
HAL Id: hal-02169342
https://hal.science/hal-02169342v1

Submitted on 1 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Removing Problems in Rule-Based Policies
Zheng Cheng, Jean-Claude Royer, Massimo Tisi

To cite this version:
Zheng Cheng, Jean-Claude Royer, Massimo Tisi. Removing Problems in Rule-Based Policies. SEC
2019 : ICT Systems Security and Privacy Protection, Jun 2019, Lisbon, Portugal. pp.120-133,
�10.1007/978-3-030-22312-0_9�. �hal-02169342�

https://hal.science/hal-02169342v1
https://hal.archives-ouvertes.fr


Removing Problems in Rule-Based Policies

Zheng Cheng1 , Jean-Claude Royer2 , and Massimo Tisi2

1 ICAM, LS2N (UMR CNRS 6004), Nantes, France
zheng.cheng@icam.fr

2 IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France
{jean-claude.royer, massimo.tisi}@imt-atlantique.fr

Abstract. Analyzing and fixing problems of complex rule-based poli-
cies, like inconsistencies and conflicts, is a well-known topic in security.
In this paper, by leveraging previous work on enumerating all the prob-
lematic requests for an inconsistent system, we define an operation on
the policy that removes these problems. While the final fix remains a
typically manual activity, removing conflicts allows the user to work on
unambiguous policies, produced automatically. We prove the main prop-
erties of the problem removal operation on rule-based systems in first-
order logic. We propose an optimized process to automatically perform
problem removal by reducing time and size of the policy updates. Finally
we apply it to an administrative role-based access control (ARBAC) pol-
icy and an attribute-based access control (ABAC) policy, to illustrate its
use and performance.

Keywords: Conflict · Inconsistency · Policy · Problem · Removing ·
Rule

1 Introduction

Analyzing inconsistent and conflicting situations in security policies is an impor-
tant area of research and many proposals exist. Several approaches are focused
on detecting specific kinds of problems [7,9,11,10,2], while others are interested
in fixing these problems [8,5,14,6,12]. We consider inconsistencies, or conflicts,
or undefined requests, called problems here, as they lead to bugs or security
leaks. Fixing these problems is difficult because of the policy size, the number of
problems, their complexity and often the right fix needs human expertise. Our
purpose in this paper is to suggest a new method in order to assist specifiers
in fixing discovered problems in their policies. To make the conflicts explicit,
we reuse a general and logical method defined in [2]. This method, in addition
to revealing the problems, provides some information which can be exploited to
cure those problems. In our current work we focus on removing some problems
in the specification. Removing the problem means modifying the policy so that
the problem disappears and no new problems are added. Of course we need to
preserve, as far as possible, the original behavior of the policy while minimizing
the time and the size of the policy update. While the final fix (i.e. obtaining

https://orcid.org/0000-0002-6361-1103
https://orcid.org/0000-0002-8182-8429


a system that gives the right reply for every request) remains a typically man-
ual activity, removing conflicts allows the user to work on unambiguous policies,
produced automatically. We also believe that this step is a useful basis for future
work on assisted policy fixing. We first provide a naive approach to remove the
problem but its time complexity becomes exponential if we try to minimize the
size of the modifications. Exploiting the enumerative method of [2] we are able
to provide an optimized version of this process.

Our first contribution is the formal approach to remove a problem while
minimizing the rule modifications in a first-order rule-based logical context. The
second contribution is an experiment on an ARBAC policy, illustrating how
to apply the approach in practice. Regarding the performance of the problem
removal process, we confirm our results on another case study, based on an
XACML policy, and we demonstrate getting the same minimal modifications in
dividing the global time by a factor of 4.

The content of this paper is structured as follows. Section 2 describes related
work in the area of fixing conflicting problems. Section 3 provides the necessary
background and a motivating ARBAC example. Section 4 describes the general
process to remove problems. Section 5 provides the formal results regarding the
optimization of the removing process. In Section 6 we evaluate our method on
our initial use case and another ABAC use case. Lastly, in Section 7 we conclude
and sketch future work.

2 Related Work

Our work is under the umbrella of automatic software/system repair, which aims
at automatically finding a solution to software/system bugs without human in-
tervention. There exists extensive work under this broad topic, and we refer to [8]
for a review. In this section, we discuss some of related work on automatic re-
pairing of bugs in rule-based systems. Researchers try to find automatic fixes for
various kinds of bugs, e.g. redundancies [6], misconfigurations [5]. In this work
we focus on conflicts and inconsistencies in rule-based systems. These problems
may lead to runtime failures in the sense that sending a request to the system,
may return several incompatible replies. This separates our work from efforts
that address other kinds of bugs. Meta-rules are one of the most common ways
to handle conflicts in rule-based systems. The general idea is that when conflicts
occur, pre-defined meta-rules (e.g. first-applicable, prioritization [3]) will govern
rule applications to have compatible replies. However, the problem persists to
resolve potential conflicts in meta-rules. Hu et al. propose a grid-based visual-
ization approach to identify dependency among conflicts, which aims to guide
user in defining conflict-free meta-rules [6]. Son et al. [12] repair access-control
policies in web applications. They first reverse engineer access control rules by
examining user-defined annotations and static analysis. Then, they encapsulate
domain specific knowledge into their tool to find and fix security-sensitive op-
erations that are not protected by appropriate access-control logic. Wu focuses
on detecting inconsistency bugs among invariant rules enforced on UML mod-



els [14]. The author presents a reduction from problem domain to MaxSMT, and
then proposes a way to fix bugs by solving the set cover problem. Our approach
is specific in targeting FOL rule systems and providing an automatic without
considering additional information fix, while minimizing the time to proceed, the
size of the modifications.

