ∈ τ1,

and therefore, by Theorem 2.1, there exists τ2 ⊂ τ1 such that |τ2| = |τ1| = τ and
πi0 ◦T|c0(τ2) is an isomorphism onto its image. Thus, (xi0,j)j∈τ2 is equivalent to the
unit basis of c0(τ2) in X.

Next, given x ∈ X, we have

(ϕi0,j(x))j∈τ2 ∈ c0(τ2),

since, by hypothesis, (ϕj)j∈τ is weak∗-null. This proves that (ϕi0,j)j∈τ2 is weak∗-

null in X∗. Theorem 2.2 and (6.11) then imply that c0(τ)
c
↪→ X.

For the converse, it is sufficient to notice that Fp(I,X) contains a complemented
copy of X. �

7. Final remarks and open problems

By adapting the proofs of Lemma 6.1 and Theorem 6.2, one can prove the
following.

Theorem 7.1. Given X a Banach space, I an infinite set, p ∈ [1,∞) and τ
an infinite cardinal, we have

c0(τ)
c
↪→ `p(I,X) ⇐⇒ c0(τ)

c
↪→ X.

The above theorem extends to the uncountable case a c0 result by Bombal [4,
Theorem 4.3.1]. Moreover, since `1(I)⊗̂πX is isometrically isomorphic to `1(I,X)
[20, p. 19], the next corollary follows immediately from Theorems 6.2 and 7.1.
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Corollary 7.2. Given X a Banach space, I an infinite set, p ∈ [1,∞) and τ
an infinite cardinal, we have

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ `p(I,X) ⇐⇒ c0(τ)

c
↪→ X.

However, observe that the space `p(I,X) cannot be exchanged by the usual
Banach space of Lebesque integrable functions Lp([0, 1], X) in the statement of
Theorem 7.1, even in the case τ = ℵ0. Indeed, recall the following result due to
Emmanuelle [10, Main Theorem].

Theorem 7.3. Let X be a Banach space and p ∈ [1,∞). Then

c0 ↪→ X =⇒ c0
c
↪→ Lp([0, 1], X).

Thus, we have

c0
c
↪→ Lp([0, 1], `∞) but c0 6

c
↪→ `∞.

These facts arise naturally the following question.

Problem 7.4. Let X be a Banach space, p ∈ [1,∞) and τ be an infinite
cardinal. What assumptions on τ yield

c0(τ)
c
↪→ `p([0, 1], X) ⇐⇒ c0(τ)

c
↪→ X?

We do not know if Theorem 6.2 can be extended to the case p =∞. That is:

Problem 7.5. Let X be a Banach space and τ be an infinite cardinal. Is it
true that

c0(τ)
c
↪→ `∞⊗̂πX =⇒ c0(τ)

c
↪→ X?

Finally, we also do not know if Theorem 6.3 is optimal for any cardinal τ . In
particular, the following problem is unsolved.

Problem 7.6. Let X be a Banach space and p ∈ [1,∞). Does it follow that

c0(ℵω)
c
↪→ `p⊗̂εX =⇒ c0(ℵω)

c
↪→ X?
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18 VINÍCIUS MORELLI CORTES, ELÓI MEDINA GALEGO, AND CHRISTIAN SAMUEL

11. F. J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann.

267 (1984), 4, 479-486.

12. M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory: The Basis
for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer-Verlag, New York

(2010).

13. E. M. Galego, J. N. Hagler, Copies of c0(Γ) in C(K,X) spaces, Proc. Amer. Math. Soc. 140
(2012), 11, 3843-3852.

14. T. Jech, Set Theory, The Third Millennium Edition, revised and expanded, Springer Mono-

graphs in Mathematics, Springer (2003).
15. W. B. Johnson, J. Lindenstrauss, Handbook of the geometry of Banach spaces, North-Holland

Publishing Co., Amsterdam, 2001, 1-84.

16. W. B. Johnson, H.P. Rosenthal, M. Zippin, On bases, finite dimensional decompositions and
weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.

17. J. Lindenstrauss, H.P. Rosenthal, The Lp spaces, Israel J. Math. 7 (1969), 325-349.
18. E. F. Oya, Complemented subspaces that are isomorphic to lp spaces in tensor products and

operator spaces. (Russian. Russian summary) Sibirsk. Mat. Zh. 33 (1992), 5, 115-120, 223;

translation in Siberian Math. J. 33 (1992), 5, 850-855.
19. H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach

space theory, Studia Math. 37 (1970), 13-36.

20. R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London
(2002).

21. C. Samuel, Sur la reproductibilite des espaces `p, Math. Scand. 45 (1979), 103-117.

22. T. Schlumprecht, Limitierte Mengen in Banachräume, Thesis. Ludwig Maximilians Univer-
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