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Abstract In  this  paper  a  proof  of  the  existence  of  an infinite  number  of  Sophie  Germain  primes  is  going  to  be

presented. In order to do that, the basic formula for prime numbers was analyzed with the intention of finding out when

this formula would  produce a Sophie  Germain prime and  when not.  It  will  be shown that  the number  of Sophie

Germain primes is infinite.  Originally very difficult  problem (in observational  space)  has been transformed into  a

sampler one (in generative space) that can be solved. It will be also shown that Sophie Germain primes could be

obtained through two stage recursive process, and that will be used to obtain a reasonable estimation of the number of

Sophie Germain primes.

1 Introduction

A prime p is a Sophie Germain prime if 2p + 1 is a prime too [1]. In that case the prime number  2p

+ 1  is  called  safe  prime.  These  special  primes  have  applications  in  public  key  cryptography,

pseudorandom number generation, and primality testing; see, for example [2, 4, 6]. Originally, they

have been used in the investigation of cases of Fermat's last theorem [3]. It has been conjectured

that infinitely many Sophie Germain primes exist, but this was unproven (see for instance, [5]).

In this paper it is going to be proved that an infinite number of Sophie Germain primes exists . The

problem is addressed in generative space, which means that prime numbers are not going to be

analyzed directly, but rather their representatives, that can be used to produce them. In the second

part of the paper it  will be shown that Sohie Germain primes could be generated by two stage

recursive process  (sieve),  and that  will  be used to  generate  formula for  the number of  Sophie

Germain primes. 

Remark 1: Prime numbers 2 and 3 are in a sense special primes, since they do not share some of

the common features of all other prime numbers. For instance, every prime number, apart from 2



and 3, can be expressed in the form 6l + 1 or 6l - 1, where l ϵ N. So, in this paper, most of the time,

prime numbers bigger than 3 are analyzed. It has to be said that both 2 and 3 are Sophie \Germain

primes, but it has no impact on the conclusion of the paper. 

Remark 2: In this paper any infinite series in the form c1*l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to

the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 Proof of the conjecture

It is easy to check that any prime number (apart from 2 and 3) can be expressed in the form 6l + 1

or 6s – 1 (l, s ϵ N). Having that in mind, it is easy to conclude that numbers in the form 6l + 1 could

never be Sophie Germain primes since their safe primes are in the form

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1),

and that is a composite number divisible by 3. Hence, the prime number that can potentially be a

Sophie Germain prime must be in the form 6s – 1. The safe prime will then be in the form 6(2s) – 1.

We denote any composite number (number that is represented as a product of prime numbers bigger

than 3) with CPN5. A number in the form 6l + 1 is denoted with mpl, while a  number in the form

6s  -  1  is  denoted  with  mps (l,  s ϵ N).  That  means  that  any composite  number  CPN5 can  be

expressed in the form mpl x mpl, mps x mps or mpl x mps.

If we represent all composite numbers in mps form with 6k – 1 (k ϵ N) the following must hold

k=
CPN5+1

6
. (1)

Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product mpl x mps.

Let mpl and mps be defined as

mpl = 6x + 1 and mps = 6y – 1 (x, y ϵ N).



That leads to 

CPN5 = mpl x mps = 6(6xy – x + y) -1, (2)

or due to symmetry

 mpl = 6y + 1 and mps = 6x – 1 (x, y ϵ N),

which leads to 

CPN5 = mpl x mps = 6(6xy + x - y) -1. (3)

If (2) or (3) is replaced in (1), forms of k that cannot produce a Sophie Germain prime number will

be obtained. Those forms are expressed by the following equations

k = (6x - 1)y + x  (4a)

k = (6x + 1) y – x,  (4b)

where x,  y ϵ N. These equations are equivalent (they will produce the same numbers) and can be

used interchangeably. What should be noticed is the following: a thread defined by (4a) is spread

over all threads defined by (4b), and vice versa.