3 Background

In this section, we introduce concepts/notations that will be consistently used in
the rest of the paper. To facilitate our introduction, we illustrate on a variation
of an ARBAC policy given by [13]3. This is a middle size example with roles
and a hierarchy of roles, role exclusivity constraints, permissions assignment
and revocation. The original example contains 61 rules. In this work, we rewrite
them in FOL, and modularize them into 4 modules, and parametrize appropriate
rules with one integer for discrete time. The four modules are: roles, hierarchy
and exclusion rules (11 rules), permissions (24 rules), assignment (13 rules) and
assignment revocation (13 rules). In this section, we show only the role module
for illustration purpose in Listing 1.1.

Listing 1.1. Rules of roles for an administrative RBAC policies

1 And(Patient(T, X), PrimaryDoctor(T, X)) => False %first rule
2 And(Receptionist(T, X), Doctor(T, X)) => False
3 And(Nurse(T, X), Doctor(T, X)) => False
4 Nurse(T, X) => Employee(T, X) %4th rule
5 Doctor(T, X) => Employee(T, X)
6 Receptionist(T, X) => Employee(T, X)
7 MedicalManager(T, X) => Employee(T, X)
8 Manager(T, X) => Employee(T, X)
9 Patient(T, X) => PatientWithTPC(T, X)

10 Doctor(T, X) => ReferredDoctor(T, X)
11 Doctor(T, X) => PrimaryDoctor(T, X) %last rule

A rule is a logical implication, taking the form of D => C, with D being the
condition and C the conclusion of the rule, expressed in a logical language (in
our case FOL). For example, line 4 specifies that at any given time T, if X is a
nurse, it is also an employee. A rule system (R) is simply a conjunction of rules.
Requests are FOL expressions. When they are sent to a rule system at runtime,
they will be evaluated against all rules in that system to generate replies (which
are also FOL expressions). For example, when a request Nurse(1, Jane) is sent to
the system shown in Listing 1.1, Employee(1, Jane) is implied as a reply. A request
is called undefined request, if it is satisfiable by itself, but unsatisfiable when in
conjunction with R. The phenomenon caused by an undefined request is that
when it is evaluated, R would give contradictory/unsatisfiable replies, therefore
making the system unrealizable.

We previously propose in [2] an optimized method to enumerate and classify
all undefined requests in a rule system. The method translates the original rule
system into an equivalent system made of exclusive rules. Each exclusive rule

3 The original example with comments is available at http://www3.cs.stonybrook.

edu/~stoller/ccs2007/

http://www3.cs.stonybrook.edu/~stoller/ccs2007/
http://www3.cs.stonybrook.edu/~stoller/ccs2007/


abstracts what kind of replies will be generated, provided that a certain set
of rules in the original rule system is applied. We call 1-undefined request a
request which, in conjunction with one rule alone, is unsatisfiable. One result of
our approach is that any undefined request is a union of 1-undefined requests
associated to exclusive rules. The exclusive rules we generate are analyzed by
the Z3 SMT solver4. Based on the result from the solver, we separate exclusive
rules into two categories:

– Unsafe exclusive rules. These are exclusive rules that under request will
always return unsat by the solver. They abstract undefined requests that
are certain to cause conflicts.

– Not unsafe exclusive rules. These are exclusive rules that under request re-
turn sat or unknown by the solver. Therefore, undefined requests, that are
abstracted by not unsafe exclusive rules, are uncertain to cause conflicts
(conservatively, we also pick them up to rise developer’s attention).

A special representation called binary characteristic links each (not) unsafe
exclusive rule to the original rule system. Each binary characteristic is a list
of values, where the position i represents a rule at the corresponding position
in the original system. Values have enumeration type with three possibilities,
i.e. 0/1/-1, indicating that the condition of the rule is negatively/positively/not
presented in the exclusive rule. We call a binary characteristic complete if it
does not contain -1, and has the length equal to the total number of rules in the
original system (incomplete otherwise).

Listing 1.2. The roles module analysis

1 ----------- UNSAFE --------------
2 [0, 0, 0, 1, 1, 1, -1, -1, -1, -1, -1]
3 And(Not(Nurse(T, X)), Doctor(T, X),
4 Not(PrimaryDoctor(T, X)),
5 Not(Receptionist(T, X)), Patient(T, X)) => False
6 [1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
7 And(Patient(T, X), PrimaryDoctor(T, X)) => False
8
9 ... another 2 unsafe exclusive rules

10 ----------- NOT UNSAFE --------------
11 [0, 0, 0, 1, 0, 0, 1, -1, -1, -1, -1]
12 And(Nurse(T, X), Not(Doctor(T, X)), Patient(T, X), Not(PrimaryDoctor(T, X)))
13 => And(PatientWithTPC(T, X), Employee(T, X))
14
15 ... another 9 not unsafe exclusive rules

Applying the method given in [2] on the example shown in Listing 1.1, a total
of 4 unsafe and 10 not unsafe exclusive rules are generated. Listing 1.2 shows a
snippet of these rules. The shown rules are three typical kinds of exclusive rules,
that in our experience, help in identifying problems in a rule system:

– Implicit unsafe rules, which are not contained in the original system, are the
primary source of problems. They usually imply some overlapping condition
that would cause conflicts. For example, from lines 2 to 5, the unsafe rule

4 The Z3 Theorem Prover. https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3


points out a problem, as several undefined requests. For instance in the orig-
inal system Doctor(T, X) implies PrimaryDoctor(T, X) (last rule 11) which clashes
with Patient(T, X) by rule 1. Interestingly, this problem is not mentioned under
the radar of [13].

