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CONTROLLABILITY OF PERIODIC BILINEAR QUANTUM SYSTEMS ON
INFINITE GRAPHS

KAÏS AMMARI AND ALESSANDRO DUCA

ABSTRACT. In this work, we study the controllability of the bilinear Schrödinger equation
on infinite graphs for periodic quantum states. We consider the equation (BSE) i∂tψ =

−∆ψ + u(t)Bψ in the Hilbert space L2
p composed by functions defined on an infinite

graph G verifying periodic boundary conditions on the infinite edges. The Laplacian −∆
is equipped with specific boundary conditions, B is a bounded symmetric operator and
u ∈ L2((0, T ),R) with T > 0. We present the well-posedness of the (BSE) in suitable
subspaces of L2

p . In such spaces, we study the global exact controllability and we provide
examples involving for instance tadpole graphs and star graphs with infinite spokes.
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1. INTRODUCTION AND PRELIMINARIES

Let G be a generic graph composed byN finite edges {ej}1≤j≤N of lengths {Lj}1≤j≤N
and Ñ half-lines {ej}N+1≤j≤N+Ñ . Each edge ej with l ≤ N is associated to a coordinate

starting from 0 and going to Lj , while ej with N + 1 ≤ j ≤ N + Ñ is parametrized with
a coordinate starting from 0 and going to +∞. We consider G as domain of functions

f := (f1, ..., fN+Ñ ) : G → C, f j : ej → C, 1 ≤ j ≤ N + Ñ .

Let {Lj}N+1≤j≤N+Ñ ⊂ R+. We consider the Hilbert space

L2
p =

( N∏
j=1

L2(ej ,C)
)
×
( N+Ñ∏
j=N+1

L2
p(ej ,C)

)
, with(1)

L2
p(ej ,C) =

{
f ∈ L2

loc(ej ,C) : f(·) = f
(
·+2πkLj

)
, ∀k ∈ N∗

}
, N+1 ≤ j ≤ N+Ñ .

2010 Mathematics Subject Classification. 35Q40, 93B05, 93C05.
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2 KAÏS AMMARI AND ALESSANDRO DUCA

The Hilber spaces L2
p is equipped with the norm ‖ · ‖L2

p
induced by the scalar product

〈ψ,ϕ〉L2
p

=

N+Ñ∑
j=1

∫ Lj

0

ψj(x)ϕj(x)dx, ∀ψ,ϕ ∈ L2
p.

We introduce the spaces Hs
p := L2

p ∩
((∏N

j=1H
s(ej ,C)

)
×
(∏N+Ñ

j=N+1H
s
loc(ej ,C)

))
with s > 0 equipped with the norm ‖ · ‖Hsp such that, for every f = (f1, ..., fN+Ñ ) ∈ Hs

p ,

(2) ‖f‖2Hsp =

N∑
l=1

‖f l‖2Hs(el,C) +

N+Ñ∑
l=N+1

‖f l‖2Hs((0,Ll),C).

For T > 0, we consider the bilinear Schrödinger equation in L2
p{

i∂tψ(t) = −Aψ(t) + u(t)Bψ(t), t ∈ (0, T ),

ψ(0, x) = ψ0(x).
(BSE)

The operator A is a Laplacian equipped with suitable boundary conditions such that D(A)
is contained in H2

p . The operator B is a bounded symmetric operator in L2
p and u ∈

L2((0, T ),R) with T > 0. We respectively denote

ϕ := (ϕk)k∈N∗ , (µk)k∈N∗

an orthonormal system of L2
p made by eigenfunctions of A and the corresponding eigen-

values. For s > 0, we define the spaces H (ϕ) := span{ϕk} | k ∈ N∗}
L2
p and

Hs
G (ϕ) := {ψ ∈H (ϕ) |

∑
k∈N∗

|ks〈ϕk, ψ〉L2
p
|2 <∞},

hs :=
{

(ak)k∈N∗ ∈ `2(C)
∣∣ ∑
k∈N∗

|ksak|2 <∞
}
.

(3)

We respectively equip Hs
G (ϕ) and hs with the norms ‖ · ‖(s) =

(∑
k∈N∗ |ks〈ϕk, ·〉L2

p
|2
) 1

2

and
‖x‖(s) =

( ∑
k∈N∗

|ksxk|2
) 1

2 , ∀x := (xk)k∈N∗ ∈ hs.

Let ΓuT be the unitary propagator (when it is defined) corresponding to the dynamics of
(BSE) in the time interval [0, T ].

Definition 1.1. The bilinear Schrödinger equation (BSE) is said to be globally exactly
controllable in Hs

G (ϕ) for suitable ϕ and s > 0 when, for every ψ1, ψ2 ∈ Hs
G (ϕ) such

that ‖ψ1‖L2
p

= ‖ψ2‖L2
p
, there exist T > 0 and u ∈ L2((0, T ),R) such that

ΓuTψ1 = ψ2.

The bilinear Schrödinger equation (BSE) is said to be energetically controllable with re-
spect to some energetic levels (µk)k∈N∗ when, for every m,n ∈ N∗, there exist T > 0 and
u ∈ L2((0, T ),R) such that

ΓuTϕm = ϕn.

The aim of the work is to study the global exact controllability of the (BSE) on infinite
graphs for states in suitable spaces Hs

G (ϕ) with s > 0. From such result, we deduce the
energetic controllability with respect to (µk)k∈N∗ .
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Graph type models have been largely used to study complicated phenomena with sim-
pler settings and we focus our attention on the metric graphs. When a metric graph is
equipped with a self-adjoint operator as a Schrödinger Hamiltonian with specific boundary
conditions on the vertices, it is called quantum graph (we refer the reader for non-linear
phenomena to [1, 9, 10, 16, 17, 18, 19, 20, 21]).

The controllability of the bilinear Schrödinger equation on bounded intervals has been
widely studied in the literature starting by the seminal work on bilinear systems of Ball,
Mardsen and Slemrod [4]. For further results, we refer to [5, 6, 7, 8, 14, 15].

The paper is organized as follows. In Sections 2 and Section 3, we prove the global
exact controllability for tadpole and star-shaped with infinite spokes graphs, respectively.
In the last section, we generalize the previous results to some generic infinite graphs.

2. INFINITE TADPOLE GRAPH

Let T be an infinite tadpole graph composed by two edges e1 and e2. The self-closing
edge e1, the “head”, is connected to e2 in the vertex v and it is parametrized in the clock-
wise direction with a coordinate going from 0 to 1 (the length of e1). The “tail” e2 is an
half-line equipped with a coordinate starting from 0 in v and going to +∞. The tadpole
graph presents a natural symmetry axis that we denote by r.

