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Introduction

We use standard set-theoretical and Banach space theory terminology as may be found, e.g., in [START_REF] Jech | Set Theory, The Third Millennium Edition, revised and expanded[END_REF] and [START_REF] Johnson | Handbook of the geometry of Banach spaces[END_REF] respectively. We denote by B X the closed unit ball of the Banach space X. If X and Y are Banach spaces, we denote by L(X, Y ) the space of all bounded linear operators from X to Y and by K(X, Y ) the subspace of all compact linear operators. We say that Y contains a copy (resp. a complemented copy) of X, and write X → Y (resp. X c → Y ), if X is isomorphic to a subspace (resp. complemented subspace) of Y . If X and Y are isometrically isomorphic Banach spaces, we write X ≡ Y .

We shall denote the projective and injective tensor norms by • π and • ε respectively. The projective (resp. injective) tensor product of X and Y is the completion of X ⊗ Y with respect to • π (resp. • ε ) and will be denoted by

X ⊗ π Y (resp. X ⊗ ε Y ).
Given X a Banach space, I an infinite set and (x i ) i∈I ∈ X I , the notation x = i x i means that, for every ε > 0, there exists a finite subset ∅ = F 0 ⊂ I such that, for every finite subset F of I with F 0 ⊂ F, we have x -i∈F x i < ε.

For a non-empty set Γ, c 0 (Γ) denotes the Banach space of all real-valued maps f on Γ with the property that for each ε > 0, the set {γ ∈ Γ : |f (γ)| ≥ ε} is finite, equipped with the supremum norm. We will refer to c 0 (Γ) as c 0 (τ ) when the cardinality of Γ (denoted by |Γ|) is equal to τ . This space will be denoted by c 0 when τ = ℵ 0 .

Given p ∈ [1, ∞), we denote p (I, X) = (x i ) i∈I ∈ X I :

i∈I x i p < ∞ ,
equipped with the complete norm

x p = i∈I x i p 1 p
, for each x = (x i ) i∈I ∈ p (I, X). These spaces will be denoted by p (I) when X = R.

If I = N, we will write p . By ∞ (I) we will denote the Banach space of all bounded real-valued maps on I, with the supremum norm. This space will be denoted by ∞ when I = N.

Recall that if τ is an infinite cardinal then the cofinality of τ , denoted by cf(τ ), is the least cardinal α such that there exists a family of ordinals {β j : j ∈ α} satisfying β j < τ for all j ∈ α, and sup{β j : j ∈ α} = τ . A cardinal τ is said to be regular when cf(τ ) = τ ; otherwise, it is said to be singular.

An immediate consequence of the classical Cembranos-Freniche Theorem [3, Main Theorem], [START_REF] Freniche | Barrelledness of the space of vector valued and simple functions[END_REF]Corollary 2.5] is the following result.

Theorem 1.1. For each p ∈ [1, ∞) we have c 0 c → p ⊗ ε ∞ .
However, it is well known that c 0 c → ∞ (see, e. g., [START_REF] Diestel | Vector Measures[END_REF]Corollary 11,p. 156]). On the other hand, Oya proved the following theorem.

Theorem 1.2 ([18], Theorem 2). If X is a Banach space and p ∈ [1, ∞), then c 0 c → p ⊗ π X ⇐⇒ c 0 c → X.
These facts motivate the following problems.

Problem 1.3. Let X be a Banach space, I be an infinite set, p ∈ [1, ∞) and τ be an infinite cardinal. What assumptions on τ and I yield

c 0 (τ ) c → p (I) ⊗ ε X ⇐⇒ c 0 (τ ) c → X? Problem 1.4. Given X a Banach space, I an infinite set, p ∈ [1, ∞) and τ an infinite cardinal, is it true that c 0 (τ ) c → p (I) ⊗ π X ⇐⇒ c 0 (τ )
Remark 1.6. (1.1) is optimal for every infinite regular cardinal κ. Indeed, setting I = κ, again by [START_REF] Galego | Copies of c 0 (Γ) in C(K, X) spaces[END_REF]Theorem 4.5] we have [START_REF] Diestel | Vector Measures[END_REF]Corollary 11,p. 156].

c 0 (κ) c → p (κ) ⊗ ε ∞ (κ), but c 0 (κ) c → ∞ (τ ) once again by

Preliminary results and notations

We will denote by (e j ) j∈τ the unit-vector basis of c 0 (τ ) or p (τ ) for p ∈ [1, ∞), that is, e j (j) = 1 and e j (k) = 0 for each j, k ∈ τ , j = k. If Γ is a subset of τ , we identify c 0 (Γ) with the closed subspace of c 0 (τ ) consisting of the maps g on τ such that g(j) = 0 for each j ∈ τ \ Γ.

We begin by recalling the following classical result by H.P. Rosenthal.

Theorem 2.1. ([19, Remark following Theorem 3.4]) Let X be a Banach space and τ an infinite cardinal. Let T : c 0 (τ ) → X be a bounded linear operator such that inf{ T (e j ) : j ∈ τ } > 0. Then there exists a subset Γ ⊂ τ such that |Γ| = τ and T |c0(Γ) is an isomorphism onto its image.

