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Abstract In  this  paper  a  proof  of  the  existence  of  an  infinite  number  of  Sophie  Germain  primes is  going  to  be

presented.  Originally very difficult  problem (in  observational  space)  has  been transformed into a  simpler  one  (in

generative space) that can be solved.  It will be shown that Sophie Germain primes could be obtained through two stage

process, and that will be used to obtain a reasonable estimation of the number of Sophie Germain primes.

1 Introduction

A prime p is a Sophie Germain prime if 2p + 1 is a prime too [1]. In that case the prime number  2p

+ 1  is  called  safe  prime.  These  special  primes  have  applications  in  public  key  cryptography,

pseudorandom number generation, and primality testing; see, for example [2, 4, 6]. Originally, they

have been used in the investigation of cases of Fermat's last theorem [3]. It has been conjectured

that infinitely many Sophie Germain primes exist, but this was unproven (see for instance, [5]).

In this paper it is going to be proved that an infinite number of Sophie Germain primes exists. The

problem is addressed in generative space, which means that prime numbers are not going to be

analyzed directly,  but  rather their  representatives,  that can be used to  produce them. It  will  be

shown that Sophie Germain primes could be generated by two stage process. A lower bound for the

number of Sophie Germain primes smaller than some natural number n will be established and will

be used to prove that infinitely many Sophie Germain primes exist. Analyses  of the two stage

process will be used to generate formula for the number of Sophie Germain primes. 

Remark 1: In this paper any infinite series in the form c1*l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to



the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 Proof of the conjecture

It is easy to check that any prime number (apart from 2 and 3) can be expressed in the form 6l + 1

or 6s – 1 (l, s ϵ N). Having that in mind, it is easy to conclude that numbers in the form 6l + 1 could

never be Sophie Germain primes since their safe primes are in the form

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1),

and that is a composite number divisible by 3. Hence, the prime number that can potentially be a

Sophie Germain prime must be in the form 6s – 1. The safe prime will then be in the form 6(2s) – 1.

In the text that follows, a number in the form 6l + 1 is denoted with mpl, while a  number in the

form 6s - 1 is denoted with mps (l, s ϵ N). 

Here we are going to present a two stage process that can be used for generation of Sophie Germain

primes.  In  the  first  stage  we are  going to  produce prime numbers  by removing all  composite

numbers from the set of natural numbers. In the second stage, we are going to analyze the prime

numbers themselves, as a potential generators of odd primes. In the second stage all prime numbers

that create composite numbers are going to be removed.  Basically, we are going to implement two

stage recursive process. At the end, only the prime numbers in the  mps form, that represent the

Sophie Germain primes, are going to stay.  It is going to be shown that their number is infinite. It is

easy to check that all numbers in  mpl form are going to be removed from the set, based on the

analysis made at the beginning of this chapter.

STAGE 1

Prime numbers can be obtained in the following way: 

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary

to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula



for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (1)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after

simple calculation, equation (1) is obtained. This calculation is presented here. The form 2m + 1, m

ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(i 1+1)( j1+1) ,

where i
1
, j

1
 ϵ N. Now, it is easy to see that the following equation holds

m=
i1 j1+i 1+ j 1

2
.

In order to have m ϵ N, it is easy to check that i
1
 and j

1
 have to be in the forms

i
1
 = 2i and j

1
 = 2j,

where i, j ϵ N. From that, it follows that m must be in the form

m = 2ij + i + j. (2)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers  that cannot  be represented by (1)  will  stay.  This  process is  equivalent  to  the sieve of

Sundaram [7].

The numbers that are left after this stage are prime numbers.  If we denote with π(n) number of



primes smaller than n, the following equation holds [6]

π(n)≈
n

ln (n)
.

From [6] we know that following equation holds

π(n)>
n

ln (n)
, n⩾ 17. (3)

This inequality will be useful in analysis that follows.

STAGE 2

Now,  we  should  analyze  numbers  a that  are  left  in  observational  space,  or  prime  numbers

themselves.  With  the  exception  of  number  2 all  other  prime numbers  are  odd  numbers.  Since

number 2 is Sophie Germain prime it will not be removed from the set. We are interested in removal

of all  numbers a that will create composite number when we generate number 2a + 1.  So, once

more we are interested in removal of all numbers that generate composite odd numbers. So, once

more we are going to implement (2) and remove all a in the form

a = 2ij + i + j. (4)

That will leave us with prime numbers in mps form that represent the Sophie Germain primes.  As it

has been already explained, prime numbers in mpl form produce composite odd numbers divisible

by 3, when formula 2·mpl + 1 is applied on them, so they all are going to be removed in second

stage. 

