
HAL Id: hal-02169410
https://hal.science/hal-02169410

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When is c 0 (τ ) complemented in tensor products of l p
(I) and X?

Vinícius Morelli Cortes, Medina Galego, Christian Samuel

To cite this version:
Vinícius Morelli Cortes, Medina Galego, Christian Samuel. When is c 0 (τ ) complemented in ten-
sor products of l p (I) and X?. Mathematical News / Mathematische Nachrichten, 2019, 292 (5),
�10.1002/mana.201700348�. �hal-02169410�

https://hal.science/hal-02169410
https://hal.archives-ouvertes.fr


When is c0(τ) complemented in tensor products of `p(I) and X?

Vińıcius Morelli Cortes, Elói Medina Galego, and Christian Samuel

Abstract. Let X be a Banach space, I an infinite set, τ an infinite cardinal
and p ∈ [1,∞). In contrast to a classical c0 result due independently to

Cembranos and Freniche, we prove that if the cofinality of τ is greater than
the cardinality of I, then the injective tensor product `p(I)⊗̂εX contains a

complemented copy of c0(τ) if and only if X does. This result is optimal for

every regular cardinal τ .
On the other hand, we provide a generalization of a c0 result of Oya by

proving that if τ is an infinite cardinal, then the projective tensor product

`p(I)⊗̂πX contains a complemented copy of c0(τ) if and only if X does.
These results are obtained via useful descriptions of tensor products as

convenient generalized sequence spaces.

1. Introduction

We use standard set-theoretical and Banach space theory terminology as may
be found, e.g., in [14] and [15] respectively. We denote by BX the closed unit ball
of the Banach space X. If X and Y are Banach spaces, we denote by L(X,Y ) the
space of all bounded linear operators from X to Y and by K(X,Y ) the subspace of
all compact linear operators. We say that Y contains a copy (resp. a complemented

copy) of X, and write X ↪→ Y (resp. X
c
↪→ Y ), if X is isomorphic to a subspace

(resp. complemented subspace) of Y . If X and Y are isometrically isomorphic
Banach spaces, we write X ≡ Y .

We shall denote the projective and injective tensor norms by ‖ · ‖π and ‖ · ‖ε
respectively. The projective (resp. injective) tensor product of X and Y is the
completion of X ⊗ Y with respect to ‖ · ‖π (resp. ‖ · ‖ε) and will be denoted by
X⊗̂πY (resp. X⊗̂εY ).

Given X a Banach space, I an infinite set and (xi)i∈I ∈ XI , the notation
x =

∑
i xi means that, for every ε > 0, there exists a finite subset ∅ 6= F0 ⊂ I such

that, for every finite subset F of I with F0 ⊂ F, we have
∥∥x−∑i∈F xi

∥∥ < ε.
For a non-empty set Γ, c0(Γ) denotes the Banach space of all real-valued maps

f on Γ with the property that for each ε > 0, the set {γ ∈ Γ : |f(γ)| ≥ ε} is
finite, equipped with the supremum norm. We will refer to c0(Γ) as c0(τ) when the
cardinality of Γ (denoted by |Γ|) is equal to τ . This space will be denoted by c0
when τ = ℵ0.
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Given p ∈ [1,∞), we denote

`p(I,X) =

{
(xi)i∈I ∈ XI :

∑
i∈I
‖xi‖p <∞

}
,

equipped with the complete norm

‖x‖p =

[∑
i∈I
‖xi‖p

] 1
p

,

for each x = (xi)i∈I ∈ `p(I,X). These spaces will be denoted by `p(I) when X = R.
If I = N, we will write `p.

By `∞(I) we will denote the Banach space of all bounded real-valued maps on
I, with the supremum norm. This space will be denoted by `∞ when I = N.

Recall that if τ is an infinite cardinal then the cofinality of τ , denoted by cf(τ),
is the least cardinal α such that there exists a family of ordinals {βj : j ∈ α}
satisfying βj < τ for all j ∈ α, and sup{βj : j ∈ α} = τ . A cardinal τ is said to be
regular when cf(τ) = τ ; otherwise, it is said to be singular.

An immediate consequence of the classical Cembranos-Freniche Theorem [3,
Main Theorem], [11, Corollary 2.5] is the following result.

Theorem 1.1. For each p ∈ [1,∞) we have c0
c
↪→ `p⊗̂ε`∞.

However, it is well known that c0 6
c
↪→ `∞ (see, e. g., [9, Corollary 11, p. 156]).

On the other hand, Oya proved the following theorem.

Theorem 1.2 ([18], Theorem 2). If X is a Banach space and p ∈ [1,∞), then

c0
c
↪→ `p⊗̂πX ⇐⇒ c0

c
↪→ X.

These facts motivate the following problems.

Problem 1.3. Let X be a Banach space, I be an infinite set, p ∈ [1,∞) and τ
be an infinite cardinal. What assumptions on τ and I yield

c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X?

Problem 1.4. Given X a Banach space, I an infinite set, p ∈ [1,∞) and τ an
infinite cardinal, is it true that

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ X?

In this paper, we provide a partial solution to Problem 1.3 and a complete
solution to Problem 1.4. More precisely, we will prove that for every Banach space
X, infinite set I, p ∈ [1,∞) and infinite cardinal τ , one has

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ X.

Additionally, if the cf(τ) > |I|, then one also has

(1.1) c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X.

Remark 1.5. The equivalence (1.1) cannot be extended to the case p = ∞.
Setting I = N and τ = ℵ1, by [13, Theorem 5.3] we know that

c0(ℵ1)
c
↪→ `∞⊗̂ε`∞(ℵ1),

although c0(ℵ1) 6 c↪→ `∞(ℵ1) by [9, Corollary 11, p. 156].
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Remark 1.6. (1.1) is optimal for every infinite regular cardinal κ. Indeed,
setting I = κ, again by [13, Theorem 4.5] we have

c0(κ)
c
↪→ `p(κ)⊗̂ε`∞(κ),

but c0(κ) 6 c↪→ `∞(τ) once again by [9, Corollary 11, p. 156].