We recall that a family (x * j ) j∈τ in the dual space X * is said to be weak * -null if for each x ∈ X we have (x * j (x)) j∈τ ∈ c 0 (τ ). Recall also that a family (x j ) j∈τ in a Banach space X is said to be equivalent to the canonical basis of c 0 (τ ) if there exists T : c 0 (τ ) → X an isomorphism onto its image satisfying T (e j ) = x j , for each j ∈ τ .

The main characterization of complemented copies of c 0 (τ ) we will use is the following result obtained in [START_REF] Cortes | When does C 0 (K, X) contain a complemented copy of c 0 (Γ) iff X does? Submitted[END_REF].

Theorem 2.2. Let X be a Banach space and τ be an infinite cardinal. The following are equivalent:

(1) X contains a complemented copy of c 0 (τ ).

(2) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c 0 (τ ) in X and a weak * -null family (x * j ) j∈τ in X * such that, for each j, k ∈ τ , x * j (x k ) = δ jk . (3) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c 0 (τ ) in X and a weak * -null family

(x * j ) j∈τ in X * such that inf j∈τ |x * j (x j )| > 0.
We will also use the following two simple lemmas.

Lemma 2.3. Let I be an infinite set and J be a non-empty set. Let {I j } j∈J be a family of subsets of I such that j∈J I j = I. If cf(|I|) > |J|, then there exists

j 0 ∈ J such that |I j0 | = |I|.
Proof. Suppose that the conclusion does not hold. Then we have |I j | < |I| for each i ∈ J and thus, by the definition of cofinality,

sup{|I j | : j ∈ J} < |I|. Since |J| < cf(|I|) ≤ |I|, we obtain |I| = j∈J I j ≤ max(|J|, sup{|I j | : j ∈ J}) < |I|,
a contradiction that finishes the proof.

Lemma 2.4. Let I be an infinite set and J be a non-empty, finite set. For each i ∈ I, let (a i,j ) j∈J be a family of positive real numbers. Suppose that there exists δ > 0 satisfying, for all i ∈ I, j∈J a i,j ≥ δ.

Then there exist j 0 ∈ J and I ⊂ I such that |I | = |I| and

a i,j0 ≥ δ |J| , ∀i ∈ I .
Proof. By hypothesis, for each i ∈ I there exists j(i) ∈ J such that

a i,j(i) ≥ δ |J| .
Let J = {j(i) : i ∈ I} and for each j ∈ J , consider I j = {i ∈ I : j(i) = j}. Since I = j∈J I j is infinite and J is finite, by Lemma 2.3 there exists j 0 ∈ J such that |I j0 | = |I|. Setting I = I j0 , the proof is complete.

3. Spaces s p (I, X), F p (I, X) and p I, X

In this section we shall introduce some generalized sequence spaces which will be of interest.

Let X be a Banach space, I be an infinite set and p ∈ [1, ∞). Following [START_REF] Samuel | Sur la reproductibilite des espaces p[END_REF], we denote

s p (I, X) = (x i ) i∈I ∈ X I : i∈I |x * (x i )| p < ∞, for all x * ∈ X * .
It is straightforward to check that the function

x s p = sup    i∈I |x * (x i )| p 1 p : x * ∈ B X *    , where x = (x i ) i∈I ∈ s p (I, X)
, is a complete norm on s p (I, X). For each i ∈ I, we denote by R i : X → X I the canonical inclusion defined by R i (x) = (δ ik x) k∈I , for each x ∈ X. Our interest lies in the closed subspace

F p (I, X) = x = (x i ) i∈I ∈ s p (I, X) : x = i∈I R i (x i ) of s p (I, X).
Given p ∈ (1, ∞) and q ∈ (1, ∞) the conjugate index of p, there exists a canonical isometric isomorphism between s p (I, X) and L( q (I), X) which maps an element x = (x i ) i∈I ∈ s p (I, X) to the bounded linear operator S ∈ L( q (I), X) defined by

S(a) = i∈I a i x i ,
for all a = (a i ) i∈I ∈ q (I). This isometry identifies F p (I, X) and the subspace K( q (I), X) of compact linear operators from q (I) to X.

In a similar way, in the case p = 1 there exists an isometric isomorphism between sl 1 (I, X) and L(c 0 (I), X) which identifies F 1 (I, X) and K(c 0 (I), X).

Next, let p ∈ (1, ∞) and q ∈ (1, ∞) be the conjugate index of p. Following [1, 5], we denote p I, X = x = (x i ) i∈I ∈ X I : i∈I |x * i (x i )| < ∞, for all (x * i ) i∈I ∈ s q (I, X * ) •
It is straightforward to check that the function

x p X = sup i∈I |x * i (x i )| : x * = (x * i ) i∈I ∈ B s q (I,X * ) , where x = (x i ) i∈I ∈ p I, X
, is a complete norm on p I, X .

We will summarize the main properties of those spaces in our next results. Our statements and proofs are simple modifications of those found in [START_REF] Bu | Observations about the projective tensor product of Banach spaces, Ip ⊗X, 1 < p < ∞[END_REF][START_REF] Bu | Observations about the projective tensor product of Banach spaces, II -L p (0, 1)⊗X, 1[END_REF][START_REF] Cohen | Absolutely p-summing, p-nuclear operators and their conjugates[END_REF]. Proposition 3.1. Let X be a Banach space, I be an infinite set and p ∈ [1, ∞).

(1) p (I, X) ⊂ F p (I, X) and x s p ≤ x p , for all x ∈ p (I, X);

(2) For p > 1, p I, X ⊂ p (I, X) and x p ≤ x p X , for all x ∈ p I, X .