0

1

0

e1 e2

r

v

Figure 1. The parametrization of the infinite tadpole graph and its nat-
ural symmetric axis r.

Let L2
p be composed by functions which are periodic on the tail with period 1, i.e.

L2 = 1. We consider the bilinear Schrödinger equation (BSE) in L2
p with A = −∆ the

Laplacian equipped with Neumann-Kirchhoff boundary conditions in the vertex v, i.e.

D(A) =
{
ψ = (ψ1, ψ2) ∈ H2

p : ψ ∈ C0(T ,C),
∂ψ1

∂x
(0) +

∂ψ1

∂x
(1) +

∂ψ2

∂x
(0) = 0

}
.

We assume the control field B : ψ = (ψ1, ψ2) 7−→ (V 1ψ1, V 2ψ2) being such that

V 1(x) = x2(x− 1)2, V 2(x) =
∑
n∈N

(x− n)2(x− n− 1)2χ[n,n+1](x).

In this framework, the (BSE) corresponds to the two following Cauchy systems respec-
tively in L2(e1,C) and L2

p(e2,C){
i∂tψ

1 = −∆ψ1 + uV 1ψ1,

ψ1(0) = ψ1
0 ,

{
i∂tψ

2 = −∆ψ2 + uV 2ψ2,

ψ2(0) = ψ2
0 .

(BSEt)

Let ϕ := (ϕk)k∈N∗ be an orthonormal system of L2
p made by eigenfunctions of A and

corresponding to the eigenvalues (µk)k∈N∗ such that, for every k ∈ N∗ \ {1},{
ϕk =

(
cos(2(k − 1)πx), cos(2(k − 1)πx)

)
, µk = 4(k − 1)2π2,

ϕ1 =
(√

2
2 ,
√

2
2

)
, µ1 = 0.

Remark 2.1. We notice that each f = (f1, f2) ∈ L2
p belongs to H (ϕ) if and only if:
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• f1 is symmetric with respect to the symmetry axis r of T ;
• f2 has period 2π and f2|[2nπ,2(n+1)π] ≡ f1 for every n ∈ N.

Proposition 2.2. Let ψ0 ∈ H4
T (ϕ) and u ∈ L2((0, T ),R). There exists a unique mild

solution of the (BSEt) in H4
T (ϕ), i.e. a function ψ ∈ C0

(
[0, T ], H4

T (ϕ)
)

such that

(4) ψ(t) = ei∆tψ0 − i
∫ t

0

ei∆(t−s)u(s)Bψ(s)ds.

In conclusion, the flow of (BSEt) on H (ϕ) can be extended as a unitary flow ΓuT with
respect to the L2

p−norm such that ΓuTψ0 = ψ(t) for any solution ψ of (BSEt) with initial
data ψ0 ∈H (ϕ).

Proof. 1) Unitary flow. We consider Remark 2.1. For every f = (f1, f2) ∈ H (ϕ), we
notice that (Bf)1 inherits from f1 the property of being symmetric with respect to the sym-
metry axis r, while (Bf)2|[2nπ,2(n+1)π] ≡ (Bf)1 for every n ∈ N as f2|[2nπ,2(n+1)π] ≡
f1 for every n ∈ N. Now, (Bf)2 has period 2π and (Bf)2(x) = (Bf)(2(n + 1)π − x)
for every n ∈ N and x ∈ [2nπ, (2n + 1)π]. Thus, Bf = (V f1, V f2) ∈ H (ϕ) for every
f = (f1, f2) ∈H (ϕ) and the control field B preserves the space H (ϕ).
The space H (ϕ) is an Hilbert space where the operatorA is self-adjoint andB is bounded
symmetric. Thanks to [4, Theorem 2.5], the (BSEt) admits and unique solution ψ ∈
C0([0, T ],H (ϕ)) for every T > 0 and ψ0 ∈H (ϕ).
The flow of (BSEt) is unitary in H (ϕ) thanks to the following arguments. If u ∈
C0((0, T ),R), then ψ ∈ C1((0, T ),H (ϕ)) and ∂t‖ψ(t)‖2L2

p
= 0 from (BSEt). Thus

‖ψ(t)‖L2
p

= ‖ψ0‖L2
p
. The generalization for u ∈ L2((0, T ),R) follows from a classical

density argument, which ensures that the flow of the dynamics of the (BSEt) is unitary in
H (ϕ).
2) Regularity of the integral term in the mild solution. The remaining part of the
proof follows from the arguments leading to [8, Lemma 1; Proposition 2] (also adopted
in the proof of [2, Proposition 2.1]). Let ψ ∈ C0([0, T ], H4

T (ϕ)) with T > 0. We no-
tice Bψ(s) ∈ H4

p ∩ H2
T (ϕ) for almost every s ∈ (0, t) and t ∈ (0, T ). Let G(t) =∫ t

0
ei∆(t−s)u(s)Bψ(s, x)ds so that

‖G(t)‖(4) =
( ∑
k∈N∗

∣∣∣k4

∫ t

0

eiµks〈ϕk, u(s)Bψ(s, ·)〉L2
p
ds
∣∣∣2) 1

2

.

For f(s, ·) := u(s)Bψ(s, ·) such that f = (f1, f2) and k ∈ N∗ \ {1}, we have

〈ϕk, f(s)〉L2
p

= − 1

µk

(∫ 1

0

ϕ1
k(y)∂2

xf
1(s, y)dy +

∫ 1

0

ϕ2
k(y)∂2

xf
2(s, y)dy

)
= − 2

µk

∫ 1

0

ϕ1
k(y)∂2

xf
1(s, y)dy =

1

4(k − 1)3π3

∫ 1

0

sin(2(k − 1)πx)∂3
xf

1(s, y)dy

=
1

8(k − 1)4π4

(
∂3
xf

1(s, 1)− ∂3
xf

1(s, 0)−
∫ 1

0

cos(2(k − 1)πx)∂4
xf

1(s, y)dy

)
.

In the last relations, we considered that ϕ1
k(·)∂2

xf
1(s, ·)|[0,1] = ϕ2

k(·)∂2
xf

2(s, ·)|[0,1] as
∂2
xf

1(s, ·)|[0,1] = ∂2
xf

2(s, ·)|[0,1]. We recall the norm of H4
p provided in (2). Equivalently

to the first point of the proof of [2, Proposition 2.1], there exists C1 > 0 such that

‖G(t)‖(4) ≤C1

(∥∥∥∫ t

0

(
∂3
xf

1(s, 1)− ∂3
xf

1(s, 0)
)
eiµ(·)sds

∥∥∥
`2

+
√
t‖f‖L2((0,t),H4

p)

)
.
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Thanks [11, Proposition B.6], there exist C2(t) > 0 uniformly bounded for t in bounded
intervals such that ‖G(t)‖(4) ≤ C2(t)‖f(·, ·)‖L2((0,t),H4

p). For every t ∈ [0, T ], the last
inequality shows that G(t) ∈ H4

T (ϕ) and the provided upper bound is uniform. The
Dominated Convergence Theorem leads to G ∈ C0([0, T ], H4

T (ϕ)).