2. Preliminary results and notations

We will denote by (ej)j∈τ the unit-vector basis of c0(τ) or `p(τ) for p ∈ [1,∞),
that is, ej(j) = 1 and ej(k) = 0 for each j, k ∈ τ , j 6= k. If Γ is a subset of τ , we
identify c0(Γ) with the closed subspace of c0(τ) consisting of the maps g on τ such
that g(j) = 0 for each j ∈ τ \ Γ.

We begin by recalling the following classical result by H.P. Rosenthal.

Theorem 2.1. ([19, Remark following Theorem 3.4]) Let X be a Banach space
and τ an infinite cardinal. Let T : c0(τ) → X be a bounded linear operator such
that

inf{‖T (ej)‖ : j ∈ τ} > 0.

Then there exists a subset Γ ⊂ τ such that |Γ| = τ and T|c0(Γ) is an isomorphism
onto its image.

We recall that a family (x∗j )j∈τ in the dual space X∗ is said to be weak∗-null
if for each x ∈ X we have

(x∗j (x))j∈τ ∈ c0(τ).

Recall also that a family (xj)j∈τ in a Banach space X is said to be equivalent
to the canonical basis of c0(τ) if there exists T : c0(τ) → X an isomorphism onto
its image satisfying T (ej) = xj , for each j ∈ τ .

The main characterization of complemented copies of c0(τ) we will use is the
following result obtained in [7].

Theorem 2.2. Let X be a Banach space and τ be an infinite cardinal. The
following are equivalent:

(1) X contains a complemented copy of c0(τ).
(2) There exist a family (xj)j∈τ equivalent to the unit-vector basis of c0(τ) in

X and a weak∗-null family (x∗j )j∈τ in X∗ such that, for each j, k ∈ τ ,

x∗j (xk) = δjk.

(3) There exist a family (xj)j∈τ equivalent to the unit-vector basis of c0(τ) in
X and a weak∗-null family (x∗j )j∈τ in X∗ such that

inf
j∈τ
|x∗j (xj)| > 0.

We will also use the following two simple lemmas.

Lemma 2.3. Let I be an infinite set and J be a non-empty set. Let {Ij}j∈J be
a family of subsets of I such that

⋃
j∈J Ij = I. If cf(|I|) > |J |, then there exists

j0 ∈ J such that |Ij0 | = |I|.

Proof. Suppose that the conclusion does not hold. Then we have |Ij | < |I|
for each i ∈ J and thus, by the definition of cofinality,

sup{|Ij | : j ∈ J} < |I|.
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Since |J | < cf(|I|) ≤ |I|, we obtain

|I| =

∣∣∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣∣∣ ≤ max(|J |, sup{|Ij | : j ∈ J}) < |I|,

a contradiction that finishes the proof. �

Lemma 2.4. Let I be an infinite set and J be a non-empty, finite set. For each
i ∈ I, let (ai,j)j∈J be a family of positive real numbers. Suppose that there exists
δ > 0 satisfying, for all i ∈ I, ∑

j∈J
ai,j ≥ δ.

Then there exist j0 ∈ J and I ′ ⊂ I such that |I ′| = |I| and

ai,j0 ≥
δ

|J |
, ∀i ∈ I ′.

Proof. By hypothesis, for each i ∈ I there exists j(i) ∈ J such that

ai,j(i) ≥
δ

|J |
.

Let J ′ = {j(i) : i ∈ I} and for each j ∈ J ′, consider Ij = {i ∈ I : j(i) = j}. Since
I =

⋃
j∈J′ Ij is infinite and J ′ is finite, by Lemma 2.3 there exists j0 ∈ J ′ such that

|Ij0 | = |I|. Setting I ′ = Ij0 , the proof is complete. �

3. Spaces s`p(I,X), Fp(I,X) and `p〈I,X〉

In this section we shall introduce some generalized sequence spaces which will
be of interest.

Let X be a Banach space, I be an infinite set and p ∈ [1,∞). Following [21],
we denote

s`p(I,X) =

{
(xi)i∈I ∈ XI :

∑
i∈I
|x∗(xi)|p <∞, for all x∗ ∈ X∗

}
.

It is straightforward to check that the function

‖x‖s`p = sup


[∑
i∈I
|x∗(xi)|p

] 1
p

: x∗ ∈ BX∗

 ,

where x = (xi)i∈I ∈ s`p(I,X), is a complete norm on s`p(I,X). For each i ∈ I, we
denote by Ri : X → XI the canonical inclusion defined by Ri(x) = (δikx)k∈I , for
each x ∈ X. Our interest lies in the closed subspace

Fp(I,X) =

{
x = (xi)i∈I ∈ s`p(I,X) : x =

∑
i∈I

Ri(xi)

}
of s`p(I,X).

Given p ∈ (1,∞) and q ∈ (1,∞) the conjugate index of p, there exists a
canonical isometric isomorphism between s`p(I,X) and L(`q(I), X) which maps an
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element x = (xi)i∈I ∈ s`p(I,X) to the bounded linear operator S ∈ L(`q(I), X)
defined by

S(a) =
∑
i∈I

aixi,

for all a = (ai)i∈I ∈ `q(I). This isometry identifies Fp(I,X) and the subspace
K(`q(I), X) of compact linear operators from `q(I) to X.

In a similar way, in the case p = 1 there exists an isometric isomorphism
between sl1(I,X) and L(c0(I), X) which identifies F1(I,X) and K(c0(I), X).

Next, let p ∈ (1,∞) and q ∈ (1,∞) be the conjugate index of p. Following
[1, 5], we denote

`p〈I,X〉 =

{
x = (xi)i∈I ∈ XI :

∑
i∈I
|x∗i (xi)| <∞, for all (x∗i )i∈I ∈ s`q(I,X∗)

}
·

It is straightforward to check that the function

‖x‖`p〈X〉 = sup

{∑
i∈I
|x∗i (xi)| : x∗ = (x∗i )i∈I ∈ Bs`q(I,X∗)

}
,

where x = (xi)i∈I ∈ `p〈I,X〉, is a complete norm on `p〈I,X〉.

