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Abstract In this paper a proof of the existence of an infinite number of Sophie Germain primes is going 

to be presented. In order to do that, the basic formula for prime numbers was analyzed with the 

intention of finding out when this formula would produce a Sophie Germain prime and when not. The 

originally very difficult problem (in observational space) has been transformed into a simpler one 

(in generative space) that can be solved.  

 

1 Introduction 

A prime p is a Sophie Germain prime if 2p + 1 is a prime too [1]. In that case the prime 

number 2p + 1 is called safe prime. These special primes have applications in public key 

cryptography, pseudorandom number generation, and primality testing; see, for example, [2, 

4, 6]. Originally, they have been used in the investigation of cases of Fermat's last theorem 

[3]. It has been conjectured that infinitely many Sophie Germain primes exist, but this was 

unproven (see for instance, [5]). 

In this paper it is going to be proved that an infinite number of Sophie Germain primes exists. 

The problem is addressed in generative space, which means that prime numbers are not 

going to be analyzed directly, but rather their representatives, that can be used to produce 

them. 
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Remark 1: Prime numbers 2 and 3 are in a sense special primes, since they do not share some 

of the common features of all other prime numbers. For instance, every prime number,  apart 

from 2 and 3, can be expressed in the form 6l + 1 or 6s- 1, where l, s ϵ N. In this paper most 

of the time we analyze prime numbers bigger than 3. It has to be said that both 2 and 3 are 

Sophie Germain primes, but that has no impact on the conclusion of this paper. 

Remark 2: In this paper any infinite number series in the form c1 * l ± c2 is going to be called 

a thread, defined by number c1 (in literature these forms are known as linear factors). Here 

c1 and c2 are constants that belong to the set of natural numbers (c2 can also be 0, and usually 

is smaller than c1) and l represents an infinite series of consecutive natural numbers in the 

form (1, 2, 3, …). 

 

2 Proof 

It is easy to check that any prime number (apart form 2 and 3) can be expressed in the form 

6l+1 or 6s-1 (l, s ϵ N). Having that in mind, it is easy to conclude that numbers in the form 6l 

+ 1, could never be Sophie Germain primes since their safe primes are in the form 

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1), 

and that is a composite number divisible by 3. Hence, the prime number that can potentially 

be a Sophie Germain prime must be in the form 6s – 1. The safe prime will then be in the form 

6(2s) - 1. 

We denote any composite number (that is represented as a product of prime numbers bigger 

than 3) with CPN5. A number in the form 6l + 1 is marked with mpl, while a number in the 

form 6s - 1 is marked with mps (l, s ϵ N). That means that any composite number CPN5 can 

be expressed in the form mpl x mpl, mps x mps or mpl x mps.  
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If we represent all composite numbers in mps form with 6k - 1 (k ϵ N) it must hold 

𝑘 =
𝐶𝑃𝑁5 +  1

6
. 

  (2.1) 

Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product mpl x 

mps, or 

mpl = 6x + 1 and mps = 6y - 1(x, y ϵ N), 

which leads to 

 CPN5 = mpl x mps = 6(6xy - x + y) – 1,  (2.2) 

or, due to symmetry 

mpl = 6y + 1 and mps = 6x - 1, 

which leads to 

 CPN5 = mpl x mps = 6(6xy + x - y) – 1,  (2.3) 

If (2.2) or (2.3) is replaced in (2.1) forms of k that will not produce a Sophie Germain prime 

number will be obtained. Those forms are expressed by the following equations 

 𝑘 = (6𝑥 − 1)𝑦 + 𝑥 (2.4a) 

 𝑘 = (6𝑥 + 1)𝑦 − 𝑥 (2.4b)  

where x, y ϵ N. These equations are equivalent (they will produce the same numbers) and 

can be used interchangeably. 

