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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION *

Analysis sparsity is a common prior in inverse problem or machine learning including special cases such as Total Variation regularization, Edge Lasso and Fused Lasso. We study the geometry of the solution set (a polyhedron) of the analysis 1 regularization (with 2 data fidelity term) when it is not reduced to a singleton without any assumption of the analysis dictionary nor the degradation operator. In contrast with most theoretical work, we do not focus on giving uniqueness and/or stability results, but rather describe a worst-case scenario where the solution set can be big in terms of dimension. Leveraging a fine analysis of the sub-level set of the regularizer itself, we draw a connection between support of a solution and the minimal face containing it, and in particular prove that extreme points can be recovered thanks to an algebraic test. Moreover, we draw a connection between the sign pattern of a solution and the ambient dimension of the smallest face containing it. Finally, we show that any arbitrary sub-polyhedra of the level set can be seen as a solution set of sparse analysis regularization with explicit parameters.

1. Introduction. We focus on a convex regularization promoting sparsity in an analysis dictionary in the context of a linear inverse problem/regression problem where the regularization reads:

(1.1)

min x∈R n 1 2 ||y -Φx|| 2 2 + λ||D * x|| 1
where y ∈ R q is an observation/response vector, Φ : R n → R q is the sensing/acquisition linear operator, D : R p → R n is a dictionary and λ > 0 the hyper-parameter used as a trade-off between fidelity and regularization. Note that at this point, we do not make any assumption on the dictionary D or the acquisition operator Φ. This convex regularization is known as analysis 1 -regularization [START_REF] Elad | Analysis versus synthesis in signal priors[END_REF] in the inverse problems community or generalized Lasso [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF] in statistics. Let us mention that it includes several popular regularizers as special cases such that (anisotropic) total variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] when D is a discrete difference operator, wavelet coefficient analysis [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[END_REF] using a wavelet transform as an analysis dictionary or fused Lasso [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF] when using the concatenation of the identity matrix and a discrete difference operator, i.e., using a Lasso regularization with an additional constraint on the (discrete) gradient. In the noiseless context, when y ∈ Im Φ, the following constrained formulation is used instead of the Tikhonov formulation (1.1) as (1.2) min x∈R n ||D * x|| 1 subject to Φx = y. We focus here on the noisy version of the regularization in order to keep our discussion concise. The purpose of this paper is to answer the following question:

When the solution set of (1.1) is not reduced to a singleton, what is its "geometry"? One possible motivation could be to study some generalized solution path of such a problem, not with respect to the hyper-parameter λ (see e.g. [START_REF] Efron | Least angle regression[END_REF][START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF][START_REF] Tibshirani | The solution path of the generalized lasso[END_REF]) but with respect to some parameter of D. For example, consider

D ρ = ρ 0 0 1 , Φ = 1 1 , y = 2, λ = 1;
one can show that the solution set is

{(1, 0)} if ρ < 1, [(1, 0), (0, 1)] if ρ = 1, {(0, 1)} if ρ > 1.
Even if most of the time the solution set is reduced to a singleton (see below), it is essential to describe what happens when it is not the case to understand the behavior of the generalized solution path. In this paper, we do not tackle fully this multivalued point of view, and leave the sensitivity analysis for future work.

1.1. Previous works.

Uniqueness certificate of analysis regularization. Among several theoretical issues, sufficient condition for uniqueness of the solution set of (1.1) have been extensively studied, see for instance [START_REF] Vaiter | Robust sparse analysis regularization[END_REF][START_REF] Nam | The cosparse analysis model and algorithms[END_REF][START_REF] Ali | The Generalized Lasso Problem and Uniqueness[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both l1-synthesis and l1-analysis minimizations[END_REF][START_REF] Tardivel | The Geometry of Model Recovery by Penalized and Thresholded Estimators[END_REF]. Several uniqueness conditions can be proposed, where the simplest is for instance requiring n q and Φ having full rank: the 2 -loss term is strictly convex, and uniqueness follows from it. The task of studying the case when the solution set is not reduced to a singleton can be seen as rather formal since most of the time the solution set is reduced to a singleton [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF], but nevertheless, it exhibits interesting properties of sparse analysis regularization. See subsection 3.3 for a discussion of some of these conditions.

Solution set of generic convex program. Describing the geometry of the solution set in convex optimization has been a subject of intense study starting from the work of [START_REF] Mangasarian | A simple characterization of solution sets of convex programs[END_REF] and its generalization to non-smooth convex program [START_REF] Burke | Characterization of solution sets of convex programs[END_REF]. Several extensions have been proposed such as [START_REF] Jeyakumar | On characterizing the solution sets of pseudolinear programs[END_REF] for pseudo-linear programs or in a different setting (minimization of concave function), [START_REF] Mangasarian | Minimum-support solutions of polyhedral concave programs[END_REF] shows that one can describe one solution with minimal sparsity level.

Representer theorems. We shall also remark that coming from the statistics community, [START_REF] Kimeldorf | Some results on tchebycheffian spline functions[END_REF] (and popularized in [START_REF] Schölkopf | A generalized representer theorem[END_REF]) initiates a line of work coined as representer theorems, culminating recently in [START_REF] Boyer | On representer theorems and convex regularization[END_REF] and [START_REF] Unser | A unifying representer theorem for inverse problems and machine learning[END_REF]. The basic idea of these kinds of results is to show that under some assumption, one can write every element of the solution set of a convex program as a sum of elementary atoms.

Description of polytopes. Convex polytopes and polyhedrons are central objects in geometry [START_REF] Ziegler | Lectures on polytopes[END_REF] and convex analysis. A part of our results provides a connection between faces and signs of vector living in the analysis domain. We can draw a connection with the study of oriented matroid [START_REF] Björner | Oriented matroids[END_REF] and zonotopes [START_REF] Bolker | A class of convex bodies[END_REF] (analysis 1 -ball are zonotopes) as described in [39, Lecture 7], in particular in section 7.3.

Contributions.

In contrast to these lines of work, we take here a more direct and specific approach. We give below an overview of our contributions.

Geometry of the analysis 1 -ball. The first part of our work ((2)) is dedicated to studying the geometry of the analysis 1 -ball. We study across several results the direction and the relative interior of the intersection between the sub-level set of the regularizer and another set. We refine our analysis progressively starting from any convex component of the level set, then looking to sub-polyhedra of the sub-level set ending by the faces itself of the level set. We show several specific results:

• The sign pattern defines a bijection between the set of exposed faces of the analysis 1 -ball and the set of feasible signs in the dictionary D as proved in (2.24). • The extreme points of the analysis 1 -ball can be recovered with a purely algebraic result thanks to (2.25). We draw a link between our result and a remark in [START_REF] Boyer | On representer theorems and convex regularization[END_REF] which is a topological argument Geometry of the solution set. Thanks to the study of the analysis 1 -ball, we give in a second part ((3)) consequences on the solution set of (1.1). We show that:

• Using (2.16) and (2.17), we describe the geometry of the solution set in (3.6).

• The solution set of (1.1) admits extreme points if and only if, the condition denoted by (H 0 ) and assumed to hold all throughout [START_REF] Vaiter | Robust sparse analysis regularization[END_REF] or [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF], namely Ker Φ ∩ Ker D * = {0}, holds. In this case, the extreme points are precisely those which satisfy the condition denoted by (H J ) in [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF] at a given solution to perform a sensitivity analysis, see (3.9). • For any affine space which intersect non-trivially the unit-sphere, one can find Φ, y such that the solution set is exactly this intersection, see (3.11) and (3.12).

1.3. Notations. For a given integer n, the set of all integers between 1 and n is denoted by [n] = {1, . . . , n}.

Vectors and support. Given u ∈ R m , the support supp(u) and the sign vector sign(u) are defined by

supp(u) = {i ∈ [m] : u i = 0} and sign(u) = (sign(u i )) i∈[m] ,
and its cardinal is coined the 0 -norm

||u|| 0 = | supp(u)|. The cosupport cosupp(u) is the set cosupp(u) = [m] \ supp(u). Given u, v ∈ R m , the inner product is written u, v = m i=1 u i v i and the associated norm is written ||u|| 2 =
u, u . We will also use the 1 

-norm ||u|| 1 = m i=1 |u i | and ∞ -norm ||u|| ∞ = max i∈[m] |u i |. Linear operators. Given a linear operator D ∈ R n×m , D * ∈ R m×n is the transpose operator, D + ∈ R n×m its Moore-Penrose pseudo-inverse, Ker D ⊆ R m its null-space and Im D ∈ R n its column-space. Given I ⊆ [m], D I ∈ R n×|I|
is the matrix formed by the column of D indexed by I. The identity operator is denoted Id m or Id. Given a vector u ∈ R m , x I is the vector of components indexed by I. Given a subspace F ⊆ R m , we denote by Π F the orthogonal projection on F . Given a vector u ∈ R n , its diagonalized matrix diag(u) ∈ R n×n is the diagonal matrix such that diag(u) ii = u i for every i ∈ [n].