3) Conclusion. AsRan(B|H4
T (ϕ)) ⊆ H4

p ∩H2
T (ϕ) ⊆ H4

p , we haveB ∈ L(H4
T (ϕ), H4

p )

thanks to the arguments of [12, Remark 2.1]. Let ψ0 ∈ H4
T (ϕ). We consider the map

F : ψ ∈ C0([0, T ], H4
T (ϕ)) 7→ φ ∈ C0([0, T ], H4

T (ϕ)),

φ(t) = F (ψ)(t) = ei∆tψ0 −
∫ t

0

ei∆(t−s)u(s)Bψ(s)ds, ∀t ∈ [0, T ].

For every ψ1, ψ2 ∈ C0([0, T ], H4
T (ϕ)), from the first point of the proof, there exists

C(t) > 0 uniformly bounded for t lying on bounded intervals such that

‖F (ψ1)− F (ψ2)‖L∞((0,T ),H4
T (ϕ)) ≤

∥∥∥∥∥
∫ (·)

0

ei∆((·)−s)u(s)B(ψ1(s)− ψ2(s))ds

∥∥∥∥∥
L∞((0,T ),H4

T (ϕ))

≤ C(T )‖u‖L2((0,T ),R) |||B ||| L(H4
T (ϕ),H4

p)‖ψ1 − ψ2‖L∞((0,T ),H4
T (ϕ)).

If ‖u‖L2((0,T ),R) is small enough, then F is a contraction and Banach Fixed Point Theorem
yields the existence of ψ ∈ C0([0, T ], H4

T (ϕ)) such that F (ψ) = ψ. When ‖u‖L2((0,t),R)

is not sufficiently small, we decompose (0, T ) with a sufficiently thin partition {tj}0≤j≤n
with n ∈ N∗ such that each ‖u‖L2([tj−1,tj ],R) is so small such that F , defined on the
interval [tj−1, tj ], is a contraction. �

By recalling the definitions of global exact controllability and energetic controllability
provided in Definition 1.1, we present the following result.

Theorem 2.3. The (BSEt) is globally exactly controllable in H4
T (ϕ) and energetically

controllable in (µk)k∈N∗ .

Proof. The statement is proved by using the arguments leading to [2, Theorem 2.2].

1) Local exact controllability. We notice that ϕ1(T ) = e−iµ1Tϕ1 = ϕ1 with T > 0 as
the first eigenvalue µ1 is equal to 0. For ε, T > 0, we define

O4
ε,T :=

{
ψ ∈ H4

T (ϕ)
∣∣ : ‖ψ‖L2

p
= 1, ‖ψ − ϕ1‖(4) < ε

}
.

We ensure there exist T, ε > 0 so that, for every ψ ∈ O4
ε,T , there exists u ∈ L2((0, T ),R)

such that ψ = ΓuTϕ1. The result can be proved by showing the surjectivity of the map

Γ
(·)
T ϕ1 : u ∈ L2((0, T ),R) 7−→ ψ ∈ O4

ε,T , Γ
(·)
t ϕ1 =

∑
k∈N∗

ϕk(t)〈ϕk(t),Γ
(·)
t ϕ1〉L2

p
,

for T > 0 large enough. We recall the definition of h4 provided in (3). Let α be the map
defined as the sequence with elements αk(u) = 〈ϕk(T ),ΓuTϕ1〉L2

p
for k ∈ N∗ such that

α : L2((0, T ),R) −→ Q := {x := (xk)k∈N∗ ∈ h4(C) | ‖x‖`2 = 1}.

The local exact controllability follows from the local surjectivity of α in a neighborhood
of α(0) = δ = (δk,1)k∈N∗ with respect to the h4−norm. To this end, we consider the
Generalized Inverse Function Theorem ([13, Theorem 1; p. 240]) and we study the surjec-
tivity of γ(v) := (duα(0)) · v the Fréchet derivative of α. Let Bk,1 := 〈ϕk, Bϕ1〉L2

p
with
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k ∈ N∗. The map γ is the sequence of elements γk(v) := −i
∫ T

0
v(τ)ei(µk−µ1)sdτBk,1

with k ∈ N∗ so that

γ : L2((0, T ),R) −→ TδQ = {x := (xk)k∈N∗ ∈ h4(C) | ix1 ∈ R}.

The surjectivity of γ corresponds to the solvability of the moments problem

xkB
−1
k,1 = −i

∫ T

0

u(τ)ei(µk−µ1)τdτ, ∀{xk}k∈N∗ ∈ TδQ ⊂ h4.(5)

By direct computation, there exists C > 0 such that |〈ϕ1, Bϕ1〉L2
p
| ≥ C

k4 for every k ∈ N∗
and (

xkB
−1
k,1

)
k∈N∗ ∈ `

2, ix1B
−1
k,1 ∈ R.

In conclusion, the solvability of (5) is guaranteed by [11, Proposition B.5] since

(ixkB
−1
k,1)k∈N∗ ∈ {(ck)k∈N∗ ∈ `2 | c1 ∈ R}, inf

k∈N∗
|µk+1 − µk| = 4π2.

2) Global exact controllability. Let T, ε > 0 be so that 1) is valid. Thanks to Remark
A.3, for any ψ1, ψ2 ∈ H4

T (ϕ) such that ‖ψ1‖L2
p

= ‖ψ2‖L2
p

= p, there exist T1, T2 > 0,
u1 ∈ L2((0, T1),R) and u2 ∈ L2((0, T2),R) such that

‖Γu1

T1
p−1ψ1 − ϕ1‖(4) < ε, ‖Γu2

T2
p−1ψ2 − ϕ1‖(4) < ε

and p−1Γu1

T1
ψ1, p

−1Γu2

T2
ψ2 ∈ O4

ε,T . From 1), there exist u3, u4 ∈ L2((0, T ),R) such that

Γu3

T Γu1

T1
ψ1 = Γu4

T Γu2

T2
ψ2 = pϕ1 =⇒ ∃T > 0, ũ ∈ L2((0, T̃ ),R) : Γũ

T̃
ψ1 = ψ2.

