
HAL Id: hal-02169360
https://hal.science/hal-02169360v1

Submitted on 1 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Conflict Notion and its Static Detection: a Formal
Survey

Jean-Claude Royer

To cite this version:
Jean-Claude Royer. The Conflict Notion and its Static Detection: a Formal Survey. [Research Report]
IMT Atlantique. 2019. �hal-02169360�

https://hal.science/hal-02169360v1
https://hal.archives-ouvertes.fr


The Conflict Notion and its Static Detection: a Formal Survey

Jean-Claude Royer

Jean-Claude.Royer@imt-atlantique.fr

July 1, 2019

Abstract

The notion of policy is widely used to enable a
flexible control of many systems: access control,
privacy, accountability, data base, service, con-
tract, network configuration, and so on. One
important feature is to be able to check these
policies against contradictions before the enforce-
ment step. This is the problem of the conflict de-
tection which can be done at different steps and
with different approaches. This paper presents
a review of the principles for conflict detection
in related security policy languages. The policy
languages, the notions of conflict and the means
to detect conflicts are various, hence it is diffi-
cult to compare the different principles. We pro-
pose an analysis and a comparison of the five
static detection principles we found in review-
ing more than forty papers of the literature. To
make the comparison easier we develop a logical
model with four syntactic types of systems cov-
ering most of the literature examples. We pro-
vide a semantic classification of the conflict no-
tions and thus, we are able to relate the detection
principles, the syntactic types and the semantic
classification. Our comparison shows the exact
link between logical consistency and the conflict
notions, and that some detection principles are

subject to weaknesses if not used with the right
conditions.
Keywords: Security Policy, Conflict, Chaining,
Static Detection, Undefined Request

1 Introduction

Policies are common in computer science, they
govern many systems, mainly security ones (fire-
walls, access controls, privacy, ...), accountable
systems, data bases, telecommunication or infor-
mation systems, internet services, system config-
uration, QoS contracts, and so on. Policies are
behavioral rules regulating a system and provid-
ing flexibility and evolution of the controls. Writ-
ing such policies raise similar challenges than
programming and several authors argue for a
software engineering approach to the manage-
ment of policies [1, 18, 27, 14, 62, 54, 50]. Often
a declarative approach is suggested, it provides:
abstraction, conciseness, and captures the busi-
ness information without the burden of opera-
tional details. That is, it expresses the business
logic abstracting from the control flow. This is
similar to the benefits of logic programming and
this suggests that a logical framework is often
a good mean to understand and to check these
systems.

1



One important problem is the detection of con-
flicts in policies [11, 71, 14, 28, 3]. A conflict
is a situation where two or more contradictory
results are raised from the same request or con-
text. Most authors refer to the term “conflict”,
but others use inconsistency, several mix both
and few talk about contradiction or incompati-
bility. There are many work about this issue, see
the previous surveys [16, 22, 11, 59, 28, 4]. We fo-
cus here on detection of conflicts in a fixed set of
policies, these policies can be of different nature,
only permission, containing actions, complex ef-
fects or even changing over time. Languages are
numerous, the notions of conflict are various and
the detection techniques diverse. This is also due
to the fact that reasons to look for conflicts are
different. Some specifiers eliminate unenforce-
able systems, some wants to avoid some bugs,
while others only discard ambiguous requests or
non determinism in the policy triggering. In the
past years, some related work argues that static
detection is generally not possible and they sug-
gest dynamic detection often with a conflict res-
olution. Dynamic approaches have been criti-
cized [37, 35, 66, 23, 61, 62] and we will mainly
discuss and compare static approaches. We can
now found a set of work proposing a policy lan-
guage and a static conflict detection mechanism,
for instance [1, 18, 27, 53, 2, 14, 71, 49, 62, 66,
70, 67, 72, 5, 10, 20, 65, 61] among more than
thirty. Analyzing the recent related work (since
2008) we extract four types of languages and five
principles for the static detection of conflicts.

This analysis raises several questions about
the nature of a conflict and the principles and
conditions to detect them. Detecting conflicts
by checking pairs of policy is popular in various
contexts, but only few work discusses its weak-
nesses [55, 43, 61]. Looking for conflicts between
pair of rules is not sufficient to ensure the ab-

sence of conflict in a rule system. Sometime ex-
isting detection mechanisms do not find a conflict
while the system is inconsistent and then not en-
forceable at all. Furthermore, there are other
problems which are not conflicts in the classic
sense but they share a common behaviour and
they should be analyzed.

Our contributions in this paper are: i) a com-
prehensive review of the main recent work in
conflict detection, ii) a formalization of the five
static detection principles coping with four kinds
of systems and three semantic notions of conflicts
in policy systems, and iii) a formal analysis en-
suring a correct conflict detection and explaining
few weaknesses we observed in related work.

The structure of this paper is as follows. We
present our motivations and background in Sec-
tion 2. Related work is described in Section 3, an
informal analysis is exposed collecting the main
remarks regarding the detection time, the con-
flict notions, the syntax of systems and the static
detection principles. Section 4 is devoted to our
formalization of the policy systems and the de-
tection principles, a comparative map is drawn,
and weaknesses are discussed. A final section
summarizes our main findings.

2 Motivations and Background

Often a policy system uses rules with a premise
and a conclusion, Listing 1 shows a simple ex-
ample. Variables X and Y are implicitly univer-
sally quantified and DENY is the negation of PERMIT.
Comparing the two rules one can find a conflict,
a situation where entering is both permitted and
denied.

Listing 1: A simple policy example
password(X, Y) => PERMIT enter(X) AND
technician(X) => DENY enter(X)

2



In Listing 2 we have two logically equivalent sys-
tems to Listing 1. With the second version, com-
paring two rules is not relevant to raise a prob-
lem. The last line of the third version makes ex-
plicit that a correct implementation should throw
away cases which lead to an inconsistency.

Listing 2: Two equivalent systems
// 2)
(NOT password(X, Y) AND NOT technician(X)) OR
(NOT password(X, Y) AND DENY enter(X)) OR
(NOT technician(X) AND PERMIT enter(X))
// 3)
(password(X, Y) AND NOT technician(X))

=> PERMIT enter(X) AND
(NOT password(X, Y) AND technician(X))

=> DENY enter(X) AND
(password(X, Y) AND technician(X)) => False

In this section we will make more precise our
scope, our hypotheses on the policy systems and
the logical tool we use to compare the different
approaches.

2.1 The Conflict Notion

The policy conflict problem is formulated in the
literature as: “is there an incompatibility in the
policies of my system”, “a logical inconsistency in
my system”, “a contradiction between the conclu-
sion of two rules”, or “an overlapping in my poli-
cies”. The policy conflict problem is an impor-
tant issue [11, 71, 66, 28, 3] which should be an-
alyzed before any other policy analysis, enforce-
ment or request evaluation. Of course, features
of the policy language and conflict concerns are
often different thus conflict detection should be
different.

We are in fact interested in a general notion of
conflict, not domain dependent as in some work
like [53, 71]. For example: An action which is
both permitted and denied, an obligation with-
out permission, an obligation and its prohibition,
etc. We focus on what we should call “true”

or real conflicts in the sense that they denote
a system inconsistency, an implementation bug,
or a request leading to a failure. Redundancy
is another problem entailing performances and
readability but not the system behaviour. These
conflicts are also different than incompleteness
problems, or misconfigurations which are rather
holes or irregularities in the policy system. We
think that all kinds of real conflict can be man-
aged in a uniform way provided that we have the
good language and the good tool support. One
of our contribution is to provide formal defini-
tions which cover these notions of conflict. As
quoted in [61] there are three steps in conflict
management: detection, localization, and resolu-
tion. We here only focus on detection but some of
our related work study more, often localization
and sometime resolution are mixed with detec-
tion. We also do not discuss and compare the
complexity and the performance of the different
implementations.

2.2 Policy Systems

Our context is mainly security policy and privacy
but the policy conflict problem is also relevant in
several other areas like data base management,
firewall, networks, and quality of services con-
tracts. Basically, an access control system estab-
lished action permissions for some subjects on
some resources. Policies can be stratified or not,
they need complex conditions, and negation can
play a role. But often we found also obligations
to fulfill and subjects can be organized with roles
or other kinds of grouping. Often we have at-
tributes for resources and subjects, hierarchies
are often a convenient mean to simplify and or-
ganized policies. Privacy concerns [7, 17, 20] add
some specific features: notification, purpose, ex-
plicit consent, data retention but also data dis-

3



closure and processing locations. Usage access
control mixes all these possibilities [67]. Ab-
stractly, these policies or rules compound a sys-
tem which upon a request provides a reply which
can be an authorization (positive or negative), a
mandatory actions, a new role, and so on. A
policy set is generally viewed as a conjunction
of policies, [55, 66] comment this choice. This is
also the assumption we made here.

2.3 The Logical Framework

To understand and compare the numerous ap-
proaches, we need to abstract some of the lan-
guage details. We will look for the founding prin-
ciple behind the various algorithms, generally it
is expressed informally, sometime with a formal
definition. We will consider a logical framework
to compare these principles because it easily ab-
stracts from implementation details and this way
is often used by several existing proposals. An-
other benefit of a logical approach is to be flexible
regarding the composition of policies, conjunc-
tion and disjunction can be freely supported.

There are several logical frameworks which
have similar properties and can be used to repre-
sent or interpret policies. These logical frame-
works are: PROP (Propositional logic), FOL
(First-Order Logic), and FOTL (First-Order Lin-
ear Temporal Logic). Some others are sometime
used like LTL (Linear Temporal Logic, or simi-
lar variants like Propositional Linear Temporal
Logic), Propositional Interval Logic (and vari-
ants), and description logic (OWL-DL, SWRL).

We will shortly describe FOTL as it subsumes
the different logic we observe in our state of the
art. FOTL formulas are built from variables V ,
functions F and predicates P with a fixed ar-
ity. Terms are built recursively over variables
and functions, and if Pi is a predicate symbol,

(ej) terms then Pi(ej) is an atom (A). Syntac-
tically and semantically FOTL subsumes PROP,
FOL and LTL. FOTL is not a decidable logic but
there are several fragments with decidable prop-
erties. A detailed presentation with a decision
procedure can be found in [48], more practical
explanations are available in [24].