Convex analysis. Given a convex, lower semicontinuous, proper function f : R m → R, its sub-differential ∂f is given

∂f (u) = {η ∈ R m : f (u) f (v) + η, u -v } .
Given a convex set C, the affine hull aff(C) is the smallest affine set containing C, the direction dir(C) of C is the direction of aff(C) and its relative interior ri(C) is the interior of C relative to its affine hull aff(C). The relative boundary rbd(C) of C is the boundary of C relative to aff(C). The dimension dim(C) of C is the dimension of aff(C). We say that x ∈ C is an extreme point if there are no two different

x 1 , x 2 ∈ C such that x = x1+x2 2 .
The set of all extreme points of C is denoted by ext(C). For instance, given two points

x 1 = x 2 ∈ R n , the segment C = [x 1 , x 2 ] is such that its affine hull is aff(C) = {x 1 + tx 2 : t ∈ R}, its relative interior is the open segment ri(C) = (x 1 , x 2 ), its relative boundary and set of extreme points ext(C) = rbd(C) = {x 1 , x 2 }, its dimension is 1 and its direction is dir(C) = R(x 1 -x 2 ).
1.4. Examples of operators D * . We illustrate our results in this paper on different analysis regularization settings. In particular, we focus our interest on different operators:

• The Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], corresponding to D = D Lasso = Id, used to recover sparse vectors. • The Total Variation regularization [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], and more specifically the 1D Total Variation, i.e., when D : R n → R n-1 is a forward difference operator on n points:

D * =       -1 +1 0 • • • 0 0 -1 +1 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 -1 +1      
. This is a popular prior in image processing to regularize "cartoon" or piecewise regular images.

• More generally, we consider the Graph-Total Variation regularization [START_REF] Sharpnack | Sparsistency of the edge lasso over graphs[END_REF] where D = D G is the vertex-edge incidence matrix of a graph G. Specific instance include the 1D and anisotropic 2D Total Variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], Cluster Lasso [START_REF] She | Sparse regression with exact clustering[END_REF].

2. The unit ball of the sparse analysis regularizer. This section contains the core of our results. After giving preliminary results on sign vectors in subsection 2.1, we show that the unit ball is a convex polyhedron by giving its half-space representation in subsection 2.2. Then, we study properties of convex subset of the unit-sphere in subsection 2.3 which lead us to Lemma 2.8 which turns to be the foundation of latter results. Subsection 2.4 contains a sequence of results which represent our main contribution: Theorem 2.16 which describes in detail the affine components of the unit-ball, Proposition 2.17 which instantiates this result to setting of an affine component included in the unit sphere, Proposition 2.18 which extends this result to any exposed faces and finally Proposition 2.19 which gives a necessary and sufficient condition of extremality. Finally, in subsection 2.5, we reformulate our previous results in order to describe the exposed faces of the unit-ball, and to show that there exists a bijection between the set of exposed faces and feasible signs. We also draw a connection to the work of [START_REF] Boyer | On representer theorems and convex regularization[END_REF].

2.1. Preliminary results on sign vectors. We first define an order on the set of all possible signs {-1, 0, +1} p along with a notion of consistency of signs which can be related to the idea of "sub-signs". The following lemma gives a characterization of the 1 -norm which will be used intensively in latter results.

Lemma 2.3. Let θ ∈ R p . Then for any s ∈ {-1, 0, +1} p , s, θ ≤ θ 1 , and the equality holds if and only if sign(θ) s.

Proof. We prove the result component-wisely. Let α ∈ R. Then for any s ∈ {-1, 0, +1}, sα ≤ |α|. Suppose now that sign(α) s. If α = 0, then sα = |α|, and if α = 0, then s = sign(α) and sα = |α|. Conversely, suppose that sign(α) s. Then α = 0 and s = sign(α), i.e. s = 0 or s =sign(α). In both cases, sα < |α|.

2.2. Half-space representation of the unit ball. We denote by B 1 (resp. ∂B 1 ) the unit ball (resp. the unit sphere), or sub-level set (resp. level set) for the value 1, of the sparse analysis regularizer R : x → D * x 1 :

B 1 = {x ∈ R n : D * x 1 ≤ 1}, ∂B 1 = {x ∈ R n : D * x 1 = 1}.
Since R is one-homogeneous, the results of this section apply to all sub-level sets for positive values.

Proposition 2.4. The unit ball B 1 is a full-dimensional convex polyhedron, a half-space representation of which is given by

B 1 = s∈{-1,0,1} p {x ∈ R n : Ds, x ≤ 1}.
Proof. First note that B 1 has a nonempty interior (in particular 0 ∈ B 1 ), namely {x ∈ R n : D * x 1 < 1}, which is equivalent for a convex set to be of full dimension.

Second denote

A = s∈{-1,0,1} p {x : Ds, x 1}. Let x ∈ B 1 . By Lemma 2.3, Ds, x = s, D * x ≤ D * x 1 ≤ 1 for any s ∈ {-1, 0, 1} p so x ∈ A. Conversely, let x ∈ A and s = sign(D * x). By Lemma 2.3, D * x 1 = s, D * x = Ds, x ≤ 1 so x ∈ B 1 . Then B 1 = A is a convex polyhedron.
Note that this half-space representation is redundant, and if D = Id, then it is the 1 -ball. The general question of the minimal representation of H-polyhedron is known to be hard, we shall leave it to future work. However, we can use this proposition to derive a way to construct exposed face of B 1 as claimed in the following lemma.

Lemma 2.5. Let s ∈ {-1, 0, 1} p . Then

B 1 ∩ {x ∈ R n : Ds, x = 1} = ∂B 1 ∩ {x ∈ R n : sign(D * x) s};
it is either empty or an exposed face of B 1 .

Proof. Let x ∈ B 1 . Then by Lemma 2.3, Ds, x = 1 if and only if 1 = s, D * x ≤ D * x 1 ≤ 1, if and only if D * x 1 = 1 and sign(D * x) s. If the intersection is nonempty, then {x ∈ R n : Ds, x = 1} is a supporting hyperplane of B 1 by Proposition 2.4, and thus its intersection with B 1 is an exposed face of the polyhedron. For a given s, the set {x ∈ R n : sign(D * x) s} looks hard to describe. In fact, there exists a linear representation as told in the following lemma.

Lemma 2.6. Let s ∈ {-1, 0, 1} p . Then {x ∈ R n : sign(D * x) s} = {x ∈ R n : D * J x = 0 and diag(sĪ )D * Ī x 0}
where J = cosupp(s) and Ī = supp(s).

Proof. It is a straightforward rewriting of sign(D * x) s. Indeed,

sign(D * x) s ⇔ D * J x = 0 and si (D * x) i 0, ∀i ∈ Ī ⇔ D * J x = 0 and diag(sĪ )D * Ī x 0.
Note that we can exchange the role of s and D * x, and we also obtain that {x ∈ R n : sign(D * x) s} = {x ∈ R n : D * J x = 0 and diag(D * Ī x)s I 0}.

2.3. Convex components of the unit sphere. In this section we consider nonempty convex subsets C ⊂ ∂B 1 . All the results will hold in particular for exposed faces of B 1 .

We begin with a lemma on general convex sets.

Lemma 2.7. Let X be a nonempty convex set and C ⊂ X be a nonempty convex subset. Suppose that there exists an exposed face

G of X such that ri(C) ∩ G = ∅. Then C ⊂ G. Moreover, if G is exposed in aff(X), then G ⊂ rbd(X).
Proof. Recall that an exposed face of X is defined as G = X∩{x : α, x = β} with {x : α, x = β} a supporting hyperplane of X, i.e. such that X ⊂ {x : α, x ≤ β}.

Suppose that C ⊂ G and let x ∈ C \ G ⊂ X and x ∈ ri(C) ∩ G (nonempty). Then α, x < β and α, x = β. Let d = x -x ∈ dir(C). Since x ∈ ri(C), x + εd ∈ C ⊂ X for |ε| small. But α, x+εd = β +ε(β -α, x ) > β for ε > 0, which is a contradiction. Then C ⊂ G.
It is a classical result that G ⊂ bd(X), see e.g. [14, Part III, Section 2.4]. If G is exposed in aff(X), we get that G ⊂ rbd(X) by considering aff(X) as the ambient space.

The following lemma is the first result of a long number of consequences which study the direction and relative interior of the intersection of the unit ball with another set.

Lemma 2.8. Let x ∈ ∂B 1 , s = sign(D * x), J = cosupp(D * x), and F = B 1 ∩ {x ∈ R n : Ds, x = 1}. (i) F = ∂B 1 ∩ {x ∈ R n : sign(D * x) s} and it is an exposed face; (ii) C ⊂ F for any nonempty convex subset C ⊂ B 1 such that x ∈ ri(C); (iii) dir( F ) = (Ds) ⊥ ∩ Ker D * J ; (iv) ri(C) ⊂ ri( F ) for any nonempty convex subset C ⊂ B 1 such that x ∈ ri(C); (v) ri( F ) = ∂B 1 ∩ {x ∈ R n : sign(D * x) = s}.
Proof. (i) The expression for F is given by Lemma 2.5. It follows that x ∈ F and thus F is an exposed face of B 1 .

(ii) Let C be a nonempty convex subset of B 1 such that x ∈ ri(C). Then ri(C) ∩ F = ∅, and by Lemma 2.7, C ⊂ F .