Also, in order to have Sophie Germain pair (which consists of Sophie Germain prime p and safe

prime 2p + 1), a safe prime which is generated by 2k cannot be composite. If the safe number is

composite the following equation holds

k=
CPN5+1

2⋅6
, (5)

where CPN5 is a composite number in the mps form. Using the same analysis as in the previous

case and replacing for instance (2) in (5), additional cases in which k cannot be used to produce

Sophie Germain prime are obtained. They are defined by the following equation

k=
(6x+1) y−

x
2

, x is even

(6x+1) y− 3x−
x+1

2
, x is odd

,  (6a)

where x, y ϵ N. Alternatively, it is possible to use the equation (3) and replace it in (5) and then the

following equation holds



k=
(6x− 1) y+

x
2

, x is even

(6x− 1) y− 3x+
x+1

2
, x is odd

.  (6b)

A different equation that produces the same numbers as the equation (6a) is obtained. In the text

that follows we denote with (6b') the equation (6b) that contains only the threads defined for x = 1

and x = 2. 

Equations (4a) and (6a) (and other alternatives like (4b) and (6b)) give a sufficient and necessary

condition for k, so that it cannot be used for the generation of prime pairs in the form (p, 2p + 1). In

order to prove that there are infinitely many prime pairs in the form (p, 2p + 1) it is necessary to

prove that infinitely many natural numbers cannot be expressed neither in form (4a) nor in form

(6a).  Here,  we will  consider  equations  (4a,  6a and 6b').  The reason for  inclusion of  (6b')  will

become clear later in the text. 

First, the forms of (4a, 6a, and 6b') for some values of x will be checked. Equations (4a, 6a, 6b')

create  sufficient  (not  necessary)  condition  that  k  defined  by  them  cannot  generate  the  Sophie

Germain primes. 

Case x = 1: k = 7y – 4, k = 5y + 1,  k = 5y – 2,

Case x = 2: k = 13y – 1, k = 11y + 2, k = 11y + 1; 

Case x = 3: k = 19y – 11, k = 17y + 3, 

Case x = 4: k = 5(5y) – 2, k = 23y + 4,  

Case x = 5: k = 31y – 18, k = 29y + 5, 

Case x = 6: k = 37y – 3 , k = 35y + 6 = 5(7y + 1) + 1, 

Case x = 7: k = 43y – 25, k = 41y + 7, 

Case x = 8: k = 7(7y) – 4, k = 47y + 8.

It can be seen that k is represented by the threads that are defined by prime numbers bigger than 3.

From examples (cases  x = 4 and  x = 8), it can be seen that if (6x – 1) or (6x + 1) represent a



composite number, k that is represented by thread defined by that number also has a representation

by the thread defined by one of the prime factors of that composite number. That can be proved

easily in the general case, by direct calculation, using representations similar to (2) and (3). Here,

only one case is going to be analyzed. All other cases can be analyzed analogously. In this case,

assume that 

(6x – 1) = (6l +1)(6s – 1) (7)

where (l, s ϵ N). Equation (7) leads to

x = 6ls – l + s. (8)

Considering (8) and using the following representation of k that includes a thread defined by (6x-1)

k = (6x – 1)y + x,

the simple calculation leads to

k = (6l + 1)(6s - 1)y + 6ls – l + s = (6l + 1)(6s-1)y + s(6l + 1) – l

or

k = (6l+1)((6s-1)y + s) – l

which means

k = (6l + 1)f – l,

and that represents the already exiting form of the representation of k for  the factor (6l + 1), where

f = (6s – 1)y + s.

Here the equivalence of equations (4a) and (4b) is used. 

Now, it is going to be proved that the number of natural numbers that cannot be represented by the

models (4a, 6a, 6b') is infinite. 

From (4a, 6a, 6b') it can be seen that all numbers that can be represented in the form

5y - 2, 5y + 1,



cannot be used for generation of Sophie Germain primes. In other words, a ratio  r
1
 = 2/5 of all

natural numbers cannot be used for generation of Sophie Germain primes. The ratio c
1
 = 1 - 2/5 =

3/5 of all natural numbers cannot be represented by those two patterns and they still contain some

numbers that can be used for representation of Sophie Germain primes.

What does this analysis actually tell us? 