Listing 3: First-Order linear Temporal Logic
F ::= A // Atomic formulae

// Boolean operators
+ (NOT F) + (F AND F) + (F OR F) + (F => F)
// Quantifiers
+ (FORALL V F) + (EXISTS V F)
// Linear temporal operators
+ (ALWAYS F) + (SOMETIME F) + (NEXT F) + (F UNTIL F
)

A model for a FOTL formula is a linear tem-
poral structure which associates to each integer a
first-order structure, compound of a non-empty
domain of values and an interpretation of func-
tions and predicates. A decision procedure is an
algorithm which allows to derive theorems using
logical entailment. Obviously, the definitions of
model and decision procedure are specific to each
logic but other concepts can be abstracted. We
recall here some classic concepts which are com-
mon to PROP, FOL and FOTL. A formula is
satisfiable if and only if it has a model, while it is
valid if it is satisfiable for all models, or its nega-
tion is unsatisfiable. Given a formula its validity
(noted |=) can be asserted using the semantic
model construction or can be proved using the
syntactic decision procedure (noted `). A logic
is complete if and only if these two notions are
equivalent. A formula is inconsistent (not sat-
isfiable, or unsatisfiable) if it exists Φ a formula
and we can derive Φ and ¬Φ. The completeness
property exists for classic logic: PROP, LTL, and
FOL. For FOTL with the monodic constraint,
[19] has demonstrated the completeness of the
temporal resolution process.

4



3 State of the Art

There are many references related to the prob-
lem of conflict detection in security policies. We
comment here only the recent references which
are dedicated to conflict detection and mainly
published since 2008. We collect article refer-
ences from browsing internet and several dedi-
cated libraries comprising: IEEE Explore Dig-
ital Library, ACM Digital Library, DPLB, and
The Collection of Computer Science Bibliogra-
phies. We classify these approaches in surveys,
dynamic, testing, static, and mixed approaches.
However, we do not consider few papers which
are without sufficient enough information or have
less than six pages. We focus on security, privacy,
access control and related work but we exclude
papers specific to firewalls. The main reason is
that firewall languages are limited to permit and
deny rules, or a finite set of incompatible liter-
als as effects. The conflict detection principle is
to use a pairwise approach. This case is cov-
ered by our classification, namely Type 1, we
will discuss it later. In fact this bulk of work
is much more interested in efficient solutions, a
finer classification of anomalies or advanced fea-
tures like automatic resolution which are out of
our scope. Thus we exclude the following refer-
ences [26, 71, 33, 68, 31, 15, 29], from our analy-
sis.

We explored the previous surveys on this sub-
ject: [16] mainly for historical reasons, [22] is a
general survey of static and dynamic conflict de-
tection and resolution, [11] provides an overview
of the state of the art in policy conflict detection
and resolution, [59] studies five policy frame-
works and [28] is a general survey about policy
management in network systems. [4] is the most
recent and comprehensive survey of access con-
trol policy systems and their validation mech-

anisms. The authors reviewed 26 papers from
2005 to 2014 and only 23 with a conflict man-
agement feature. The only mentioned principle
is the pairwise rule comparison, called Level 1
in our analysis. None of the previous surveys
collects and formally compares the main conflict
detection principles.

Apart the surveys, we reviewed 46 references,
see Table 1. Some approaches suggest a dynamic
detection and generally an automatic resolution.
The principle is to analyze, at runtime, each
request and to look for conflicting results. In
case of conflict a combining algorithm, a meta-
policy, or a priority are used to select one reply
to the request. First of all is the XACML en-
gine [58] and [52, 38, 23] rely on this way. Few
papers [36, 51, 69, 40] propose a formal way to
verify XACML by translating it in a more formal
language and then use a verification tool support.
A second method, testing is to statically gener-
ate a set of requests and to test if a conflict oc-
curs using the request evaluation process [37, 47].
The static approach is to rely on an algorithm, at
design time, to statically check for conflicts and
without an explicit generation and evaluation of
the requests. These approaches are numerous,
they generally rely on dedicated algorithms or
the use of a logical prover. 34 references are col-
lected in Table 1. Note that we only refer to [62]
as it extends the previous work in [63], [45] as
it overlaps similar references from 2013 and 2015
and [32] rather than the older one from 2011.
Finally few proposals [56, 64] consider a mixed
way: The conflict detection is mainly static and
dynamic for the remaining conflict cases.

3.1 Detection Time

Table 1 summarizes the classification our 50 ref-
erences from 2008. We recall the main criticisms

5



Table 1: Detection time classification.

Survey Dynamic Testing Static Mixed
2008 [11, 59] [36] [1, 18, 27, 53]
2009 [37] [2, 14, 41, 35]
2010 [47] [42, 43, 49, 57, 55, 66, 70]
2011 [52] [60, 67]
2012 [28] [9, 54, 72, 5, 74]
2013 [58, 38] [3, 10, 20, 32]
2014 [23] [73, 8] [56]
2015 [4] [51, 69] [39] [64]
2016 [65, 61]
2017 [40] [21, 45, 62]
Total 4 8 2 34 2

to dynamic approaches, [2, 37, 66, 72, 52, 32, 23,
61, 62] comment also these problems. Using se-
quential ordering, combining algorithms or deci-
sion rules are meta-policies which are outside the
core security. These are often ad-hoc solutions to
avoid conflicts, they are not resulting from secu-
rity requirements and trouble the policy author.
[6] also criticized this point as it forces consis-
tency but prohibits local reasoning. Local rea-
soning is essential to enable modularity which is
critical to maintain large sets of policies. The dy-
namic detection also increases the redundancies,
the conflict cases and it is not scalable [59, 5].
Scalability is an important issue because of sev-
eral policy sets, written by different policy offi-
cers. An automatic management is needed, but
it is not possible because merging several sets of
rules will add new conflicts and combining algo-
rithms are not closed by composition. For exam-
ple, the set of combining algorithms was enlarged
from XACML V2 to its current V3 but as quoted
by [22, 46, 66, 23] this is not sufficient. Indeed,

the dynamic resolution has a fundamental weak-
ness: the detection cannot distinguishes between
a conflict coming from an error, introduced dur-
ing the design and development steps, from a real
contradiction in the requirements. Thus, in gen-
eral, the right solution cannot be determined a
priory in an automatic way. The policy officer
should solve it and of course he needs tools to
detect, localize and analyze the conflict.

The testing solution has generally two prob-
lems: i) the cost of the request generation and
evaluation, and ii) the completeness or coverage
of the request set.

One strong advantage of the static detection
compared to the use of meta-policies is that in
case of merging it is an automatic approach, it
does not need a combining algorithm and it does
not add runtime overhead. Another critical ben-
efit is that the conflict is immediately reported
to the privacy or security officer, at design time,
and resolved by him which is the only one who
can reasonably find a correct solution. However,

6



it requires a correct algorithm and as efficient as
possible. We will focus, in the sequel, on the
static detection of conflicts. We are interested in
comparing the principles and the accuracy of the
different proposals, algorithms complexity and
performances are not discussed.

Mixed approaches as they allow both static
and dynamic detection are surely the best ap-
proaches. A static approach could be always
completed by a dynamic one checking for the
residual cases which are not statically detectable.
We do not further consider mixed approaches in
our analysis, it does not change our detection
principles as well as our conclusions.

3.2 Real Conflict

As previously explained in Section 2.1 we are
concerned here with conflicts leading to real
problems in the implementation of a system or
in the request evaluation process. Some authors
consider that conflicts are domains dependent
([53, 71]) but most of the papers thinks that a
conflict is a general problem linked to opposite
conclusions in permissions, roles, obligations and
so on. The notion of functional conflicts (as op-
posed to logical conflict in [3]) enters in this cat-
egory. Domain dependent conflicts can be man-
aged by specifying the conflict property and the
use of a verification mechanism, a good example
is [53]. Another alternative, used by approaches
based on verification like [27, 10, 8, 61] is to con-
sider them as logical conflicts by making explicit
all the context conditions and specifying the con-
tradiction cases. In [14] modality conflicts are
defined as “the joint authorization and denial of
a request to perform some action, or the pres-
ence of an obligation to act without the permis-
sions necessary for its fulfillment”, from [2, 41, 61]
we add obligation and interdiction for an action,

while [20] discusses conflict in case of data dis-
closure, and [67] mainly considers the purpose
conflicts. [5] enriches it with both a negative
and positive role. In several of the previous work
([1, 2, 49, 42]) the notion of conflict is confused
with the notion of inconsistency.

3.3 Type of System

Policy sets are sometime organized in two levels:
rules and policies as in XACML. The basic ele-
ments of a policy system are called policy, rule,
clause, sentence, etc. Features but also syntac-
tic presentation of policies are varying. A rule
is often an IF THEN control structure, an Event-
Action-Condition construction, a tuple of several
atoms with a qualifier, and many others used
in policy languages are considered as rules here.
The syntax of rules is an important issue and
critical aspects are variables, negation without
restriction and specific modal operators. Some
frameworks use simple rules with only positive
atoms in conditions while other rely on FOL im-
plications. This makes a great difference in the
ability to decide for conflicting situations. We
saw some simple rules, often presented as tu-
ples [18, 35, 49]. We observe explicit rules in
the following papers [1, 27, 62, 70, 20]. One
point to note is that the syntax of the conclu-
sions of rules makes a difference from the ex-
pressiveness point of view. In simple access con-
trol we only need permit and deny as conclu-
sions but if the language allows obligations it re-
quires actions in conclusions. Conjunctions are
common in policies, this is not true for disjunc-
tion, and sometime the negation is restricted, for
instance on obligations. Of course introducing
first-order variables increases the expressiveness.
Often rules have universally and implicitly quan-
tified variables. One further point to note is the

7



chaining of rules, often rules are not allowed to
call other rules, in other words the request evalu-
ation triggers only one rule to get the reply. But
in some cases, [27, 14, 9], the deduction is more
complex and chains several rules. It is required
if we have permissions or obligations depending
from other permissions or obligations like in com-
plex protocols [27, 2, 61]. Sentences or logical
formulae are also used in [41, 8, 61]. The pre-
cise syntax of the requests submitted to the pol-
icy engine is also an important aspect. Some-
times it is implicitly described as a tuple of val-
ued attributes containing a subject, a resource
and an action, but there are many other varia-
tions. Only few work precisely describes the set
of requests and the constraints on the language
to write rule conditions and conclusions.

3.4 Static Detection Principles

We found five principles to check for conflicts in
a policy system.