(iii) The inclusion dir( F ) ⊂ (Ds) ⊥ follows from the definition of F . Moreover, for any (iv)-(v) First, we prove that

x ∈ F , sign(D * x) s, which implies that J ⊂ cosupp(D * x), i.e. D * J x = 0. Then F ⊂ Ker D * J ,
∂B 1 ∩ {x ∈ R n : sign(D * x) = s} ⊂ ri( F ) (thus in particular x ∈ ri( F )). Let x ∈ ∂B 1 be such that sign(D * x) = s. By (iii) and its proof, for any d ∈ dir( F ), x + εd ∈ F for |ε| small. Thus x ∈ ri( F ). Second, let C be a nonempty convex subset of B 1 such that x ∈ ri(C). By (ii), C ⊂ F ⊂ ∂B 1 . Let x ∈ ri(C) and ŝ = sign(D * x). Note that ŝ s since x ∈ F . Let F = B 1 ∩ {x ∈ R n :
Dŝ, x = 1}. Applying (ii) to x and C = F , we get that F ⊂ F , which implies that s ŝ. Thus sign(D * x) = s and ri(C) ⊂ ∂B 1 ∩ {x ∈ R n : sign(D * x) = s}. This proves (iv) as well as the missing inclusion of (v) by setting C = F (recall that x ∈ ri( F )).

The following proposition is a direct consequence of Lemma 2.8 which allows to characterize faces of B 1 by an arbitrary convex subset of it. Proposition 2.9. Let C be a nonempty convex subset of ∂B 1 . Let x ∈ ri(C), s = sign(D * x), and

F = B 1 ∩ {x ∈ R n : Ds, x = 1}.
Then C ⊂ F and ri(C) ⊂ ri( F ). Moreover, F is the smallest face of B 1 such that ri(C) ∩ F = ∅ and the unique face of B 1 such that ri(C) ∩ ri( F ) = ∅.

Proof. By Lemma 2.8 (i) and (iii),

C ⊂ F and ri(C) ⊂ ri( F ). Let F be a face such that ri(C) ∩ F = ∅. If F = B 1 , then F ⊂ F ; otherwise F is an exposed face since B 1 is a polyhedron, and by Lemma 2.7, C ⊂ F . It follows that ∅ = ri(C)∩ri( F ) ⊂ F ∩ri( F ),
and by Lemma 2.7 again, F ⊂ F . Suppose now that ri(C)∩ri(F ) = ∅. Then permuting F and F , we get that F ⊂ F , thus F = F .

Remark 2.10. The uniqueness actually holds with the same proof for a general nonempty convex set X: given a nonempty convex subset C ⊂ rbd(X), there exists at most one exposed face G of X such that ri(C) ∩ ri(G) = ∅. The existence reduces to the existence, for any x ∈ rbd(X), of an exposed face G of X such that x ∈ ri(G).

For a singleton C = {x}, the previous proposition becomes the following.

Corollary 2.11. Let x ∈ ∂B 1 and s = sign(D * x). Then F = B 1 ∩ {x ∈ R n : Ds, x = 1} is the smallest face of B 1 such that x ∈ F and the unique face of B 1 such that x ∈ ri( F ).
We can also derive from Proposition 2.9 and Lemma 2.8 the following properties about the mapping x → sign(D * x).

Corollary 2.12. Let C be a nonempty convex subset of the unit-sphere ∂B 1 . Then max x∈C sign(D * x) is well-defined and this maximum is attained everywhere in ri(C). In particular sign(D * •) is constant on ri(C).

For any x, x ∈ C, [x, x ] is a nonempty convex subset of ∂B 1 and thus sign(D * •) is constant on ]x, x [. Moreover, since s = sign(D * x) and s = sign(D * x ) are both max x∈C sign(D * x), they are consistent (see Remark 2.2). It follows that the constant value s of sign(D * •) on ]x, x [ can be given explicitly:

s i =      s i if s i = 0, s i if s i = 0, 0 otherwise. It is also the maximum of sign(D * •) over [x, x ].
Finally we get a general sufficient condition of extremality.

Corollary 2.13. Let C be a nonempty convex subset of ∂B 1 . Let x ∈ C and s = sign(D * x). If x is the unique x ∈ C such that sign(D * x) s, then x ∈ ext(C). Proof. Let x 1 , x 2 ∈ C such x = x1+x2 2 . Then [x 1 , x 2 ] is a nonempty convex subset of ∂B 1 . By Corollary 2.12, sign(D * x) = s for any x ∈]x 1 , x 2 [. By uniqueness of x, ]x 1 , x 2 [= {x}, i.e. x 1 = x 2 =
x and thus x is an extreme point.

Observe that the uniqueness condition in the Corollary 2.13 can be written as

C ∩ F = {x} with F = B 1 ∩ {x ∈ R n : Ds, x = 1} the smallest face of B 1 containing x.
2.4. Sub-polyhedra of the unit ball. In this section we consider nonempty convex polyhedra of the form A∩B 1 with A an affine subspace. The results on convex components of the unit sphere apply to such sets if A ∩ B 1 ⊂ ∂B 1 , and in any case, as we will see, to exposed faces of such polyhedra. Again, the results of this section will hold in particular for exposed faces of B 1 .

We begin with a useful lemma.

Lemma 2.14. Let A be an affine subspace and C be a nonempty convex set such that A ∩ ri(C) = ∅. Then The following lemma will be used in Theorem 2.16.

ri(A ∩ C) = A ∩ ri(C) and dir(A ∩ C) = dir(A) ∩ dir(C).
Lemma 2.15. Let A be an affine subspace such that

∅ = A ∩ B 1 ⊂ ∂B 1 . Let x ∈ A ∩ ∂B 1 , s = sign(D * x), and J = cosupp(D * x). Then (i) dir(A) ⊂ s s {d ∈ R n : Ds, d ≥ 0}; (ii) dir(A) ⊥ ∩ s s R + Ds = {0}; (iii) dir(A) ∩ Ker D * J ⊂ (Ds) ⊥ , i.e. dir(A) ∩ (Ds) ⊥ ∩ Ker D * J = dir(A) ∩ Ker D * J . (iv) A ∩ {x ∈ R n : sign(D * x) s} ⊂ ∂B 1 , i.e. A ∩ ∂B 1 ∩ {x ∈ R n : sign(D * x) s} = A ∩ {x ∈ R n : sign(D * x) s}; (v) A ∩ {x ∈ R n : sign(D * x) = s} ⊂ ∂B 1 , i.e. A ∩ ∂B 1 ∩ {x ∈ R n : sign(D * x) = s} = A ∩ {x ∈ R n : sign(D * x) = s}.
Proof. (i) Suppose that the inclusion does not hold and let d ∈ dir(A) such that Ds, d < 0 for all s s. Then Ds, x + εd < 1 for all s and ε > 0 small. Indeed, by Lemma 2.3, if s s, then Ds, x + εd < 1 for ε > 0; otherwise, Ds, x + εd < 1 for ε small. Still by Lemma 2.3, x + εd 1 < 1 for ε > 0 small, i.e. x + εd ∈ A ∩ B1 , which is in contradiction with A ∩ B 1 ⊂ ∂B 1 .

(ii) Suppose that the intersection is reduced to {0} and consider the dual cone of both sides of the expression (we denote by (v) The proof is the same as for (iv).

C * = {y ∈ R n : ∀x ∈ C, y, x ≥ 0} of a subset C ⊂ R n ). Since dir(A) ⊥
The following theorem is similar to Lemma 2.8 when we replace convex subset by sub-polyhedra (here of the unit sphere).

Theorem 2.16. Let A be an affine subspace intersecting ∂B

1 . Let x ∈ A ∩ ∂B 1 , s = sign(D * x), J = cosupp(D * x), and F = B 1 ∩ {x ∈ R n : Ds, x = 1}. Then Ḡ = A ∩ F (i) is the smallest face of A ∩ B 1 such that x ∈ Ḡ and the unique face of A ∩ B 1 such that x ∈ ri( Ḡ) ( Ḡ is possibly equal to A ∩ B 1 itself ); (ii) satisfies the following: Ḡ = A ∩ ∂B 1 ∩ {x ∈ R n : sign(D * x) s}, ri( Ḡ) = A ∩ ∂B 1 ∩ {x ∈ R n : sign(D * x) = s}, dir( Ḡ) = dir(A) ∩ (Ds) ⊥ ∩ Ker D * J ;
(iii) satisfies the following, in the case where A ∩ B 1 ⊂ ∂B 1 :

Ḡ = A ∩ {x ∈ R n : sign(D * x) s}, ri( Ḡ) = A ∩ {x ∈ R n : sign(D * x) = s}, dir( Ḡ) = dir(A) ∩ Ker D * J .
Proof. (i) First note that Ḡ = (A ∩ B 1 ) ∩ {x : Ds, x = 1} is an exposed face of A ∩ B 1 (in particular it is a convex subset of A ∩ B 1 ) and is such that x ∈ ri( Ḡ) = A ∩ ri( F ) by Lemma 2.14. Let G be a face of A ∩ B 1 such that x ∈ G. If G = A ∩ B 1 , then Ḡ ⊂ G; otherwise G is an exposed face since A ∩ B 1 is a convex polyhedron, and by Lemma 2.7, Ḡ ⊂ G. Suppose now that x ∈ ri(G). Then permuting G and Ḡ, we get that G ⊂ Ḡ, thus G = Ḡ.

(ii) By definition, Ḡ = A∩ F and x ∈ A∩ri( F ). By Lemma 2.14, ri( Ḡ) = A∩ri( F ) and dir( Ḡ) = dir(A) ∩ dir( F ). The expression of these sets follows from Lemma 2.8.

(iii) We proved the strengthened expression of the previous sets in Lemma 2.15.

We get the next result on A ∩ B 1 itself in the case where it is a subset of ∂B 1 .