Proof. Statement (1) follows immediately from the definitions of p (I, X) and s p (I, X). Let us show [START_REF] Bu | Observations about the projective tensor product of Banach spaces, II -L p (0, 1)⊗X, 1[END_REF]. Given x = (x i ) i∈I ∈ p I, X , we fix, for every

i ∈ I, x * i ∈ B X * such that x i = x * i (x i ). For every (λ i ) i∈I ∈ B q (I) we have (λ i x * i ) i∈I ∈ B slq(X * ) and so i∈I |λ i x * i (x i )| = i∈I |λ i | x i ≤ x p X . Therefore i∈I x i p 1 p = x p ≤ x p X
and the proof is complete.

We will denote the canonical inclusion of x ∈ X in X * * by x. The proof of the following proposition is straightforward. Proposition 3.2. Let X be a Banach space, I be an infinite set, p ∈ [1, ∞), x = (x i ) i∈I ∈ X I and y = ( x i ) i∈I ∈ (X * * ) I . Then x ∈ s p (I, X) if, and only if, y ∈ s p (I, X * * ). Furthermore, x s p = y s p .

Generalized sequence spaces and tensor products

The goal of this section is to establish a connection between the generalized sequence spaces defined in the previous section and the projective and injective tensor products p (I) ⊗ π X and p (I) ⊗ ε X.

It is obvious that for every a = (a i ) i∈I ∈ R I and x ∈ X we have (a i x) i∈I ∈ X I and furthermore the operator p (I) × X (a, x) → (a i x) i∈I ∈ X I is bilinear. This bilinear operator induces a linear operator

T : p (I) ⊗ X → X I [20, Proposition 1.4].
It is also obvious that Im(T ) ⊂ p I, X ∩ s p (I, X). We summarize the main properties of this operator in the following proposition.

Proposition 4.1. Given p ∈ [1, ∞), we have:

(1) Im(T ) contains all finitely non-zero families in p (I, X);

(2) T (u) s p (X) = u ε , for each u ∈ p (I) ⊗ X; (3) If p ∈ (1, ∞), then T (u) p X ≤ u π , for each u ∈ p (I) ⊗ X.
Proof. Given x ∈ X and i ∈ I, notice that T (e i ⊗ x) = (δ ij x) j∈I . This shows statement [START_REF] Bu | Observations about the projective tensor product of Banach spaces, Ip ⊗X, 1 < p < ∞[END_REF].

Next, let u ∈ p (I) ⊗ X be given and fix a representation u = m n=1 a n ⊗ x n , where a n = (a n i ) i∈I . Then we have

T (u) s p (X) = sup    i∈I m n=1 a n i x * (x n ) p 1 p : x * ∈ B X *    = sup    m n=1 x * (x n )a n p : x * ∈ B X *    = u ε .
This proves [START_REF] Bu | Observations about the projective tensor product of Banach spaces, II -L p (0, 1)⊗X, 1[END_REF]. Finally, suppose that p ∈ (1, ∞) and let us show (3). Let q ∈ (1, ∞) be the conjugate index of p. Given x * = (x * i ) i∈I ∈ B s q (I,X * ) , a = (a i ) i∈I ∈ p (I), and x ∈ X, by Hölder's Inequality we have

i∈I |a i x * i (x)| ≤ i∈I |a i | p 1 p i∈I |x * i (x)| q 1 q ≤ a p x .
Hence, the bilinear operator p (I) × X (a, x) → (a i x) i∈I ∈ p I, X has norm at most 1. By [20, Theorem 2.9], we obtain

T (u) p X ≤ u π ,
for every u ∈ p (I) ⊗ X, as desired.

Corollary 4.2. Let X be a Banach space, I be an infinite set and p ∈ [1, ∞). Let T : p (I) ⊗ X → X I be the linear map defined on Proposition 4.1.

(1) T admits an unique linear extension T ε to p (I) ⊗ ε X, which is an isometry onto F p (I, X); (2) If p ∈ (1, ∞), then T admits an unique linear extension of same norm T π from p (I) ⊗ π X to p I, X .

Proof. Let us first show [START_REF] Bu | Observations about the projective tensor product of Banach spaces, Ip ⊗X, 1 < p < ∞[END_REF]. By the density of p (I) ⊗ X in p (I) ⊗ ε X and Proposition 4.1, T admits an unique linear extension T ε :

p (I) ⊗ ε X → F p (I, X),
which is an isometry onto its image. Given x = (x i ) i∈I ∈ F p (I, X), by Proposition 4.1 we have

x = i∈I R i (x i ) = i∈I T (e i ⊗ x i ) ∈ Im(T ) = Im(T ε ) .
This proves that T ε is onto F p (I, X).