1. We know that all natural numbers can be represented by five threads defined by number 5:

5y, 5y – 1, 5y – 2, 5y – 3 and 5y – 4 (y ϵ N).  By doing that we can simply disentangle the

numbers (actually the threads that “contain” numbers) that cannot be used for generation of

Sophie Germain primes from the numbers that potentially can be used for generation of

Sophie Germain primes. So, threads 5y – 2 and 5y – 4 almost exclusively contain numbers

that cannot be used for generation of Sophie Germain primes (the only exception is number

1 that belongs to thread 5y – 4 and can generate a pair of Sophie Germain primes). The other

three  threads  5y,  5y –  1  and  5y -  3,  potentially  contain  numbers  that  can  be  used  for

generation  of  Sophie  Germain  primes.  The  only reason  why some of  the  numbers  that

belong to those threads would actually not be available for generation of Sophie Germain

primes, is that those threads are entangled with some threads in (4a, 6a, 6b') that are defined

by prime numbers bigger than 5.

2. Can we use  the  fact  that  we have  3/5 of  numbers  that  potentially can be  used for  the

generation of Sophie Germain primes? Fortunately the answer is YES. Let us denote with

πTP(n) the number of Sophie Germain primes smaller than some number n, n ϵ N. Now,  for

n ≤ 31, we can say the following (we should be aware that  n belongs to the observational

space) 

πTP(n)  > (c
1
*n/6). (9)

Why is it so? The reason is following: the numbers in generative space that are smaller or



equal than number 5 that  cannot  be used for  generation of  Sophie Germain primes can

belong only to those threads in (4a, 6a, 6b') that are defined by prime numbers not bigger

than 5. In current situation these are only threads that are defined by number 5. Number 5 in

generative space defines numbers 29 and 31 in observational space, so it is safe to say that

equation (9) is correct. So, why we have inequality sign instead of equality sign? The reason

is simple – one of the threads defined by (4a, 6a, 6b') is in the form 5y + 1 and generates

numbers that are bigger than 5. That form will produce the same numbers as the form 5y-4 (

y ϵ N, and y > 1). So, starting from number 2, out of  every 5 consecutive numbers at least 2

numbers  cannot  be used for the generation of Sophie Germain primes.  We can see that

within first five numbers there is an exception - four numbers that can be used for generation

of  Sophie  Germain  primes  exists,  while  estimation  c
1
*n/6  will  suggest  that  exist  three

numbers, or

πTP(31) = 4  > (c
1
*31/6) = 3.1.

3. Here we are going to explain the most sensitive point in the previous part: why is it true that

numbers that cannot be used for generation of the Sophie Germain primes and that are not

bigger  than 5,  can belong only to  those threads in  (4a,  6a,  6b')  that  are defined by the

number 5?

From (4a) we can see clear answer for the following groups of threads:

(6x – 1)y + x,

since these threads generate numbers that are bigger than prime  number that defines thread.

However, numbers generated by threads defined by (6a)

k=
(6x+1) y−

x
2

, x is even

(6x+1) y− 3x−
x+1

2
, x is odd

, ,

can generate numbers smaller than the prime number that defines thread. Here, we will show



that it happens only for y = 1 and that will actually not affect the number of the numbers that

can be used for the generation of Sophie Germain primes, that are smaller than 5. 

So, if y = 1 and x = 2x
1
 is even, thread produce numbers in the form

(6 ·2x
1
 + 1) - x

1
 = 11x

1
 + 1, 

and that is actually thread defined by number 11 (this is thread generated by (6b') for x = 2).

So, in this case new threads will not affect the number of Sophie Germain primes smaller

than any previous prime number – in this case number 5.  So, it  does not affect  threads

generated by 5 and 7, and for all bigger primes it is already calculated since it is defined

with prime 11. If y > 1, then the number (6· 2x
1
 + 1)·y - x

1
 is bigger than prime number (6·

2x
1
 + 1) and by this also bigger than any previous prime number, which is in this case 5.  

If y = 1 and x = 2x
1 
 - 1 is odd, thread produces numbers in the form

(6 ·(2x
1 
- 1) + 1) -3(2x

1
 – 1) - x

1
 = 5x

1
 - 2, 

and that is actually thread defined earlier by number 5 (thread generated by (6b') in the case

x = 1). So, in this case new threads will not affect the number of Sophie Germain primes

smaller than any previous prime number – in this case number 5. If y > 1, then the number

(6 ·(2x
1 
- 1) + 1)·y -3(2x

1
 – 1) - x

1
 is bigger than prime number (6 ·(2x

1 
- 1) + 1) and by this

also bigger than any previous prime number, which is in this case 5.  