Proposition 2.17. Let A be an affine subspace such that

∅ = A ∩ B 1 ⊂ ∂B 1 . Then A ∩ B 1 = A ∩ F with F = B 1 ∩ {x ∈ R n : Ds, x = 1}
and s = max x∈A∩B1 sign(D * x) (or equivalently s = sign(D * x) for some x ∈ ri(A∩B 1 )). In particular, the results of Theorem 2.16 (iii) hold for A ∩ B 1 .

Proof. Since A ∩ B 1 is a nonempty convex subset of ∂B 1 , s is well-defined by Corollary 2.12. Let x ∈ ri(A ∩ B 1 ) ⊂ A ∩ ∂B 1 . Then by Theorem 2.16 (i), A ∩ F is the unique face of A ∩ B 1 containing x in its relative interior; it is thus equal to the face A ∩ B 1 .

In the general case, we can describe all the exposed faces of A ∩ B 1 .

Proposition 2.18. Let A be an affine subspace such that

∅ = A ∩ B 1 = aff(A ∩ B 1 ). Let G be a face A ∩ B 1 exposed in aff(A ∩ B 1 ). Then G = A ∩ F with F = B 1 ∩ {x ∈ R n :
Ds, x = 1} and s = max x∈G sign(D * x) (or equivalently s = sign(D * x) for some x ∈ ri(G)). In particular, the results of Theorem 2.16

(ii) (or (iii) if A ∩ B 1 ⊂ ∂B 1 ) hold for G.
Proof. By Lemma 2.7, G ⊂ rbd(A∩B 1 ). Let us show that rbd(A∩B 1 ) ⊂ A∩∂B 1 . We distinguish two cases: if A ∩ B 1 ⊂ ∂B 1 , there is nothing to prove; otherwise, A ∩ B1 = ∅. By Lemma 2.14 applied the full-dimensional convex

B 1 , ri(A ∩ B 1 ) = ri(A)∩ri(B 1 ) = A∩ B1 . Then rbd(A∩B 1 ) = A∩B 1 \A∩ B1 = A∩∂B 1 .
In particular, G is a nonempty convex subset of ∂B 1 , thus s is well-defined by Corollary 2.12.

Let x ∈ ri(G) ⊂ A ∩ ∂B 1 . Then by Theorem 2.16 (i), A ∩ F is the unique face of A ∩ B 1 containing x in its relative interior; it is thus equal to the face G.

In this setting, we get a necessary and sufficient condition of extremality. Note that the notion of extremality can be related to the topology of the set, here our condition only use an algebraic characterization.

Proposition 2.19. Let A be an affine subspace intersecting ∂B 1 . Let x ∈ A ∩ ∂B 1 , s = sign(D * x), and J = cosupp(D * x). Then

x ∈ ext(A ∩ B 1 ) ⇔ dir(A) ∩ (Ds) ⊥ ∩ Ker D * J = {0} ⇔ dir(A) ∩ Ker D * J = {0} in the case where A ∩ B 1 ⊂ ∂B 1 .
Moreover, A ∩ B 1 admits extreme points (that necessarily belong to A ∩ ∂B 1 ) if and only if it is compact (i.e. is a convex polytope), if and only if dir(A) ∩ Ker D * = {0}.

Proof. Since A ∩ B 1 is a convex polyhedron, x ∈ ext(A ∩ B 1 ) ⇔ {x} is a face A ∩ B 1 ⇔ {x} = Ḡ of Theorem 2.16 ⇔ dir( Ḡ) = {0}.
Recall that extreme points belong to rbd(A∩B 1 ), and that as in Proposition 2.18, rbd(A ∩ B 1 ) ⊂ A ∩ ∂B 1 . Note also that we always have dir(A) ∩ Ker D * ⊂ dir(A) ∩ (Ds) ⊥ ∩Ker D * J . Thus if A∩B 1 admits extreme points, then dir(A)∩Ker D * = {0} by the beginning of the corollary, which implies that A∩B 1 is bounded and thus compact, which in turn implies the existence of extreme points [14, Part III, Proposition 2.3.3].

Remark 2.20. It is possible to show directly (via Corollary 2.13) that the condition above is sufficient. Indeed, assume that dir(A) ∩ (Ds

) ⊥ ∩ Ker D * J = {0}. Let x ∈ A ∩ ∂B 1 such that sign(D * x) s; let us show that x = x: x -x ∈ dir(A); by Lemma 2.3, s, D * x = D * x 1 = D * x 1 = s, D * x , thus x -x ∈ (Ds) ⊥ ; by Remark 2.2, J ⊂ cosupp(D * x), thus x -x ∈ Ker D * J .
Then s is minimal, and by Corollary 2.13, x ∈ ext(A ∩ B 1 ).

Consequence results on the unit ball.

The previous results will be at the core of our study of the solution set of (1.1) in section 3. Nevertheless, we can also dive deeper into this analysis in order to fully characterize the faces of the unit-ball as a byproduct.

A first consequence or reformulation of the previous results is that all the exposed faces of B 1 are of the form B 1 ∩ {x ∈ R n : Ds, x = 1}. Proposition 2.21. Let F be an exposed face of B 1 . Then

F = B 1 ∩ {x ∈ R n : Ds, x = 1}
with s = max x∈F sign(D * x) (or equivalently s = sign(D * x) for some x ∈ ri(F )). Moreover,

F = ∂B 1 ∩ {x ∈ R n : sign(D * x) s} = {x ∈ R n : Ds, x = 1} ∩ {x ∈ R n : sign(D * x) s}, ri(F ) = ∂B 1 ∩ {x ∈ R n : sign(D * x) = s} = {x ∈ R n : Ds, x = 1} ∩ {x ∈ R n : sign(D * x) = s}, dir(F ) = (Ds) ⊥ ∩ Ker D *
J (where J = cosupp(s)).

Proof. Since F is a nonempty convex subset of ∂B 1 , s is well-defined by Corollary 2.12. The first statement is a consequence of Corollary 2.11. The next statements follow from Lemma 2.8 and Proposition 2.17 with A = {x ∈ R n : Ds, x = 1} a supporting hyperplane of B 1 defining the face F (recall or note by Lemma 2.7 that A ∩ B 1 ⊂ ∂B 1 for any A supporting hyperplane of B 1 ). 

F = {x ∈ R n : Ds, x = 1, D * J x = 0, diag(sĪ )D * Ī x ≥ 0}
with s = max x∈F sign(D * x), J = cosupp(s), and Ī = supp(s).

By Lemma 2.8 and Proposition 2.21, the mapping F → max x∈F sign(D * x) is a bijection between the set of exposed faces of B 1 and the set of feasible signs {sign(D * x) : x ∈ ∂B 1 }. The next observation is that this bijection preserves the partial orders (i.e. it is an order isomorphism). Proposition 2.24. Let F 1 and F 2 be two exposed faces of B 1 and

s i = max x∈Fi sign(D * x), i = 1, 2. Then F 1 ⊂ F 2 ⇔ s 1 s 2 .
In this case, denoting by J 1 = cosupp(s 1 ),

F 1 = F 2 ∩ {x ∈ R n : J 1 ⊂ cosupp(D * x)}, ri(F 1 ) = F 2 ∩ {x ∈ R n : J 1 = cosupp(D * x)}, dir(F 1 ) = dir(F 2 ) ∩ Ker D * J1 .
Proof. Suppose that F 1 ⊂ F 2 and let x ∈ ri(F 1 ) ⊂ F 2 ; then s 1 = sign(D * x) s 2 . Conversely, suppose that s 1 s 2 and let x ∈ F 1 ; then sign(D * x) s 1 s 2 , thus x ∈ F 2 .

Assume now that these two conditions hold. Then, we have

F 1 ⊂ F 2 ∩ {x : J 1 ⊂ cosupp(D * x)} since F 1 ⊂ {x : J 1 ⊂ cosupp(D * x)} (recall Remark 2.2: sign(D * x) s 1 implies that J 1 ⊂ cosupp(D * x)). Conversely, let x ∈ F 2 ∩ {x : J 1 ⊂ cosupp(D * x)}.
Since sign(D * x) and s 1 are both s 2 , they are consistent and thus the converse is true: J1 , which concludes the proof. In the spirit of [START_REF] Boyer | On representer theorems and convex regularization[END_REF], we consider the compact polyhedron (Ker D * ) ⊥ ∩ B 1 , which is isomorphic to the projection of B 1 onto the quotient of the ambient space by the lineality space Ker D * . Proposition 2.19 gives the following necessary and sufficient condition of extremality.

J 1 ⊂ cosupp(D * x) implies that sign(D * x) s 1 . And since x ∈ F 2 ⊂ ∂B 1 , x ∈ F 1 .
Corollary 2.25. The convex polyhedron (Ker D * ) ⊥ ∩ B 1 is compact (i.e. is a convex polytope). It admits extreme points that belong to (Ker

D * ) ⊥ ∩ ∂B 1 . Given x ∈ (Ker D * ) ⊥ ∩ ∂B 1 , s = sign(D * x), and J = cosupp(D * x), x ∈ ext((Ker D * ) ⊥ ∩ B 1 ) ⇔ (Ker D * ) ⊥ ∩ (Ds) ⊥ ∩ Ker D * J = {0}.
Remark 2.26. In [7, Section 4.1.3], the authors notice that since (Ker D * ) ⊥ ∩ B 1 and Im D * ∩ B 1 are in bijection through D * and its pseudo-inverse (D * ) + , it holds that

x ∈ ext((Ker D * ) ⊥ ∩ B 1 ) ⇔ x = (D * ) + θ with θ ∈ ext(Im D * ∩ B 1 ).
Thus we have two conditions of extremality, which are of different nature but of course equivalent, as it can be shown directly. We have already derived in Remark 2.20 that if 2.6. Testing the extremality. In this subsection, we aim to show that the results of subsection 2.5 can be exploited to numerically test the extremality of a point.