Similarly, if p ∈ (1, ∞), the density of p (I) ⊗ X in p (I) ⊗ π X and Proposition 4.1 imply that T admits an unique linear extension T π :

p (I) ⊗ π X → p I, X satisfying T π = T ≤ 1.
As in the countable case, we will show that T π is a linear isometry from p (I) ⊗ π X onto p I, X . We will use the following key lemma. Lemma 4.3. Let X be a Banach space, I be an infinite set and p ∈ (1, ∞). Given u ∈ p (I) ⊗ π X, there exists a family

(x i ) i∈I in X such that u = i∈I e i ⊗ x i .
Proof. Let q ∈ (1, ∞) be the conjugate index of p and (e * i ) i∈I be the unit basis of q (I). For each i ∈ I consider the bounded linear operator π i : p (I) → p (I) defined by π i (a) = e * i (a)e i , for each a = (a j ) j∈I ∈ p (I), and for every finite subset ∅ = F ⊂ I write

P F = j∈F π j .
Let u ∈ p (I) ⊗ π X be given and let us prove that

(4.1) u = i∈I (π i ⊗ I)(u).
By [20, Proposition 2.8] there exist bounded sequences (a n ) n≥1 in p (I) and

(y n ) n≥1 in X satisfying u = ∞ n=1 a n ⊗ y n and ∞ n=1 a n p y n < ∞.
We may suppose that y n = 1 for every n ≥ 1. Given ε > 0, take

N ≥ 1 such that ∞ n=N +1 a n p ≤ ε 3 . It is clear that u - N n=1 a n ⊗ y n π ≤ ε 3 .
There exists a finite subset ∅ = F 0 ⊂ I such that for every finite subset F ⊂ I satisfying F 0 ⊂ F and every 1 ≤ n ≤ N we have

P F (a n ) -a n p ≤ ε 3N . Thus, u -(P F ⊗ I)(u) ≤ u - N n=1 a n ⊗ y n π + N n=1 a n ⊗ y n - N n=1 P F (a n ) ⊗ y n π + N n=1 P F (a n ) ⊗ y n -(P F ⊗ I)(u) π ≤ ε.
This shows that (4.1) holds. Finally, since

(π i ⊗ I)(u) = ∞ n=1 π i (a n ) ⊗ y n = ∞ n=1 e * i (a n )e i ⊗ y n = e i ⊗ ∞ n=1 e * i (a n )y n ,
for each i ∈ I, it follows that

x i = ∞ n=1 e * i (a n )y n
satisfies the desired properties.

We are now in a position to show that T π is an isometry onto p I, X .

Theorem 4.4. Let X be a Banach space, I be an infinite set and p ∈ (1, ∞). The operator T π is an isometric isomorphism from p (I) ⊗ π X onto p I, X .

Proof. We have shown that

T π (u) p X ≤ u π ,
for every u ∈ p (I) ⊗ π X. In order to prove that T π is isometric, it is sufficient to prove the reverse inequality on span{ e i ⊗x : i ∈ I, x ∈ X }. Given v ∈ span{ e i ⊗x : i ∈ I, x ∈ X }, there exist a finite subset ∅ = I 0 ⊂ I and a finite family

(y i ) i∈I0 of elements of X such that v = i∈I0 e i ⊗ y i .
By [20, p. 24] and the Hahn-Banach Theorem, there exists a bounded linear

operator b ∈ L( p (I), X * ) ≡ [ p (I) ⊗ π X] * satisfying b = 1 and v π = i∈I0 b(e i )(y i ).
Setting

y i = 0 for each i ∈ I \ I 0 , it is clear that T π (v) = (y i ) i∈I and T π (v) p X ≥ v π ,
as desired.

Let us show next that T π is onto. Given x = (x i ) i∈I ∈ p I, X , we will show that the family (e i ⊗ x i ) i∈I is summable in p (I) ⊗ π X and (4.2)

x = T π i∈I e i ⊗ x i .

For every x * = (x * i ) i∈I ∈ s q (I, X * ) we have

i∈I x * i (x i ) ≤ x p X x * slq(X * ) .
Hence, the linear functional θ defined on sl q (I, X * ) ≡ L( p (I), X * ) by

θ(x * ) = i∈I x * i (x i ),
for each x * = (x * i ) i∈I ∈ s q (I, X * ), is bounded. Let us denote by θ r its restriction to the subspace K( p (I), X * ).

Let q ∈ (1, ∞) be the conjugate index of p. Recall that the space q (I) has the approximation property [20, p. 73], and therefore 

(4.3) K( p (I), X * ) ≡ q ⊗ ε X * ,
(I) ⊗ π X * * ≡ [ q (I) ⊗ ε X * ] * ≡ [K( p (I), X * )] * . It follows from Lemma 4.3 that there exists a family (x * * i ) i∈I in X * * such that θ r = i∈I e i ⊗ x * * i .
We observe that for every i ∈ I and for every x * ∈ X * we have

x * * i (x * ) = θ r (e * i ⊗ x * ) = x * (x i
), and so x * * i = x i . Thus, the family (e i ⊗ x i ) i∈I is summable in p (I) ⊗ π X * * and hence, the family (e i ⊗ x i ) i∈I in p (I) ⊗ π X, by [START_REF] Diestel | Sequences and series in Banach spaces[END_REF]Corollary 14,p. 238]. Finally, it is clear that (4.2) holds.

Remark 4.5. We observe that T π (e i ⊗ x i ) = R i (x i ), for each i ∈ I. Therefore, for each x = (x i ) i∈I ∈ p I, X , the family (R i (x i )) i∈I is summable in p I, X and

x = i∈I R i (x i ).
Remark 4.6. By Proposition 3.1, every family x = (x i ) i∈I ∈ p I, X has only countably many non-zero coordinates. Hence, by the previous remark, the subspace

L = {y = (y i ) i∈I ∈ p I, X : {i ∈ I : y i = 0} is finite} is dense in p I, X .