– Explicit unsafe rules (e.g. lines 6 and 7), are unsafe rules contained in the
original system and whose conclusion is unsatisfiable.

– Not unsafe rules. As discussed before, they are uncertain sources of problems.
It is a problem if the request implies the conjunction of the condition and
the negation of the conclusion else it is an admissible request.

4 The Removing Process

Undefined requests detected by our optimized enumeration method may identify
problems in the original rule system. However, fixing all identified undefined
requests is not desirable, since it would result in a tautological and rather useless
rule system: the system would not be able to infer new facts from the logical
context. Also fixing a subset of the undefined requests is not trivial. It is difficult
to guarantee that the iterative fixing process terminates, since it is hard to tell
that there will be no new undefined requests after a fix.

Therefore, we propose an alternative solution, which is similar to the “quick
fix” feature that appears in most of integrated develop environments. First, by
analyzing the result of our enumeration method, the rule developers select a set
of critical undefined requests to fix. Next, our solution performs a “quick fix” to
remove the selected undefined requests. In the process, we strive to pinpoint a
minimal set of rules in the original system for removing the selected undefined
requests. By doing so, we minimize modifications that need to be made, and
preserve the semantic of the original rule system as much as possible. Another
important property of our solution is that it is effective. It means that regard-
less of choosing which undefined requests to fix first, applying our solution on
each iteration will completely remove the selected undefined requests while not
introducing new problems.

For example, let us consider the removal of the undefined requests charac-
terized by the unsafe rule shown on lines 2 and 5 of Listing 1.2. Our approach
takes its binary characteristic as input, and produces Listing 1.3 as output. The
output states that one rule (i.e. the 11th rule) in the original system needs to be
changed, and what it should be changed to (lines 2 and 5). Identified problems
are existentially quantified (that explains the Exists quantifier) and composed by
union with the selected rule conclusion.

Listing 1.3. Removing the Problem

1 Target rule: [11],
2 Suggested fix: Doctor(T, X) =>
3 Or(PrimaryDoctor(T, X), Exists ([T, X], And(Not(Nurse(T, X)), Doctor(T, X),
4 Not(PrimaryDoctor(T, X)), Not(Receptionist(T, X)), Patient(T, X))))

Once the change has been made, applying our optimized enumeration method
again will result in 10 not unsafe rules as before, but the selected unsafe rule



has been removed and only the 3 explicit unsafe rules remain. At this stage, rule
developers can choose once again undefined requests to remove, or stop if the
rule system satisfied their expectation. In our final version of this module we
simply forget this rule (the 11th) as it seems an error in the roles specification.

In what follows, we present an overview of our removing process (Section 4.1),
and its main properties (Section 4.2).

4.1 Overview of Removing Process

Let U be the undefined request (represented by exclusive rules) that rule devel-
oper choose to fix. One way to remove U is by adding a new rule in the original
rule system, which takes the shape of U => False. It explicitly alerts the rule devel-
oper on some undefined cases. However, this rule is redundant and the resulting
system contains more and more rules when fixes iterate, which compromises un-
derstandability and maintainability. Another way is to globally restrict the set
of input requests by adding a condition to all the defined requests. But this con-
dition is far from readable in case we have several problems in the rule system.
Therefore, for understandability and maintainability, we design a removing pro-
cess that aims at automatically modifying a selected set of rules in the original
system without the need to understand the real nature of the problem to fix. The
principle of our removing process is to exclude U from the original rule system,
i.e. ¬U => R which is equivalent to

∀ ∗
∧

1≤i≤n

(Di => (Ci ∨ U)) (1)

All free variables in (1) are denoted by *, and i is the index of a rule in the rule
system of size n. Moreover, U is the selected problem to fix, and represented by
a FOL existential expression without free variables. Obviously modifying all the
rules is not always required, and sometimes the modification of one rule alone
D => (C ∨ U) could be sufficient. Thus we will consider how to do optimal
modifications rather than modifying all the rules, that is to modify F , a subset
of all the rules. We denote R/F/U the system resulting by this modification.

4.2 Properties

We have illustrated how to remove selected undefined requests by pinpointing a
minimal set of rules in the original system to modify. In this section, we discuss
the effectiveness and semantics preservation of this approach.
Effectiveness. By effectiveness, we mean that removing the problem U does
not add new problems. From now on, all represents the set of all the rules in R.
We know that we have R => R/F/U => R/all/U , and R/all/U = (R ∨ U).
It is easy to see that R/F/U = R ∨ (U ∧R¬F ), where R¬F is the subsystem of
the rules in R which are not modified. We should note that if U is a problem
at least one rule should be fixed and we know that fixing all the rules may be
required (if U is 1-undefined for all the rules in R). If we fixed a problem U in



R and get R/F/U , we expect that U is not a problem of R/F/U and also this
does not add new problems. But if U ′ => ¬R/F/U we know that ¬R/F/U =
(¬R ∧ ¬U) ∨ ¬RF => ¬R. Thus it means that U ′ was not a new problem but
an already existing one for R. Note also that we do not have ¬R => ¬R/F/U
to be valid meaning that we have strictly less problems after removing U . This
shows that the removing process is effective whatever the removing ordering is.
Behaviour preservation. What behaviours of the original rule system could
rule developers expect to preserve after the removing process applied. Let a given
request req = (req∧¬R)∨(req∧R), applying it to R we get req∧R . But applied
to R/F/U we get (req ∧R) ∨ (req ∧U ∧R¬F ). Thus preserving is equivalent to
req ∧ U ∧ R¬F => req ∧ R which is equivalent to req ∧ U ∧ R¬F unsatisfiable.
If req intersects both R and its negation we get (req ∧ R) ∨ (req ∧ U ∧ R¬F )
meaning that the new reply widens the original reply. Behaviour preservation is
not possible for all requests.