(Ker D * ) ⊥ ∩ (Ds) ⊥ ∩ Ker D * J = {0}, then x ∈ ext((Ker D * ) ⊥ ∩ B 1 ); it follows that θ = D * x ∈ ext(Im D * ∩ B 1
Our first definition formalizes the idea of feasible sign, i.e., signs which are attained by some vector in the ambient space. Definition 2.27. We say that a sign s ∈ {-1, 0, 1} p is feasible with respect to D if there exists x ∈ R n such that s = sign(D * x).

Note that we can replace at no cost R n by B 1 or ∂B 1 thanks to the homogeneity of the the 1 -norm. Testing if a sign is feasible has the complexity of a linear program on n variables with p constraints: Lemma 2.28. Let c ∈ R n , s ∈ {-1, 0, 1} p , J = cosupp(x), I + = {i : d i , x > 0} and I -= {i : d i , x < 0}. The sign s is feasible if, and only if, the solution set of (2.1)

min x∈R n c, x subject to      D * J x = 0 D * I + x +1 D * I -x -1
is non-empty. Moreover, if s is feasible, then any solution x of (2.1) is such that s = sign(D * x).

We defer to section 3 how the choice of c can leads to interesting properties. Here, we wrote the problem as a linear program to put an emphasis that existing solvers allow us to test this property. Note that finding all feasible signs is quite costly since it needs an exponential (in p) number of linear programs. Thanks to Corollary 2.25, we have the definition Definition 2.29. We say that a sign s ∈ {-1, 0, 1} p is pre-extreme if it satisfies

(Ker D * ) ⊥ ∩ (Ds) ⊥ ∩ Ker D * J = {0},
where J = cosupp(s), and is extreme if it feasible and pre-extreme.

Checking if a sign is pre-extreme boils down to compute the null-space of the matrix

B = U Ds D J *
where U is a basis of the null-space of D. In order to find the dimension of Ker B, one can use either QR reduction or SVD (Singular Value Decomposition). Here, we used an SVD approach. We now illustrate these definitions in low dimension (it is known that the study of the number of faces is a very difficult task in general [START_REF] Mcmullen | The maximum numbers of faces of a convex polytope[END_REF][START_REF] Billera | Sufficiency of mcmullen's conditions for f -vectors of simplicial polytopes[END_REF]), when D correspond to the incidence matrix of a complete graph on n = 4 vertices and p = 6 edges. Among 3 p = 729 possible signs, only 75 are feasible, and among them 14 are extreme. We report in Figure 2.1 the pattern of such signs up to centrosymmetry of the unit-ball, i.e., we only show 7 of the 14 extreme signs. 3. The solution set of sparse analysis regularization. This section is an application of the previous one towards the solution set of (1.1). Remark that a similar analysis can be performed (in a less challenging way) for the noiseless problem (1.2). In the first subsection 3.1, we show that the solution set can be seen as a particular sub-polyhedron of the unit-ball. Using this result, we derive several structural results in subsection 3.2 on the solution set thanks to section 2. Finally, we show that arbitrary sub-polyhedra of the unit ball can be seen as solution set of (1.1) with a specific choice of parameters.
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3.1. The solution set as a sub-polyhedron of the unit ball. This section studies the structure of the solution set of (1.1), that we denote by X:

X = argmin x∈R n L(x) def. = 1 2 y -Φx 2 2 + λ D * x 1 ,
where y ∈ R q , Φ : R n → R q , D : R p → R n is linear and λ > 0.

Theorem 3.1. The solution set of (1.1) is a nonempty convex polyhedron of the form X = A ∩ B r with r ≥ 0 and A an affine subspace such that ∅ = A∩B r ⊂ ∂B r and dir(A) = Ker Φ. Namely, if x ∈ X, then r = D * x 1 and A = x + Ker Φ.

Proof. It is easy to see that the objective function x → L(x) is a nonnegative, convex, closed continuous function with full domain (in particular proper). However, it is not coercive, hence existence of minimizers and compactness of the solution set are not straightforward. Following [START_REF] Rockafellar | Convex Analysis[END_REF]Chapter 8], the recession cone R L of L is given by

R L def. = {z ∈ R n : L ∞ (z) 0} ,
where L ∞ is the recession function of L given by

L ∞ (z) def. = lim t→+∞ L(tz) t ∈ R ∪ {+∞}.
It is clear that R L is non-negative, hence the recession cone R L is given by

R L = {z ∈ R n : L ∞ (z) = 0}. The lineality space L L is the subspace of R n formed by ele- ments d such that d ∈ R L and -d ∈ R L , i.e, L L = R L ∩ (-R L ).
The following lemma characterizes the structure of R L and L L .

Lemma 3.2. The recession cone R L and the lineality space L L of L are given by

R L = L L = Ker D * ∩ Ker Φ.
Proof. Let t > 0 and z ∈ R n . We have,

1 t L(tz) = 1 2t y -Φtz 2 2 + λ D * z 1 = 1 2t y 2 2 -y, Φz + t Φz 2 2 + λ D * z 1 .
Hence,

L ∞ (z) = -y, Φz + λ D * z 1 + ι Ker Φ (z).
In particular, L ∞ (z) = 0 if, and only if, z ∈ Ker D * ∩ Ker Φ. Since Ker D * ∩ Ker Φ is a subspace, we have R L = L L .

The polyhedral structure of X, as we will see, relies on the following lemma.

Lemma 3.3. Let C ⊂ R n be a nonempty convex set. Then L is constant on C if and only if Φ and D * • 1 are constant on C.

Proof. Assume that L is constant on C and let x 0 ∈ C. Suppose that there exists

x 1 ∈ C such that Φx 1 = Φx 0 and let x = x0+x1 2 (note that x ∈ C). Then by strict convexity of u → y -u 2 2 , y -Φx 2 2 = y -( 1 2 Φx 0 + 1 2 Φx 1 ) 2 2 < 1 2 y -Φx 0 2 2 + 1 2 y -Φx 1 2 2 .
Together with the convexity inequality of the 1 norm:

D * x 1 ≤ 1 2 D * x 0 1 + 1 2 D * x 1 1 , we get that L(x) < 1 2 L(x 0 ) + 1 2 L(x 1 )
, which is in contradiction with L constant on C. Then Φ is constant on C and thus D * • 1 too. The converse is straightforward.

We add the following lemma, that gives locally the directions where D * • 1 is constant. Proof. By definition, D * • 1 is constant in a neighborhood of x in A if and only if there exists ε > 0 such that B(x, ε) ∩ A ⊂ ∂B r with r = D * x 1 . We denote by C = B(x, ε) ∩ A (note that x ∈ ri(C)). By Proposition 2.9, C ⊂ ∂B r if and only if

C ⊂ F with F = B r ∩ {x ∈ R n : Ds, x = 1} if r > 0 and F = Ker D * if r = 0. Since x ∈ ri( F ), C ⊂ F if and only if dir(C) ⊂ dir( F ).
The result follows by noticing that dir(C) = dir(A) (e.g. by Lemma 2.14) and dir( F ) = (Ds) ⊥ ∩ Ker D * J (by Lemma 2.8 in the case r > 0, obvious in the case r = 0).

Together, the previous two lemmas give the following. Corollary 3.5. Let A be an affine subspace and x ∈ A. Then L is constant in a neighborhood of x in A if and only if

dir(A) ⊂ Ker Φ ∩ (Ds) ⊥ ∩ Ker D * J
where s = sign(D * x) and J = cosupp(D * x).

We now go back to the proof of Theorem 3.1. By Lemma 3.2, the recession cone and the lineality space of L coincide. Then by [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 27.1(a-b)], the solution set X is nonempty. Since L is convex (and closed), the solution set is also convex (and closed). Moreover, L is constant on X. Then by Lemma 3.3, Φ and D * • 1 are constant on X, i.e.

X ⊂ (x + Ker Φ) ∩ ∂B r with x ∈ X and r = D * x 1 . But since L(x) is the minimum of L,

(x + Ker Φ) ∩ B r ⊂ X.
It follows that

X = (x + Ker Φ) ∩ B r
with (x + Ker Φ) ∩ B r ⊂ ∂B r , as it was to be proved.

3.2.

Consequence results on the solution set. In this section, we apply the results on sub-polyhedra of the unit ball (subsection 2.4) to the solution set X of (1.1). Proposition 3.6. Let x ∈ ri(X), s = sign(D * x), and

F = B r ∩ {x ∈ R n : Ds, x = r} with r = D * x 1 . Then X = (x + Ker Φ) ∩ F . It follows that X = (x + Ker Φ) ∩ {x ∈ R n : sign(D * x) s}, ri(X) = (x + Ker Φ) ∩ {x ∈ R n : sign(D * x) = s}, dir(X) = Ker Φ ∩ Ker D * J (where J = cosupp(s)).
Moreover, the faces of X are exactly the sets of the form {x ∈ X : J ⊂ cosupp(D * x)} with J ⊂ J; their relative interior is given by {x ∈ X : J = cosupp(D * x)} and their direction by Ker Φ ∩ Ker D * J . Proof. First note that the results are trivial in the case r = 0, as s = 0 and F = B r = Ker D * . Therefore we consider the case r > 0. The first statement follows from Theorem 3.1 and Proposition 2.17, and the second one from Theorem 2.16 (iii). For the last statement, note that G is a face of X if and only if G = (x + Ker Φ) ∩ F with F a face of B r such that F ⊂ F . Indeed, the direct implication holds for G = ∅ with F = ∅, for G = X with F = F , and for G exposed in aff(X) by Proposition 2.18. Conversely, let F = ∅ or B r ∩ H (with H a supporting hyperplane) be a face of B r . Then (x + Ker Φ) ∩ F = ∅ or X ∩ H is a face of X. The conclusion follows from Proposition 2.24.