3) Energetic controllability. The energetic controllability follows as ϕk ∈ H4
T (ϕ) for

every k ∈ N∗. �

Let Φ := (φk)k∈N∗ be an orthonormal system of L2
p made by eigenfunctions of A and

corresponding to the eigenvalues (λk)k∈N∗ such that

φk =
(√

2 sin(2kπx), 0
)
, λk = 4k2π2, ∀k ∈ N∗.

We notice that the results [2, Theorem 2.1; Theorem 2.2] are still valid in the framework
of the section and they lead to the following proposition.

Proposition 2.4. Let the (BSEt) be considered withB being a bounded symmetric operator
in L2

p such that B : ψ 7−→ (V ψ1, 0) with V (x) = x(1−x). The (BSEt) is globally exactly
controllable in H3

T (Φ) and energetically controllable in (λk)k∈N∗ .

The techniques leading to Proposition 2.2, Theorem 2.3 and Proposition 2.4 also imply
the following corollary.

Corollary 2.5. Let the (BSEt) be considered with B be a bounded symmetric operator in
L2
p such that B : ψ = (ψ1, ψ2) 7−→ (V 1ψ1, V 2ψ2) with

V 1(x) = x(1− x) + x2(x− 1)2, V 2(x) =
∑
n∈N

(x− n)2(x− n− 1)2χ[n,n+1](x).

The (BSEt) is globally exactly controllable in H4
T (ϕ) and H3

T (Φ).
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3. STAR GRAPH WITH INFINITE SPOKES

Let S be a star graph graph composed by N finite edges {ej}1≤j≤N of lengths
{Lj}1≤j≤N and Ñ half-lines {ej}N+1≤j≤N+Ñ . The edges are connected in the inter-
nal vertex v, while the {vj}1≤j≤N are the external vertices of S (those vertices of S
connected with only one edge). Each ej with 1 ≤ j ≤ N is associated to a coordinate
starting from 0 in vj and going to Lj , while ej with N + 1 ≤ j ≤ N + Ñ is parametrized
with a coordinate starting from 0 in v and going to infinite.

0

e1

e2

0

0

e3

L2

L1

v

v1

v2

Figure 2. The parametrization of a star graph with Ñ = 1 infinite spoke
and N = 2 finite spokes.

Let L2
p be defined in (1). This space is composed by functions which are periodic on

the infinite edges with periods {Lj}N+1≤j≤N+Ñ . We consider the bilinear Schrödinger
equation (BSE) inL2

p and the LaplacianA = −∆ being equipped with Neumann-Kirchhoff
boundary conditions in v and Neumann boundary conditions in {vj}1≤j≤N , i.e.

D(A) =
{
ψ = (ψ1, ..., ψN+Ñ ) ∈ H2

p :

N∑
j=1

∂ψj

∂x
(Lj) =

N+Ñ∑
j=N+1

∂ψj

∂x
(0),

ψ ∈ C0(S ,C),
∂ψj

∂x
(vj) = 0 ∀1 ≤ j ≤ N

}
.

Let B : ψ ∈ L2
p 7→ Bψ =

(
(Bψ)1, ..., (Bψ)N+Ñ

)
be a bounded symmetric operator. The

(BSE) corresponds to the following Cauchy systems in L2(ej ,C) when 1 ≤ j ≤ N and in
L2
p(ej ,C) when N + 1 ≤ j ≤ N + Ñ (defined in (1)){

i∂tψ
j(t) = −∆ψj(t) + u(t)(Bψ)j(t), t ∈ (0, T ),

ψj(0) = ψj0.
(BSEs)

Let LN+1/Lj ∈ Q for every N + 2 ≤ j ≤ N + Ñ . We denote by lj ∈ N∗ the smallest
natural number such that

(6) lj
LN+1

Lj
∈ N∗, with 1 ≤ j ≤ N + Ñ .

Let nk := (k − 1)
∏N+Ñ
j=N+1 lj

LN+1

Lj
∈ N for every k ∈ N∗. We notice

N+Ñ⋂
j=N+1

{2mπ

Lj

}
m∈N

=
{ 2nkπ

LN+1

}
k∈N∗

.

Assumptions A. The numbers {Lj}1≤j≤N+Ñ are such that every ratios LN+1

Lj
∈ Q for

any N + 2 ≤ j ≤ N + Ñ . In addition, there exist J ⊆ N∗ with |J | = +∞ and



8 KAÏS AMMARI AND ALESSANDRO DUCA

{cj}N+1≤j≤N+Ñ with cj ∈ [0, Lj ] for any N + 1 ≤ j ≤ N + Ñ such that

N∑
j=1

tan
( 2nkπ

LN+1
Lj

)
=

N+Ñ∑
j=N+1

tan
( 2nkπ

LN+1
cj

)
, ∀k ∈ J.

In conclusion, for (µk)k∈N∗ the sequence obtained by reordering
{ 4n2

kπ
2

L2
N+1

}
k∈J , there exist

C > 0 such that µk ≤ Ck2 for every k ∈ N∗.

Remark. Let µk ∼ k2 and c ∈ R+ be such that 0 6∈ σ(A + c,H (ϕ)) (the spectrum of
A+ c in the Hilbert space H (ϕ)). For every s > 0, there exists C1, C2 > 0 such that

C1‖ψ‖(s) ≤ ‖|A+ c|s/2ψ‖L2
p
≤ C2‖ψ‖(s), ∀ψ ∈ Hs

S (ϕ).

When Assumptions A are satisfied, we define (ϕk)k∈N∗ an orthonormal system of L2
p

made by eigenfunctions of (µk)k∈N∗ such that

ϕj1 =
1√

(N + Ñ)Lj

, ∀ 1 ≤ j ≤ N + Ñ ,(7)

when µ1 = 0, while for every k ∈ N∗ such that µk 6= 0 (if µk = 0, then k = 1),
ϕ1
k = αk cos(

√
µ
k
x),

ϕjk = αk
cos(
√
µ
k
L1)

cos(
√
µ
k
Lj)

cos(
√
µ
k
x), ∀ 2 ≤ j ≤ N,

ϕjk = αk
cos(
√
µ
k
L1)

cos(
√
µ
k
cj)

cos(
√
µ
k
(x+ cj)

)
, ∀ N + 1 ≤ j ≤ N + Ñ

(8)

with αk ∈ C such that ‖ϕk‖L2
p

= 1 and for every k ∈ N∗.

Lemma 3.1. Let S be a star graph satisfying Assumptions A. The sequence (ϕk)k∈N∗ is
an orthonormal system of L2

p made by eigenfunctions of the Laplacian A corresponding to
the eigenvalues (µk)k∈N∗ .