Property 1 (Behaviour Preservation). Let req a satisfiable request thus
req => ¬U ∨ ¬R¬F is equivalent to req ∧R = req ∧R/F/U .

The above property states that behaviour is strictly preserved after removing
U if and only if the request satisfies req => ¬U ∨ ¬R¬F . If req => ¬U the
behaviour is preserved for any selection F and if req => R the behaviour is
preserved for any problems and any selection. The next section explain how to
make the process more efficient by pinpointing a minimal set of rules in the
original system for removing the selected undefined requests (Section 5).

5 Finding the Minimal Selection

Let U be a problem and R a set of rules, our goal is to modify R in order to make
the requests in U defined. The challenge is to do that efficiently and minimizing
the modifications in the rule system. We will get a new system R/F/U where
the rules in F are modified in order to avoid U to be undefined. The fixing
principle is either to add ¬U in the selected rule conditions or to add U in
the rule conclusions. Modifying conclusions is simpler since we have the same
enumerative decomposition for R and R/F/U only the conclusions are different.

Definition 1 (Correct Fix of a Rule System). Let R, F , U be a closed and
satisfiable sentence, F is not empty, R/F/U is a correct fix for R with F and U
if each rule in F has its conclusion enlarged with U and U is not a problem for
R/F/U .

A simple fact to observe is: If F is a correct fix then any G such that F ⊂ G is
also a correct fix. Then our challenge is to find a selected set F to fix, smaller
than all the rules. Thus we need to show that if U is a problem for R it is defined
for R/F/U . It means that a direct, called here naive, solution is to check this
property with a SAT solver.



Definition 2 (Naive Check). R/F/U is a correct fix if and only if U ∧ R¬F
is satisfiable.

This comes from the fact that U is a problem, R/F/U = R∨ (U ∧R¬F ) and the
definition of a correct fix.

It is easy to see that if U is a problem for R with a set of conditions D1≤i≤n
then U =>

∨
j∈J ∃ ∗ Dj , where J is a subset of 1 ≤ i ≤ n. Exclusive rules as

built by the enumerative method have some interesting properties, particularly
because U => (∀∗Dj) means that only one rule (the jth) applies. A single prob-
lem is associated to a complete binary characteristic, while a complex problem
has an incomplete binary characteristic. From [2] we know that any undefined
request U satisfies U => ∃ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj), where I1 (respectively I0)

is the set of positive (respectively negative) rules in the binary characteristic.

Property 2 (Application to Exclusive Rules). Let R an exclusive rule system if
U => ∃ ∗Dj then R ∧ U is equivalent to (U ∧ (∀ ∗Dj ∧ Cj)) ∨ (U ∧ (∃ ∗Dj ∧
∃ ∗ ¬Dj)) ∧R.

In this paper we omit the full proofs, they can be found in the full version
of the paper on our repository https://github.com/atlanmod/ACP-FIX. The
proof relies on the fact that the universally quantified part triggers only one
exclusive rule. We show with Property 3 that any problem found by the enumer-
ative method can be split into disjoint parts called, respectively, universal and
existential parts.

Property 3 (Universal and Existential Parts). Let U a satisfiable problem such
that U => ∃ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj) then U = U ∧ (∀ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj)

∨ U ∧ (∃ ∗ (
∨

i∈I1 ¬Di

∨
j∈I0 Dj).

This property results from the partition of U related to the universally quanti-
fied part and its negation. Exploiting the information given by the enumerative
method we expect to optimize the definedness checking for problems found by
this method. We analyze now two cases: single or complex problem in order to
expect to optimize the naive approach.

Property 4 (Definedness of Single Problem). Let R a rule system and a single
problem U => ∃ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj) with a complete binary characteristic,

if U ∧ ∀ ∗ (
∧

i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈I1 Ci) is satisfiable then U is defined for R.

From R we can build an equivalent exclusive system using the enumerative
method and thus we use Property 2. We consider the universal part of the
problem, that is U ∧∀∗

∧
i∈I1 Di

∧
j∈I0 ¬Dj . With these conditions only one rule

applies and others do not apply, they lead to the universal part and then the
result of R ∧ U comes from a single enumerative rule for R and gives U ∧ ∀ ∗
(
∧

i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈I1 Ci). We now consider the enumerative process but

for R/F/U since we need to prove that U is defined for it. Computing the
enumerative process for R/F/U gives new rules of the form:
∀ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj) => ((

∧
i∈I1∧¬F Ci)

∧
i∈I1∧F (Ci ∨ U))). We start by

analyzing the case of a single problem with a complete binary characteristic.

https://github.com/atlanmod/ACP-FIX


Property 5 (Removing Criterion for Single Problem). Let U a single problem
with positive rules I1 thus R/F/U is a correct fix if either I1 ⊂ F or I1 ∩ F 6= ∅
and U ∧ ∀ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈I1∩¬F Ci) is satisfiable.