Thanks to Proposition 3.6, we can draw several conclusions. In particular the role of s and J allows us to derive properties of the solution set.

The sign s is shared by all the interior solutions of (1.1), which are also maximal solutions (s = max x∈X sign(D * x)). Such a solution can be obtained numerically by the algorithm described in [START_REF] Barbara | Maximal solutions of sparse analysis regularization[END_REF]. Future work should include an analysis of the behavior of more common algorithms such as first-order proximal methods.

The knowledge of s (or of J which is the minimal cosupport) gives the dimension of the solution set (1.1) as dim(X) = dim(Ker Φ ∩ Ker D * J ) (up to determining the dimension of the null-space of the matrix A = Φ * D J * , which again can be done by QR reduction or SVD). For instance, taking the example of [START_REF] Barbara | Maximal solutions of sparse analysis regularization[END_REF] in Section 6.3,

(3.1) D * =   1 1 0 1 0 1 2 1 1   , Φ =   1 1 1 3 1 1 √ 2 0 0   , y =   1 1 0   and λ = 1 2 ,
we can prove that X = conv (0 1 2 0) * , (0 0 1 2 ) * . But running the interior-point method described in [START_REF] Barbara | Maximal solutions of sparse analysis regularization[END_REF] leads to the specific solution (up to numerical error) x = (0 1

In the previous formula, dim(X) is decreasing w.r.t. J; it somehow quantifies the tautology according to which the sparser the less sparse solution, the fewer solutions.

Together with Lemma 2.6, the previous proposition gives the following half-space representation of the solution set X of (1.1) (one could of course give similar representations of its faces).

Corollary 3.7. Let x ∈ ri(X), s = sign(D * x), J = cosupp(s) and Ī = supp(s).

Then X = {x ∈ R n : Φx = Φx, D * J x = 0, diag(sĪ )D * Ī x ≥ 0}
. This result can be used numerically. Indeed, it provides a linear characterization of the solution set up to the knowledge of a maximal solution. In the same spirit of [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF], we can derive bounds on the coefficients (both in the signal domain or in the dictionary domain). For instance, finding the biggest i-coefficient boils down to solve the linear program

max x∈X x, e i ,
where e i the is the ith canonical vector. Thus, we can describe in a similar fashion which component are dispensable following the vocabulary introduced in [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF].

We can also apply Theorem 2.16 to an arbitrary solution (not necessarily interior). This result is useful when obtaining a solution computed from any algorithm without guarantees on its maximality. Note in particular that dim(Ker Φ ∩ Ker D * J ) is always the dimension of a subset of solutions. When D = Id, then Ker Φ ∩ Ker D * J = Ker Φ I (with I = [n] \ J the support of x) the rank deficiency of Φ I (the difference between the size of the support I and the rank of Φ I ) is a lower bound of the dimension of the solution set. See subsection 3.6 for an illustration on a real dataset.

We end this section with a characterization of the compactness of X and of its extreme points, as well as a sufficient condition for uniqueness knowing a solution.

Proposition 3.9. The solution set X of (1.1) admits extreme points if and only if it is compact (i.e. is a convex polytope), if and only if Ker Φ ∩ Ker D * = {0}.

A solution x ∈ X is an extreme point (i.e. x ∈ ext(X)) if and only if, denoting by J = cosupp(D * x), Ker Φ ∩ Ker D * J = {0}. Proof. Recall that X = (x + Ker Φ) ∩ B r by Theorem 3.1. The result is trivial in the case r = 0 and is the transcription of Proposition 2.19 in the case r > 0.

Tibshirani [START_REF] Ali | The Generalized Lasso Problem and Uniqueness[END_REF] is complicated by the fact that there is no (unique) equicorrelation set but several boundary sets B for which Ker Φ ∩ Ker D *

[n]\B = {0} needs to be satisfied. The authors introduced a notion of D * -general position which, together with the condition Ker Φ ∩ Ker D * = {0} (equivalent to the compactness of the solution set by Proposition 3.6), implies uniqueness for almost every y [1, Lemma 6]. These conditions are satisfied with probability one when the entries of Φ are drawn from a continuous distribution and n ≤ q or n > q and dim(Ker D * ) ≤ q [1, Lemmas 7,[START_REF] Burke | Characterization of solution sets of convex programs[END_REF] but are not assumed in our work. Finally, the necessary and sufficient condition of Ewald and Schneider for the uniqueness of the Lasso minimizer above has been generalized by Schneider, Tardivel et al. to regularizations by polyhedral norms [START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF] and then by polyhedral gauges [START_REF] Tardivel | The Geometry of Model Recovery by Penalized and Thresholded Estimators[END_REF]. The latter framework includes generalized Lasso for which their condition is that there exists y such that (1.1) has a non-unique solution if and only if Im(Φ * ) intersects a face of D[-1, 1] n (the image of the hypercube by D, which is a polyhedron in R q ) of dimension strictly smaller than the dimension of Ker(Φ).

3.4. Arbitrary sub-polyhedra of the unit ball as solution sets. We have the following converse of Theorem 3.1.

Theorem 3.11. Let r ≥ 0 and A be an affine subspace such that ∅ = A ∩ B r ⊂ ∂B r . Then there exist Φ, y and λ > 0 such that the solution set of (1.1) is X = A∩B r and Ker Φ = dir(A).

Proof. We first consider the case r > 0. Let x ∈ A ∩ ∂B r and s = sign(D * x). We define Φ, y and λ as follows: we consider a 1 , . . . , a m a basis of dir(A) ⊥ (with m the dimension of this subspace) and set Φ = (a

1 | • • • |a m ) * ; then Im(Φ * ) = dir(A) ⊥ and
Ker(Φ) = dir(A). It follows from Lemma 2.15 (ii) that Im(Φ * )∩ s s R + Ds = {0}. Let β ∈ R q and α s ≥ 0 for all s s be such that

Φ * β = s s α s Ds = 0;
we can assume (by normalizing) that s s α s = 1. We define u = s s α s s, so that Du = Φ * β. Note also that uĪ = sĪ and u J ∞ ≤ 1 (with Ī = supp(D * x) and J = cosupp(D * x)). We now fix any λ > 0 and set y = Φx + λβ. We denote as always by X the solution set of (1.1). By construction, we have

Φ * (Φx -y) + λDu = 0. It implies that 0 ∈ ∂L(x) since ∂ D * • 1 (x) = D∂ • 1 (D * x) and u ∈ ∂ • 1 (D * x)
(see e.g. [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I: Fundamentals[END_REF] or [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF]), and thus x ∈ X. It follows from Theorem 3.1 that X = (x + Ker Φ) ∩ B D * x 1 . But x + Ker Φ = A since x ∈ A and Ker Φ = dir(A), and D * x 1 = r since x ∈ ∂B r , which concludes the proof of the case r > 0.

We now treat the case r = 0, for which B r = ∂B r = Ker D * . We define Φ as in the previous case, λ > 0 arbitrarily, and y = Φx for some x ∈ A ∩ Ker D * . Then again, Φ * (Φxy) + λDu = 0, here with u = 0 ( u ∞ ≤ 1). It follows that x ∈ X, and then that X = A ∩ B r as before.

If we relax the condition Ker Φ = dir(A), we can get rid of the assumption ∅ = A ∩ B r ⊂ ∂B r and at the same time choose the exposed face F so that A ∩ F is a solution set (thus of arbitrary dimension). This is the object of the next proposition. Proposition 3.12. Let r > 0, F be an exposed face of B r and A be an affine subspace intersecting F . Then there exist Φ, y and λ > 0 such that the solution set of (1.1) is X = A ∩ F (and Ker Φ ⊂ dir(A)). * with a 1 , . . . , a m a basis of dir(A) ⊥ , so that ker Φ = (Ds) ⊥ ∩ dir(A); let λ > 0, y = Φx + λe 1 for some x ∈ A ∩ F , and X be the associated solution set. Then Φ * (Φx-y)+λDu = 0 with u = s. Since sign(D * x) s, u I = sign(D * x) I and u J ∞ ≤ 1 (with I = supp(D * x) and J = cosupp(D * x)). Then x ∈ X and X = (x + Ker Φ) ∩ B r = (x + dir(A)) ∩ (x + (Ds) ⊥ ) ∩ B r = A ∩ F . We now illustrate Proposition 3.12 on non-periodic Total Variation on 3 points in order to give an intuition of the geometric construction, see Figure 3.1. Let D be a forward discrete difference operator on 3 points, i.e.,

D * = -1 1 0 0 -1 1 .
Consider the facet F (in grey on the figure) determined by the sign s = (-1, 1) and an (affine) hyperplane A (in red on the figure) with normal vector (0, 1, 0) and origin (1, 1, 1). The intersection (in green on the figure) of F and A is then the segment defined by x * 1 = (1, 1, 2) and x * 2 = (2, 1, 1). The proof of Proposition 3.12 gives us how to design a setting such that the solution set X is exactly

X = conv{x * 1 , x * 2 }: let λ = 1, Φ = 1 -2 1 0 1 0 and y = 2 1 .
Checking first-order condition of this setting is tedious, but doable, and leads to 3.5. Illustration of the main results for 1D Total Variation. We now provide a full illustration of our results in higher dimension for the popular regularization that is 1D Total Variation. Note that D * is a matrix of rank n -1 whose nullspace is formed by constant vectors Ker D * = Re where e = 1 . . . 1 * .