1. A conflict occurs if two rules with overlapping
conditions conclude with incompatible effects
like permit and deny (15 references: [1, 18,
2, 57, 66, 60, 5, 54, 74, 32, 73, 39, 65, 62,
21]). Most of the references calls it a con-
flict but [62] formally defines the term incon-
sistency.

2. A conflict is a contradiction between the con-
clusions of two rules with overlapping condi-
tions (4 references: [70, 67, 20, 3]).

3. A conflict is a contradiction between the con-
clusions of several rules with overlapping con-
ditions. It was proposed and implemented in
two references [55, 43].

4. A conflict occurs when a request has contra-
dictory replies (2 references: [49, 72]). This

principle is also used by the dynamic and the
testing approaches.

5. A conflict is a logical inconsistency, that is Φ
and ¬Φ are both valid derivations of the proof
system (9 references: [53, 27, 14, 35, 41, 9, 10,
8, 61]).

Among the 34 static references, there are two
exceptions: [42, 45] which do not appear in this
classification because of lack of details, the con-
flict detection is not precisely described. De-
tecting conditions overlapping use different tech-
niques, all are instances of the satisfiability of the
conjunction of two conditions. Principle 1 uses
satisfiability of conditions and incompatibility in
rule effects. It collects references with only per-
mit and deny as conclusions ([1, 2, 66, 60, 32,
73, 39, 65, 62, 21]) and others have a finite set
of literals. Principle 2 adds general contradic-
tion in conclusions. Principle 3 considers a finite
(not fixed) set of conflicting rules. Between Prin-
ciple 2 and Principle 3 we may have intermedi-
ate cases with a fixed number of rules (3, 4, or
more). But it does not carry interesting prop-
erties, it was experimented by [43]. Principle 4
is based on request evaluation and is informally
described as a set of requests leading to contra-
dictory replies. In the testing approach of [47]
the Level 4 is called an incompatibility while a
conflict is defined as: any request has contradic-
tory replies. Principle 5 is unsatisfiability or log-
ical inconsistency, indeed we group approaches
dealing with satisfiability checking ([27, 35, 61])
and those proving some consistency properties,
like NOT (PERMIT AND DENY), or specific domain prop-
erties ([53, 14, 41, 9, 10, 8]). These approaches
use manual proof or derivation tools and are able
to check logical consistency. One can further dis-
tinguish between the use of bounded satisfiability
or an automated logical prover, but we do not

8



go into these details here. To get a more pre-
cise comparison of the above principles we need
a more formal analysis which is the bulk of the
next section.

4 Formal Analysis

To make precise our comparison we will con-
sider a single logical framework with sentences
or rules. We do not consider implicit rules
(like close-world, what is not explicitly permitted
is prohibited, etc), the policy system expresses
syntactically all its behaviours with logical sen-
tences. We provide here a light formal model
in the sense that it relies on Boolean laws and
basic set theory. We use the FOTL syntax for
policy examples and classic formal notations to
reason over the policy sets. Our analysis and re-
sults are valid in any complete logic extending
propositional logic.

4.1 Policy System and Request

Our intuition is: A request defines a set of mod-
els and then in conjunction with a set of logi-
cal sentences, representing the policy, the deduc-
tion mechanism can prove (or not) an expected
conclusion. It is important to define the notion
of conclusion, which are the replies. Our basic
policy elements, sentences, rules, requests and
replies are according to the FOTL grammar, that
is taken from the language L(FOTL). In the fol-
lowing, i, j, k, n are natural numbers and I, J,K
are non empty finite sets of natural numbers in-
cluded in {1 .. n}. A policy system is set of
logical sentences R, it is a logical conjunction of
policies R = ∧1≤i≤n ri. R will be called a policy
system, or system. When it is not confusing, we
will consider R as a set of policies. A request

will be logically represented by a satisfiable sen-
tence noted req. A reply rep will be also a logical
sentence. The deduction (or derivation) process
will represent the query and reply mechanism,
that is: R, req ` rep is valid. It will be de-
noted by the validity of the natural implication
(R ∧ req) => rep or, equivalently, by the unsat-
isfiability of (R ∧ req ∧ ¬rep).

Definition 4.1 (Undefined request). Let R, a
satisfiable request req is undefined if and only if
req ∧R is unsatisfiable.

Otherwise the request is defined and that
means that R ∧ req is satisfiable.

4.2 Policy Types

A sentence is a logical FOTL expression while
a rule will be a pair of logical expressions noted
A => B with the implication operator. A rule
system is a set of n rules noted ∧1≤i≤n(condi =>
conci). From our analysis in Section 3.3 we ob-
serve four types of policy system. Type 1 covers
pure access control languages, but also discrete
roles, location and obligation features. Type 2
allows complex conclusions but without compo-
sition of rules, that is a conclusion of a rule can-
not be used in a deduction with another rule.
Type 3 allows more complex deductions by chain-
ing the rules, thus enabling complex dependen-
cies in policies. Type 4 has no restriction this is
FOTL. We introduce a notion of request chain-
ing to distinguish between Type 1, 2 and Type 3.
With Type 1 and 2 a reply results from the paral-
lel deductions of some rules while Type 3 allows
parallel and sequential deductions.

Definition 4.2 (Request chaining). Let a
rule system R, n ≥ 2, req a request
has the chaining property if and only if

9



∃I, (req ∧i∈I conci) is satisfiable, req ∧j /∈I
¬condj is satisfiable, and ((req ∧i∈I conci) =>
∨j /∈Icondj) is valid.

Request chaining means that it exists a request
which in conjunction with some rule conclusions
triggers few other rules. A system R does not
have the chaining property if and only if there is
no request chaining.

Definition 4.3 (Types of policy system). R a
policy system is of

Type 1: if it is a rule system, without the chain-
ing property, n ≥ 2 and conci is from a fi-
nite discrete language containing for instance,
{PERMIT,DENY}, some roles, locations, or
actions.

Type 2: if it is a rule system, n ≥ 2 and conci
is an expression containing atoms for authoriza-
tion, role, obligations, etc. R does not satisfy
the chaining property.

Type 3: if it is a rule system and n ≥ 1 rules.

Type 4: if it is a set of logical sentences not only
implication rules.

Type 3 and 4 have the same expressive power,
which is strictly greater than Type 2 and which
is in turn greater than Type 1.

4.3 Level Analysis

We formalize a first notion of conflict in rule sys-
tems as follows.

Definition 4.4 (Conflict). Let R a rule system,
with n ≥ 2 rules, a conflict is an undefined re-
quest req such that ∃I, (req => ∧i∈Icondi) is
valid and ∧i∈Iconci is unsatisfiable.

Type 1 Type 2 Type 3 Type 4
Level 1

√

Level 2
√ √ √

Level 3
√ √ √

Level 4
√ √ √ √

Level 5
√ √ √ √

Table 2: Type and Level constraints

This definition overlaps the formal definitions
of conflict we can found in [55, 70, 67, 60, 72, 5,
54, 32, 39, 21] and inconsistency in [49, 62]. We
provide in the definition below a formalization of
the five principles of Section 3 as Levels 1 to 5.

Definition 4.5 (Levels formalization).

Level 1: ∃i, j, ∈ {1 .. n}, i 6= j, ri ∈ R, rj ∈ R
and (condi ∧ condj) is satisfiable, conci and
concj are incompatible.

Level 2: there is a conflict between two rules.

Level 3: It exists a conflict between some rules.

Level 4: ∃req, rep1, rep2, req satisfiable, ((R ∧
req) => (rep1 ∧ rep2)) is valid and (rep1 ∧
rep2) is unsatisfiable.

Level 5: ∀φ a sentence, R => φ and R => ¬φ
are valid.

Level 1 is a specific case of conflict. A conflict
is an undefined request in a rule system which
can be detected by levels lesser or equal to 3.
Types of policy system should be analyzed with
Levels as in Table 2. The important thing is that
Levels 1 to 3 only apply to rule systems while
Levels 4 and 5 apply to any system.

Definition 4.6 (Total Inconsistency). R is to-
tally inconsistent if and only if for all req satis-
fiable, (R ∧ req) is unsatisfiable.

10



Level 5 is the classic notion of logical (total)
inconsistency.

Definition 4.7 (Partial Inconsistency). R is
partially inconsistent if and only if it exists an
undefined request.

This is called inconsistency in [1, 2], and in-
compatibility in [47] which also defines a stricter
notion of conflict living between partial and total
inconsistency. Satisfiability is a natural require-
ment and if R is satisfiable then partial inconsis-
tency is equivalent to be not a valid system. Note
also that all these levels are decidable properties
as soon as satisfiability is decidable. The previ-
ous Levels can be compared as follows.

Lemma 4.8 (Levels Properties). For any policy
system where the Levels apply we have

• Level 1 => Level 2 => Level 3 => Level 4.

• Level 4 is partial inconsistency.

• Level 5 => Level 4.

• We do not have: Level 4 => Level 3 =>
Level 2 => Level 1 and Level 4 => Level 5.

Proof. The inclusion of the Level 1 in Level 2 is
obvious since the constraint on conclusions is en-
larged. From Level 2 to Level 3, of course {i, j}
is a subset of {1 .. n}. From Level 3 to Level 4:
we can take req = ∧i∈I condi, it is satisfiable.
Either R ∧ req is unsatisfiable and then we can
derive “anything” from it. Or, if R ∧ req is
satisfiable, we can prove R ∧ req => conci is
valid for all i ∈ I, since R should be rule based,
thus grouping by conjunction conci in two un-
satisfiable replies we get the Level 4. Level 4
is indeed equivalent to ∃req, φ, req satisfiable,
(R ∧ req => φ) and (R ∧ req => ¬φ) are

valid. It says that R ∧ req is unsatisfiable thus
R is partially inconsistent.

To justify the last negative property. One dif-
ference between Levels 4 and 3 is due to the
fact that Level 4 applies to general systems while
Level 3 requires rule systems. Even considering
a rule system these Levels are still different. It
is possible to built a system which is consistent
with an undefined request but without conflict
for the Level 3. From Level 3 to Level 2, it
is possible to built a conflict with n rules but
which does not exist with n−1 rules. Conflicts of
Level 2, due to the unsatisfiability of conclusions
are strictly more general than of Level 1.

Figure 1 graphically represents all these prop-
erties in a single picture.