Now, it is clear why (6b') is included in the analysis.

4. Now, we will consider one additional problem. In this moment we have solved the problem

of estimation of Sophie Germain primes for the natural numbers smaller than 32. However,

we do not  know if  (9)  holds  for  numbers  between 32 and 41 (which is  the  number in

observational space that is connected to the next prime number in generative space). In this

case problem is simple and can be solved easily. However, what will happen in the general



case when we do not know the value of the gap to the next prime number and we know that

it can be large for large numbers? The solution comes from the fact that we know from [7]

that although gaps between consecutive primes can be large, they cannot be arbitrarily large.

From [7] we know that following equation holds starting from some big enough number

(probably always – author is not aware of the literature that can support this statement)

p
n+1

 < 2· p
n
. (10)

Having that in mind, we can modify (9) so that it is valid in more general case (currently,

case of interest is n < 42)

πTP(n)  > (c
1
·n/12). (11)

Since the number of the Sophie Germain primes can only be increased between (6·p
n
 + 1

and 6·p
n+1

) we know that (11) holds for all n < 42 since it will give estimation for n, that is

actually valid for the value n/2.

Analysis performed here is valid in general case – it does not depend on how many threads defined

by (4a, 6a, 6b') is analyzed. The only differences are: 

– the  interval  on  which  approximation  holds  depends  on  the  last  prime  number  that  is

analyzed (if the last prime number that is analyzed  is p
n
, then the interval is [p

n
, 2·p

n
] – in

practice interval of interest is [p
n
,  p

n+1
]). In that case for  n ϵ  [p

n
,  p

n+1
] the lower bound for

πTP(n) is given by (  c
n
 marks the ratio of threads that are still available for generation of

twin primes after we consider all threads defined by prime bigger that 3 and smaller or equal

to  p
n
)

πTP(n)  > (c
n
·n/12). (11g)

– number of numbers that cannot be used for the generation of Sophie Germain primes and



that are smaller than the last prime that is analyzed, depends only on the threads defined by

primes that are smaller or equal to that last prime that is analyzed.

Now,  we denote prime numbers bigger than 3 as p5, where p5(1) = 5, p5(2) = 7 and so on. Also, we

denote p5 - 1 (if p5 is a prime that defines one thread in (4a, 6a)) and p5 - 2 (if p5 is a prime defined

also by (6b')) with p5r. 

After step k (analysis of the threads in (4a, 6a, 6b') defined by first k primes bigger than 3) the ratio

r
k
 of all numbers that cannot be used for generation of Sophie Germain primes and ratio  c

k
 of all

numbers still potentially available for the generation of Sophie Germain primes, are obtained. In the

step k + 1 we will have (using some basic probabilistic rules)

r k+1=rk+
p5(k+1)− p5r (k+1)

p5(k+1)
−

p5 (k+1)− p5r (k+1)
p5 (k+1)

r k .

After a few elementary calculations, the following equation is obtained

r k+1=rk+
p5(k+1)− p5r (k+1)

p5(k+1)
− (1− rk ) .

Now, the following equation holds

ck+1=1− r k+1=1− r k−
p5(k+1)− p5r (k+1)

p5 (k+1)
− (1− r k )=ck−

p5 (k+1)− p5r (k+1)
p5(k+1)

ck .

or

ck+1=
p5r (k+1)
p5(k+1)

ck . (12)

Equation (12) can also be written in the following form 

ck+1=

∏
j=1

k+1

p5r ( j )

∏
j=1

k+1

p5 ( j)

. (13)

If we now denote with α(j) value 1, if p5(j) generates one thread and 2 if p5(j) generates 2 threads



equation (13) can be written as 

ck+1=∏
j=1

k+1

(1−
α( j)
p5( j)

) . (14)

Since α(j) can only take values 1 or 2 it is easy to conclude that following holds

ck+1> ∏
3< p5⩽ p5(k+1)

(1− 2
p5). (15)

If denote by p any prime number, (15) can be written as 

ck+1>3⋅ ∏
2<p⩽ p5 (k+1)

(1− 2
p). (16)