Proof. Any eigenfunction f = (f1, ..., fN+Ñ ) ofA corresponding to an eigenvalue µ 6= 0

has to be such that f j has period 2π
Lj

for every N + 1 ≤ j ≤ N + Ñ . Thus,

√
µ ∈

N+Ñ⋂
j=N+1

{2mπ

Lj

}
m∈N

⊇
{ 2nkπ

LN+1

}
k∈J

.

Thanks to the Neumann boundary conditions in {vj}j≤N and to the periodicity conditions
in {ej}N+1≤j≤N+Ñ , there exists cj ∈ [0, Lj ] for any N + 1 ≤ j ≤ N + Ñ such that{

f j = αj cos(
√
µx), 1 ≤ j ≤ N,

f j = αj cos(
√
µ(x+ cj)) + βj sin(

√
µ(x+ cj)), N + 1 ≤ j ≤ N + Ñ ,

with suitable {αj}j 6=N+Ñ , {βj}N+1≤j 6=N+Ñ ⊂ C. The Neumann-Kirchhoff boundary
condition in v yields that f ∈ C0(S ,C) and then{

α1 cos(
√
µL1) = αj cos(

√
µLj), ∀2 ≤ j ≤ N,

α1 cos(
√
µL1) = αj cos(cj) + βj sin(cj), ∀N + 1 ≤ j ≤ N + Ñ .

When βj = 0 for every N + 1 ≤ j ≤ N + Ñ , the last identities implies the validity
of (8). The second condition characterizing the Neumann-Kirchhoff boundary conditions
is verified when βj = 0 thanks to the definition of the numbers cj ∈ [0, Lj ] for every
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N + 1 ≤ j ≤ N + Ñ . As a consequence, (ϕk)k∈N∗ is an orthonormal sequence of L2
p

made by eigenfunctions of A. �

Equivalently to Proposition 2.2, we have the following well-posedness result.

Proposition 3.2. Let the star graph S satisfy Assumptions A andB be bounded symmetric
operator in L2

p such that

B : H (ϕ) −→H (ϕ), B : H2
S (ϕ) −→ H2

S (ϕ), B : H3
S (ϕ) −→ H3

p∩H2
S (ϕ).

Let ψ0 ∈ H3
S (ϕ) and u ∈ L2((0, T ),R). There exists a unique mild solution ψ ∈

C0([0, T ], H3
S ) of the (BSEs) (defined in (4)). The flow of (BSEs) on H (ϕ) can be

extended as a unitary flow ΓuT with respect to the L2
p−norm such that ΓuTψ0 = ψ(t) for

any solution ψ of (BSEs) with initial data ψ0 ∈H (ϕ).

Proof. The proof follows from the same arguments adopted in Proposition 2.2. First, we
notice that A is self-adjoint in H (ϕ) and B is bounded symmetric since B : H (ϕ) →
H (ϕ). Second, we can define an unitary flow for the dynamics of the equation in H (ϕ)
as in the proof of the mentioned proposition.
1) Regularity of the integral term in the mild solution. Let ψ ∈ C0([0, T ], H3

S ) with
T > 0. We notice Bψ(s) ∈ H3

p ∩ H2
S for almost every s ∈ (0, t) and t ∈ (0, T ).

We assume that µ1 6= 0, but the proof is equivalent in the generic case. Let G(t) =∫ t
0
ei∆(t−s)u(s)Bψ(s, x)ds be so that

‖G(t)‖(3) =
( ∑
k∈N∗

∣∣∣k3

∫ t

0

eiµks〈ϕk, u(s)Bψ(s, ·)〉L2
p
ds
∣∣∣2) 1

2

.

Let f(s, ·) := u(s)Bψ(s, ·). We define ∂xf(s) = (∂xf
1(s), ..., ∂xf

N (s)) the derivative
of f(s) and P (ϕk) = (P (ϕ1

k), ..., P (ϕNk )) the primitive of ϕk so that P (ϕk) = − 1
µk
∂xϕk

for every k ∈ N∗. Thanks to the validity of Assumptions A, we have µk ∼ k2. As in the
first point of the proof of Proposition 2.2, for every k ∈ N∗,∣∣∣∣k3

∫ t

0

eiµks〈ϕk, f(s)〉L2
p
ds

∣∣∣∣ ≤ C1

k

N+Ñ∑
j=1

(∣∣∣∣∂xϕjk(Lj)

∫ t

0

eiµks∂2
xf

j(s, Lj)ds

∣∣∣∣
+

∣∣∣∣∂xϕjk(0)

∫ t

0

eiµks∂2
xf

j(s, 0)ds

∣∣∣∣+

∣∣∣∣∣
∫ t

0

eiµks
∫ Lj

0

∂xϕ
j
k(y)∂3

xf
j(s, y)dyds

∣∣∣∣∣
)
.

The argument of [2, Remark 3.4] yields that ∂3
xf(s, ·) ∈ span

{
µ
−1/2
k ∂xϕk : k ∈ N∗

}L2

for almost every s ∈ (0, t) and t ∈ (0, T ) and there exists C2 > 0 such that

‖G(t)‖(3) ≤C2

N+Ñ∑
j=1

(∥∥∥∫ t

0

∂2
xf

j(s, 0)eiµ(·)sds
∥∥∥
`2

+
∥∥∥∫ t

0

∂2
xf

j(s, Lj)e
iµ(·)sds

∥∥∥
`2

)
+ C3

∥∥∥∫ t

0

〈
µ
−1/2
(·) ∂xϕ(·)(s), ∂

3
xf(s)

〉
L2
p
eiµ(·)sds

∥∥∥
`2
.

We recall the norm of H3
p provided in (2). From [11, Proposition B.6], there exist C3(t) >

0 uniformly bounded for t in bounded intervals such that ‖G‖(3) ≤ C5(t)‖f(·, ·)‖L2((0,t),H3
p).

The provided upper bounds are uniform and the Dominated Convergence Theorem leads
to G ∈ C0([0, T ], H3

S (ϕ)).
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2) Conclusion. We proceed as in the second point of the proof of Proposition 2.2. Let ψ0 ∈
H3

S (ϕ). We consider the map F : ψ ∈ C0([0, T ], H3
S (ϕ)) 7→ φ ∈ C0([0, T ], H3

S (ϕ))
with

φ(t) = F (ψ)(t) = ei∆tψ0 −
∫ t

0

ei∆(t−s)u(s)Bψ(s)ds, ∀t ∈ [0, T ].

Let L∞(H3
S (ϕ)) := L∞((0, T ), H3

S (ϕ)). For every ψ1, ψ2 ∈ C0([0, T ], H3
S (ϕ)),

thanks to 1), there exists C(t) > 0 uniformly bounded for t lying on bounded intervals
such that

‖F (ψ1)− F (ψ2)‖L∞(H3
S (ϕ)) ≤ C(T )‖u‖L2((0,T ),R) |||B ||| L(H3

S (ϕ),H3
p)‖ψ1 − ψ2‖L∞(H3

S (ϕ)).