Dual spaces of p I, X and F p (I, X)

We now turn our attention to convenient identifications of the spaces p I, X and F p (I, X) and of their duals.

Theorem 5.1. Let X be a Banach space, I be an infinite set, p ∈ (1, ∞) and q ∈ (1, ∞) be the conjugate index of p. Then there exists an isometric isomorphism from p I, X * onto s q (I, X * ) which maps ϕ ∈ p I, X * to (x * i ) i∈I ∈ s q (I, X * ), where ϕ(x)

= i∈I x * i (x i ),
for every x = (x i ) i∈I ∈ p I, X .

Proof. Let T π be the canonical isometric isomorphism from p (I) ⊗ π X onto p I, X considered in Corollary 4.2. Then T * π is also an isometric isomorphism from p I, X * onto [ p (I) ⊗ π X] * . By [20, p. 24], we have

[ p (I) ⊗ π X] * ≡ L( p (I), X * ) ≡ s q (I, X * ).
Given ϕ ∈ p I, X * , let (x * i ) i∈I ∈ s q (I, X * ) be the unique element corresponding to T * π (ϕ) ∈ [ p (I) ⊗ π X] * via the above identifications. By Remark 4.5, for each

x = (x i ) i∈I = i∈I R i (x i ) = i∈I T π (e i ⊗ x i ) ∈ p I, X ,
we have

ϕ(x) = i∈I (ϕ • T π )(e i ⊗ x i ) = i∈I T * π (ϕ)(e i ⊗ x i ) = j∈I x * i (x i ),
and the proof is complete.

Remark 5.2. For every ϕ = (x * i ) i∈I ∈ p I, X * , we have

ϕ = sup i∈I |x * i (x i )| : (x i ) i∈I ∈ B p X .
Theorem 5.3. Let X be a Banach space, I be an infinite set, p ∈ (1, ∞) and q ∈ (1, ∞) be the conjugate index of p. Then there exists an isometric isomorphism from F p (I, X) * onto q I, X * which maps ψ ∈ F p (I, X) * to (x * i ) i∈I ∈ q I, X * , where

ψ(x) = i∈I x * i (x i ),
for every x = (x i ) i∈I ∈ F p (I, X).

Proof. Let T ε be the canonical isometric isomorphism from p (I) ⊗ ε X onto F p (I, X) considered in Corollary 4.2. Since the space q (I) has both the approximation property and the Radon-Nikodým property, by [START_REF] Ryan | Introduction to Tensor Products of Banach Spaces[END_REF]Theorem 5.33] 

we know that [ p (I) ⊗ ε X] * ≡ q (I) ⊗ π X * .
By Theorem 4.4 and Remark 4.5, the operator

q I, X * (x * i ) i∈I → i∈I e i ⊗ x * i ∈ q (I) ⊗ π X *
is also an isometric isomorphism. Given ψ ∈ F p (I, X) * , there exists an unique (x * i ) i∈I ∈ q I, X * corresponding to T * ε (ϕ) ∈ [ p (I) ⊗ ε X] * via the above identifications. For each

x = (x i ) i∈I = i∈I R i (x i ) = i∈I T ε (e i ⊗ x i ) ∈ F p (I, X),
we have

ψ(x) = i∈I (ψ • T ε )(e i ⊗ x i ) = i∈I T * ε (ψ)(e i ⊗ x i ) = j∈I x * i (x i ),
and the proof is complete.

6. Complemented copies of c 0 (τ ) in p (I) ⊗ π X and p (I) ⊗ ε X This section is devoted to the study of the complemented copies of c 0 (τ ) in the projective and injective tensor products p (I) ⊗ π X and p (I) ⊗ ε X. We begin with the former space. Lemma 6.1. Let X be a Banach space, I be an infinite set, p ∈ (1, ∞) and τ be an infinite cardinal. Let (x j ) j∈τ = ((x i,j ) i∈I ) j∈τ be a family of p I, X equivalent to the unit basis of c 0 (τ ) and let (ϕ j ) j∈τ = ((ϕ i,j ) i∈I ) j∈τ be a bounded family of p I, X * . Then, for each ε > 0, there exists a finite subset F ε ⊂ I satisfying, for every j ∈ τ, i∈I\Fε ϕ i,j (x i,j ) < ε .

Proof. Let M = sup j∈τ ϕ j . We may assume x j p X = 1 for every j ∈ τ. Suppose that the conclusion does not hold; then there exists ε > 0 such that, for every finite subset F ⊂ I, there exists j ∈ τ with i ∈F ϕ i,j (x i,j ) ≥ ε.

We will show that this leads to a contradiction.

We construct by induction a sequence (j k ) k≥1 in τ and a sequence of pairwise disjoint finite subsets (F k ) k≥1 of I such that (6.1)

i∈F k ϕ i,j k (x i,j k ) ≥ ε 2 , ∀k ≥ 1.
Put F 0 = ∅. By hypothesis, there exists j 1 ∈ τ such that

i∈I ϕ i,j1 (x i,j1 ) ≥ ε. Since i∈I |ϕ i,j1 (x i,j1 )| ≤ M, there exists a finite subset ∅ = F 1 ⊂ I such that i∈I\F1 |ϕ i,j1 (x i,j1 )| ≤ ε 2 ,
and hence

i∈F1 |ϕ i,j1 (x i,j1 )| ≥ ε 2 .
Next, let k ≥ 1 be given and suppose we have constructed j 1 , . . . , j k and F 1 , . . . , F k as desired. Put A = ∪ k l=1 F l . By hypothesis, there exists j k+1 ∈ τ such that i∈I\A ϕ i,j k+1 (x i,j k+1 ) ≥ ε .