21 3 4

5

Figure 1: Venn diagram of the Levels

Let us consider the example in Listing 4. It
is unsatisfiable (by Levels 5) and of Type 2 but
the Level 2 detection will not find any conflict.
If we consider the first three rules only, we get a
satisfiable system but Level 3 will find a conflict
with them. Now if we consider the first two rules
it is still a satisfiable system, without conflict but
it is possible to built undefined requests caught
by the Level 4.

11



Listing 4: An Unsatisfiable Example
(ALWAYS (login(x) AND password(x))) => (SOMETIME enter(x))
(ALWAYS (login(x) AND password(x))) => (SOMETIME read(x))
(ALWAYS (login(x) AND password(x)))

=> ((ALWAYS NOT enter(x)) OR (ALWAYS NOT read(x)))
((SOMETIME NOT login(x)) OR (SOMETIME NOT password(x)))

=> (SOMETIME enter(x))
((SOMETIME NOT login(x)) OR (SOMETIME NOT password(x)))

=> (SOMETIME read(x))
(SOMETIME NOT password(x))

=> NOT ((SOMETIME enter(x)) AND (SOMETIME read(x)))
(SOMETIME NOT login(x))

=> NOT ((SOMETIME enter(x)) AND (SOMETIME read(x)))

4.4 Rule systems

Considering rule systems we can be more precise
on the classification of real conflicts. The notion
of conflict is associated with at least two rules,
but we can define a problem of undefined request
involving one rule alone. As already noted, to be
useful, a rule is not valid thus it raises this new
specific case.

Definition 4.9 (1-undefined request). Let one
rule (cond => conc) then a 1-undefined request
verifies req is satisfiable and (req => (cond ∧
¬conc)) is valid.

Lemma 4.10 (Two reduction laws). Let four
propositions A,B,C,D these three formulas are
equivalent:

1. ((A => B) ∧ (C => D))

2. ((A∨C)∧(C∨¬B)∧(A∨¬D)) => (B∧D)

3. (A∨C) => ((¬A∧D)∨(B∧¬C)∨(B∧D))

The properties 2 and 3 can be used to rewrite
a rule system. Using these laws a rule system can
be rewritten with more or less rules, but Types
1 and 2 are not stable over these reduction laws.
Type 3 is closed under these reduction laws, and
using these laws we can equivalently rewrite any

rule system to only one rule. In this case, a re-
quest is undefined if and only if it is a 1-undefined
request. The definition below subsumes the clas-
sic notion of conflict in Definition 4.4 and the
1-undefined request.

Definition 4.11 (General conflict). Let R a set
of rules then a satisfiable request req is a general
conflict if and only if ∃I, (req => (∧i∈Icondi ∧
¬ ∧i∈I conci)) is valid.

A second new kind of undefined request is due
to the chaining of two or more rules.

Definition 4.12 (Undefined chaining). Let R a
set of rules, n ≥ 2, an undefined chaining is an
undefined request with the chaining property.

We can demonstrate a classification of the un-
defined requests in a rule system.

Lemma 4.13 (Classification).

1. If R is of Type 1,2 then an undefined request
is a general conflict.

2. If R is of Type 3 then an undefined request
is either a general conflict or a chaining but
not both.

Proof. We can remark that req is undefined for
a rule system if and only if for all K the expres-
sion req∧k∈K ¬condk∧j /∈K concj is unsatisfiable.
Furthermore, ∨1≤i≤n condi can be split in dis-
joint cases and thus it exists a unique maximal
K such that req => ∧k∈K condk∧j /∈K ¬condj is
valid and req∧j /∈K ¬condj is satisfiable. If we do
not have chaining, let req an undefined request
req ∧k∈K conck ∧j /∈K ¬condj is unsatisfiable,
hence (req∧k∈K conck) => ∨j /∈K condj is valid,
and req ∧j /∈K ¬condj is satisfiable imply that
the first condition of chaining req ∧k∈K conck

12



is unsatisfiable. From that, we have req =>
∧k∈K condk, and req is a general conflict.

In case of Type 3 system, if n = 1 then we
have only 1-undefined requests. It is rather obvi-
ous that general conflict and undefined chaining
are disjoint cases of undefined requests. Consid-
ering an undefined request it exists a unique I
such that req => ∧i∈I condi ∧j /∈I ¬condj and
req∧j /∈I ¬condj is satisfiable. If req is satisfiable
and not a general conflict we have req ∧i∈I conci
satisfiable and ((req ∧i∈I conci)∧j /∈I ¬condj) is
unsatisfiable thus req is a chaining request.

A notion of (general) n-conflict can be defined
as a conflict between exactly n rules, it happens
if we have n incompatible conclusions. Thus, in
case of simple access control rules with two mu-
tually exclusive literals, if there is a n-conflict
with n > 2 then there is a 2-conflict. Among the
set of requests to submit to a rule system there
are some which are not interesting because even
if they are defined they will not give a useful re-
sult (that is inferring something included in the
set of replies). Thus, it is natural to consider
requests, written on the language of conditions,
and included in ∨1≤i≤ncondi as it is the minimal
expression which contains the relevant requests
to each rule. We should also remark that if req
is undefined it is also included in ∨1≤i≤ncondi.
In many rule systems the language of the condi-
tions is disjoint from the language of conclusions
and their interpretations are separated. This is
the most natural assumption to ensure no rule
chaining.

Lemma 4.14 (Rule System Hypotheses).
In a rule system, considering requests in
∨1≤i≤ncondi and if the language for conditions
is disjoint from the language of conclusions and
each conclusion is satisfiable then undefined re-
quests are conflicts in the sense of Definition 4.4.

Table 3: Static detection: Types and Levels.

Reference Type Level Condition Conclusion
[1] 1 1 PROP Permission
[2] 1 1 PROP Permission
[18] 1 1 PROP Discrete
[66] 1 1 FOL Permission
[57] 1 1 PROP Discrete
[60] 1 1 PROP Permission
[5] 1 1 FOL Discrete
[54] 1 1 FOL Discrete
[74] 1 1 PROP Discrete
[32] 1 1 PROP Permission
[73] 1 1 PROP Permission
[39] 1 1 FOL Permission
[65] 1 1 FOL Permission
[62] 1 1 PROP Permission
[21] 1 1 PROP Permission
[35] 1 5 FOL Permission
[70] 2 2 FOL Authorization
[67] 2 2 FOL Predicate
[20] 2 2 FOL Normative
[3] 2 2 FOL Predicate
[43] 2 3 FOL Predicate
[55] 2 3 FOL Predicate
[72] 2 4 FOL Predicate
[49] 3 4 FOL Predicate
[27] 3 5 FOL Authorization
[14] 3 5 FOL Regulatory
[9] 3 5 FOL Class-Specific
[10] 3 5 FOL Authorization
[53] 4 5 FOTL
[41] 4 5 FOL
[8] 4 5 FOL
[61] 4 5 FOTL

4.5 Types and Levels Instances

We present in Table 3 instantiations coming from
our previous review. The condition and conclu-
sion columns are related to vocabulary for writ-
ing policy conditions and conclusions. Permis-
sion is {PERMIT,DENY} andDiscrete is a set of
literals, for instance defining a set of action per-
missions or roles with hierarchy. Authorization
are predicates for permit and deny, Normative
adds the notion of obligation, Class-Specific adds
data protection while Regulatory enriches it with
many more predicates like doing action, fulfilled,
ceased, or violation. Predicate denotes a set of
specific predicates. The language disjunction is
often clear, but not always made explicit and
should be inferred from the context. Examples

13



classified in Type 3 explicitly discuss the possi-
bility of chaining, except [49]. The embedding of
a referenced model is sometime straightforward
with few simple transformations, [1, 27, 35, 14,
70, 57, 5, 9, 74, 20, 39, 65, 61, 62, 21]. In some
other cases we rely on the examples described in
the article [41, 66, 74, 32, 73]. [2] defines a type
system for a rule system obtained by extrapola-
tion of the original system. [54] does not use FOL
but precisely it considers SWRL rules with roles
and actions as conclusions. [55, 43, 67] are based
on similar models where conflicts are related to
conditions, obligations, or purposes. The rela-
tional model in [72] can be viewed as rules with
conditions on roles, resources, actions and con-
clusions with predicates. [10] uses Left Fusion
logic which is derived from Propositional Inter-
val Temporal Logic and subsumes LTL with a
chop (sequential composition) operator. Such a
logic can be embedded in FOL. The ∆DSTL(x)
logic of [53] is easily embedded in FOTL. Re-
garding [3] the language is based on OWL. [49]
uses a rule system without details. [8] precisely
relies on description logic and subsumption.

Our formalization makes explicit several for-
mal definitions behind the conflict notion and
gives a rigorous way to compare the different
types and levels we observed. Looking at the Ta-
ble 3 we can clarify few issues of our related work
analysis. Few papers discuss the fact that search-
ing for 2-conflicts (Levels 1 and 2) only is not
sufficient [55, 43, 32, 61]. Indeed it is sufficient if
we have conclusions which are pairwise disjoint.
This is obviously the case when conclusions are
PERMIT or DENY, but conclusions exclusivity
should be formally stated in [18, 57, 74]. [5] does
not comment this case, but it allows role hierar-
chy and thus it is possible to built an example
with several incompatible roles not pairwise dis-
joint. [54] does not consider negative roles, but

there is a role hierarchy and the same problem
may happen.

With Type 2 examples, Lemma 4.14 gener-
ally applies but with some exceptions. Often the
satisfiability of each conclusion is ensured by in-
dividual predicates or it is explicitly stated as
in [55, 43]. Type 2 allows to define inconsistent
but conflict free rule systems which is not a de-
sirable case, an example is described in Listing 4.
This problem does not occur in [55, 43] since
it satisfies all the hypotheses of Lemma 4.14,
unsatisfiability implies there is an undefined re-
quest which is a conflict caught by the Level 3.
[72] rules out this case since it relies on Level 4
and implicitly considers a finite set of resources
thus ensuring the testing coverage. [20] has only
pairwise disjoint atoms as conclusions thus if the
system is unsatisfiable there are only 2-conflicts
which are caught by the Level 2. However, [70]
does not ensure that the relationships in the sys-
tem environment and its constraints are consis-
tent. [3] lacks details about the conditions to
define policies. It is possible to build a system
without 2-conflict but with a conflict between
more than 2 rules. There is also no guarantee
about the satisfiability of the conclusions. [67]
is strongly inspired by previous work of Ni et
al. but information are lacking about the conclu-
sions and their satisfiability. The algorithm can-
not catch conflicting problems between 3 rules
which are not pairwise conflicting.