The Banach Fixed Point Theorem leads to the claim as in the mentioned proof. �

By recalling the definitions of global exact controllability and energetic controllability
provided in Definition 1.1, we present the following result.

Theorem 3.3. Let the hypotheses of Proposition 3.2 be satisfied. We also assume that
(1) there exists C > 0 such that |〈ϕk, Bϕ1〉L2

p
| ≥ C

k3 for every k ∈ N∗;
(2) for every (j, k), (l,m) ∈ N2 such that (j, k) 6= (l,m), j 6= j and l 6= m satisfying

µj − µk = µj − µm, it holds

〈ϕj , Bϕj〉L2
p
− 〈ϕk, Bϕk〉L2

p
− 〈ϕl, Bϕl〉L2

p
+ 〈ϕm, Bϕm〉L2

p
6= 0.

The (BSEs) is globally exactly controllable in H3
S (ϕ) and energetically controllable in

(µk)k∈N∗ .

Proof. 1) Local exact controllability. The statement follows as Theorem 2.3. First, for
ε, T > 0, the local exact controllability in O3

ε,T :=
{
ψ ∈ H3

S

∣∣ ‖ψ‖L2
p

= 1, ‖ψ −
ϕ1(T )‖(3) < ε

}
with ϕ1(T ) = e−iµ1Tϕ1 is ensured by proving the surjectivity of the map

γ : L2((0, T ),R) −→ TδQ = {x := (xk)k∈N∗ ∈ h3(C) | ix1 ∈ R}

the sequence of elements γk(v) := −i
∫ T

0
v(τ)ei(µk−µ1)sdτBk,1 withBk,1 := 〈ϕk, Bϕ1〉L2

p

k ∈ N∗. The surjectivity of γ corresponds to the solvability of the moments problem

xkB
−1
k,1 = −i

∫ T

0

u(τ)ei(µk−µ1)τdτ, ∀(xk)k∈N∗ ∈ TδQ ⊂ h3.(9)

As there exists C > 0 such that |〈ϕk, Bϕ1〉L2
p
| ≥ C

k3 for every k ∈ N∗, we have(
xkB

−1
k,1

)
k∈N∗ ∈ `

2 and ix1B
−1
k,1 ∈ R. The solvability of (9) is guaranteed by [11, Propo-

sition B.5] since infk∈N∗ |µk+1 − µk| ≥ π2(max{L2
j : N + 1 ≤ j ≤ N + Ñ})−1 > 0.

2) Global exact controllability and energetic controllability. The global exact control-
lability in H3

S (ϕ) is ensured as in the second point of the proof of Theorem 2.3 by con-
sidering Remark A.4 instead of Remark A.3. In conclusion, the energetic controllability
follows as ϕk ∈ H3

S (ϕ) for every k ∈ N∗. �

Remark. Let {Lj}1≤j≤N+Ñ be such that every ratios LN+1

Lj
∈ Q for any 1 ≤ j ≤ N+Ñ .

We notice that Assumptions A are satisfied with cj = 0 for every N + 1 ≤ j ≤ N + Ñ .

Indeed, for ñk := (k − 1)
∏N+Ñ
j=1 lj

LN+1

Lj
with k ∈ N∗ and lj from (6), we have{4ñ2
kπ

2

L2
N+1

}
k∈N∗
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is a sequence of eigenvalues of A that we denote by (µk)k∈N∗ . The corresponding eigen-
functions (ϕk)k∈N∗ are defined in (7) and (8). In this framework,

µk ∼ k2, tan(µkLj) = 0 ∀k ∈ N∗.

The validity of Assumptions A is ensured with cj = 0 for every N + 1 ≤ j ≤ N + Ñ . We
consider the operator B̃ : ψ 7−→ (V 1ψ1, ..., V N+ÑψN+Ñ ) being such that{
V j(x) = x2(x− Lj)2, ∀1 ≤ j ≤ N,
V j(x) =

∑
n∈N(x− nLj)2(x− (n− 1)Lj)

2χ[nLj ,(n+1)Lj ](x), ∀N + 1 ≤ j ≤ N + Ñ .

If we assumeB being such thatBψ =
∑+∞
j=1〈ϕj , B̃ψ〉L2

ϕj , then the global exact control-
lability is guaranteed inH3

S (ϕ), which leads to the energetical controllability in (µk)k∈N∗

of the bilinear Schrödinger equation (BSEs). The result follows from Theorem 3.3.

4. GENERIC GRAPHS

In this section, we study the controllability of the (BSE) for a generic graph G made by
N finite edges {ej}1≤j≤N of lengths {Lj}1≤j≤N , Ñ half-lines {ej}N+1≤j≤N+Ñ and M
vertices {vj}1≤j≤M . We call Ve and Vi the external and the internal vertices of G , i.e.

Ve :=
{
v ∈ {vj}1≤j≤M | ∃!e ∈ {ej}1≤j≤N : v ∈ e

}
, Vi := {vj}1≤j≤M \ Ve.

For every v vertex of G , we denote N(v) :=
{
l ∈ {1, ..., N} | v ∈ ej

}
. We consider the

bilinear Schrödinger equation (BSE) in L2
p for a generic graph G with {Lj}N+1≤j≤N+Ñ .

Let A = −∆ being equipped with Neumann-Kirchhoff boundary conditions in every inter-
nal vertex v ∈ Vi, i.e. every function f ∈ D(A) is continuous in v and∑

e3v

∂f

∂xe
(v) = 0.

The derivatives are assumed to be taken in the directions away from the vertex (outgoing di-
rections). In addition, the external vertices Ve are equipped with Dirichlet or Neumann type
boundary conditions. We respectively call (NK), (D) and (N ) the Neumann-Kirchhoff,
Dirichlet and Neumann boundary conditions characterizing D(A).

We say that G is equipped with one of the previous boundaries in a vertex v, when each
f ∈ D(A) satisfies it in v. We say that G is equipped with (D) (or (N )) when, for every
f ∈ D(A), the function f satisfies (D) (or (N )) in every v ∈ Ve and verifies (NK) in
every v ∈ Vi. In addition, the graph G is equipped with (D/N ) when, for every f ∈ D(A)
and v ∈ Ve, the function f satisfies (D) or (N ) in v and f verifies (NK) in every v ∈ Vi.