In this case there is a unique enumerative rule which applies and we use Prop-
erty 4 for R/F/U . This is only a sufficient condition as we only check the uni-
versal part of the problem.

In case of a complex problem U with an incomplete binary characteristic
we can obtain a set of complete binary characteristics adding digits not already
in the incomplete binary characteristic. A completion G1 ∪ G0 is a subset of
{1..n}\(I1 ∪ I0) with positive and negative rules.

Property 6 (Removing Criterion for a Complex Problem). Let U a complex prob-
lem, R/F/U is a correct fix if ¬F ⊂ I0 or F ∩ ¬I0 and
U∧∀∗(

∧
i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈I1∩¬F Ci)

∧
g∈¬I1∩¬I0∩¬F ((∀∗Dg∀∗Cg)∨∀∗¬Dg)

is satisfiable.

This criterion generalizes the previous one for single problem.
In the previous cases we defined a sufficient condition to remove a single or

a complex problem. From the previous criterion and the decomposition into a
universal and an existential part we have: If U is a problem for R then U is
defined for R/F/U if and only if the criterion for complex problem is satisfied
or if U ∧ (∃ ∗ (

∨
i∈I1 ¬Di

∨
j∈I0 Dj) ∧R¬F is satisfied.

Property 7 (CNS for complex problem). If U is a complex problem, R/F/U is
a correct fix if and only if the universal or the existential part is defined for
R/F/U .

5.1 Looking for Minimal Size

This subsection discusses how to find a set of rules to modify but with a minimal
size. We can define a top-down and a bottom-up process to find a minimal
solution. Both ways have a worst complexity which is exponential in the number
of satisfiability checks. But the bottom up approach is preferable since it stops
once the solution is found. Instead the top down approach, once the solution
of size m is found, must prove the minimality of it by checking all the smaller
combinations of size m − 1. The naive approach consists in modifying a subset
of rules and checking the satisfiability of the new system in conjunction with the
problem to remove. Minimal core satisfiability techniques cannot be used here
(for instance [14]), since they do not respect the structure of the rule system.

Using our criteria we optimize this search. We know that the set of all rules
is a solution but in case of a single or complex problem it is also true if we
take F as all the positive rules in the binary and its completion. Indeed, if we
are looking for minimal solutions it is sufficient to look inside these positive
rules. The reason is that if the criterion is satisfied with I ∩ F the part of F
not in I does not matter and can be forgotten. Given a problem we defined a
lookup_complex algorithm which looks for a minimal set of rules. It simply starts



with the least possible solution (that is a single rule) and checks the criterion an
all the combinations until reaching a minimal solution.

There are two critical points in the time performances of our two solutions:
the number of rule combinations to test and the size of the expression to check for
satisfiability. Both these aspects have an exponential nature in general. Exploit-
ing the binary information the lookup_complex algorithm looks for less combinations
than the naive algorithm. Regarding the satisfiability checking we expect to gain
but the size of the formula is not a reliable indicator here. The informal reason
lies in the form of the universal formula which is closed to CNF (Conjunctive
Normal Form) which is at the heart of most of the solvers. To justify it we
consider a problem associated to an unsafe rule. We also assume that our rule
system contains only free variables and rules with a conjunction of predicates as
condition and a disjunction of predicates as conclusion. If K = 1 the maximal
number of predicates in a condition or a conclusion, the universal part can be
seen as a 2-SAT CNF which satisfiability time is polynomial. If K ≥ 2 we get
CNF in the NP complete case but our optimisation relies on the transition phase
phenomenon [1]. Analysing the CNF transformation we get a 2 ∗K-SAT CNF
and we estimate the maximal number of clauses M ≤ 2 ∗K ∗ n while the total
number of literals in the clauses is N ≥ (2∗K+n−1). Thus the ratio α = M/N
is below the threshold 22∗K ∗ ln(2)− 2 ∗K, (as soon as K ≥ 2), the area where
the universal part is probably satisfiable in a small amount of time.

6 Application Examples

The purpose of this section is to show that our removing approach succeeds on
middle-size examples. We will focus on removing problems coming from unsafe
rules in these examples.

Our first specification is compound of the four previous modules introduced
in Section 3. The permissions module is rather straightforward, assignment and
revocation need to manage discrete time changes. In the assignment of permis-
sions we choose to set the effect at next time. One example is
And(Doctor(T, X), Doctor(T, Y), assign(T, X, Y)) => ReferredDoctor(T+1, Y). In this specifi-
cation the effect of a permission assignment is done at T+1 which is a simple
solution avoiding clashes with the roles module. The revocation module has sim-
ilar rules to the assignment of permissions. However, we need more complex
conditions because before to revoke an assignment it should have been previ-
ously done. The corresponding example for revocation of the above rule is
And(Doctor(T, X), revoke(T, X, Y), (P < T), assign(P, X, Y), Not(assign(T, X, Y)))

=> Not(ReferredDoctor(T+1, Y))). An assign and a revocation are not possible at the
same time instant because of inconsistency. We already analyzed the roles mod-
ule and it was easy to process the three new ones in isolation since they have
no unsafe rule. One interesting fact is that their composition does not generate
new unsafe rules, indeed we get the three explicit unsafe rules coming from the
roles module (see Section 4).