We will summarize the main properties of those spaces in our next results. Our
statements and proofs are simple modifications of those found in [1, 2, 5].

Proposition 3.1. Let X be a Banach space, I be an infinite set and p ∈ [1,∞).

(1) `p(I,X) ⊂ Fp(I,X) and ‖x‖s`p ≤ ‖x‖p, for all x ∈ `p(I,X);
(2) For p > 1, `p〈I,X〉 ⊂ `p(I,X) and ‖x‖p ≤ ‖x‖`p〈X〉, for all x ∈ `p〈I,X〉.

Proof. Statement (1) follows immediately from the definitions of `p(I,X)
and s`p(I,X). Let us show (2). Given x = (xi)i∈I ∈ `p〈I,X〉, we fix, for every
i ∈ I, x∗i ∈ BX∗ such that ‖xi‖ = x∗i (xi). For every (λi)i∈I ∈ B`q(I) we have
(λix

∗
i )i∈I ∈ Bslq(X∗) and so∑

i∈I
|λix∗i (xi)| =

∑
i∈I
|λi| ‖xi‖ ≤ ‖x‖`p〈X〉.

Therefore (∑
i∈I
‖xi‖p

) 1
p

= ‖x‖p ≤ ‖x‖`p〈X〉

and the proof is complete. �

We will denote the canonical inclusion of x ∈ X in X∗∗ by x̂. The proof of the
following proposition is straightforward.

Proposition 3.2. Let X be a Banach space, I be an infinite set, p ∈ [1,∞),
x = (xi)i∈I ∈ XI and y = (x̂i)i∈I ∈ (X∗∗)I . Then x ∈ s`p(I,X) if, and only if,
y ∈ s`p(I,X∗∗). Furthermore, ‖x‖s`p = ‖y‖s`p .
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4. Generalized sequence spaces and tensor products

The goal of this section is to establish a connection between the generalized
sequence spaces defined in the previous section and the projective and injective
tensor products `p(I)⊗̂πX and `p(I)⊗̂εX.

It is obvious that for every a = (ai)i∈I ∈ RI and x ∈ X we have (aix)i∈I ∈ XI

and furthermore the operator `p(I)×X 3 (a, x) 7→ (aix)i∈I ∈ XI is bilinear. This
bilinear operator induces a linear operator T : `p(I) ⊗ X → XI [20, Proposition
1.4]. It is also obvious that Im(T ) ⊂ `p〈I,X〉 ∩ s`p(I,X). We summarize the main
properties of this operator in the following proposition.

Proposition 4.1. Given p ∈ [1,∞), we have:

(1) Im(T ) contains all finitely non-zero families in `p(I,X);
(2) ‖T (u)‖s`p(X) = ‖u‖ε, for each u ∈ `p(I)⊗X;
(3) If p ∈ (1,∞), then ‖T (u)‖`p〈X〉 ≤ ‖u‖π, for each u ∈ `p(I)⊗X.

Proof. Given x ∈ X and i ∈ I, notice that T (ei ⊗ x) = (δijx)j∈I . This shows
statement (1).

Next, let u ∈ `p(I) ⊗X be given and fix a representation u =
∑m
n=1 an ⊗ xn,

where an = (ani )i∈I . Then we have

‖T (u)‖s`p(X) = sup


[∑
i∈I

∣∣∣∣∣
m∑
n=1

ani x
∗(xn)

∣∣∣∣∣
p ] 1

p

: x∗ ∈ BX∗


= sup


∥∥∥∥∥
m∑
n=1

x∗(xn)an

∥∥∥∥∥
p

: x∗ ∈ BX∗

 = ‖u‖ε .

This proves (2).
Finally, suppose that p ∈ (1,∞) and let us show (3). Let q ∈ (1,∞) be the

conjugate index of p. Given x∗ = (x∗i )i∈I ∈ Bs`q(I,X∗), a = (ai)i∈I ∈ `p(I), and
x ∈ X, by Hölder’s Inequality we have

∑
i∈I
|aix∗i (x)| ≤

(∑
i∈I
|ai|p

) 1
p
(∑
i∈I
|x∗i (x)|q

) 1
q

≤ ‖a‖p‖x‖.

Hence, the bilinear operator `p(I)×X 3 (a, x) 7→ (aix)i∈I ∈ `p〈I,X〉 has norm at
most 1. By [20, Theorem 2.9], we obtain

‖T (u)‖`p〈X〉 ≤ ‖u‖π,

for every u ∈ `p(I)⊗X, as desired. �

Corollary 4.2. Let X be a Banach space, I be an infinite set and p ∈ [1,∞).
Let T : `p(I)⊗X → XI be the linear map defined on Proposition 4.1.

(1) T admits an unique linear extension Tε to `p(I)⊗̂εX, which is an isometry
onto Fp(I,X);

(2) If p ∈ (1,∞), then T admits an unique linear extension of same norm Tπ
from `p(I)⊗̂πX to `p〈I,X〉.

Proof. Let us first show (1). By the density of `p(I) ⊗ X in `p(I)⊗̂εX and

Proposition 4.1, T admits an unique linear extension Tε : `p(I)⊗̂εX → Fp(I,X),
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which is an isometry onto its image. Given x = (xi)i∈I ∈ Fp(I,X), by Proposition
4.1 we have

x =
∑
i∈I

Ri(xi) =
∑
i∈I

T (ei ⊗ xi) ∈ Im(T ) = Im(Tε) .

This proves that Tε is onto Fp(I,X).

Similarly, if p ∈ (1,∞), the density of `p(I)⊗X in `p(I)⊗̂πX and Proposition

4.1 imply that T admits an unique linear extension Tπ : `p(I)⊗̂πX → `p〈I,X〉
satisfying ‖Tπ‖ = ‖T‖ ≤ 1. �

As in the countable case, we will show that Tπ is a linear isometry from
`p(I)⊗̂πX onto `p〈I,X〉. We will use the following key lemma.

Lemma 4.3. Let X be a Banach space, I be an infinite set and p ∈ (1,∞).
Given u ∈ `p(I)⊗̂πX, there exists a family (xi)i∈I in X such that

u =
∑
i∈I

ei ⊗ xi.