There exists a finite subset

∅ = F k+1 ⊂ (I \ A) such that i∈I\(A∪F k+1 ) |ϕ i,j k+1 (x i,j k+1 )| ≤ ε 2 ,
and so

i∈F k+1 ϕ i,j k+1 (x i,j k+1 ) ≥ ε 2 .
It follows from the construction that j l = j k for l = k.

For each k ≥ 1 and i ∈ I we denote

ψ i,k = ϕ i,j k if i ∈ F k 0 if i ∈ I \ F k ,
and

ψ k = (ψ i,k ) i∈I . It is obvious that (ψ k ) k≥1 is a bounded sequence in F q (I, X * ) ≡ p I, X * *
, where q ∈ (1, ∞) is the conjugate index of p. We claim that (ψ k ) k≥1 is a weakly-null sequence. Indeed, by Remark 4.6, the subspace

L = {θ * * = (θ * * i ) i∈I ∈ p I, X * * : {i ∈ I : θ * * i = 0} is finite} is dense in p I, X * * . Given θ * * = (θ * * i ) i∈I ∈ L, there exists k 0 ≥ 1 such that θ * * i = 0, for all i ∈ F k , k ≥ k 0 , and hence, lim k→∞ θ * * (ψ k ) = lim k→∞ i∈F k θ * * i (ψ i,k ) = 0.
The density of L then establishes our claim. The sequence (x j k ) k≥1 is equivalent to the unit basis of c 0 and furthermore

|ψ k (x j k )| ≥ ε 2 ,
for each k ≥ 1, in contradiction with the Dunford-Pettis Property of c 0 [12, p. 596].

We are now in a position to prove the first main result of this section.

Theorem 6.2. Given X a Banach space, I an infinite set, p ∈ (1, ∞) and τ an infinite cardinal, we have

c 0 (τ ) c → p (I) ⊗ π X ⇐⇒ c 0 (τ ) c → X.
Proof. Suppose first that c 0 (τ ) c → p (I) ⊗ π X ≡ p I, X . By Theorem 2.2, there exist (x j ) j∈τ = ((x i,j ) i∈I ) j∈τ equivalent to the canonical basis of c 0 (τ ) in p I, X , and (ϕ j ) j∈τ a weak * -null family in p I, X * satisfying ϕ j (x j ) = 1 for all j ∈ τ. By Theorem 5.1, for each j ∈ τ, there exists a family (ϕ i,j ) i∈I in X * such that 1 = ϕ j (x j ) = i∈I ϕ i,j (x i,j ).

By the Uniform Boundedness Principle, (ϕ j ) j∈τ is bounded, and so there exists M > 0 such that ϕ j ≤ M for each j ∈ τ.

An appeal to Lemma 6.1 yields a finite subset F ⊂ I satisfying

i∈I\F ϕ i,j (x i,j ) < 1 2 , ∀j ∈ τ.
Therefore, F = ∅ and

i∈F |ϕ i,j (x i,j )| > 1 2 , ∀j ∈ τ.
Next, Lemma 2.4 implies that there exist i 0 ∈ F and τ 1 ⊂ τ satisfying |τ 1 | = τ and (6.2)

|ϕ i0,j (x i0,j )| > 1 2|F | , ∀j ∈ τ 1 .
We have

1 2|F | < |ϕ i0,j (x i0,j )| ≤ M x i0,j , ∀j ∈ τ 1 ,
and thus

(6.3) x i0,j > 1 2M |F | , ∀j ∈ τ 1 .
Consider the bounded linear operator π i0 : p I, X → X defined by π i0 (x) = x i0 for each x = (x i ) i∈I ∈ p I, X . By hypothesis, there exists T : c 0 (τ ) → p I, X an isomorphism onto its image such that T (e j ) = x j , for all j ∈ τ . By (6.3), we have

(π i0 • T )(e j ) > 1 2M |F | , ∀j ∈ τ 1 ,
and therefore, by Theorem 2.1, there exists

τ 2 ⊂ τ 1 such that |τ 2 | = |τ 1 | = τ and π i0 • T |c0(τ2
) is an isomorphism onto its image. Thus, (x i0,j ) j∈τ2 is equivalent to the unit basis of c 0 (τ 2 ) in X. The family (ϕ j ) j∈τ is weak * -null and hence, (ϕ i0,j ) j∈τ2 is a weak * -null family in X * . Theorem 2.2 and (6.2) then imply that c 0 (τ ) c → X. For the converse, it is sufficient to notice that p I, X contains a complemented copy of X.

We now turn our attention to complemented copies of c 0 (τ ) in the injective tensor product p (I) ⊗ ε X. Theorem 6.3. Let X be a Banach space, I be an infinite set, p ∈ [1, ∞) and τ be an infinite cardinal. If cf(τ ) > |I|, then

c 0 (τ ) c → p (I) ⊗ ε X ⇐⇒ c 0 (τ ) c → X.
Proof. Suppose first that c 0 (τ ) c → p (I) ⊗ π X ≡ F p (I, X). By Theorem 2.2, there exists (x j ) j∈τ = ((x i,j ) i∈I ) j∈τ equivalent to the unit basis of c 0 (τ ) in F p (I, X), and a weak * -null family (ϕ j ) j∈τ = ((ϕ i,j ) i∈I ) j∈τ of F p (I, X) * satisfying 1 = ϕ j (x j ) = i∈I ϕ i,j (x i,j ), ∀j ∈ τ.