6.1 A Second Specification

An alternative solution for the specification of the assignment module is to write
rules without changing the time instant in the conclusion. In this new speci-
fication our example above becomes: And(Doctor(T, X), Doctor(T, Y), assign(T, X, Y))

=> ReferredDoctor(T, Y). It generates unexpected conflicts we will solve now. Our
analysis shows that we get 91 not unsafe rules and three unsafe rules in nearly
8s. Thus using our lookup_complex procedure we find that these problems are all
removed by modifying the rule: [5]. The enumerative computation of the new
system shows that it has no more unsafe rule. Now these modifications could
produce new interactions with the other modules. In fact only the roles mod-
ule has new unsafe rules with the assignment module, indeed there are 3 new
unsafe rules. These unsafe rules are coming from the negation of the 11th rule
in assignment and the lookup_complex shows that the 4th rule is the minimal fix
for all these problems. Fixing these three problems we compute the enumerative
solution for the 4 modules together and we do not get new unexpected unsafe
rules. The result was computed in nearly 5200s and generates 20817 not unsafe
rules and the three explicit unsafe rules from the roles module. This example
shows that we can select some problems and remove them from the specification
while minimizing the impact on the rule system.

Table 1. Measures for two Policies

Usecase Naive algorithm Lookup algorithm Additional measures

NS NT LS LT PR DS TF

Healthcare Policy 1 1.01s 1 0.2s 10.1 0 509%

ContinueA Policy 1.53 115s 1.53 31s 3.9 0 794%

We compare the naive and our lookup_complex algorithms and compute several mea-
sures which are summarized in the table 1. We consider 123 unsafe problems
occurring before the final fix in the composition of the four modules. Note that
in this setting our example is not simply variable free because we fix two rules
adding some complex existential expressions. We compute5 the following mea-
sures in Table 1: for the naive approach the mean of minimal size (NS), mean
of time (NT), the same for the lookup method with LS, LT and in addition the
mean of positive rules in each problem (PR), the maximum of differences between
size of the selection (DS) and the mean of the ratio: naive time divided by lookup
time (factor time TF). But this example is specific on one point: the problems are
not so numerous and related to some specific rules in the assignment module.
Thus most of the problems (but the first three) are related to the 4th rule of the
assignment module.

5 These results were computed with 10 runs when it was sensible in time, that is all
cases except three (amongst 530) for the ContinueA policy.



6.2 The ContinueA Example

To consolidate our results we consider the ContinueA policy6 we already ana-
lyzed in [2] and which was the study of several previous work [4,6]. This policy
has 47 rules, which are pure first-order with at most two parameters. The origi-
nal example is in XACML which forces the conflict resolution using combining
algorithms. To stress our algorithms we do not consider ordering or meta-rules
but a pure logical version of the rules. The result is that we have a great amount
of problems amongst them 530 unsafe rules while the number of not unsafe rules
is 302 (computed in 97 seconds). We process all the unsafe problems that is
530, see Table 1. The following observations confirm what was observed on the
healthcare example, except that now we have many more problems to analyze.
First we observed that the minimal set of fixing rules is generally low (between
1 and 5 rules) and this shows that finding it is relevant to minimize the mod-
ifications in the rule system. Another point is that due to the combinatorial
explosion it is really costly to go up to more than 4 rules (see Table 2). The
second point is that the lookup algorithm does not deviate from the naive one
regarding the size of the minimal set. We do not get exactly the same selection
set in 33% of the cases, due to the different ordering in the search for minimal,
but the minimal sizes are always the same. Regarding the time to proceed, the
lookup outperforms the naive one by a factor between 60% and 5000% with a
median of nearly 800%. For this example we also compute the distribution per
selection size, and the mean time for each algorithms.

Table 2. Selection Distribution

Selection size Frequency Naive mean time Lookup mean time Time factor

1 63% 0.33s 0.04s 800%

2 27% 6.6s 1.15s 573%

3 8% 124s 24s 517%

4 3% 1573s 281s 560%

5 0.5 % 88890 3433 256%

6.3 Discussion

Regarding the healthcare example, we defined two versions which have finally
only three explicit unsafe rules and we remove only few problems. For the Con-
tinueA example removing all the unsafe problems can be done modifying all the
47 rules with an increase in size of 24910∗US, where US is the median size of the
problems. Using the minimal selection of rules the increase in size is 796 ∗ US.

6 http://cs.brown.edu/research/plt/software/margrave/versions/01-01/

examples/

http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/
http://cs.brown.edu/research/plt/software/margrave/versions/01-01/examples/


The naive algorithm needs nearly 17 hours to compute the minimal selections
while the lookup takes 4.6 hours. Our experiments also confirm that our time
improvement is twofold: the restricted space to search for a minimal selection
and checking first the universal part. We do not detail this here but the picture
appears in our repository (https://github.com/atlanmod/ACP-FIX) as well as
the source of the prototype, the examples and some measures.

It is not relevant to expect to remove all the problems. Furthermore we should
also cope with the set of real requests which will decrease the amount of such
undefined requests. Nevertheless an assistance should be provided to identify
what are the critical problems. This is a tricky issue. The presented technique is
also correct for 1-undefined problems arising in not unsafe rules. We also process
some of these problems: for the 320 problems in ContinueA we get a mean for
TF = 120% while with 3000 problems (nearly 10% of the problems) of the
healthcare we get a mean of 800%. Thus our technique is generally useful for
any kinds of problems and furthermore the reader may note that our examples
after fixing are not longer simply variable free. This is the case when we fixed
the role and assign modules of the healthcare example since we add existentially
quantified expressions. However, the performances were similar and we need
more experiments and analysis to precisely understand the applicability of the
proposed method.