Proof. Let q ∈ (1,∞) be the conjugate index of p and (e∗i )i∈I be the unit basis
of `q(I). For each i ∈ I consider the bounded linear operator πi : `p(I) → `p(I)
defined by

πi(a) = e∗i (a)ei,

for each a = (aj)j∈I ∈ `p(I), and for every finite subset ∅ 6= F ⊂ I write

PF =
∑
j∈F

πj .

Let u ∈ `p(I)⊗̂πX be given and let us prove that

(4.1) u =
∑
i∈I

(πi ⊗ I)(u).

By [20, Proposition 2.8] there exist bounded sequences (an)n≥1 in `p(I) and (yn)n≥1

in X satisfying

u =

∞∑
n=1

an ⊗ yn and

∞∑
n=1

‖an‖p‖yn‖ <∞.

We may suppose that ‖yn‖ = 1 for every n ≥ 1. Given ε > 0, take N ≥ 1 such that

∞∑
n=N+1

‖an‖p ≤
ε

3
.

It is clear that ∥∥∥∥∥u−
N∑
n=1

an ⊗ yn

∥∥∥∥∥
π

≤ ε

3
.

There exists a finite subset ∅ 6= F0 ⊂ I such that for every finite subset F ⊂ I
satisfying F0 ⊂ F and every 1 ≤ n ≤ N we have

‖PF (an)− an‖p ≤
ε

3N
.
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Thus,

‖u− (PF ⊗ I)(u)‖ ≤

∥∥∥∥∥u−
N∑
n=1

an ⊗ yn

∥∥∥∥∥
π

+

∥∥∥∥∥
N∑
n=1

an ⊗ yn −
N∑
n=1

PF (an)⊗ yn

∥∥∥∥∥
π

+

∥∥∥∥∥
N∑
n=1

PF (an)⊗ yn − (PF ⊗ I)(u)

∥∥∥∥∥
π

≤ ε.

This shows that (4.1) holds.
Finally, since

(πi ⊗ I)(u) =

∞∑
n=1

πi(an)⊗ yn =

∞∑
n=1

e∗i (an)ei ⊗ yn = ei ⊗

( ∞∑
n=1

e∗i (an)yn

)
,

for each i ∈ I, it follows that

xi =

∞∑
n=1

e∗i (an)yn

satisfies the desired properties. �

We are now in a position to show that Tπ is an isometry onto `p〈I,X〉.

Theorem 4.4. Let X be a Banach space, I be an infinite set and p ∈ (1,∞).
The operator Tπ is an isometric isomorphism from `p(I)⊗̂πX onto `p〈I,X〉.

Proof. We have shown that

‖Tπ(u)‖`p〈X〉 ≤ ‖u‖π,

for every u ∈ `p(I)⊗̂πX. In order to prove that Tπ is isometric, it is sufficient to
prove the reverse inequality on span{ ei⊗x : i ∈ I, x ∈ X }. Given v ∈ span{ ei⊗x :
i ∈ I, x ∈ X }, there exist a finite subset ∅ 6= I0 ⊂ I and a finite family (yi)i∈I0 of
elements of X such that

v =
∑
i∈I0

ei ⊗ yi.

By [20, p. 24] and the Hahn-Banach Theorem, there exists a bounded linear
operator b ∈ L(`p(I), X∗) ≡ [`p(I)⊗̂πX]∗ satisfying

‖b‖ = 1 and ‖v‖π =
∑
i∈I0

b(ei)(yi).

Setting yi = 0 for each i ∈ I \ I0, it is clear that Tπ(v) = (yi)i∈I and

‖Tπ(v)‖`p〈X〉 ≥ ‖v‖π,

as desired.
Let us show next that Tπ is onto. Given x = (xi)i∈I ∈ `p〈I,X〉, we will show

that the family (ei ⊗ xi)i∈I is summable in `p(I)⊗̂πX and

(4.2) x = Tπ

(∑
i∈I

ei ⊗ xi

)
.
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For every x∗ = (x∗i )i∈I ∈ s`q(I,X∗) we have∣∣∣∣∣∑
i∈I

x∗i (xi)

∣∣∣∣∣ ≤ ‖x‖`p〈X〉 ‖x∗‖slq(X∗).

Hence, the linear functional θ defined on slq(I,X
∗) ≡ L(`p(I), X∗) by

θ(x∗) =
∑
i∈I

x∗i (xi),

for each x∗ = (x∗i )i∈I ∈ s`q(I,X∗), is bounded. Let us denote by θr its restriction
to the subspace K(`p(I), X∗).

Let q ∈ (1,∞) be the conjugate index of p. Recall that the space `q(I) has the
approximation property [20, p. 73], and therefore

(4.3) K(`p(I), X∗) ≡ `q(I)⊗̂εX∗,
by [20, Corollary 4.13]. Moreover, since `p(I) also has the Radon-Nikodým property
[20, Corollary 5.45], by (4.3) and [20, Theorem 5.33] we know that

`p(I)⊗̂πX∗∗ ≡ [`q(I)⊗̂εX∗]∗ ≡ [K(`p(I), X∗)]∗.

It follows from Lemma 4.3 that there exists a family (x∗∗i )i∈I in X∗∗ such that

θr =
∑
i∈I

ei ⊗ x∗∗i .

We observe that for every i ∈ I and for every x∗ ∈ X∗ we have

x∗∗i (x∗) = θr(e
∗
i ⊗ x∗) = x∗(xi),

and so x∗∗i = x̂i. Thus, the family (ei ⊗ x̂i)i∈I is summable in `p(I)⊗̂πX∗∗ and

hence, the family (ei ⊗ xi)i∈I in `p(I)⊗̂πX, by [8, Corollary 14, p. 238]. Finally, it
is clear that (4.2) holds. �

Remark 4.5. We observe that Tπ(ei⊗ xi) = Ri(xi), for each i ∈ I. Therefore,
for each x = (xi)i∈I ∈ `p〈I,X〉, the family (Ri(xi))i∈I is summable in `p〈I,X〉 and

x =
∑
i∈I

Ri(xi).