Since the methods applied in the first and in the second step are very similar, intuitively can be

concluded that number of the numbers (smaller than  n) left after the second “Sundaram” sieve,

should be comparable to the following number sglb(n)

sglb(n)=
π(n)

ln (π(n))
.

The sglp(n) would be obtained in the case when second stage sieve wold produce the same amount



of numbers removed with each thread, like the original Sundaram sieve. However, the assumption

is not correct and formula requires some compensation terms since the second “Sundaram” sieve is

applied on an incomplete set, that is depleted by previously implemented Sundaram sieve. Actually,

sglb(n) represents a lower bound for the number of Sophie Germain primes that are smaller than

some number n. In order to understand why it is so, we are going to analyze processes in the stage 1

and the stage 2 in more detail. 

It is not difficult to be seen that m and a in (2) and (4) are represented by the threads that are defined

by odd prime numbers. For details see Appendix A.

Now we are going to compare stages 1 and 2 step by step. 

Table 1 Comparison of the stages 1 and 2

Step Stage 1 Step Stage 2

1 Remove even numbers (except 2)

amount of numbers left 1/2

1 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 1/2

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 2/3

2 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 3/4

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 4/5

3 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 5/6

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 6/7

4 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 9/10

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 10/11

5 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 11/12

6 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 12/13

6 Remove numbers defined by thread
defined by 17 (obtained for i = 8)

amount of numbers left 15/16

What can be seen is that in every step, except step 1, threads in the second stage will leave bigger

percentage  of numbers  than the corresponding threads in the first  stage.  It  can be noticed that

threads defined by the same number in the first and in the second stage will not remove the same



percentage of numbers. The reason is obvious – consider for instance a thread defined by 3: in the

first stage it will remove 1/3 of the numbers left, but in the second stage it will remove ½ of the

numbers left, since the thread defined by 3 in stage 1 has already removed one third of the numbers

(odd numbers divisible by 3 in observation space). So, only odd numbers (in observational space)

that give residual 1 and -1 when they are divided by 3 are left, and there are approximately same

number of numbers that give residual -1 and numbers that give residual 1, when the number is

divided by 3 (see Appendix A). Same way of reasoning can be applied for all other threads defined

by same prime in different stages. So, from Table 1 we can see  that bigger number of numbers is

left in every step of stage 2 then in the stage 1 (except 1st step). From that, we can conclude that

after every step bigger than 1, part of the numbers that is left in stage 2 is bigger than number of

numbers left in the stage 1 (that is also noticeable if we consider amount of numbers left after

removal of all numbers generated by threads that are defined by all prime numbers smaller than

some natural  number).  Let  us  mark  the number of  Sophie  Germain  primes  smaller  than  some

natural number n with π
SGP

(n).  From previous analysis we can safely conclude that the following

equation holds for  n  that is big enough

πSGP(n) >sglb(n) .

Having in mind (3), doing some elementary calculation it can be realized that n that is big enough is

n ≥ 73.

Since it it easy to show that  following holds

lim
n→ ∞

sglb(n)= lim
n→ ∞

π(n)
ln (π(n))

=∞ ,

we can safely conclude that the number of Sophie Germain primes is infinite. That concludes the

proof.

Here we will state the following conjecture: for n big enough, number of Sophie Germain primes is

given by the following equation 



πSGP(n) ∼ 2C2

π(n)
ln (π(n))

,  

where C
2
 is twin prime constant [9]. Why it is reasonable to make such conjecture is explained in

Appendix B. If we mark the number of primes smaller than some natural number n with π(n) = f (n),

where function f (n) gives good estimation of the number of primes smaller than n, than π
SGP

(n), for

n big enough, is given by the following equation

πSGP(n) ∼ 2C2⋅ f ( f (n)).

 If particular case f (n) = Li (n), the following equation holds

πSGP(n)∼ 2C2 ⋅∫
2

n

( d π (x )
ln (π( x)))=2C2 ⋅∫

2

n

(
dx

ln(x ) ln(∫
2

x

( dt
ln (t ))))

.