From [8, p. 68, eq. (2.32)] we know that following equation holds (n1 ϵ N, n1 > 2)

∏
2< p⩽ n1

(1− 2
p)=

tc(2)
( ln(n1))2

+O (e− 2√(ln(n1))). (17)

Having in mind (17), from (16) we can see that following equation holds (after slight change of

notation; and having n1 ϵ [p5(k+1), p5(k+2)])

c (n1)> ∏
2<p⩽ n1

(1− 2
p)+2 ⋅ ∏

2<p⩽ n1
(1− 2

p)>
tc(2)

( ln(n1))2
. (18)

Now, having in mind (11g),  we can write

πTP(n)>c (n1)
n
12

. (19)

Since in our case we can write n1 = n/6 (from [7] we know that (19) holds for n big enough, if not

always, and from the text before (17) – it must be  n ≥ 18) and knowing from [8] that tc(2) ≈ 0.83 >

0.8, from (19) we can write the following

πTP (n)>
0.8

(ln(n
6 ))

2

n
12
=

1
15

n

(ln(n
6))

2
. (20)

(Note: The n1 = n/6 is not a natural number in general case. Trivial solution would be to rounded it



to nearest integer that is not bigger than  n/6. Also, it is possible to show that (18) holds for real

numbers, too, but it is beyond to scope of this paper.)  

Since it is trivial to prove that the following equation holds

lim
n→ ∞

n

(ln(n
6))

2
=∞ ,

we can safely conclude that the number of Sophie Germain primes is infinite. That concludes the

proof.

3. Estimation of the number of Sophie Germain primes

In this chapter we are going to analyze an alternative way of generating Sophie Germain primes.

This will help us to give a reasonable estimation of the number of Sophie Germain primes that is

smaller than some natural number n.

Prime numbers can be obtained in the following way: 

First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary

to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (21)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after



simple calculation, equation (21) is obtained. This calculation is presented here. The form 2m + 1,

m ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(i 1+1)( j1+1) ,

where i
1
, j

1
 ϵ N. Now, it is easy to see that the following equation holds

m=
i1 j1+i 1+ j 1

2
.

In order to have m ϵ N, it is easy to check that i
1
 and j

1
 have to be in the forms

i
1
 = 2i and j

1
 = 2j,

where i, j ϵ N. From that, it follows that m must be in the form

m = 2ij + i + j.

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers that cannot be represented by (21) will stay.  This process is equivalent to the sieve of

Sundaram [9].

Let us denote the numbers used for the generation of odd prime numbers with m2 (here we ignore

number 2). Those are the numbers that are left after the implementation of Sundaram sieve. The

number of those numbers that are smaller than some natural number n, is equivalent to the number

of prime numbers smaller than  n.  If  we denote with  π(n) number of primes smaller than  n,  the

following equation holds

π(n)≈
n

ln(n
2)−

1
3

.

Now, the following question can be asked:

What will happen when Sindaram's sieve is implemented once more, now on numbers m2?



The answer is that in the second step, the only numbers that are not going to be removed are prime

numbers that are used for generation of some mps prime numbers. All of these numbers are in the

mps form and actually represent Sophie Germain primes ( it has been already explained that prime

numbers in  mpl form produce composite odd numbers divisible by 3, when formula 2·mpl + 1 is

applied on them). Since the same method is applied in the second step, intuitively can be concluded

that  the numbers  left  after  the second Sundaram sieve,  should be comparable  to  the  following

number msg

msg=
π(n)

ln(π(n)2 )− 1
3

.

Of course, the result cannot be correct and it requires some compensation terms since the second

Sundaram sieve  is  applied  on  an  incomplete  set,  that  is  depleted  by  previously  implemented

Sundaram sieve. 

Let  us  mark the  number of  Sophie  Germain  primes smaller  than some natural  number  n with

πSGP(n). Good approximation of the πSGP(n) is given by the following equation

πSGP (n)≈ (1+0.0129⋅ log(n))
n

(ln(n
2)−

1
3)(ln(n

2)− ln(ln(n
2
−

1
3))+1

3)
.  

This equation gives good approximation of the number of Sophie Germain primes smaller than

natural number n, at least for the values of n ≤ 1014  (estimation for values n = 103 and n = 104 is

actually correct).
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