Let ϕ := (ϕk)k∈N∗ be an orthonormal system of L2
p made by eigenfunctions of A and

let (µk)k∈N∗ be the corresponding eigenvalues. Let [r] be the entire part of r ∈ R. We
define G (ϕ) =

⋃
k∈N∗ supp(ϕk) and, for s > 0,

Hs
NK(ϕ) :=

{
ψ ∈H (ϕ) ∩Hs

p | ∂2n2
x ψ continuous in v,

∑
e∈N(v)

∂2n1+1
xe ψ(v) = 0,

∀n1, n2 ∈ N∗ ∪ {0}, n1 <
[
(s+ 1)/2

]
, n2 <

[
s/2
]
, ∀v ∈ Vi

}
.

Let Ve(ϕ) and Vi(ϕ) respectively be the external and internal vertices of G (ϕ).

Remark 4.1. We notice the following facts.
• G (ϕ) is a sub-graph of G that can be either infinite, or finite according to the

choice of the orthonormal family ϕ.
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• The functions belonging to H (ϕ), Hs
G (ϕ) and Hs

NK(ϕ) can be considered as
functions with domain G (ϕ).

• G (ϕ) shares some external and internal vertices with G , while he has new external
vertices, which are Ve(ϕ) \ Ve.

• Each ϕk|G (ϕ) is an eigenfunction of a Laplacian Ã defined on H (ϕ) as follows.
The domain D(Ã) is composed by those functions in H2

p with support in G (ϕ)
such that they satisfy Dirichlet boundary conditions in the vertices Ve(ϕ) \ Ve,
while they verify the same boundary conditions defining D(A) in the vertices
Vi(ϕ) and in Ve(ϕ) ∩ Ve.

From now on, when we claim that the vertices of G (ϕ) are equipped with any type of
boundary conditions, this is done in the meaning of Remark 4.1. Let η > 0, a ≥ 0 and

I := {(j, k) ∈ (N∗)2 : j 6= k}.

Assumptions I (ϕ, η). Let B be a bounded and symmetric operator in L2
p.

(1) There exists C > 0 such that |〈ϕk, Bϕ1〉L2
p
| ≥ C

k2+η for every k ∈ N∗.
(2) For every (j, k), (l,m) ∈ I such that (j, k) 6= (l,m) and µj − µk = µj − µm, it

holds 〈ϕj , Bϕj〉L2
p
− 〈ϕk, Bϕk〉L2

p
− 〈ϕj , Bϕj〉L2

p
+ 〈ϕm, Bϕm〉L2

p
6= 0.

Assumptions II (ϕ, η, a). We haveB : H (ϕ)→H (ϕ) andRan(B|H2
G (ϕ)) ⊆ H2

G (ϕ).
In addition, one of the following points is satisfied.

(1) When G (ϕ) is equipped with (D/N ) and a + η ∈ (0, 3/2), there exists d ∈
[max{a+ η, 1}, 3/2) such that Ran(B|H2+d

G (ϕ)) ⊆ H
2+d
p ∩H2

G (ϕ).

(2) When G (ϕ) is equipped with (N ) and a+η ∈ (0, 7/2), there exist d ∈ [max{a+

η, 2}, 7/2) and d1 ∈ (d, 7/2) such that Ran(B|
H
d1
NK(ϕ)

) ⊆ Hd1
NK(ϕ) and

Ran(B|H2+d
G (ϕ)) ⊆ H

2+d
p ∩H1+d

NK (ϕ) ∩H2
G (ϕ).

(3) When G is equipped with (D) and a + η ∈ (0, 5/2), there exists d ∈ [max{a +

η, 1}, 5/2) such thatRan(B|H2+d
G (ϕ)) ⊆ H

2+d
p ∩H1+d

NK (ϕ)∩H2
G (ϕ). If a+η ≥ 2,

then there exists d1 ∈ (d, 5/2) such that Ran(B|
H
d1
p ∩H (ϕ)

) ⊆ Hd1
p ∩H (ϕ).

From now on, we omit the terms ϕ, η and a from the notations of Assumptions I and
Assumptions II when their are not relevant.

We present interpolation properties for the spaces Hs
G (ϕ) with s > 0.

Proposition 4.2. Let ϕ := (ϕk)k∈N∗ be an orthonormal system of L2
p made by eigenfunc-

tions of A.

1) If the graph G (ϕ) is equipped with (D/N ), then

Hs1+s2
G (ϕ) = Hs1

G (ϕ) ∩Hs1+s2
p for s1 ∈ N, s2 ∈ [0, 1/2).

2) If the graph G (ϕ) is equipped with (N ), then

Hs1+s2
G (ϕ) = Hs1

G (ϕ) ∩Hs1+s2
NK (ϕ) for s1 ∈ 2N s2 ∈ [0, 3/2).

3) If the graph G (ϕ) is equipped with (D), then

Hs1+s2+1
G (ϕ) = Hs1+1

G (ϕ) ∩Hs1+s2+1
NK (ϕ) for s1 ∈ 2N, s2 ∈ [0, 3/2).
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Proof. Let us denote by {ej}j≤N1
the fine edges composing G (ϕ), while {ej}N1≤j≤N1+Ñ1

the remaining ones. Let L < min{Lk : k ∈ {N1 + 1, ..., N1 + Ñ1}}. We define G̃ (ϕ)

from G (ϕ) as follows. For every N1 + 1 ≤ j ≤ N1 + Ñ1, we cut the edge ej at distance
L from the internal vertices of G (ϕ) where ej is connected. We consider in L2(G̃ (ϕ),C)

a self-adjoint Laplacian A1 being defined as follows. Every internal vertex of G̃ (ϕ) is
equipped with Neumann-Kirchhoff boundary conditions. Every external vertex of G̃ (ϕ)
belonging to Ve(ϕ), we consider the same boundary conditions defined for G (ϕ), while
every other external vertex is equipped with (D).

Boundaries: Neumann-Kirchhoff, Dirichlet, Dirichlet/Neumann.

Figure 3. The figure represent the definition of G̃ (ϕ) (on the right) for a
graph G (ϕ) (on the left) with N1 = 11 finite edges and Ñ1 = 2 infinite
edges. We also underline the boundary conditions characterizing A1.

We denote by Hs
G̃ (ϕ)

:= D(|A1|
s
2 ) for every s > 0. Afterwards, for every edge ej

with N1 + 1 ≤ j ≤ N1 + Ñ1, we define a ring ẽj having length Lj . We consider on
L2(ẽj ,C) a self-adjoint Laplacian Aj with domain D(Aj) = H2(ẽj ,C) and we denote by
Hs
ẽj

:= D(|Aj |
s
2 ) for every s > 0. On L2([0, L],C), we consider a Dirichlet Laplacian

AD and Neummann Laplacian AN , while we call, for every s > 0,

Hs
eDj

:= D(|AD| s2 ), Hs
eNj

:= D(|AN | s2 ), ∀N1 + 1 ≤ j ≤ N1 + Ñ1.