For small number n, starting from the following formula for the prime numbers smaller than some

natural number n 

π(n)≈
n

ln(n
2)−

1
3

,

a  good  estimation  of  Sophie  Germain  primes  smaller  than  natural  number  n is  given  by  the

following formula

πSGP(n)≈ (1+0.0129⋅ log(n))
n

(ln(n
2)−

1
3)(ln(n

2)− ln(ln(n
2
−

1
3))+1

3)
.  

This equation gives good approximation of the number of Sophie Germain primes smaller than

natural number n, at least for the values of n ≤ 1014  (estimation for values n = 103 and n = 104 is

actually correct).
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APPENDIX A.

Here it is going to be shown that m in (2) is represented by threads defined by odd prime numbers.

Now, the form of  (2) for some values of i will be checked.

Case i = 1: m = 3j + 1,

Case i = 2: m = 5j + 2, 

Case i = 3: m = 7j + 3, 



Case i = 4: m = 9j + 4 = 3(3j + 1) + 1,

Case i = 5: m = 11j + 5,

Case i = 6: m = 13j + 6 , 

Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, 

Case i = 8: m = 17j + 8, 

It can be seen that  m is represented by the threads that are defined by odd prime numbers. From

examples (cases i = 4, i = 7), it can be seen that if  (2i + 1) represent a composite number, m that is

represented by thread defined by that number also has a representation by the thread defined by one

of the prime factors of that composite number. That can be proved easily in the general case, by

direct calculation, using representations similar to (2). Here, that is going to be analyzed. Assume

that 2i + 1 is a composite number, the following holds  

2i + 1 = (2l + 1)(2s + 1)

where (l, s ϵ N). That leads to

i =  2ls + l + s.

The simple calculation leads to

m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l

or

m = (2l+1)((2s+1)j + s) + l

which means

m = (2l + 1)f + l,

and that represents the already exiting form of the representation of m for the factor (2l + 1), where

f = (2s + 1)j + s.

In the same way this can be proved for (4) .



Note: It is not difficult to understand that after implementation of stage 1, the number of numbers in

residual classes of some specific prime number are equal. In other words, after implementation of

stage 1, for example, all numbers divisible by 3 (except 3, but it does not affect the analysis) are

removed. However, the number of numbers in the forms 3k + 1 and 3k + 2 (alternatively, 3k – 1)

are equal.  The reason is that the thread defined by any other prime number (bigger than 2) will

remove the same number of numbers from the numbers in the form  3k + 1 and from the numbers in

the form 3k + 2. It is simple to understand that, for instance, thread defined by number 5, is going

to remove 1/5 of the numbers in form  3k + 1 and  1/5 of the numbers in form 3k + 2. This can be

proved by elementary calculation. That will hold for all other primes and for all other residual

classes.

APPENDIX B.

Here, asymptotic density of numbers left, after implementation of the first and the second Sundaram

sieve is going to be calculated. After first k steps of the first Sundaram sieve, after removal of all

composite even numbers, density of numbers left is given by the following equation

ck=
1
2
∏
j=2

k+1

(1−
1

p( j )
) ,

where p(j) is j-th prime number.

In the case of second “Sundaram” sieve the density of numbers left after the first k-steps is given by

the following equation

c2k=∏
j=2

k+1

(1− 1
p ( j)− 1)=∏j=2

k+1

( p( j)− 2
p ( j)− 1).

So, if implementation of first sieve will result in the number of prime numbers smaller than n which

we denote as π(n), than implementation of the second sieve on some set of size π(n) should result in

the number of numbers gp(n) that are defined by the following equation (for some big enough n)



gp(n)=rS2S1(n)⋅
π(n)

ln (π (n))
,

where r
S2S1

(n) is defined by the following equation (k is the number of primes smaller or equal to n)

r S2S1(n)=
c2k

ck

=

∏
p>2, p≤ n

( p − 2
p − 1)

∏
p≤ n
( p − 1

p )
=2 ∏

p>2, p≤ n
( p − 2

p − 1)(
p

p − 1)≈ 2C2 .

For n that is not big, gp(n) should be defined as   

gp(n)= f COR(n)⋅ 2C2⋅
π(n)

ln(π(n))
,

where  f
COR

(n)  represents  correction  factor  that  asymptotically  tends  toward  1  when  n tends  to

infinity.