For each j ∈ τ , there exists a finite subset ∅ = F j ⊂ I such that (6.4)

i∈Fj |ϕ i,j (x i,j )| > 1 2 .
Let F = {F j : j ∈ τ }, and for each F ∈ F, consider τ (F ) = {j ∈ τ :

F j = F }. Since τ = F ∈F τ F and cf(τ ) > |I| ≥ |F |, by Lemma 2.3 there exists G 0 ∈ F such that |τ (G 0 )| = τ . Setting τ 1 = τ (G 0 )
, by (6.4) we obtain

i∈G0 |ϕ i,j (x i,j )| > 1 2 , ∀j ∈ τ 1 .
Next, an appeal to Lemma 2.4 yields i 0 ∈ G 0 and τ 2 ⊂ τ 1 satisfying |τ 2 | = |τ 1 | = τ and (6.5)

|ϕ i0,j (x i0,j )| > 1 2|G 0 | , ∀j ∈ τ 2 .
By the Uniform Boundedness Principle, (ϕ j ) j∈τ is bounded, and so there exists M > 0 such that ϕ j ≤ M , for each j ∈ τ . Therefore we have

1 2|G 0 | < |ϕ i0,j (x i0,j )| ≤ M x i0,j , ∀j ∈ τ 2 ,
and thus (6.6)

x i0,j > 1 2M |G 0 | , ∀j ∈ τ 2 .
Consider the bounded linear operator π i0 : s p (I, X) → X defined by π i0 (x) = x i0 for each x = (x i ) i∈I ∈ s p (I, X). By hypothesis, there exists T : c 0 (τ ) → F p (I, X) an isomorphism onto its image such that T (e j ) = x j , for all i ∈ τ . By (6.6), we have

(π i0 • T )(e j ) > 1 2M |G 0 | , ∀j ∈ τ 2 ,
and therefore, by Theorem 2.1, there exists

τ 3 ⊂ τ 2 such that |τ 3 | = |τ 2 | = τ and π i0 • T |c0(τ3
) is an isomorphism onto its image. Thus, (x i0,j ) j∈τ3 is equivalent to the unit basis of c 0 (τ 3 ) in X. The family (ϕ j ) j∈τ is weak * -null and hence, (ϕ i0,j ) j∈τ3 is weak * -null in X * . Theorem 2.2 and (6.5) then imply c 0 (τ ) c → X. For the converse, it suffices to notice that F p (I, X) contains a complemented copy of X. Our next step is to obtain a result analogue to Theorem 6.3 without assumptions on the cofinality of τ . In this direction, we begin with the following lemma. Lemma 6.4. Let X be a Banach space, I be an infinite set, p ∈ (1, ∞) and τ be an infinite cardinal. Let (x j ) j∈τ = ((x i,j ) i∈I ) j∈τ be a family of F p (I, X) equivalent to the unit basis of c 0 (τ ) and let (ϕ j ) j∈τ = ((ϕ i,j ) i∈I ) j∈τ be a bounded family of F p (I, X) * ≡ q I, X * , where q ∈ (1, ∞) is the conjugate index of p. Suppose that K( q (I), X * * ) = L( q (I), X * * ).

Then, for each ε > 0, there exists a finite subset F ε ⊂ I satisfying i∈I\Fε ϕ i,j (x i,j ) < ε, ∀j ∈ τ.

Proof. By hypothesis and Theorem 5.3, there exists M > 0 such that (6.7)

M ≥ ϕ j = (ϕ i,j ) i∈I q X * , ∀j ∈ τ.

Suppose by contradiction that the result does not hold. As in the proof of Lemma 6.1, there exist ε > 0, a sequence of distinct indexes (j k ) k≥1 of τ , and a sequence (F k ) k≥1 of finite, non-empty and pairwise disjoint subsets of I satisfying (6.8)

i∈F k ϕ i,j k (x i,j k ) > ε, ∀k ≥ 1.
Consider ψ k = (ψ i,k ) i∈I ∈ q I, X * , where

ψ i,k = ϕ i,j k if i ∈ F k 0 if i ∈ I \ F k .
By (6.7) we have (6.9)

ψ k q X * ≤ (ϕ i,j k ) i∈I q X * = ϕ j k ≤ M, ∀k ≥ 1.
We claim that (ψ k ) k≥1 is a weakly-null sequence in q I, X * . Recall that q I, X * * ≡ s p (I, X * * ) ≡ L( q (I), X * * ), and F p (I, X * * ) ≡ K( q (I), X * * ). Thus, by hypothesis, we have q I, X * * ≡ F p (I, X * * ). The subspace

L = {θ * * = (θ * * i ) i∈I ∈ F p (I, X * * ) : {i ∈ I : θ * * i = 0} is finite} is dense in F p (I, X * * ). Observe that if θ * * = (θ * * i ) i∈I ∈ L, there exists k 0 ≥ 1 such that θ * * i = 0, for all i ∈ F k , k ≥ k 0 , and hence, lim k→∞ θ * * (ψ k ) = lim k→∞ i∈F k θ * * i (ψ i,k ) = 0.
The density of L then establishes our claim. Now, notice that

|ψ k (x j k )| = i∈I ψ i,k (x i,j k ) = i∈F k ϕ i,j k (x i,j k ) > ε 2 , ∀k ≥ 1,
by construction. On the other hand, since the sequence (ψ k ) k≥1 is weakly-null in F p (I, X) * and (x j k ) k≥1 is, by hypothesis, equivalent to the unit basis of c 0 , by the Dunford-Pettis Property of c 0 [12, p. 596] we know that ψ k (x j k ) -→ 0, a contradiction that finishes the proof.