In case of Type 3, we could have other kinds
of undefined request but the reported references
are relying on either the Level 4 or the Level 5.
In [49] Level 4 catches the undefined requests,
however the testing coverage is not proved in this
work.

Useful rule systems are neither valid nor unsat-
isfiable, meaning that they do not trivially pro-
cess requests into replies. The Level 5 appears

14



as a natural requirement of any logical system
and Level 4 is the most general for “conflict” de-
tection and it applies to any rule system. To
control the set of requests to submit to a policy
system is a major issue, syntactic constraints are
either too constraining or hard to define when we
have chaining. One benefit of using rules with-
out chaining is that implementation can be sim-
pler and efficient: searching the rule matching
the given request then building the conclusion.
Furthermore, compiling such a rule system into
a set of exclusive rules can be automated as well
as a predicate detecting all the conflicts. But
an open question is to achieve similar benefits in
case of more complex systems with chaining of
rules. Level 4 raises issues related to its efficient
implementation, the generation and the localiza-
tion of the undefined requests. A further analy-
sis of undefined requests in rule-based systems is
possible, and for instance [12] shows how to com-
pute all these request while making it possible for
some middle-size cases studies. Another example
is [13] which studies automatic removing of un-
defined requests and how to both minimize the
size of modifications and optimize the process-
ing time. These remarks pave the way for future
work.

5 Conclusion

In their survey [16], the authors argue that: "It
is thus rather difficult to determine all possible
conflicting conditions in advance and so it is still
necessary to detect conflicts at run-time". In-
deed, before 2008 there was few work promoting
static conflict detection, see [16, 22, 59]. If we
look at recent related academic papers: height
are proposing a dynamic detection while more
than thirty argue for a static one. However, 28%

of the static approaches are relying on logical
consistency, most of the others expect to check
conflict only by comparing pairs of rules (47%).
There are also few pragmatic approaches imple-
menting a static approach complemented with a
dynamic checking. Reviewing the state of the art
in conflict detection, we classify these approaches
and we summarize the main critics around the
dynamic and testing detection. We specifically
analyze and formally compare the static detec-
tion principles as they are providing stronger as-
surance on the policy system. Our analysis clar-
ifies the differences and the notions behind the
term conflict relating it with the classic notions
of satisfiability and consistency. We provide a
classification of policy systems and also a for-
malization of five detection principles. A part
from the common notion of conflict there are also
general conflict and undefined chaining. Check-
ing for two conflicting rules is not sufficient in
case of more complex conclusions than permit
and deny. Checking several rules for conflicts is
inefficient and a too syntactic approach, semantic
approaches are better since stable over the sys-
tem descriptions. Our comparison gives precise
conditions to apply the conflict detection princi-
ples and opens few new research perspectives.

References

[1] R. Abassi and S. G. E. Fatmi. An auto-
mated validation method for security poli-
cies: The firewall case. In M. Rak, A. Abra-
ham, and V. Casola, editors, Proccedings
of the Fourth International Conference on
Information Assurance and Security, pages
291–294. IEEE Computer Society, 2008.

[2] K. Adi, Y. Bouzida, I. Hattak, L. Lo-
grippo, and S. Mankovski. Typing for con-

15



flict detection in access control policies. In
G. Babin, P. G. Kropf, and M. Weiss, edi-
tors, E-Technologies: Innovation in an Open
World, volume 26 of Lecture Notes in Busi-
ness Information Processing, pages 212–226.
Springer, 2009.

[3] M. S. Aphale, T. J. Norman, and M. Şen-
soy. Goal-directed policy conflict detection
and prioritisation. In H. Aldewereld and
J. S. Sichman, editors, Coordination, Orga-
nizations, Institutions, and Norms in Agent
Systems VIII, pages 87–104. Springer Berlin
Heidelberg, 2013.

[4] M. Aqib and R. A. Shaikh. Analysis and
comparison of access control policies valida-
tion mechanisms. I.J. Computer Network
and Information Security, 7(1):54–69, 2015.

[5] A. Armando and S. Ranise. Automated and
efficient analysis of role-based access control
with attributes. In Data and Applications
Security and Privacy XXVI, pages 25–40,
2012.

[6] A. Barth, J. C. Mitchell, and J. Rosenstein.
Conflict and combination in privacy policy
languages. In V. Atluri, P. F. Syverson, and
S. D. C. di Vimercati, editors, ACM Work-
shop on Privacy in the Electronic Society,
pages 45–46. ACM, 2004.

[7] M. Y. Becker, A. Malkis, and L. Bussard. A
practical generic privacy language. In S. Jha
and A. Mathuria, editors, ICISS 2010, vol-
ume 6503, pages 125–139. Springer, 2010.

[8] T. D. Breaux, H. Hibshi, and A. Rao.
Eddy, a formal language for specifying and
analyzing data flow specifications for con-

flicting privacy requirements. Requir. Eng,
19(3):281–307, 2014.

[9] M. M. Casalino, H. Plate, and S. Trabelsi.
Transversal policy conflict detection. In
Engineering Secure Software and Systems,
pages 30–37, 2012.

[10] A. Cau, H. Janicke, and B. C. Moszkowski.
Verification and enforcement of access con-
trol policies. Formal Methods in System De-
sign, 43(3):450–492, 2013.

[11] R. Chadha and L. Kant. Policy-Driven Mo-
bile Ad hoc Network Management, chapter
Policy Conflict Detection and Resolution,
pages 99–131. Wiley-IEEE Press, 2008.

[12] Z. Cheng, J.-C. Royer, and M. Tisi. Effi-
ciently characterizing the undefined requests
of a rule-based system. In C. A. Furia and
K. Winter, editors, Integrated Formal Meth-
ods Proceedings, volume 11023 of Lecture
Notes in Computer Science, pages 69–88.
Springer, 2018.

[13] Z. Cheng, J.-C. Royer, and M. Tisi. Re-
moving problems in rule-based policies. In
G. Dhillon, F. Karlsson, K. Hedström, and
A. Zúquete, editors, ICT Systems Secu-
rity and Privacy Protection, pages 120–133.
Springer International Publishing, 2019.

[14] R. Craven, J. Lobo, J. Ma, A. Russo, E. C.
Lupu, and A. K. Bandara. Expressive pol-
icy analysis with enhanced system dynam-
icity. In W. Li, W. Susilo, U. K. Tupakula,
R. Safavi-Naini, and V. Varadharajan, edi-
tors, Proceedings of the 2009 ACM Sympo-
sium on Information, Computer and Com-
munications Security, pages 239–250. ACM,
2009.

16



[15] F. Cuppens, N. Cuppens-Boulahia,
J. García-Alfaro, T. Moataz, and X. Rimas-
son. Handling stateful firewall anomalies.
In D. Gritzalis, S. Furnell, and M. Theo-
haridou, editors, Information Security and
Privacy Research, volume 376 of IFIP Ad-
vances in Information and Communication
Technology, pages 174–186. Springer, 2012.

[16] N. C. Damianou, A. K. Bandara, M. S. Slo-
man, and E. C. Lupu. A survey of policy
specification approaches. Technical report,
Imperial College of Science Technology and
Medicine, London, 2002.

[17] A. Datta, J. Blocki, N. Christin, H. DeY-
oung, D. Garg, L. Jia, D. K. Kaynar, and
A. Sinha. Understanding and protecting pri-
vacy: Formal semantics and principled audit
mechanisms. In S. Jajodia and C. Mazum-
dar, editors, Information Systems Security,
volume 7093 of LNCS, pages 1–27. Springer,
2011.

[18] S. Davy, B. Jennings, and J. Strassner. The
policy continuum-policy authoring and con-
flict analysis. Computer Communications,
31(13):2981–2995, 2008.

[19] A. Degtyarev, M. Fisher, and B. Konev.
Monodic temporal resolution. ACM Trans-
actions on Computational Logic, 7(1):108–
150, Jan. 2006.

[20] R. Delmas and T. Polacsek. Formal methods
for exchange policy specification. In C. Sali-
nesi, M. C. Norrie, and O. Pastor, editors,
CAiSE, volume 7908 of LNCS, pages 288–
303. Springer, 2013.

[21] F. Deng and L.-Y. Zhang. Elimination of
policy conflict to improve the PDP evalua-

tion performance. J. Network and Computer
Applications, 80:45–57, 2017.

[22] N. Dunlop, J. Indulska, and K. Raymond.
Methods for conflict resolution in policy-
based management systems. In Enter-
prise Distributed Object Computing Confer-
ence, pages 98–111. IEEE Computer Soci-
ety, 2003.

[23] K. Fatema and D. W. Chadwick. Re-
solving policy conflicts - integrating poli-
cies from multiple authors. In L. S. Il-
iadis, M. P. Papazoglou, and K. Pohl, ed-
itors, Advanced Information Systems Engi-
neering Workshops - CAiSE International
Workshops, volume 178 of Lecture Notes
in Business Information Processing, pages
310–321. Springer, 2014.

[24] M. Fisher. An Introduction to Practical For-
mal Methods using Temporal Logic. Wiley,
2011.

[25] K. Fisler, S. Krishnamurthi, L. A.
Meyerovich, and M. C. Tschantz. Ver-
ification and change-impact analysis of
access-control policies. In International
Conference on Software Engineering, 2005.

[26] J. García-Alfaro, N. Boulahia-Cuppens, and
F. Cuppens. Complete analysis of config-
uration rules to guarantee reliable network
security policies. Int. J. Inf. Sec, 7(2):103–
122, 2008.

[27] J. Y. Halpern and V. Weissman. Using
first-order logic to reason about policies.
ACM Transactions on Information and Sys-
tem Security, 11(4):1–41, July 2008.

17



[28] W. Han and C. Lei. A survey on policy
languages in network and security manage-
ment. Computer Networks, 56(1):477–489,
Jan. 2012.

[29] A. Hanamsagar, N. Jane, B. Borate,
A. Wasvand, and S. Darade. Firewall
anomaly management: A survey. Inter-
national Journal of Computer Applications,
105(18):1–5, 2014.