Remark 4.6. By Proposition 3.1, every family x = (xi)i∈I ∈ `p〈I,X〉 has only
countably many non-zero coordinates. Hence, by the previous remark, the subspace

L = {y = (yi)i∈I ∈ `p〈I,X〉 : {i ∈ I : yi = 0} is finite}
is dense in `p〈I,X〉.

5. Dual spaces of `p〈I,X〉 and Fp(I,X)

We now turn our attention to convenient identifications of the spaces `p〈I,X〉
and Fp(I,X) and of their duals.

Theorem 5.1. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and
q ∈ (1,∞) be the conjugate index of p. Then there exists an isometric isomorphism
from `p〈I,X〉∗ onto s`q(I,X

∗) which maps ϕ ∈ `p〈I,X〉∗ to (x∗i )i∈I ∈ s`q(I,X∗),
where

ϕ(x) =
∑
i∈I

x∗i (xi),

for every x = (xi)i∈I ∈ `p〈I,X〉.
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Proof. Let Tπ be the canonical isometric isomorphism from `p(I)⊗̂πX onto
`p〈I,X〉 considered in Corollary 4.2. Then T ∗π is also an isometric isomorphism

from `p〈I,X〉∗ onto [`p(I)⊗̂πX]∗. By [20, p. 24], we have

[`p(I)⊗̂πX]∗ ≡ L(`p(I), X∗) ≡ s`q(I,X∗).

Given ϕ ∈ `p〈I,X〉∗, let (x∗i )i∈I ∈ s`q(I,X∗) be the unique element corresponding

to T ∗π (ϕ) ∈ [`p(I)⊗̂πX]∗ via the above identifications. By Remark 4.5, for each

x = (xi)i∈I =
∑
i∈I

Ri(xi) =
∑
i∈I

Tπ(ei ⊗ xi) ∈ `p〈I,X〉,

we have

ϕ(x) =
∑
i∈I

(ϕ ◦ Tπ)(ei ⊗ xi) =
∑
i∈I

T ∗π (ϕ)(ei ⊗ xi) =
∑
j∈I

x∗i (xi),

and the proof is complete. �

Remark 5.2. For every ϕ = (x∗i )i∈I ∈ `p〈I,X〉∗, we have

‖ϕ‖ = sup

{∑
i∈I
|x∗i (xi)| : (xi)i∈I ∈ B`p〈X〉

}
.

Theorem 5.3. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and
q ∈ (1,∞) be the conjugate index of p. Then there exists an isometric isomorphism
from Fp(I,X)∗ onto `q〈I,X∗〉 which maps ψ ∈ Fp(I,X)∗ to (x∗i )i∈I ∈ `q〈I,X∗〉,
where

ψ(x) =
∑
i∈I

x∗i (xi),

for every x = (xi)i∈I ∈ Fp(I,X).

Proof. Let Tε be the canonical isometric isomorphism from `p(I)⊗̂εX onto
Fp(I,X) considered in Corollary 4.2. Since the space `q(I) has both the approxi-
mation property and the Radon-Nikodým property, by [20, Theorem 5.33] we know
that

[`p(I)⊗̂εX]∗ ≡ `q(I)⊗̂πX∗.
By Theorem 4.4 and Remark 4.5, the operator

`q〈I,X∗〉 3 (x∗i )i∈I 7→
∑
i∈I

ei ⊗ x∗i ∈ `q(I)⊗̂πX∗

is also an isometric isomorphism.
Given ψ ∈ Fp(I,X)∗, there exists an unique (x∗i )i∈I ∈ `q〈I,X∗〉 corresponding

to T ∗ε (ϕ) ∈ [`p(I)⊗̂εX]∗ via the above identifications. For each

x = (xi)i∈I =
∑
i∈I

Ri(xi) =
∑
i∈I

Tε(ei ⊗ xi) ∈ Fp(I,X),

we have

ψ(x) =
∑
i∈I

(ψ ◦ Tε)(ei ⊗ xi) =
∑
i∈I

T ∗ε (ψ)(ei ⊗ xi) =
∑
j∈I

x∗i (xi),

and the proof is complete. �
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6. Complemented copies of c0(τ) in `p(I)⊗̂πX and `p(I)⊗̂εX

This section is devoted to the study of the complemented copies of c0(τ) in the
projective and injective tensor products `p(I)⊗̂πX and `p(I)⊗̂εX. We begin with
the former space.

Lemma 6.1. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and τ be
an infinite cardinal. Let (xj)j∈τ = ((xi,j)i∈I)j∈τ be a family of `p〈I,X〉 equivalent
to the unit basis of c0(τ) and let (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ be a bounded family of
`p〈I,X〉∗. Then, for each ε > 0, there exists a finite subset Fε ⊂ I satisfying, for
every j ∈ τ, ∣∣∣∣∣∣

∑
i∈I\Fε

ϕi,j(xi,j)

∣∣∣∣∣∣ < ε .

Proof. Let M = supj∈τ ‖ϕj‖. We may assume ‖xj‖`p〈X〉 = 1 for every j ∈ τ.
Suppose that the conclusion does not hold; then there exists ε > 0 such that, for
every finite subset F ⊂ I, there exists j ∈ τ with∣∣∣∣∣∣

∑
i6∈F

ϕi,j(xi,j)

∣∣∣∣∣∣ ≥ ε.
We will show that this leads to a contradiction.

We construct by induction a sequence (jk)k≥1 in τ and a sequence of pairwise
disjoint finite subsets (Fk)k≥1 of I such that

(6.1)

∣∣∣∣∣∑
i∈Fk

ϕi,jk(xi,jk)

∣∣∣∣∣ ≥ ε

2
, ∀k ≥ 1.

Put F0 = ∅. By hypothesis, there exists j1 ∈ τ such that∣∣∣∣∣∑
i∈I

ϕi,j1(xi,j1)

∣∣∣∣∣ ≥ ε.
Since ∑

i∈I
|ϕi,j1(xi,j1)| ≤M,

there exists a finite subset ∅ 6= F1 ⊂ I such that∑
i∈I\F1

|ϕi,j1(xi,j1)| ≤ ε

2
,

and hence ∑
i∈F1

|ϕi,j1(xi,j1)| ≥ ε

2
.