For every ψ = (ψ1, ..., ψN1+Ñ1) ∈ Hs1+s2
G (ϕ) with s1 ∈ N and s2 ∈ [0, 1/2), there

exist ψ1 = (ψ1
1 , ..., ψ

N1+Ñ1
1 ) ∈ Hs1+s2

G̃ (ϕ)
, f j ∈ Hs1+s2

ẽj
for every N + 1 ≤ j ≤ N + Ñ ,

gj ∈ Hs1+s2
eDj

for every N + 1 ≤ j ≤ N + Ñ and hj ∈ Hs1+s2
eNj

for every N + 1 ≤ j ≤

N + Ñ such that, for every j ≤ N1 and N1 + 1 ≤ l ≤ N1 + Ñ1,
ψj ≡ ψj1,
ψl(x) = ψl1(x) + f l(x), ∀x ∈ [0, Ll],

ψl(x) = f l
(
x−

[
x
Ll

])
+ gl

(
x−

[
x
Ll

])
+ hl

(
x−

[
x
Ll

])
, ∀x ∈ [Ll,+∞).

Thanks to the last decomposition, the space Hs1+s2
G (ϕ) is equivalent to a subspace of

Hs1+s2
G̃ (ϕ)

×
N1+Ñ1∏
j=N1+1

(
Hs1+s2
ẽj

×Hs1+s2
eDj

×Hs1+s2
eNj

)
.

Thanks to the first point of [11, Proposition 3.2], we have

Hs1+s2
G̃ (ϕ)

= Hs1
G̃ (ϕ)

∩Hs1+s2(G̃ (ϕ),C),

Hs1+s2
ẽj

= Hs1
ẽj
∩Hs1+s2((0, Lj),C), ∀N1 + 1 ≤ j ≤ N1 + Ñ1,

Hs1+s2
eDj

= Hs1
eDj
∩Hs1+s2((0, Lj),C), ∀N1 + 1 ≤ j ≤ N1 + Ñ1,

Hs1+s2
eNj

= Hs1
eNj
∩Hs1+s2((0, Lj),C), ∀N1 + 1 ≤ j ≤ N1 + Ñ1.
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The last relation implies that, for every ψ ∈ Hs1+s2
G (ϕ) with s1 ∈ N and s2 ∈ [0, 1/2),

there holds ψ ∈ Hs1
G (ϕ)∩Hs1+s2

p achieving the proof of the first point of the proposition,
while the vice versa follows from the same techniques. In conclusion, the remaining state-
ments equivalently follow from the second and third points of [11, Proposition 3.2]. �

In the following theorem, we collect the well-posedness and the controllability result for
the bilinear Schrödinger equation in this generic framework. The well-posendess is proved
exactly as [2, Theorem 3.3] by using Proposition 4.2 instead of [2, Proposition 3.2]. The
controllability result follows from the same arguments of [2, Theorem 3.6] by considering
Proposition A.2 instead of [2, Theorem B.2].

By recalling the definitions of global exact controllability and energetic controllability
provided in Definition 1.1, we present the following result.

Theorem 4.3. 1) Let the couple (A,B) satisfy Assumptions II(ϕ, η, d̃) with η > 0 and
d̃ ≥ 0. Let d be introduced in Assumptions II and µk ∼ k2. For every ψ0 ∈ H2+d

G (ϕ) and
u ∈ L2((0, T ),R) with T > 0. There exists a unique mild solution ψ ∈ C0([0, T ], Hs

G (ϕ))
of the (BSE) (defined in (4)). In addition, the flow of (BSE) on H (ϕ) can be extended as
a unitary flow ΓuT with respect to the L2

p−norm such that ΓuTψ0 = ψ(t) for any solution ψ
of (BSE) with initial data ψ0 ∈H (ϕ).

2) Let for every ε > 0 exist C > 0 and d̃ ≥ 0 such that

|µk+1 − µk| ≥ Ck−d̃, ∀k ∈ N∗.

If (A,B) satisfies Assumptions I(ϕ, η) and Assumptions II(ϕ, η, d̃) for η > 0, then the
(BSE) is globally exactly controllable in Hs

G (ϕ) for s = 2 + d with d from Assumptions II
and energetically controllable in (µk)k∈N∗ .

Acknowledgments. The second author has been financially supported by the ISDEEC
project by ANR-16-CE40-0013.

APPENDIX A. GLOBAL APPROXIMATE CONTROLLABILITY

Definition A.1. The (BSE) is said to be globally approximately controllable in Hs
G (ϕ)

with s > 0 if, for every N ∈ N∗, ψ1, ...., ψN ∈ Hs
G (ϕ), Γ̂ ∈ U(H (ϕ)) such that

Γ̂ψ1, ...., Γ̂ψN ∈ Hs
G (ϕ) and ε > 0, then there exist T > 0 and u ∈ L2((0, T ),R) such

that
‖Γ̂ψk − ΓuTψk‖(s) < ε, ∀ ≤ k ≤ N.

Proposition A.2. Let the hypotheses of Theorem 4.3 be satisfied. The (BSE) is globally
approximately controllable in Hs

G (ϕ) for s = 2 + d with d from Assumptions II.

Proof. The proof is the same of [2, Theorem B.2]. �

Remark A.3. As Proposition A.2, the (BSEt) is globally approximately controllable in
H4
T (ϕ) when the hypotheses of Theorem 2.3 are verified. Indeed, for every (j, k), (l,m) ∈

I := {(j, k) ∈ (N∗)2 : j 6= k} so that (j, k) 6= (l,m) and such that µj −µk −µj +µm =
π2(j2 − k2 − l2 +m2) = 0, there exists C > 0 such that

〈ϕj , Bϕj〉L2
p
− 〈ϕk, Bϕk〉L2

p
− 〈ϕl, Bϕl〉L2

p
+ 〈ϕm, Bϕm〉L2

p
= C(j−4 − k−4 − l−4 +m4) 6= 0.

In conclusion, (A+ u0B,B) admits a non-degenerate chain of connectedness. The argu-
ments leading to Proposition A.2 ensure to the claim.
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Remark A.4. Equivalently to Remark A.3, the (BSEs) is globally approximately con-
trollable in H3

S (ϕ) when the hypotheses of Theorem 3.3 are verified. Indeed, for every
(j, k), (l,m) ∈ I so that (j, k) 6= (l,m) and such that µj − µk − µj + µm = 0, we have

〈ϕj , Bϕj〉L2
p
− 〈ϕk, Bϕk〉L2

p
− 〈ϕj , Bϕj〉L2

p
+ 〈ϕm, Bϕm〉L2

p
6= 0.
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