X = conv{x * 1 , x * 2 }.
Let 2 t 1 < t 2 < t 3 < t 4 n -1 and consider the reference signal x ∈ R n and its associated sign s = sign(D * x) ∈ {-1, 0, +1} n-1 defined by

xv = 1 6 ×                -1 if 1 v t 1 1 if t 1 < v t 2 0 if t 2 < v t 3 1 if t 3 < v t 4 -1 if t 4 < v n and se =      1 if e = t 1 or e = t 3 -1 if e = t 2 or e = t 4 0 otherwise.
Our objective is to build a problem (i.e, find Φ, λ and y) such that:

1. x is a maximal solution (i.e, x lives in the relative interior of X). 2. Every solutions share a common jump at t 1 .

3. The affine hull of X is of dimension 1. The first step is to define a candidate extreme point of X which should be compatible with the sign s of x according to Corollary 2.12. Such vector x and sign ŝ can be chosen as

xv = 1 6 ×                -1 if 1 v t 1 1 if t 1 < v t 2 1 if t 2 < v t 3 1 if t 3 < v t 4 -3 if t 4 < v n. and ŝe =      1 if e = t 1 -1 if e = t 4 0 otherwise.
We are now following the proof of Proposition 3.12 to construct our sparse analysis problem. We consider the direction d = zx and build a basis a 1 , . . . , a n-1 of d ⊥ .

This can be done either by hand, or using a SVD decomposition. We then consider an arbitrary λ > 0, Φ = (Ds|a

1 | • • • |a m )
* and y = Φx + λe 1 . By construction, x and x are solutions of (1.1), and x is a maximal solution. Since Φ has rank n -1, the affine hull solution set X as at most dimension 1 according to Proposition 3.6. It is indeed its dimension using a SVD decomposition of Φ D * J where J = supp(D * x). To fully describe it, we have to find its two extreme points.

In order to do it, we are going to use Corollary 3.7. Let J = cosupp(s), Ī = Jc ,

A eq = Φ D * J , b eq = Φx 0 and A ineq = -diag(sĪ )D * Ī .
Consider now the linear programs for 1 i n -1:

(mLP i ) argmin x∈R n
x, d i subject to A eq x = b eq and A ineq x 0, and

(MLP i ) argmax x∈R n
x, d i subject to A eq x = b eq and A ineq x 0.

For a given 1 i n -1, three cases may occurs:

1. The value of a minimizer of (mLP i ) and a maximizer (MLP i ) is 0. It means that every solution x ∈ X is zero at the index i: for every x ∈ X, x, d i = 0. 2a. The value of a minimizer m of (mLP i ) is negative m < 0 and a maximizer (MLP i ) is 0. It means that some solution x ∈ X is zero at the index i, i.e., there exists x ∈ X, x, d i = 0. We may call the index i a dispensable index to be consistent with the work [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF]. 2b. A symmetric situation is when the value of a minimizer of (mLP i ) is 0 and a the value M of a maximizer (MLP i ) is positive. It means also that some solution x ∈ X is zero at the index i. 3a. The value of a minimizer m of (mLP i ) is negative m < 0 and the value M of a maximizer (MLP i ) is also negative M < 0. It means that no solution x ∈ X is sparse at the index i, i.e., for every x ∈ X, m x, d i M = 0. The index is called indispensable. 3b. The value of a minimizer m of (mLP i ) is positive m > 0 and the value M of a maximizer (MLP i ) is also positive M > 0. Then i is indispensable. Note that according to Corollary 2.12, the signs of every solution must be consistent, hence it is impossible to have the situation where the value of a minimizer m of (mLP i ) is strictly negative m < 0 and the value M of a maximizer (MLP i ) is strictly negative M > 0.

Beyond the value of (mLP i ) and (MLP i ), the actual solution of the linear program is itself a solution of (1.1). Thus, to find a second candidate to be the extreme point of X, it is sufficient to run (mLP i ) and (MLP i ) for each 1 i n -1, and consider their nonzero value solutions. Doing so (using for instance scipy.optimize.linprog [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF]) let us consider We illustrate in Figure 3.2 this construction when n = 256 and where the solution are obtained by Chambolle-Pock algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], the SVD and linear programming are computed with scipy [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF].

xv = 1 6 ×                -1 if 1 v t 1 1 if t 1 < v t 2 -1 if t 2 < v t 3 1 if t 3 < v t 4 1 if t 4 < v n
3.6. Illustration on a real dataset. We now consider the Lasso case where D = Id. We consider the dataset gisette that is available as a libsvm dataset1 . The gisette dataset was introduced in the NeurIPS 2003 feature selection challenge [START_REF] Guyon | Result analysis of the nips 2003 feature selection challenge[END_REF]. This dataset has q = 5000 samples and n = 6000 features. Its main characteristic is that most entries are ±1 leading to a rank deficiency. Figure 3.3 shows the rank deficiency of a Lasso problem solved for various proportions α of λ max = Φ * y ∞ . This figure is generated with a FISTA solver [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] for 2 • 10 4 iterations in order to have a high accuracy solution (and starting from 0)2 . Such behaviour is not observed for generic datasets (e.g. it is not occurring for 20news for instance).

Solving the Lasso problem for λ = 1 50 λ max leads to a solution x having an active set of size 134, but such that Φ I has rank 130 (where I = supp(x )). It is then possible to construct an extreme point using the procedure described in the Appendix A.3 in [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF]. For the sake of clarity, we recall this "H J -procedure": if the support I of x is such that Φ I has not full rank, 1. Take h ∈ Ker Φ I ; 2. Consider the vectors x t = x + th, for t > 0. There exists a supremum t 0 such that x t is a solution, and one can prove that I 0 = supp(x t0 ) ⊂ I .

Iterating this procedure leads to solution with full-rank since the size of the support decreases at least by one at each iteration.

Conclusion.

In this work, we have refined the analysis of the solution set of sparse 1 analysis regularization to understand its geometry. To perform this analysis, we have drawn an explicit relationship between the structure of the unit ball of the regularizer and the set of feasible signs. Upon this work, we derived a necessary and sufficient condition for a convex set to be the solution of sparse analysis regularization problem. Extension of our results to non-convex sparse analysis penalizations such as

• p with 0 < p < 1 is an interesting research direction, where face decomposition of the polytope unit-ball needs to be replaced with stratification of semi-algebraic sets.

From a practical point of view, this work adds another argument towards the need for a good choice of regularizer/dictionary when a user seeks a robust and unique solution to its optimization problem. This work is mainly of theoretical interest since numerical applications should deal with exponential algorithms with respect to the signal dimension. Note however that in the case of the expected sparsity level of the maximal solution is logarithmic in the dimension, the enumeration problem is in this case tractable. We believe that the results contained in this paper will help other theoretical works around sparse analysis regularization, such as performing sensitivity analysis of (1.1) with respect to the dictionary used in the regularization.

  and dir( F ) ⊂ Ker D * J . Conversely, let d ∈ (Ds) ⊥ ∩ Ker D * J . Since d ∈ Ker D * J and sign(D * x) = s, cosupp(D * x) ⊂ cosupp(D * d) and sign(D * (x+εd)) s for |ε| small. Then by Lemma 2.3, x+εd 1 = s, D * (x+εd) = Ds, x+εd = Ds, x = 1 since d ∈ (Ds) ⊥ . Then x + εd ∈ F for |ε| small, and d ∈ dir( F ).

  Proof. Since ri(A) = A, we have ri(A) ∩ ri(C) = ∅. Then by [14, Part III, Proposition 2.1.10], ri(A ∩ C) = ri(A) ∩ ri(C) = A ∩ ri(C). Let us now prove that dir(A∩C) = dir(A)∩dir(C). Let d ∈ dir(A∩C) and x ∈ ri(A∩C) (nonempty). Then x + εd ∈ A ∩ C for |ε| small, and d ∈ dir(A) ∩ dir(C). Similarly, let d ∈ dir(A) ∩ dir(F ) and x ∈ ri(A) ∩ ri(C) (nonempty). Then x + εd ∈ A ∩ C for |ε| small, and d ∈ dir(A ∩ C).

  and s s R + Ds = {0} are two polyhedral cones, we get that dir(A) ⊥ * + s s R + Ds * = R n , where dir(A) ⊥ * = dir(A) and s s R + Ds * = s s Ds * . It follows from (i) that R n ⊂ s s Ds * , which is not true (note e.g. that d = xx with x ∈ B1 is such that Ds, d < 0) for all s s). (iii) First note that for d ∈ Ker D * J , Ds, d = Ds, d for all s s. Indeed, (D * d) i = 0 if si = 0 and s i = si if si = 0, thus s i (D * d) i = si (D * d) i for all i and s, D * d = s, D * d . Let now d ∈ dir(A) ∩ Ker D * J . Since by (i) there exists s s such that Ds, d ≥ 0, it follows that Ds, d ≥ 0. And since -d ∈ dir(A) ∩ Ker D * J too, we get that Ds, d = 0, which proves the inclusion and the equivalent equality. (iv) Let x ∈ A such that sign(D * x) s (in particular, J ⊂ cosupp(D * x)) and let d = xx. Then d ∈ dir(A) ∩ Ker D * J (recall that x ∈ A and J = cosupp(D * x)), and by (ii), d ∈ (Ds) ⊥ . By Lemma 2.3, D * x 1 = s, D * x = Ds, x + d = Ds, x = D * x 1 = 1, which proves the inclusion and the equivalent equality.