Next, let k ≥ 1 be given and suppose we have constructed j1, . . . , jk and F1, . . . , Fk
as desired. Put A = ∪kl=1Fl. By hypothesis, there exists jk+1 ∈ τ such that∣∣∣∣∣∣

∑
i∈I\A

ϕi,jk+1
(xi,jk+1

)

∣∣∣∣∣∣ ≥ ε .
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There exists a finite subset ∅ 6= Fk+1 ⊂ (I \A) such that∑
i∈I\(A∪Fk+1)

|ϕi,jk+1
(xi,jk+1

)| ≤ ε

2
,

and so ∣∣∣∣∣∣
∑

i∈Fk+1

ϕi,jk+1
(xi,jk+1

)

∣∣∣∣∣∣ ≥ ε

2
.

It follows from the construction that jl 6= jk for l 6= k.
For each k ≥ 1 and i ∈ I we denote

ψi,k =

{
ϕi,jk if i ∈ Fk
0 if i ∈ I \ Fk,

and ψk = (ψi,k)i∈I . It is obvious that (ψk)k≥1 is a bounded sequence in Fq(I,X
∗) ≡

`p〈I,X∗∗〉, where q ∈ (1,∞) is the conjugate index of p. We claim that (ψk)k≥1 is
a weakly-null sequence. Indeed, by Remark 4.6, the subspace

L = {θ∗∗ = (θ∗∗i )i∈I ∈ `p〈I,X∗∗〉 : {i ∈ I : θ∗∗i = 0} is finite}
is dense in `p〈I,X∗∗〉. Given θ∗∗ = (θ∗∗i )i∈I ∈ L, there exists k0 ≥ 1 such that
θ∗∗i = 0, for all i ∈ Fk, k ≥ k0, and hence,

lim
k→∞

θ∗∗(ψk) = lim
k→∞

∑
i∈Fk

θ∗∗i (ψi,k) = 0.

The density of L then establishes our claim.
The sequence (xjk)k≥1 is equivalent to the unit basis of c0 and furthermore

|ψk(xjk)| ≥ ε

2
,

for each k ≥ 1, in contradiction with the Dunford-Pettis Property of c0 [12, p.
596]. �

We are now in a position to prove the first main result of this section.

Theorem 6.2. Given X a Banach space, I an infinite set, p ∈ (1,∞) and τ
an infinite cardinal, we have

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ X.

Proof. Suppose first that c0(τ)
c
↪→ `p(I)⊗̂πX ≡ `p〈I,X〉. By Theorem 2.2,

there exist (xj)j∈τ = ((xi,j)i∈I)j∈τ equivalent to the canonical basis of c0(τ) in
`p〈I,X〉, and (ϕj)j∈τ a weak∗-null family in `p〈I,X〉∗ satisfying ϕj(xj) = 1 for all
j ∈ τ. By Theorem 5.1, for each j ∈ τ, there exists a family (ϕi,j)i∈I in X∗ such
that

1 = ϕj(xj) =
∑
i∈I

ϕi,j(xi,j).

By the Uniform Boundedness Principle, (ϕj)j∈τ is bounded, and so there exists
M > 0 such that ‖ϕj‖ ≤M for each j ∈ τ.

An appeal to Lemma 6.1 yields a finite subset F ⊂ I satisfying∣∣∣∣∣∣
∑
i∈I\F

ϕi,j(xi,j)

∣∣∣∣∣∣ < 1

2
, ∀j ∈ τ.
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Therefore, F 6= ∅ and ∑
i∈F
|ϕi,j(xi,j)| >

1

2
, ∀j ∈ τ.

Next, Lemma 2.4 implies that there exist i0 ∈ F and τ1 ⊂ τ satisfying |τ1| = τ and

(6.2) |ϕi0,j(xi0,j)| >
1

2|F |
,∀j ∈ τ1.

We have
1

2|F |
< |ϕi0,j(xi0,j)| ≤M‖xi0,j‖, ∀j ∈ τ1,

and thus

(6.3) ‖xi0,j‖ >
1

2M |F |
, ∀j ∈ τ1.

Consider the bounded linear operator πi0 : `p〈I,X〉 → X defined by πi0(x) =
xi0 for each x = (xi)i∈I ∈ `p〈I,X〉. By hypothesis, there exists T : c0(τ)→ `p〈I,X〉
an isomorphism onto its image such that T (ej) = xj , for all j ∈ τ . By (6.3), we
have

‖(πi0 ◦ T )(ej)‖ >
1

2M |F |
, ∀j ∈ τ1,

and therefore, by Theorem 2.1, there exists τ2 ⊂ τ1 such that |τ2| = |τ1| = τ and
πi0 ◦T|c0(τ2) is an isomorphism onto its image. Thus, (xi0,j)j∈τ2 is equivalent to the
unit basis of c0(τ2) in X. The family (ϕj)j∈τ is weak∗-null and hence, (ϕi0,j)j∈τ2
is a weak∗-null family in X∗. Theorem 2.2 and (6.2) then imply that c0(τ)

c
↪→ X.

For the converse, it is sufficient to notice that `p〈I,X〉 contains a complemented
copy of X. �

We now turn our attention to complemented copies of c0(τ) in the injective
tensor product `p(I)⊗̂εX.

Theorem 6.3. Let X be a Banach space, I be an infinite set, p ∈ [1,∞) and
τ be an infinite cardinal. If cf(τ) > |I|, then

c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X.

Proof. Suppose first that c0(τ)
c
↪→ `p(I)⊗̂πX ≡ Fp(I,X). By Theorem 2.2,

there exists (xj)j∈τ = ((xi,j)i∈I)j∈τ equivalent to the unit basis of c0(τ) in Fp(I,X),
and a weak∗-null family (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ of Fp(I,X)∗ satisfying

1 = ϕj(xj) =
∑
i∈I

ϕi,j(xi,j), ∀j ∈ τ.