Fixing a problem means to associate to U a single reply rather than incon-
sistent replies. This is similar to removing the problem but in addition we need
to choose a reply which in general cannot be automatic. In this case the fixing
principle is to change the rule (D => C) into (D => (C ∨ U)) ∧ (U => OK)
where OK stands for the correct reply to U . We did not yet investigate it but
our current work is a good basis to solve this more complex problem.

7 Conclusion

Automatically removing problems in a policy is important to sanitize it. Some-
times there are too many problems and they are difficult to understand at least
for non experts of the system. Getting simplified problems can help in solving
them, however it is a complex and costly issue. Our work demonstrates that,
under the conditions of the satisfiability decision and the time to proceed, we
can automatically remove a selection of problems. Furthermore, we are able to
minimize the size of the modifications as well as improving the time to proceed.
We demonstrate it on two policies of middle size: an ARBAC and an ABAC.

This work leaves open many questions, first is about checking the existential
part while getting a minimal size close to the exact minimal size. However, it
seems tricky because most of our attempts to relax the existential part lead to an
unsatisfiable expression. Second, we can benefit by more case studies from related
work (e.g. [12,6,14]) to statistically justify that we can get a low minimum in
real cases, or we can synergize with related works. The main problem is how to
faithfully encode the complete case studies (e.g. encoding explicit/implicit UML

https://github.com/atlanmod/ACP-FIX


semantics plus invariants as rules in our system). The third track is to explore
the benefit of checking the universal part only.

A Proof of the Universal Criteria

Below is a proof of the Property 2. Note that if R is exclusive it is equivalent to
∀∗

⊕
1≤i≤n(Di∧Ci)∨

∧
1≤i≤n(¬Di)) which can be proved by recurrence on n. We

split U in two parts related to ∀∗Dj and its negation. Since we do not have free
variables in these parts we can distribute them under the scope of the outside
universal quantifier. For the first part, let R∧U ∧ (∀∗Dj), the conjunction with
each (Di ∧Ci) if i 6= j it is unsatisfiable as well as the conjunction with the last
term. For i = j corresponding to the application of the j rule, its application is
U ∧ ∀ ∗ ((∀ ∗Dj) ∧Di ∧ Cj), and equivalent to U ∧ ∀ ∗ (Dj ∧ Cj). ut

Proof of the Property 5. We analyze the case of a single problem noted Us

with a complete binary characteristic. There are three exclusive cases for the
rule to apply. If I1 ⊂ F the result is Us satisfiable, since the rule conclusion is
(
∧

i∈I1 Ci)∨U . If I1 ⊂ ¬F the result is unsatisfiable, since the rule conclusion is∧
i∈I1 Ci and U is a problem. In the remaining case, Us is an undefined request

thus Us = Us ∧ ∃ ∗ (
∧

i∈I1 Di

∧
j∈I0 ¬Dj) ∧ ¬(

∧
i∈I1 Ci), where I1 is the set

of positive rules. Thus we can apply the Property 4 for R/F/U , the result is
Us∧ ∀∗(

∧
i∈I1 Di

∧
j∈I0 ¬Dj∧ ∀∗((

∧
i∈I1∧¬F Ci)((

∧
i∈I1∧F Ci)∨U)) equivalent

to Us∧ ∀∗(
∧

i∈I1 Di

∧
j∈I0 ¬Dj)∧∀∗(

∧
i∈I1∧¬F Ci) which should be satisfiable.

ut
The proof of the Criterion 6 is based on the binary completion and the use of

the criterion for the single problems. The first step is to compute R/F/U using
the enumerative method which leads to rules
∀ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈G1

Di

∧
j∈G0

¬Dj) =>
((
∧

i∈(I1∪G1)∩F (Ci ∨U))
∧

i∈(I1∪G1)∩¬F Ci), where G1, G0 represent the comple-
tion of I1, I0. For the conclusion there are three cases which lead respectively
to true, false, and to check a complex expression. The first case is if ¬F ⊂ I0
then F ⊂ I1 ∪G1 and the conclusion of each rule contains U thus the conjunc-
tion contains U and the conjunction with it is satisfiable. In the second case, if
F ⊂ I0, there is no positive rules fixed and U is unsatisfiable with ∀∗

∧
i∈I1∪G1

Ci

then the conjunction with U ∧R/F/U is unsatisfiable. Thus we now assume that
F and ¬F intersect the complement of I0 which is I1 ∪ G1 ∪ G0 and any enu-
merative rule is like this: ∀ ∗ (

∧
i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈G1

Di

∧
j∈G0

¬Dj) =>
((
∧

i∈I1∪G1
Ci) ∨ (U ∧

∧
i∈(I1∪G1)∩¬F Ci)). Thus U is equivalent to U ∧ ∃ ∗

(
∧

i∈I1 Di

∧
j∈I0 ¬Dj)(

∨
G∈G ∃∗ (

∧
i∈G1

Di

∧
j∈G0

¬Dj). Then we distribute each
part on R/F/U and since we have complete characteristics only the rules match-
ing it applies as in the Property 4. Thus we get a union∨

G∈G U∧∀∗ (
∧

i∈I1∪G1
Di

∧
j∈I0∪G0

¬Dj) ∀∗ ((
∧

i∈I1∪G1
Ci)∨(U∧

∧
i∈(I1∪G1)∩¬F Ci))

which implies U ∧R/F/U . But U is a problem and thus in conjunction with ∀ ∗∧
i∈I1∪G1

Ci it is unsatisfiable. We also factorize U∧∀∗
∧

i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈I1∩¬F Ci.