[30] H. Hu, G.-J. Ahn, and J. Jorgensen. Detect-
ing and resolving privacy conflicts for col-
laborative data sharing in online social net-
works. In R. H. Zakon, J. P. McDermott,
and M. E. Locasto, editors, Computer Se-
curity Applications Conference, pages 103–
112. ACM, 2011.

[31] H. Hu, G.-J. Ahn, and K. Kulkarni. De-
tecting and resolving firewall policy anoma-
lies. IEEE Trans. Dependable Sec. Comput,
9(3):318–331, 2012.

[32] H. Hu, G.-J. Ahn, and K. Kulkarni. Discov-
ery and resolution of anomalies in web ac-
cess control policies. IEEE Trans. Depend-
able Sec. Comput, 10(6):341–354, 2013.

[33] N. Hu, P. Zhu, H. Cao, and K. Chen. Rout-
ing policy conflict detection without violat-
ing ISP’s privacy. In CSE, pages 337–342.
IEEE Computer Society, 2009.

[34] C. Huang, J. Sun, X. Wang, and Y. Si. In-
consistency Management of Role Based Ac-
cess Control Policy. In Int. Conf. on E-
Business and Information System Security,
2009.

[35] F. Huang, Z. Huang, and L. Liu. A DL-
based method for access control policy con-
flict detecting. In F. Yang, H. Mei, and

J. Lv, editors, Proceedings of the First Asia-
Pacific Symposium on Internetware, pages
16–21. ACM, 2009.

[36] G. Hughes and T. Bultan. Automated verifi-
cation of access control policies using a SAT
solver. International Journal on Software
Tools for Technology Transfer, 10(6):503–
520, Dec. 2008.

[37] J. Hwang, T. Xie, and V. C. Hu. Detec-
tion of multiple-duty-related security leak-
age in access control policies. In Secure Soft-
ware Integration and Reliability Improve-
ment, pages 65–74. IEEE Computer Society,
2009.

[38] H. Janicke, A. Cau, F. Siewe, and H. Zedan.
Dynamic access control policies: Specifica-
tion and verification. The Computer Jour-
nal, 56(4):440–463, Apr. 2013.

[39] H. Jebbaoui, A. Mourad, H. Otrok, and
R. A. Haraty. Semantics-based approach for
detecting flaws, conflicts and redundancies
in xacml policies. Computers & Electrical
Engineering, 44:91–103, 2015.

[40] V. R. Karimi, P. S. C. Alencar, and D. D.
Cowan. A formal modeling and analysis
approach for access control rules, policies,
and their combinations. Int. J. Inf. Sec,
16(1):43–74, 2017.

[41] V. R. Karimi and D. D. Cowan. Verifica-
tion of access control policies for REA busi-
ness processes. In S. I. Ahamed, E. Bertino,
C. K. Chang, V. Getov, L. Liu, H. Ming,
and R. Subramanyan, editors, COMPSAC,
Volume 2, pages 422–427. IEEE Computer
Society, 2009. 978-0-7695-3726-9.

18



[42] N. Khairdoost and N. Ghahraman. Term
rewriting for describing constrained policy
graph and conflict detection. In Progress
in Informatics and Computing (PIC), pages
645–651. IEEE, 2010.

[43] Y. Kim and E. Song. Privacy-aware role
based access control model: Revisited for
multi-policy conflict detection. In Informa-
tion Science and Applications, pages 1–7.
IEEE, 2010.

[44] R. Kuhlisch. A description model for policy
conflicts for managing access to health in-
formation. In B. Lantow, K. Sandkuhl, and
U. Seigerroth, editors, International Work-
shop on Information Logistics, Knowledge
Supply and Ontologies in Information Sys-
tems, volume 1028, pages 44–55. CEUR-
WS.org, 2013.

[45] R. Kuhlisch. Modeling and recognizing pol-
icy conflicts with resource access requests on
protected health information. Complex Sys-
tems Informatics and Modeling Quarterly,
11:1–19, 2017.

[46] N. Li, Q. Wang, W. H. Qardaji, E. Bertino,
P. Rao, J. Lobo, and D. Lin. Access con-
trol policy combining: theory meets prac-
tice. In B. Carminati and J. Joshi, editors,
ACM Symposium on Access Control Mod-
els and Technologies, pages 135–144. ACM,
2009.

[47] D. Lin, P. Rao, E. Bertino, N. Li, and
J. Lobo. Exam: a comprehensive environ-
ment for the analysis of access control poli-
cies. Int. J. Inf. Sec, 9(4):253–273, 2010.

[48] M. Ludwig and U. Hustadt. Implementing
a fair monodic temporal logic prover. AI
Commun, 23(2-3):69–96, 2010.

[49] J. Ma, D. Zhang, G. Xu, and Y. Yang.
Model checking based security policy veri-
fication and validation. In 2nd Int. Work-
shop on Intelligent Systems & Applications,
pages 1–4. IEEE Computer Society, 2010.

[50] A. Margheri, M. Masi, R. Pugliese, and
F. Tiezzi. Developing and enforcing poli-
cies for access control, resource usage, and
adaptation - A practical approach -. In Web
Services and Formal Methods, pages 85–105,
2013.

[51] A. Margheri, R. Pugliese, and F. Tiezzi. On
properties of policy-based specifications. In
M. H. ter Beek and A. Lluch-Lafuente, edi-
tors, International Workshop on Automated
Specification and Verification of Web Sys-
tems, volume 188 of EPTCS, pages 33–50,
2015.

[52] A. Mohan, D. M. Blough, T. M. Kurç,
A. R. Post, and J. H. Saltz. Detection of
conflicts and inconsistencies in taxonomy-
based authorization policies. In F.-X. Wu,
M. J. Zaki, S. Morishita, Y. Pan, S. Wong,
A. Christianson, and X. Hu, editors, IEEE
International Conference on Bioinformat-
ics and Biomedicine, pages 590–594. IEEE
Computer Society, 2011.

[53] C. Montangero, S. Reiff-Marganiec, and
L. Semini. Logic-based conflict detection
for distributed policies. Fundamantae In-
formatica, 89(4):511–538, 2008.

[54] M. A. Neri, M. Guarnieri, E. Magri,
S. Mutti, and S. Paraboschi. Conflict detec-

19



tion in security policies using semantic web
technology. In Satellite Telecommunications
(ESTEL), pages 1–6. IEEE, 2012.

[55] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M.
Karat, J. Karat, and A. Trombeta. Privacy-
aware role-based access control. ACM
Trans. Inf. Syst. Secur., 13(3):24:1–24:31,
July 2010.

[56] Y. Ni. Policy conflict detection and res-
olution in goal policy-driven management.
IJWMC, 7(5):495–499, 2014.

[57] S. Niksefat and M. Sabaei. Efficient algo-
rithms for dynamic detection and resolution
of IPSec/VPN security policy conflicts. In
AINA, pages 737–744. IEEE Computer So-
ciety, 2010.

[58] OASIS Standard. eXtensible Ac-
cess Control Markup Language
(XACML) Version 3.0. 22 January 2013.
http://docs.oasis-open.org/xacml/
3.0/xacml-3.0-core-spec-os-en.html,
2013.

[59] T. Phan, J. Han, J.-G. Schneider,
T. Ebringer, and T. Rogers. A survey
of policy-based management approaches
for service oriented systems. In Australian
Software Engineering Conference, pages
392–401. IEEE Computer Society, 2008.

[60] Y. Ren, F. Cheng, Z. Peng, X. Huang, and
W. Song. A privacy policy conflict detec-
tion method for multi-owner privacy data
protection. Electronic Commerce Research,
11(1):103–121, 2011.

[61] J.-C. Royer and A. Santana De Oliveira.
AAL and static conflict detection in policy.

In 15th International Conference on Cryp-
tology and Network Security, LNCS, Milan,
Italia, Nov. 2016. Springer.

[62] R. A. Shaikh, K. Adi, and L. Logrippo. A
data classification method for inconsistency
and incompleteness detection in access con-
trol policy sets. Int. J. Inf. Sec, 16(1):91–
113, 2017.

[63] R. A. Shaikh, K. Adi, L. Logrippo, and
S. Mankovski. Inconsistency detection
method for access control policies. In Infor-
mation Assurance and Security, pages 204–
209. IEEE, 2010.

[64] L. Shen, Z. Wang, X. Zhang, and J. Gu.
Study on the policy conflict detection in
the security management model. In Signal
Processing, Communications and Comput-
ing, pages 1–5. IEEE, 2015.

[65] M. St-Martin and A. P. Felty. A verified al-
gorithm for detecting conflicts in XACML
access control rules. In J. Avigad and
A. Chlipala, editors, Proceedings of the 5th
ACM SIGPLAN Conference on Certified
Programs and Proofs, Saint Petersburg, FL,
USA, January 20-22, 2016, pages 166–175.
ACM, 2016.

[66] B. Stepien, S. Matwin, and A. P. Felty.
Strategies for reducing risks of inconsisten-
cies in access control policies. In Availabil-
ity, Reliability, and Security, pages 140–147.
IEEE Computer Society, 2010.

[67] L. Sun, H. Wang, X. Tao, Y. Zhang, and
J. Yang. Privacy preserving access control
policy and algorithms for conflicting prob-
lems. In TrustCom, pages 250–257. IEEE
Computer Society, 2011.

20



[68] S. Thanasegaran, Y. Tateiwa, Y. Katayama,
and N. Takahashi. Simultaneous analysis of
time and space for conflict detection in time-
based firewall policies. In CIT, pages 1015–
1021. IEEE Computer Society, 2010.

[69] F. Turkmen, J. den Hartog, S. Ranise, and
N. Zannone. Analysis of XACML poli-
cies with SMT. In R. Focardi and A. C.
Myers, editors, Principles of Security and
Trust, volume 9036 of LNCS, pages 115–134.
Springer, 2015.

[70] Y. Wang, H. Zhang, X. Dai, and J. Liu.
Conflicts analysis and resolution for access
control policies. In Proceedings of Int. Conf.
on Information Theory and Information Se-
curity (ICITIS), pages 264–267. IEEE Com-
puter Society, 2010.

[71] B. Wu, X. yuan Chen, Y. fui Zhang, and
X. dong Dai. An extensible intra access
control policy conflict detection algorithm.
In Computational Intelligence and Security,
pages 483–488. IEEE Computer Society,
2009.