For each j ∈ τ , there exists a finite subset ∅ 6= Fj ⊂ I such that

(6.4)
∑
i∈Fj

|ϕi,j(xi,j)| >
1

2
.

Let F = {Fj : j ∈ τ}, and for each F ∈ F , consider τ(F ) = {j ∈ τ : Fj = F}.
Since τ =

⋃
F∈F τF and cf(τ) > |I| ≥ |F|, by Lemma 2.3 there exists G0 ∈ F such

that |τ(G0)| = τ . Setting τ1 = τ(G0), by (6.4) we obtain∑
i∈G0

|ϕi,j(xi,j)| >
1

2
, ∀j ∈ τ1.
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Next, an appeal to Lemma 2.4 yields i0 ∈ G0 and τ2 ⊂ τ1 satisfying |τ2| = |τ1| = τ
and

(6.5) |ϕi0,j(xi0,j)| >
1

2|G0|
,∀j ∈ τ2.

By the Uniform Boundedness Principle, (ϕj)j∈τ is bounded, and so there exists
M > 0 such that ‖ϕj‖ ≤M , for each j ∈ τ . Therefore we have

1

2|G0|
< |ϕi0,j(xi0,j)| ≤M‖xi0,j‖, ∀j ∈ τ2,

and thus

(6.6) ‖xi0,j‖ >
1

2M |G0|
, ∀j ∈ τ2.

Consider the bounded linear operator πi0 : s`p(I,X)→ X defined by πi0(x) =
xi0 for each x = (xi)i∈I ∈ s`p(I,X). By hypothesis, there exists T : c0(τ) →
Fp(I,X) an isomorphism onto its image such that T (ej) = xj , for all i ∈ τ . By
(6.6), we have

‖(πi0 ◦ T )(ej)‖ >
1

2M |G0|
, ∀j ∈ τ2,

and therefore, by Theorem 2.1, there exists τ3 ⊂ τ2 such that |τ3| = |τ2| = τ and
πi0 ◦T|c0(τ3) is an isomorphism onto its image. Thus, (xi0,j)j∈τ3 is equivalent to the
unit basis of c0(τ3) in X. The family (ϕj)j∈τ is weak∗-null and hence, (ϕi0,j)j∈τ3
is weak∗-null in X∗. Theorem 2.2 and (6.5) then imply c0(τ)

c
↪→ X.

For the converse, it suffices to notice that Fp(I,X) contains a complemented
copy of X. �

Our next step is to obtain a result analogue to Theorem 6.3 without assump-
tions on the cofinality of τ . In this direction, we begin with the following lemma.

Lemma 6.4. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and τ be
an infinite cardinal. Let (xj)j∈τ = ((xi,j)i∈I)j∈τ be a family of Fp(I,X) equivalent
to the unit basis of c0(τ) and let (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ be a bounded family of
Fp(I,X)∗ ≡ `q〈I,X∗〉, where q ∈ (1,∞) is the conjugate index of p. Suppose that

K(`q(I), X∗∗) = L(`q(I), X∗∗).

Then, for each ε > 0, there exists a finite subset Fε ⊂ I satisfying∣∣∣∣∣∣
∑

i∈I\Fε

ϕi,j(xi,j)

∣∣∣∣∣∣ < ε, ∀j ∈ τ.

Proof. By hypothesis and Theorem 5.3, there exists M > 0 such that

(6.7) M ≥ ‖ϕj‖ = ‖(ϕi,j)i∈I‖`q〈X∗〉, ∀j ∈ τ.

Suppose by contradiction that the result does not hold. As in the proof of
Lemma 6.1, there exist ε > 0, a sequence of distinct indexes (jk)k≥1 of τ , and a
sequence (Fk)k≥1 of finite, non-empty and pairwise disjoint subsets of I satisfying

(6.8)

∣∣∣∣∣∑
i∈Fk

ϕi,jk(xi,jk)

∣∣∣∣∣ > ε, ∀k ≥ 1.
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Consider ψk = (ψi,k)i∈I ∈ `q〈I,X∗〉, where

ψi,k =

{
ϕi,jk if i ∈ Fk

0 if i ∈ I \ Fk.

By (6.7) we have

(6.9) ‖ψk‖`q〈X∗〉 ≤ ‖(ϕi,jk)i∈I‖`q〈X∗〉 = ‖ϕjk‖ ≤M, ∀k ≥ 1.

We claim that (ψk)k≥1 is a weakly-null sequence in `q〈I,X∗〉. Recall that

`q〈I,X∗〉∗ ≡ s`p(I,X∗∗) ≡ L(`q(I), X∗∗),

and

Fp(I,X
∗∗) ≡ K(`q(I), X∗∗).

Thus, by hypothesis, we have

`q〈I,X∗〉∗ ≡ Fp(I,X∗∗).
The subspace

L = {θ∗∗ = (θ∗∗i )i∈I ∈ Fp(I,X∗∗) : {i ∈ I : θ∗∗i = 0} is finite}
is dense in Fp(I,X

∗∗). Observe that if θ∗∗ = (θ∗∗i )i∈I ∈ L, there exists k0 ≥ 1 such
that θ∗∗i = 0, for all i ∈ Fk, k ≥ k0, and hence,

lim
k→∞

θ∗∗(ψk) = lim
k→∞

∑
i∈Fk

θ∗∗i (ψi,k) = 0.

The density of L then establishes our claim.
Now, notice that

|ψk(xjk)| =

∣∣∣∣∣∑
i∈I

ψi,k(xi,jk)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈Fk

ϕi,jk(xi,jk)

∣∣∣∣∣ > ε

2
, ∀k ≥ 1,

by construction. On the other hand, since the sequence (ψk)k≥1 is weakly-null in
Fp(I,X)∗ and (xjk)k≥1 is, by hypothesis, equivalent to the unit basis of c0, by
the Dunford-Pettis Property of c0 [12, p. 596] we know that ψk(xjk) −→ 0, a
contradiction that finishes the proof. �

Theorem 6.5. Let X be a Banach space, I be an infinite set, p ∈ (1,∞) and
τ be an infinite cardinal. Suppose that

K(`q(I), X∗∗) = L(`q(I), X∗∗),

where q ∈ (1,∞) is the conjugate index of p. Then

c0(τ)
c
↪→ `p(I)⊗̂εX ⇐⇒ c0(τ)

c
↪→ X.