Theorem 6.5. Let X be a Banach space, I be an infinite set, p ∈ (1, ∞) and τ be an infinite cardinal. Suppose that K( q (I), X * * ) = L( q (I), X * * ), where q ∈ (1, ∞) is the conjugate index of p. Then

c 0 (τ ) c → p (I) ⊗ ε X ⇐⇒ c 0 (τ ) c → X.
Proof. Suppose first that c 0 (τ ) c → p (I) ⊗ ε X ≡ F p (I, X). By Theorem 2.2, there exist (x j ) j∈τ = ((x i,j ) i∈I ) j∈τ equivalent to the unit basis of c 0 (τ ) in F p (I, X), and a weak * -null family (ϕ j ) j∈τ = ((ϕ i,j ) i∈I ) j∈τ of F p (I, X) * satisfying 1 = ϕ j (x j ) = i∈I ϕ i,j (x i,j ), ∀j ∈ τ.

By the Uniform Boundedness Principle, (ϕ j ) j∈τ is bounded, and so there exists M > 0 such that (6.10) ϕ j ≤ M, ∀j ∈ τ. Finally, we also do not know if Theorem 6.3 is optimal for any cardinal τ . In particular, the following problem is unsolved. Problem 7.6. Let X be a Banach space and p ∈ [1, ∞). Does it follow that

c 0 (ℵ ω ) c → p ⊗ ε X =⇒ c 0 (ℵ ω ) c → X?
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 72 Given X a Banach space, I an infinite set, p ∈ [1, ∞) and τ an infinite cardinal, we havec 0 (τ ) c → p (I) ⊗ π X ⇐⇒ c 0 (τ ) c → p (I, X) ⇐⇒ c 0 (τ ) c → X.However, observe that the space p (I, X) cannot be exchanged by the usual Banach space of Lebesque integrable functions L p ([0, 1], X) in the statement of Theorem 7.1, even in the case τ = ℵ 0 . Indeed, recall the following result due to Emmanuelle [10, Main Theorem].Theorem 7.3. Let X be a Banach space and p ∈ [1, ∞). Thenc 0 → X =⇒ c 0 c → L p ([0, 1], X). Thus, we have c 0 c → L p ([0, 1], ∞ ) but c 0 c → ∞ .These facts arise naturally the following question.Problem 7.4. Let X be a Banach space, p ∈ [1, ∞) and τ be an infinite cardinal. What assumptions on τ yieldc 0 (τ ) c → p ([0, 1], X) ⇐⇒ c 0 (τ ) c → X?We do not know if Theorem 6.2 can be extended to the case p = ∞. That is: Problem 7.5. Let X be a Banach space and τ be an infinite cardinal. Is it true that c 0 (τ ) c → ∞ ⊗ π X =⇒ c 0 (τ ) c → X?

An appeal to Lemma 6.4 yields a finite subset F ⊂ I satisfying i∈I\F ϕ i,j (x i,j ) < 1 2 , ∀j ∈ τ.

Therefore, F = ∅ and

Next, Lemma 2.4 implies that there exist i 0 ∈ F and τ 1 ⊂ τ satisfying |τ 1 | = τ and (6.11)

By (6.10), we have

and thus (6.12)

Consider the bounded linear operator π i0 : F p (I, X) → X defined by π i0 (x) = x i0 for each x = (x i ) i∈I ∈ F p (I, X). By hypothesis, there exists T : c 0 (τ ) → F p (I, X) an isomorphism onto its image such that T (e j ) = x j , for all j ∈ τ . By (6.12), we have

and therefore, by Theorem 2.1, there exists

) is an isomorphism onto its image. Thus, (x i0,j ) j∈τ2 is equivalent to the unit basis of c 0 (τ 2 ) in X.

Next, given x ∈ X, we have

since, by hypothesis, (ϕ j ) j∈τ is weak * -null. This proves that (ϕ i0,j ) j∈τ2 is weak *null in X * . Theorem 2.2 and (6.11) then imply that c 0 (τ ) c → X. For the converse, it is sufficient to notice that F p (I, X) contains a complemented copy of X.

Final remarks and open problems

By adapting the proofs of Lemma 6.1 and Theorem 6.2, one can prove the following.

Theorem 7.1. Given X a Banach space, I an infinite set, p ∈ [1, ∞) and τ an infinite cardinal, we have

The above theorem extends to the uncountable case a c 0 result by Bombal [START_REF] Cembranos | Banach Spaces of Vector-Valued Functions[END_REF]Theorem 4.3.1]. Moreover, since 1 (I) ⊗ π X is isometrically isomorphic to 1 (I, X) [20, p. 19], the next corollary follows immediately from Theorems 6.2 and 7.1.