Also, in order to have Sophie Germain pair (which consists of prime p and safe prime 2p+1), 

a safe prime which is generated by 2k cannot be composite. If the safe number is composite 

the following equation must hold  
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𝑘 =
𝐶𝑃𝑁5 +  1

6 ∙ 2
, 

            (2.5) 

where CPN5 is a composite number in the mps form. Using the same analysis as in the 

previous case and replacing for instance (2.2) in (2.5), additional cases in which k cannot be 

used to produce Sophie Germain prime pairs are obtained. They are defined by the following 

equation 

𝑘 =

(6𝑥 + 1)𝑦 −
𝑥

2
, 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

(6𝑥 + 1)𝑦 − 3𝑥 −
𝑥 + 1

2
, 𝑥 𝑖𝑠 𝑜𝑑𝑑

 

  (2.6a) 

where x, y ϵ N. Alternatively, it is possible to use the equation (2.3) and replace it in (2.5) 

and then the following equation holds 

𝑘 =

(6𝑥 − 1)𝑦 +
𝑥

2
, 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

(6𝑥 − 1)𝑦 − 3𝑥 +
𝑥 + 1

2
, 𝑥 𝑖𝑠 𝑜𝑑𝑑

 

.  (2.6b) 

A different equation that produces the same numbers as the equation (2.6a) is obtained. 

Equations (2.4a) and (2.6a) (and other alternatives like (2.4b) and (2.6b)) give a sufficient 

and necessary condition for k, so that it cannot be used for the generation of prime pairs in 

the form (p, 2p + 1).  In order to prove that there are infinitely many prime pairs in the form 

(p, 2p + 1) it is necessary to prove that infinitely many natural numbers s (s ϵ N) exist, that 

cannot be expressed in the form (2.4a) or (2.6a). 

First, the forms of (2.4a, 2.6a) for some values of x are checked. 

Case x=1:  k = 7y - 4, k = 5y + 1 
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Case x=2:  k = 13y - 1, k = 11y + 2 

Case x=3: k = 19y - 11, k = 17y + 3 

Case x=4: k = 5(5y) - 2, k = 23y +4 (here we should have the equivalence of the equations 

(2.6a) and (2.6b) in mind) 

Case x=5: k = 31y - 18, k = 29y + 5 

Case x=6: k = 37y - 3, k = 5(7y+1) + 1 

Case x=7: k = 43y - 25, k = 41y + 7 

Case x=8: k = 7(7y) - 4, k = 47y + 8 

It can be seen that k is represented by the threads that are defined by prime numbers bigger 

than 3. From examples (cases x=4 and x = 8), it can be seen that if (6x - 1) or (6x + 1) 

represent a composite number, k that is represented by the thread defined by that number, 

is also represented by the thread defined by one of the prime factors of that composite 

number. This can be easily proved by direct calculation in the general case, where 

representations similar to (2.2) and (2.3) are used. Here only one case is going to be 

analyzed. All other cases can be analyzed analogously. In this case we assume 

(6𝑥 − 1) = (6𝑙 + 1)(6𝑠 − 1), 

where (l, s ϵ N). Thus, the following equation holds  

 𝑥 = 6𝑙𝑠 − 𝑙 + 𝑠. 

Considering that and using the following representation of k that includes the form (6x - 1) 

𝑘 = (6𝑥 − 1)𝑦 + 𝑥, 
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the simple calculations leads to 

𝑘 = (6𝑙 + 1)(6𝑠 − 1)𝑦 + 6𝑙𝑠 − 𝑙 + 𝑠 = (6𝑙 + 1)(6𝑠 − 1)𝑦 + 𝑠(6𝑙 + 1) − 𝑙, 

or 

𝑘 = (6𝑙 + 1) (6𝑠 − 1)𝑦 + 𝑠 − 𝑙, 

which means 

𝑘 = (6𝑙 + 1)𝑓 − 𝑙, 

and these values of k  are also represented by the thread defined by (6l+1), where 

𝑓 = (6𝑠 − 1)𝑦 + 𝑠. 

Here the equivalency of the equations (2.4a) and (2.4b) is used. It can be seen that all 

patterns for k are represented by the threads defined by prime numbers bigger than 3. Now, 

proof that the number of natural numbers s, that cannot be represented by the models (2.4a) 

and (2.6a) is infinite, will be provided.  

When all numbers that can be represented in the form 

 5y + 1, 

are removed from the set of natural numbers N, it can be seen that a ratio of r1 = 1/5 of all 

natural numbers is removed. The ratio c1 = 1 − 1/5 = 4/5 of all natural numbers cannot be 

represented by those two patterns and they still contain some numbers that could be used 

for representation of Sophie Germain primes.  