Proof. Suppose first that c0(τ)
c
↪→ `p(I)⊗̂εX ≡ Fp(I,X). By Theorem 2.2,

there exist (xj)j∈τ = ((xi,j)i∈I)j∈τ equivalent to the unit basis of c0(τ) in Fp(I,X),
and a weak∗-null family (ϕj)j∈τ = ((ϕi,j)i∈I)j∈τ of Fp(I,X)∗ satisfying

1 = ϕj(xj) =
∑
i∈I

ϕi,j(xi,j), ∀j ∈ τ.

By the Uniform Boundedness Principle, (ϕj)j∈τ is bounded, and so there exists
M > 0 such that

(6.10) ‖ϕj‖ ≤M,∀j ∈ τ.
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An appeal to Lemma 6.4 yields a finite subset F ⊂ I satisfying∣∣∣∣∣∣
∑
i∈I\F

ϕi,j(xi,j)

∣∣∣∣∣∣ < 1

2
, ∀j ∈ τ.

Therefore, F 6= ∅ and

∑
i∈F
|ϕi,j(xi,j)| ≥

∣∣∣∣∣∑
i∈F

ϕi,j(xi,j)

∣∣∣∣∣ ≥
∣∣∣∣∣∑
i∈I

ϕi,j(xi,j)

∣∣∣∣∣−
∣∣∣∣∣∣
∑
i∈I\F

ϕi,j(xi,j)

∣∣∣∣∣∣ > 1

2
,∀j ∈ τ.

Next, Lemma 2.4 implies that there exist i0 ∈ F and τ1 ⊂ τ satisfying |τ1| = τ and

(6.11) |ϕi0,j(xi0,j)| >
1

2|F |
, ∀j ∈ τ1.

By (6.10), we have

1

2|F |
< |ϕi0,j(xi0,j)| ≤ ‖ϕi0,j‖ ‖xi0,j‖ ≤ ‖ϕj‖ ‖xi0,j‖ ≤M‖xi0,j‖, ∀j ∈ τ1,

and thus

(6.12) ‖xi0,j‖ >
1

2M |F |
,∀j ∈ τ1.

Consider the bounded linear operator πi0 : Fp(I,X)→ X defined by πi0(x) =
xi0 for each x = (xi)i∈I ∈ Fp(I,X). By hypothesis, there exists T : c0(τ) →
Fp(I,X) an isomorphism onto its image such that T (ej) = xj , for all j ∈ τ . By
(6.12), we have

‖(πi0 ◦ T )(ej)‖ >
1

2M |F |
, ∀j ∈ τ1,

and therefore, by Theorem 2.1, there exists τ2 ⊂ τ1 such that |τ2| = |τ1| = τ and
πi0 ◦T|c0(τ2) is an isomorphism onto its image. Thus, (xi0,j)j∈τ2 is equivalent to the
unit basis of c0(τ2) in X.

Next, given x ∈ X, we have

(ϕi0,j(x))j∈τ2 ∈ c0(τ2),

since, by hypothesis, (ϕj)j∈τ is weak∗-null. This proves that (ϕi0,j)j∈τ2 is weak∗-

null in X∗. Theorem 2.2 and (6.11) then imply that c0(τ)
c
↪→ X.

For the converse, it is sufficient to notice that Fp(I,X) contains a complemented
copy of X. �

7. Final remarks and open problems

By adapting the proofs of Lemma 6.1 and Theorem 6.2, one can prove the
following.

Theorem 7.1. Given X a Banach space, I an infinite set, p ∈ [1,∞) and τ
an infinite cardinal, we have

c0(τ)
c
↪→ `p(I,X) ⇐⇒ c0(τ)

c
↪→ X.

The above theorem extends to the uncountable case a c0 result by Bombal [4,
Theorem 4.3.1]. Moreover, since `1(I)⊗̂πX is isometrically isomorphic to `1(I,X)
[20, p. 19], the next corollary follows immediately from Theorems 6.2 and 7.1.
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Corollary 7.2. Given X a Banach space, I an infinite set, p ∈ [1,∞) and τ
an infinite cardinal, we have

c0(τ)
c
↪→ `p(I)⊗̂πX ⇐⇒ c0(τ)

c
↪→ `p(I,X) ⇐⇒ c0(τ)

c
↪→ X.

However, observe that the space `p(I,X) cannot be exchanged by the usual
Banach space of Lebesque integrable functions Lp([0, 1], X) in the statement of
Theorem 7.1, even in the case τ = ℵ0. Indeed, recall the following result due to
Emmanuelle [10, Main Theorem].

Theorem 7.3. Let X be a Banach space and p ∈ [1,∞). Then

c0 ↪→ X =⇒ c0
c
↪→ Lp([0, 1], X).

Thus, we have

c0
c
↪→ Lp([0, 1], `∞) but c0 6

c
↪→ `∞.

These facts arise naturally the following question.

Problem 7.4. Let X be a Banach space, p ∈ [1,∞) and τ be an infinite
cardinal. What assumptions on τ yield

c0(τ)
c
↪→ `p([0, 1], X) ⇐⇒ c0(τ)

c
↪→ X?

We do not know if Theorem 6.2 can be extended to the case p =∞. That is:

Problem 7.5. Let X be a Banach space and τ be an infinite cardinal. Is it
true that

c0(τ)
c
↪→ `∞⊗̂πX =⇒ c0(τ)

c
↪→ X?

Finally, we also do not know if Theorem 6.3 is optimal for any cardinal τ . In
particular, the following problem is unsolved.

Problem 7.6. Let X be a Banach space and p ∈ [1,∞). Does it follow that

c0(ℵω)
c
↪→ `p⊗̂εX =⇒ c0(ℵω)

c
↪→ X?
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