[72] X. Xia. A conflict detection approach for
XACML policies on hierarchical resources.
In Conference on Green Computing and
Communications, Conference on Internet of
Things, and Conference on Cyber, Physical
and Social Computing, pages 755–760. IEEE
Computer Society, 2012.

[73] D. Yan, J. Huang, Y. Tian, Y. Zhao, and
F. Yang. Policy conflict detection in com-
posite web services with RBAC. In Inter-
national Conference on Web Services, pages
534–541, 2014.

[74] C. Yuan, X. Liang, Y. Bo, and C. Xia. Re-
search on computer network defense pol-
icy conflict detection. In Information
and Communication Technologies (WICT),
pages 1193 – 1197. IEEE, 2012.

A Analyzed References

A.1 Surveys

We provide a short review of the survey from [16]
mainly for historical reasons. It helps in under-
standing the evolution in this domain. This pa-
per reviews a set of policy languages and some of
their characteristics. A short informal discussion
is made on the notion of conflict and the way to
solve them. Existing conflict resolution means
were: errors, priority, and meta-policies. There
is no precise description of algorithms for con-
flict detection and clearly this feature was miss-
ing in most of the proposed tools. At this time,
the authors argue that runtime detection is re-
quired and that not all conflicting situations can
be known in advance.

[22] is a general survey of static and dynamic
conflict detection and resolution in large open
distributed systems. They also consider that
not all conflict can be statically detected and re-
solved. A set of combining algorithms for dy-
namic resolution is not sufficient at all.

The book chapter [11] provides an overview of
the state of the art in policy conflict detection
and resolution. The authors propose a classifi-
cation of policy rules in Event-Condition-Action,
access control and configuration policies and ar-
gue that different stages of conflict detection are
needed. One important feature is the fact that
policies are modified or not at runtime. Thus
runtime detection of application specific policy
conflict is required, except for the most trivial

21



cases like modality conflicts. They claims that
they are obvious reasons to do conflict detection
at runtime. However, they do not precisely de-
scribe the existing algorithms.

In their survey, [59], the authors study five pol-
icy frameworks in order to evaluate their suitabil-
ity for the management of service oriented sys-
tems. Namely the frameworks are Ponder, IETF,
KAoS, Rei and WS-Policy. However, in their re-
view none detection algorithm is mentioned.

[28] is a general survey about policy manage-
ment in network systems. This paper investi-
gates mainly existing work, language proposals
and discusses the key issues. Among these, the
first issue is policy conflict detection and reso-
lution. Still it emphasizes the fact that some
conflicts can be detected statically by translating
policies in a logical framework and some other
only dynamically and resolved by meta-policies.

[4] is the most recent and exhaustive survey of
access control policy systems and their validation
mechanisms. It classifies the various approaches
regarding the validation framework used: formal
methods, mining techniques and so on. It pro-
poses a general table of the published work with
their main characteristics: like inconsistency, in-
completeness, static or dynamic and so on. How-
ever, it is informal and the conflict definition is
weak and does not exhibit that, for instance,
inconsistency checking is varying from one ap-
proach to another. We need a more formal anal-
ysis to compare and to show the weaknesses of
the various approaches of conflict detection. The
authors reviewed 26 papers from 2005 to 2016
and only 23 with a conflict management feature.
They do not describe and compare the existing
conflict detection principles.

A.2 Dynamic Detection

Some approaches suggest a dynamic detection
and generally an automatic resolution. The prin-
ciple is to analyze, at runtime, each request and
to look for conflicting results. In case of conflict a
combining algorithm, a meta-policy, or a priority
are used to select one reply to the request.

XACML is a de facto standard language
for attribute-based access control policies [58].
XACML allows the definition of policies and
rules managing authorizations and obligations.
A rule will produce an access decision which
is permit, deny, or not-applicable. Rules and
policies can overlap and then can produce con-
tradictory results. In order to solve conflicts,
the XACML introduces combining algorithms for
rules and polices such as: permit-overrides, deny-
overrides, or first-applicable.

The authors of [52] consider access control
policies with hierarchy of concepts and define an
algorithm for dynamic conflict detection. They
consider a classic notion of conflict but claim it
is distinct from an inconsistency which is related
to data relationship inference. The exact rule
language is not described and it is not also clear
which part of XACML is covered by this analysis.

An interesting compositional framework is
proposed in [38]. It allows the specification and
the verification of access control policies where
history and temporal aspects are taken into ac-
count. Interval temporal logic is used for defining
the semantics of the formal policies and to rea-
son about them. The language, called SANTA,
supports positive and negative policies as well
as decision rules to resolve conflicts during the
evaluation. Thus we consider that the detection
is only dynamic.

[23] analyzes the principle of combining algo-
rithm in XACML. The authors show that con-

22



flicting situation occurs with subject owning dif-
ferent roles. They propose a resolution mecha-
nism with an algorithm choosing the combining
rule dynamically.

Few papers [36, 51, 69] propose a formal way
to verify XACML by translating it in a more for-
mal language and then use a verification tool sup-
port. In principle these approaches could stati-
cally check for conflicts but they did not do it
since they resolve the real conflicts using com-
bining algorithms which state rule precedence in
case of conflicts. Thus they rely on dynamic con-
flict detection as XACML.

A.3 Testing Detection

In this case the method is to explicitly and stat-
ically generate a set of requests and to test if a
conflict occurs using the normal request evalua-
tion process.

[37] focuses on multiple-duty and conflicts in
access control rules. The authors explain that
multiple roles may lead to conflicts but the reso-
lution mechanism choose a solution which is not
the expected one because of the rule ordering.
The authors proposes a framework to assist the
detection of multiple roles that can leads to po-
tential leakages. They generate a finite set of
requests and check for their consistency. It relies
on Margrave [25] which is realizing the detec-
tion task but this tool only analyzes a subset of
XACML.

[32] focuses on anomalies detection in web poli-
cies using XACML. These anomalies are poten-
tially numerous due to the numbers of rules,
administrators, resources, actions, and subjects.
The authors consider that statically removing
the conflicts is difficult. The authors think that
a global analysis is needed in order to detect all
conflicts and redundancies between more than

two rules. The technique uses two levels of par-
tition (rules and requests) and consider all the
request space of a rule. They do not consider
obligations and discrete time.

A.4 Static Detection

In this case the principle is to rely on an al-
gorithm, at design time, to statically check for
conflicts and without an explicit generation and
evaluation of the requests.

[1] is an example of work which explicitly ap-
plies software engineering techniques to security
policies. They consider a formal model inspired
from RBAC (Role Based Access Control) and
the Promela language, it allows authorizations,
obligations and negative obligations but without
parameters, only finite sets are considered. The
consistency checking relies on the idea of check-
ing conflicting pairs of rules. However, while the
language allows obligations and negative obliga-
tions, the checking is restricted to conflicting au-
thorizations only.

[18] advocates for a formal model of policy and
an automated tool support. The policy model is
based on an object-oriented information model,
and several policy levels linked by a refinement
relation. The algorithm to check for conflicts is
complex because the model and its management
are rich. However, the core principle to analyze
a candidate policy for potential conflict is done
on a pair-wise basis with all the other deployed
policies. The language allows finite enumeration
of entities only and the algorithm is based on a
matrix computation.

In [27], the authors describe a way to rea-
son about policies and their consistency. They
define the Lithium language, and can statically
detect conflicts. They only consider a flexible
pure access control language with permissions

23



and prohibitions, it supports neither linear tem-
poral time nor obligations. The principle to
check conflict relies on the use of consistency in
many-sorted FOL, checking that a property and
its negation are valid.

[53] mostly focuses on telecommunication sys-
tems and service oriented systems where poli-
cies are distributed. The paper discusses policy
conflict and a detection mechanism. APPEL is
a policy language with an informal syntax and
based on the Event-Condition-Action paradigm
with flat domain of locations but no classic de-
ontic modalities for access control. The language
introduces some rule operators expressing condi-
tions, ordering and parallelism. Its formal se-
mantics is expressed in ∆DSTL(x) a first-order
logic with localities and inspired from Unity. It
allows a future operator (leads-to) and a past
one (because).The authors takes a logic-based
approach: conflicts are detected by deducing spe-
cific formulae in a suitable theory. The conflict
definition is domain dependent and defined by
the user. However, the method remains paper
based and no automatic support is provided.

[2] analyzes some access control models. The
authors argue for a static detection of conflicts.
In case of conflict it is important to alert the pri-
vacy or security officer because none algorithm is
able to resolve the conflict. It proposes an access
control model with permission and prohibition,
first-order conditions, dynamic groups for users,
resources, actions and a type system which en-
sures the absence of conflict. The model does
allow neither obligation nor temporal logic. The
checking principle is stated as: “two user groups
that have common elements should not have dif-
ferent access rights”.

[14] argues that a policy language should be
expressive, dynamic and supported by a rich set
of tools. The authors discuss the need of access

control and obligation features but also tempo-
ral aspects and complex dependencies between
authorizations and obligations. They list a set of
required analyses, among them conflict detection
and coverage. The Event Calculus enables to de-
scribe how events and actions occurring change
the system state. This provides a flexible and
rather uniform framework. They use abductive,
constraint logic programming as the basis of al-
gorithms. A prototype implementation is avail-
able but work only with finite domains. Modal
conflicts are checked by proving that we do not
have both permitted and denied conclusions.

The approach of [41] is to introduce access con-
trol policies in a business process. This business
process is based on the Resources-Events-Agents
(REA) model and encoded in Alloy. Alloy al-
lows to perform various verifications on a formal
model, for instance clause inconsistency.

[34] considers the management of RBAC poli-
cies enriched with role hierarchies, separation of
duty constraints and cardinality constraints. A
static detection algorithm is informally described
and based on transitive matrices, on the graph of
roles, and the use of the Tarjan’s algorithm. This
algorithm only considers finite sets of entities.

[35] studies XACML access control policies
with hierarchies of roles and resources. The prop-
agation rules along the hierarchies do not allow
positive authorizations to propagates thus lead-
ing to potential conflicts. The authors translate
their policies in description logic and claims that
conflict detection can be considered as checking
consistency of ABox.

A graph model (CPG) is sketched in [42] which
allows access control, nested policy and informa-
tion transfer. The analysis of the model is done
by a translation into a term rewriting system.
The authors defines the translation of a con-
strained policy graph as a term rewriting system

24



which is confluent and terminating. Thus each
access request results in a normal form, grant
or deny and not both of them. The notion of
conflict is defined by two rules with unified con-
ditions and inconsistency in permissions. The
notion of consistency for term rewriting system
is also introduced for requests which do not have
contradictory replies.