Remark 2 . 22 .

 222 Any exposed face F of B 1 satisfies Ker D * ⊂ dir(F ) ⊂ (Ds) ⊥ with equality if and only if (Ds) ⊥ ∩ Ker D * J = Ker D * (for the left inclusion) and (Ds) ⊥ ⊂ Ker D * J (for the right inclusion). Together with Lemma 2.6, the previous proposition gives the following half-space representations of the exposed faces of B 1 . Corollary 2.23. Let F be an exposed face of B 1 . Then

  The same proof holds for ri(F 1 ) and {x :J 1 = cosupp(D * x)}. For dir(F 1 ), note that Ker D * J1 ⊂ Ker D * J2 (since J 2 = cosupp(s 2 ) ⊂ J 1 ). Then dir(F 2 )∩Ker D * J1 = (Ds 2 ) ⊥ ∩Ker D * J1 (and dir(F 1 ) = (Ds 1 ) ⊥ ∩Ker D * J1 ). By the proof of Lemma 2.15 (ii), for d ∈ Ker D * J1 , Ds, d = Ds 1 , d for all s s 1 . In particular, (Ds 1 ) ⊥ ∩ Ker D * J1 = (Ds 2 ) ⊥ ∩ Ker D *

  ) and is such that (D * ) + θ = x (recall that (D * ) + D * is the orthogonal projection onto Im D = (Ker D * ) ⊥ ). Conversely, let θ ∈ ext(Im D * ∩ B 1 ) and x = (D * ) + θ (note that D * x = θ since D * (D * ) + is the orthogonal projection onto Im D * ). Let d ∈ (Ker D * ) ⊥ ∩ (Ds) ⊥ ∩ Ker D * J . Note that cosupp( θ) = J ⊂ cosupp(D * d). Then sign( θ+εD * d) = s for |ε| small, and by Lemma 2.3, θ+εD * d 1 = s, θ + εD * d = s, θ + ε Ds, d = θ 1 , i.e. θ + εD * d ∈ B 1 for for |ε| small (and θ + εD * d ∈ Im D * ). By extremality of θ, D * d = 0, i.e. d ∈ Ker D * ∩ (Ker D * ) ⊥ = {0}, which ends the proof.

Fig. 2 . 1 :

 21 Fig. 2.1: Extreme signs of a complete graph on n = 4 vertices. Red edges correspond to positive sign, blue edges to negative sign and gray to 0.
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 34 Let A be an affine subspace and x ∈ A. Then D * • 1 is constant in a neighborhood of x in A if and only if dir(A) ⊂ (Ds) ⊥ ∩ Ker D * J where s = sign(D * x) and J = cosupp(D * x).
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 38 Let x ∈ X, s = sign(D * x), F = B r ∩ {x ∈ R n : Ds, x = r} with r = D * x 1 . Then G = (x + Ker Φ) ∩ Fis the smallest face of X such that x ∈ G and the unique face of X such that x ∈ ri(X).It satisfiesG = (x + Ker Φ) ∩ {x ∈ R n : sign(D * x) s}, ri(G) = (x + Ker Φ) ∩ {x ∈ R n : sign(D * x) = s},dir(G) = Ker Φ ∩ Ker D * J (where J = cosupp(s)).

Proof.

  Let s = max x∈F sign(D * x), so that F = B r ∩ {x ∈ R n : Ds, x = r} by Proposition 2.21. Let Φ = (Ds|a 1 | • • • |a m )
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 231 Fig. 3.1: Construction of a solution set for total variation regularization on 3 points and the associated Φ and y.

Fig. 3 . 2 :

 32 Fig. 3.2: The solution set X represented as the convex hull of x and x. (Blue) proposed solution x. (Orange) candidate extreme point x. (Green) computed extreme solution. (Red) solution with Chambolle Pock initialized with a random vector. (Yellow) representation of the convex hull.
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 33 Fig. 3.3: Lasso regularization on the gisette dataset for various values of λ. (a) First 100 lines (total 6000) and columns (total 5000) of the matrix Φ in the dataset. As observed on this sample, around 12% of the entries are positive. (b) Size of the support I with respect to regularization parameter. (c) Difference between the size of the support I and the rank of Φ I . Red points in (a) and (b) correspond to the value 0.

  Definition 2.1. Let s, s ∈ {-1, 0, +1} p . We say that• s s if for all i ∈ [p], s i = 0 ⇒ s i = s i ; • s and s are consistent if for all i ∈ [p], s i = 0 and s i = 0 ⇒ s i = s i .

	The following remarks connect the notion of support/cosupport to this sign pat-
	tern.	
	Remark 2.2. 2. If s and s are consistent, then 1. s s ⇒ supp(s) ⊂ supp(s ) ⇔ cosupp(s ) ⊂ cosupp(s);
	s s ⇔ supp(s) ⊂ supp(s ) ⇔ cosupp(s ) ⊂ cosupp(s);
	3. If s s and s	s , then s and s are consistent;
	4. The set {-1, 0, +1} p endowed with the order relation is a poset.

1 4 ) * . In this case, the matrix A reduces to A = Φ since J = ∅. Thus, dim(X) = dim(Ker Φ) = 1.

or at the following url: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/ gisette_scale.bz2.

The source code of this experiment is available as a gist: https://gist.github.com/svaiter/ e44ee3042a116580aaf33ca48bb4535b
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Corollary 3.10. Let x ∈ X and J = cosupp(D * x). If x is the unique solution of (1.1) (i.e. X = {x}), then Ker Φ ∩ Ker D * J = {0}. The condition Ker Φ ∩ Ker D * = {0} is equivalent to the recession cone R L being reduced to {0}, which is known to be equivalent to the compactness of the solution set X of (1.1), see e.g. [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 27.1(d)]. Note that this is the condition denoted by (H 0 ) and assumed to hold all throughout [START_REF] Vaiter | Robust sparse analysis regularization[END_REF] or [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF]. This condition can be specified to our examples:

• When D is the identity D = Id, it is automatically satisfied ;

• When D = D T V , this condition is satisfied as soon as Φ does not cancel on constant vectors ; • When D is the incidence matrix of a graph, observe that this condition reduces to the fact that Φ should not be constant on the set of constant vectors in each connected component. The condition Ker Φ ∩ Ker D * J = {0} is the one denoted by (H J ) and required in [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF] at a given solution in order to undertake a sensitivity analysis. It turns out from the present study that such solutions are precisely the extreme points of the solution set. In [START_REF] Vaiter | Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation[END_REF], an iterative procedure is proposed in section A.3 to construct such an extreme point. Alternatively, if one has the knowledge that the maximal solution is quite sparse, then an exhaustive test can be performed in a similar fashion than subsection 2.6.

Going back to the setting proposed in (3.1), we observe that thanks to Proposition 3.9, we know that X is compact since Ker Φ and Ker D * intersect trivially, and we can obtain the extreme points by observing that there is three feasible signs (1, 0, 1), (0, 1, 1) and (1, 1, 1). Only the first two leads to a cosupport J such that Ker Φ and Ker D * J intersect trivially. Using Corollary 3.7, one can use any linear solver from these two signs to obtain associated two extreme points of the solution set, i.e., ext(X) = {(0 1 2 0) * , (0 0 1 2 ) * }. 3.3. Discussion of uniqueness conditions. We can derive from Proposition 3.6 a necessary and sufficient condition for uniqueness. Indeed (1.1) admits a unique solution if and only if dir X = {0}. Therefore if one knows the minimal cosupport J (that is the cosupport of a maximal solution x), then (1.1) admits a unique solution if and only Ker Φ ∩ Ker D * J = {0}. Recall that a maximal solution can be obtained numerically by the algorithm described in [START_REF] Barbara | Maximal solutions of sparse analysis regularization[END_REF], so together with QR reduction or SVD, uniqueness can be checked numerically.

In the case of Lasso problem (D = Id), this necessary and sufficient condition becomes Ker ΦĪ = {0} with Ī the maximal support. It is slightly weaker than the first sufficient condition for uniqueness in the seminal paper of Tibshirani [32, Lemma 2]. Indeed, the latter is Ker Φ E = {0} with E the so-called equicorrelation set, which always contains the maximal support Ī and coincides with it for almost every y [32, Lemma 13]. In this same paper, Tibshirani proves that his first sufficient condition is satisfied if the columns of Φ are in general position [32, Lemma 3], which is the case with probability one if their entries are drawn from a continuous distribution [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF]Lemma 4]. Note that we make no such assumption in our paper. The fact that non-uniqueness may arise when Φ has discrete entries is confirmed by Ewald and Schneider [START_REF] Ewald | On the distribution, model selection properties and uniqueness of the lasso estimator in low and high dimensions[END_REF]Theorem 14]: there exists y for which the Lasso problem has a nonunique solution if and only if Im(Φ * ) intersects a face of [-1, 1] n of dimension strictly smaller than the dimension of Ker(Φ); it is in particular the case when Φ has a row with only ±1 entries and a non-trivial nullspace.

In the general case, the derivation of uniqueness conditions in the paper of Ali and