What does that actually mean? The proper interpretation of this result is: All natural numbers 

can be represented by 5 threads: 5z, 5z-1, 5z-2, 5z-3 and 5z-4 (z ϵ N). It means that all natural 

numbers that cannot be represented by 5y +1 (that is equivalent to 5z – 4, for z > 1) can 

only belong to the threads that are in the form 5z - 3, 5z- 2 or 5z - 1 and 5z. That means that 
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there are four threads that potentially contain natural numbers that can be used for the 

generation of Sophie Germain primes and cannot be represented by 5y +1.  

If in addition, the natural numbers in the form 

7y - 4, 

are removed, then the ratio of removed numbers can be calculated by the following equation 

(checking that every removed number is calculated only once; basically, the formula for 

calculation of the probability of the occurring of two events that are not mutually exclusive 

is applied: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)) 

𝑟 = 𝑟 +
1

7
−

1

7
× 𝑟 = 𝑟 +

1

7
(1 − 𝑟 ) =

1

5
+

1

7
1 −

1

5
=

11

35
 

The ratio of all natural numbers that can still be used for the generation of Sophie Germain 

primes, is defined by 

𝑐 = 1 − 𝑟 = 1 − 𝑟 −
1

7
(1 − 𝑟 ) = 1 −

1

7
× 𝑐 =

4 × 6

5 × 7
. 

Again – the proper interpretation of this result is: All natural numbers can be represented 

with 35 threads in the form 35z-i (z ϵ N, i ϵ {0, 1, 2, … , 34}). From previous step it is known 

that the 7 threads defined by 5*(7z-j) + 1, where z ϵ N, j ϵ {0, 1, 2, …, 6}, do not contain the 

numbers that can be used for the generation of Sophie Germain primes. From the current 

step it is known that 5 threads defined by 7*(5z-j)-4, where z ϵ N, j ϵ {0, 1, 2, 3, 4}, do not 

contain any numbers that can be used for the generation of  Sophie Germain primes. 

However, these formulas, from the first two steps, produce some threads that overlap: 

35𝑧 − 4 = 5(7𝑧 − 1) + 1 = 7(5𝑧 − 0) − 4. 

That leaves us with 24 threads that potentially contain numbers that can be used for the 

generation of Sophie Germain primes and cannot be represented by 5y+1 and 7y -4.  
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Now, we denote prime numbers bigger than 3 as p5, where p5(1) = 5, p5(2) = 7 and so on. 

After step n the ratio rn of all numbers removed and ratio the cn of all numbers still potentially 

available for the generation of Sophie Germain primes, are obtained. In the step n + 1 we will 

have 

𝑟 = 𝑟 +
1

𝑝5(𝑛 + 1)
−

1

𝑝5(𝑛 + 1)
× 𝑟 . 

After a few elementary calculations, the following equation is obtained 

𝑟 = 𝑟 +
1

𝑝5(𝑛 + 1)
× (1 − 𝑟 ). 

Now, the following equation holds 

𝑐 = 1 − 𝑟 = 1 − 𝑟 −
1

𝑝5(𝑛 + 1)
× (1 − 𝑟 ) =  𝑐 −

1

𝑝5(𝑛 + 1)
× 𝑐  

or 

𝑐 =  
𝑝5(𝑛 + 1) − 1

𝑝5(𝑛 + 1)
× 𝑐 . 

  (2.7) 

Equation (2.7) can also be written in the following form 

 𝑐 =
∏ ( ( ) )

∏ ( )
. 

  (2.8) 

Hence, after n+1-st step in which a thread defined by n+1-st p5 is removed, we know that 

∏ (𝒑𝟓(𝒋) − 𝟏)𝒏 𝟏
𝒋 𝟏  threads that potentially contain numbers that can be used for the generation 

of Sophie Germain primes exists. 
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If the process is continued until all possible patterns (defined by (2.4a) and (2.6a) related to 

all prime numbers bigger than 3 (and that is an infinite number)) are removed, a number C 

can be defined by the following equation 

 𝐶 = lim
→

∏ (𝑝5(𝑗) − 1). (2.9) 

It can easily be concluded that C is an infinite number. We know that C represents the number 

of threads that contain natural numbers that cannot be represented by (2.4a), and (2.6a). 

Since the set of natural numbers is closed for multiplication, it means that every one of those 

threads contains at least one number and that means that the number of natural numbers 

that cannot be represented by equations (2.4a) and (2.6a) is infinite.  