This leads to U ∧ ∀ ∗
∧

i∈I1 Di

∧
j∈I0 ¬Dj

∧
i∈I1∩¬F Ci∧

(
∨

G∈G ∀ ∗ (
∧

i∈G1
Di

∧
j∈G0

¬Dj

∧
i∈G1∩¬F Ci)). Let G1 ∩¬F we can factorize



every expression containing it getting
∧

i∈G1∩¬F Ci

∧
i∈G1∩¬F Di

∧
j∈G0

¬Dj ∧
(
∨

G∈GF DG) where GF is the completion for rules in ¬I1∩¬I0∩F . It simplifies
in

∧
i∈G1∩¬F Ci

∧
i∈G1∩¬F Di

∧
j∈G0

¬Dj and the union becomes (
∨

G∈G/F ∀ ∗
(
∧

i∈G1
Di

∧
j∈G0

¬Dj

∧
i∈G1∩¬F Ci)), where G/F is the subsets of rules in ¬I1∩

¬I0 ∩ ¬F . We remark that
∧

h∈G∩¬F (Dh ∧ Ch) ∨ ¬Dh =∨
G∈G/F (

∧
i∈G1

Di

∧
j∈G0

¬Dj

∧
i∈G1∩¬F Ci)). Then a final factorization pro-

duces U ∧ ∀ ∗ (
∧

i∈G1
Di

∧
j∈G0

¬Dj

∧
i∈I1∩¬F Ci) ∧ (

∧
g∈G∩¬F ((∀ ∗ Dg ∧ ∀ ∗

Cg) ∨ (∀ ∗ ¬Dg)). ut

B Additional Results

The fact that the minimal selection has a small size can surely be founded
by a statistic or probabilitic analysis. A consequence of it is that in the naive
approach there is no significative difference between checking U∧R and U∧R¬F .
To confirm that our time improvement is twofolds we did some complementary
experiments, see Figure 1 for results in the case of the ContinueA policy and
the unsafe problems. We also observed that evaluating only the universal part
gives results close to the real minimum while the time performance was not
significantly different from evaluating also the existential part. We test three
different algorithms:

– A: The naive approach
– B: The naive approach with a selection based on the binary characteristic
– C: The lookup with the selection and checking the universal then the exis-

tential formula.

In this figure we report the time factors of the comparaison between A-B, B-C
and A-C. In average both features have an impact on the time factor but the
benefits are reversed: the benefit of testing the universal part decreases with the
binary characteristic size while it is the opposite for the selection.

References

1. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard
optimization problems. Nature 435, 759–764 (2005)

2. Cheng, Z., Royer, J.C., Tisi, M.: Efficiently characterizing the undefined requests
of a rule-based system. In: IFM 2018 (2018)

3. Cuppens, F., Cuppens-Boulahia, N., Garćıa-Alfaro, J., Moataz, T., Rimasson, X.:
Handling stateful firewall anomalies. In: Gritzalis, D., Furnell, S., Theoharidou, M.
(eds.) Information Security and Privacy Research. IFIP Advances in Information
and Communication Technology, vol. 376, pp. 174–186. Springer (2012)

4. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: International Conference on
Software Engineering (2005)

5. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Martinez, S., Cabot, J.:
Management of stateful firewall misconfiguration. Computers and Security 39,
64–85 (2013)



Fig. 1. Time factors

6. Hu, H., Ahn, G.J., Kulkarni, K.: Discovery and resolution of anomalies in web
access control policies. IEEE Transactions on Dependable and Secure Computing
10(6), 341–354 (2013). https://doi.org/10.1109/TDSC.2013.18

7. Jha, S., Li, N., Tripunitara, M., Wang, Q., Winsborough, W.H.: Towards formal
verification of role-based access control policies. IEEE Transactions on Dependable
and Secure Computing 5(4), 242–255 (2008)

8. Monperrus, M.: Automatic software repair: A bibliography. ACM Computing Sur-
veys 51(1), 17:1–17:24 (2018), http://doi.acm.org/10.1145/3105906

9. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based conflict detection for
distributed policies. Fundamantae Informatica 89(4), 511–538 (2008)

10. Neri, M.A., Guarnieri, M., Magri, E., Mutti, S., Paraboschi, S.: Conflict detection
in security policies using semantic web technology. In: Satellite Telecommunications
(ESTEL). pp. 1–6. IEEE (2012). https://doi.org/10.1109/ESTEL.2012.6400092

11. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C.M., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. ACM Trans. Inf. Syst. Secur. 13(3), 24:1–
24:31 (Jul 2010). https://doi.org/10.1145/1805974.1805980

12. Son, S., McKinley, K.S., Shmatikov, V.: Fix me up: Repairing access-control bugs
in web applications. In: 20th Annual Network and Distributed System Security
Symposium. Usenix, San Diego, California, USA (2013)

13. Stoller, S.D., Yang, P., Ramakrishnan, C.R., Gofman, M.I.: Efficient policy analysis
for administrative role based access control. In: Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007, Alexandria,
Virginia, USA, October 28-31, 2007. pp. 445–455 (2007)

14. Wu, H.: Finding achievable features and constraint conflicts for inconsistent meta-
models. In: 13th European Conference on Modelling Foundations and Applications.
pp. 179–196. Springer, Marburg, Germany (2017)

https://doi.org/10.1109/TDSC.2013.18
http://doi.acm.org/10.1145/3105906
https://doi.org/10.1109/ESTEL.2012.6400092
https://doi.org/10.1145/1805974.1805980

	Removing Problems in Rule-Based Policies