The paper [43] studies the principle of pairs of
conflicting rules in a privacy aware RBAC model.
The model allows only positive assignment and
a two-conflict is defined as the intersection of
two policy conditions. The authors shows that
it is not sufficient to find conflict between two
rules and propose several algorithms. The per-
formance analysis shows that the number of rules
and the detection with more than two rules en-
tails efficiency.

In [49], the authors define and formalize the
validity and reliability concepts. Then, they pro-
pose a model checking based method to vali-
date the consistency and completeness for secu-
rity policies. They rely on the common idea to
check for two contradicting rules to detect con-
flicts.

[57] considers conflict in policies for virtual
networks. The proposed approach detects con-
flict as soon as a new rule is added, it is static
since independent from a particular request. The
detection method is based on checking two rules
for conflict and use the BDD (Binary Decision
Diagram) encoding.

[55] presents a framework supporting a
privacy-aware access control mechanism. The
authors formally define the notion of privacy-
aware permissions and the notion of conflict-
ing permission assignments in P-RBAC, together
with efficient conflict-checking algorithms. They
introduce two kinds of conflicting permission as-
signment. The first with conflicting conditions

is due to implicit negative permission and the
matching of a condition with the negation of an-
other condition. The second results from am-
biguous rules, that is, the same access request
causes a different obligation to be invoked. The
authors identify that a simple checking of pairs
of rule is not sufficient since a conflict may arise
between three rules while there is no conflict be-
tween pairs. Thus such a correct conflict check-
ing should consider all the policies in the system
and this entails efficiency.

[63] recognizes the importance of static con-
flict detection and argues for a new method more
efficient than logical approaches. The authors
proposes to reuse an algorithm from machine
learning. The language supports access control
and delegation but neither temporal logic nor
obligation. The notion of inconsistency is used,
“We have a direct inconsistency when two rules
present in the same policy set lead to contra-
dictory conclusions.”, and it is equated with the
notion of conflict.

[66] states the “inadequacy of conflict resolu-
tion mechanism” and explains that the complex-
ity of the mechanism comes from historical and
legacy reasons. The notion of conflict is “values
that satisfy two rules with opposite effects” and
the checking is pair-wise based. They demon-
strate that the solution is applicable and Prolog
can be used to look for conflicts.

[70] identifies three kinds of conflicts: modality
conflict, redundancy conflict and potential con-
flict. The last one corresponds to the usual no-
tion of conflict due to intersection of conditions
in rules with opposite effects. The model is ac-
cess control without obligation and discrete time
but with conditions on the subjects and roles hi-
erarchy. Potential conflicts are related to pairs of
contradictory rules but the work does not define
an algorithm to detect them.

25



The authors of [30] focus on collaborative data
sharing and privacy conflicts in social networks.
The conflict notion is informally states as: “when
two users disagree on whom the shared data item
should be exposed to, we say a privacy conflict
occurs”. A space segmentation algorithm is used
to partition accessor spaces of a shared data item
into disjoint segments. Then it uses the segmen-
tation to identify conflicting segments. This is
a specific approach to the problem dealing with
finite sets and limited features.

In the context of private data shared among
several owners, like email, it is important to early
detect policy conflicts. The authors of [60] pro-
pose a model for the policy set based on a strat-
ified graph. Privacy conflict represents the se-
mantic conflict mismatches between two policies
and it is also represented as a graph. Then a
graph isomorphism operation is defined in order
to check if the policy set has a conflict.

The work from [67] proposes a framework for
privacy preserving access control policies, and de-
scribes algorithms for conflicting problems tak-
ing into account purposes, conditions and obliga-
tions. It uses a rich access control model based
on usage access control and enriched to control
data disclosure. Purposes, allowed or prohibited,
are organized in a tree which varies dynamically.
Obligations are possible, there is no parameter
and no linear time. A detailed analysis of the
purpose notion is presented as well as a conflict
algorithm based on the analysis of pairs of rules.

[9] studies transversal conflicts occurring be-
tween different classes of policy. The authors
propose a general approach based on an abstract
domain description model, and specific policy
predicates expressing authorization, obligation,
filtering, firewall, and data protection concerns.
All this information is expressed in FOL and with
logical rules. The conflicts are detected by ex-

pressing the expected property and then using
consistency checking. One strong limitation is
that the method is mainly manual without ex-
plicit tool support.

The work from [54] proposes a semantic web
approach to the detection and resolution of pol-
icy incompatibilities. The model focuses on au-
thorization incompatibilities using a formal defi-
nition of modality conflict based on pairs of sys-
tem authorizations. The authors advocates for
a semantic web approach since it is better inte-
grated with existing XML and Web technology.
Authorization rules are described in SWR and
an OWL reasoner is used.

[72] argues for a static conflict detection and
identifies two kinds of conflicts: authorizations
and resource conditions. The language is a re-
stricted version of RBAC but with hierarchy of
resources. The proposed approach is rather lim-
ited: no obligation, no hierarchy on roles, and no
linear time. This work focuses on conflicts occur-
ring due to policy evolution. The principle is to
check for the existence of resources or permis-
sions which are conflicting. The approach uses
model-checking in a context with hierarchical re-
sources, but it is used as a technical trick to find
paths in the DAG representing this hierarchy.

In [5] the authors argue for a formal analysis
and define an RBAC model extended with dy-
namic roles and negative roles. From that they
formally state two crucial problems: detection
of redundancies and detection of conflicts. They
propose an SMT (Satisfiability Modulo Theory)
approach to check the condition satisfiability of
pairs of incompatible rules. It assumes that
rules are only authorizations with conjunction of
atoms.

The computer network defense policy con-
flict detection model (CNDPDM) is introduced
in [74]. A classification of conflicts is pro-

26



posed with few formal definitions. As it appears
all these cases are instances of the well-known
schema: overlapping conditions in two policies
with incompatible measures. The syntax of con-
ditions as well as the way to judge for their com-
parisons are lacking. However, examples suggest
that simple predicates and simple rules are suffi-
cient enough.

[3] addresses the challenge of providing auto-
mated support for identifying and resolving con-
flicts. The authors note that: “It is difficult,
even for experts, to write consistent, unambigu-
ous and accurate policies, and conflicts are prac-
tically unavoidable”. They distinguish between
logical and functional conflicts. The first case is
related to conflicts like permitted and denied ac-
tions. The second is rather application or domain
dependent conflict as proposed by some others.
Both cases are defined between a pair of rules
and a checking algorithm is proposed.

[10] presents a formalization of access control
policies in Fusion logic and an enforcement mech-
anism based on a verification procedure. In this
case the resolution is dynamically done by some
specific meta-rules but the detection is statically
done. The policies are history-based and this
makes verification more challenging. The lan-
guage allows access controls but without obli-
gation. The authors analyze a suitable candi-
date for the temporal semantics and choose Left
Fusion logic a subset of the propositional inter-
val temporal logic. Verification is bounded and
based on translation to BDD. Conflict detection
is based on the satisfiability of checking positive
and negative authorizations.

In the context of privacy and exchange infor-
mation [20] is a good example of a static conflict
detection approach. The authors define a formal
language integrating deontic concepts of obliga-
tion, permission and prohibition. They study

various properties and the consistency one is re-
lated to the detection of conflicts. They con-
sider that consistency is no conflict and they pro-
pose a simple algorithm to detect conflicts be-
tween pairs of rules. The condition satisfiability
is checked thanks to bounded model-checking.

In the context of healthcare [44] proposes a
semantic model for privacy policies. The paper
introduces privacy, access control and disclosure
policy rules but without a precise syntax. This
work considers the conflicts between two rules
and a classification of the conflicts. A represen-
tation of the rules is suggested with RDF but
without a real tool support.

In the context of social networks and privacy
concerns, the conflict detection has been ex-
plored in [8]. The deontic constructions, obliga-
tion, permission and interdiction are taken into
consideration. The proposed formalism, based
on description logic, enables conflict detection
between what is permitted and what is prohib-
ited. The authors reduce the conflict compliance
of two policies to description logic subsumption
and present results from performing automated
conflict detection within the Facebook, Zynga,
and AOL privacy specifications. Indeed they are
interested in conflicts in policy compliance, but
the approach can potentially check for conflicts
in policies and this point is discussed in the pa-
per.

[73] introduces the model of CWS-RBAC and
authorization policy implemented in this model.
This is an extension of the RBAC model to cope
with web services composition. Algorithms ba-
sically compare pairs of policy but taking into
account role hierarchy, object role composition,
and time constraints.

[65] exposes the critical importance of the
static conflict detection and defines an algo-
rithm for that. This work considers a subset

27



of XACML, access control with real time con-
straints and look for pairs of conflicting rules.
It focuses on the time constraints and their con-
flicts without other conditions. The main novelty
is the proof of the algorithm processed thanks to
the Coq prover.

AAL [61] for Abstract Accountability Lan-
guage allows to write accountability clauses and
as such it overlaps many classic access control,
privacy and security languages. The authors ar-
gue that the static detection of conflicts should
be based on logical consistency or satisfiability.
They concretely illustrate that the approach is
successful, more powerful and general than some
existing approaches.

A.5 Mixed Detection

Few proposals consider that conflict detection
should be done at several stages, mainly static
as possible and dynamic for the remaining con-
flicts.

[64] claims: “it is very important to do static
conflict detection when the policies are formu-
lated and revised, and to do dynamic conflict
detection when the system is running”. This pa-
per discusses informally the requirements for a
good policy language. It proposes a simple pol-
icy model with modalities (permission, obliga-
tion and forbidden) and tense features (always,
immediate, before, etc). The authors suggests
to use static conflict detection, that is checking
if two policies have overlapping conditions. It
also defines a conflict library which dynamically
checks for various conflicts (for example tense
conflicts).

A policy-driven approach is appealing for sys-
tem management, it enables administrators to
express their management intentions and con-
straints. [56] uses a two levels approach with

goal policies and a refined action level more op-
erational. It considers that dynamic detection
for action policies is needed because of environ-
mental conditions but also a static approach to
find out and resolve the potential conflicts. The
checking principle examines the overlapping of
subjects, goals and targets of two goal policies,
and then decide whether there is a conflict.

28