That completes the proof that the number of Sophie Germain primes is infinite.  

 

Note: Using the sieve of Erathostenes [7] and same line of reasoning it is possible to prove 

that the number of prime numbers is infinite. 

Note: Using the sieve presented in [8] for the generation of twin primes and same line of 

reasoning it is easy to prove that the number of twin prime numbers is infinite. Same can be 

done for cousin primes. 

 

3 Estimation of the number of Sophie Germain primes 

In chapter 2, a sieve that was presented by equations (2.4a) and (2.6a) was used for 

generation of Sophie Germain primes. In this chapter the other for for the generation of 

Sophie Germain primes is going to presented. This will help to give a reasonable estimation 

of the number of Sophie Germain primes that smaller that natural number n. 
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 Prime numbers can be obtained if even numbers (except 2) are removed from the set of 

natural numbers, first. Then, it is necessary to remove the composite odd numbers from the 

set of all odd numbers.  In order to do that, the formula for odd numbers and the formula for 

the composite odd numbers are going to be analyzed. It is well known that odd numbers a 

(bigger than 1) can be represented by the following formula  

𝑎 = 2𝑛 + 1, 

where n ϵ N. It is not difficult to prove that all composite odd numbers ac can be presented 

by the following formula 

 𝑎 = 2(2𝑖𝑗 + 𝑖 + 𝑗) + 1 = 2 (2𝑗 + 1)𝑖 + 𝑗 + 1, (3.1) 

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by 

the product (i+1) * (j+1), where i, j ϵ N. If it is checked how that formula looks like for odd 

numbers, after simple calculation, equation (3.1) is obtained. This calculation is presented 

here. The form 2m+1, m ϵ N, will represent odd numbers that are composite. Then the 

following equation holds 

2𝑚 + 1 = (𝑖 + 1)(𝑗 + 1), 

where i1, j1 ϵ N. Now it is easy to see that the following equation holds 

𝑚 =
𝑖 𝑗 + 𝑖 + 𝑗

2
. 

In order to have m ϵ N, it is easy to check that i1 and j1 have to be in the forms 

i1 = 2*i and j1 = 2*j, 

 where i, j ϵ N. From that, it follows that m must be in the form  

𝑚 = 2𝑖𝑗 + 𝑖 + 𝑗. 
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When all numbers represented by m are removed only the numbers that represent odd 

prime numbers are going to stay. The odd numbers that cannot be represented by the (3.1). 

This process is equivalent to sieve of Sundaram [9].  

Let us mark the numbers used for creation of odd prime numbers with m2. Those are the 

numbers that are left after implementation of Sundaram sieve. The number of those numbers 

is equivalent to the number of prime numbers smaller than natural number n (we mark it as 

π (n)), and can be well approximated by the following equation  

𝜋(𝑛)  ≈
𝑛

ln
𝑛
2

−
1
3

. 

Now, the following question can be asked: 

hat will happen when Sundaram’s sieve is implemented once more, now on numbers m2? 

 

The answer is that in the second step the only numbers that are not going to be removed are 

prime numbers that are used for generation of some mps odd prime numbers. All of these 

numbers are in the mps form and actually represent Sophie Germain primes (it has been 

already explained that prime numbers in mpl form produce composite odd numbers 

divisible by 3, when formula 2*mpl+1 is applied on them) . Since the same method is applied 

in the second step, intuitively can be concluded that the number of numbers left after the 

second Sundaram sieve, should be comparable to the following number msg: 

𝑚𝑠𝑔 =
𝜋(𝑛) 

ln
𝜋(𝑛) 

2
−

1
3

. 

Let us mark a number of Sophie Germain primes smaller than natural number n with 

πSGP(n). Good approximation of the πSGP(n) is given with the following equation 
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𝜋𝑆𝐺𝑃(𝑛) ≈ (1 + 0.0129 log(𝑛))
𝑛

ln
𝑛
2

−
1
3

ln
𝑛
2

− ln ln
𝑛
2

−
1
3

+
1
3

. 

This equation gives good approximation of the number of Sophie Germain primes smaller 

than natural number n, at least for the values of n till 1014  (estimation for values n=103 and 

n=104 is actually correct). 
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