
HAL Id: hal-02169242
https://hal.science/hal-02169242v3

Preprint submitted on 11 Apr 2020 (v3), last revised 20 Feb 2022 (v12)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A proof of Sophie Germain primes conjecture
Marko V Jankovic

To cite this version:

Marko V Jankovic. A proof of Sophie Germain primes conjecture. 2020. �hal-02169242v3�

https://hal.science/hal-02169242v3
https://hal.archives-ouvertes.fr


 

1 
 

 
Marko V. Jankovic 

 
ARTORG Centre for Biomedical Engineering Research,  

University of Bern, Switzerland 
 

 
 
Abstract In this paper a proof of the existence of an infinite number of Sophie Germain primes is going 

to be presented. In order to do that, the basic formula for prime numbers was analyzed with the 

intention of finding out when this formula would produce a Sophie Germain prime and when not. The 

originally very difficult problem (in observational space) has been transformed into a simpler one 

(in generative space) that can be solved.  

 

1 Introduction 

A prime p is a Sophie Germain prime if 2p + 1 is a prime too [1]. In that case the prime 

number 2p + 1 is called safe prime. These special primes have applications in public key 

cryptography, pseudorandom number generation, and primality testing; see, for example, [2, 

4, 6]. Originally, they have been used in the investigation of cases of Fermat's last theorem 

[3]. It has been conjectured that infinitely many Sophie Germain primes exist, but this was 

unproven (see for instance, [5]). 

In this paper it is going to be proved that an infinite number of Sophie Germain primes exists. 

The problem is addressed in generative space, which means that prime numbers are not 

going to be analyzed directly, but rather their representatives, that can be used to produce 

them. 
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Remark 1: Prime numbers 2 and 3 are in a sense special primes, since they do not share some 

of the common features of all other prime numbers. For instance, every prime number,  apart 

from 2 and 3, can be expressed in the form 6l + 1 or 6s- 1, where l, s ϵ N. In this paper most 

of the time we analyze prime numbers bigger than 3. It has to be said that both 2 and 3 are 

Sophie Germain primes, but that has no impact on the conclusion of this paper. 

Remark 2: In this paper any infinite number series in the form c1 * l ± c2 is going to be called 

a thread, defined by number c1. Here c1 and c2 are constants that belong to the set of natural 

numbers and l represents an infinite series of consecutive natural numbers  in the form (1, 

2, 3, …). 

 

2 Proof 

Outline of the proof: First, it is shown that Sophie Germain primes have to be in the form 6s 

- 1 (s ϵ N). Then numbers that cannot be used for the generation of Sophie Germain primes 

are going to be analyzed. The number of those numbers is going to be compared with the 

number of numbers that are used for the generation of composite odd numbers. The 

comparison will lead to the conclusion that the number of numbers that can be used for the 

generation of  Sophie Germain primes is infinite.  

Note: The number of numbers n, that are used for the generation of odd numbers bigger than 

1 (2n+1, n ϵ N) and the number of the numbers s, that are used to produce numbers in the 

form 6s - 1 (s ϵ N), are the same. 
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It is easy to check that any prime number (apart form 2 and 3) can be expressed in the form 

6l+1 or 6s-1 (l, s ϵ N). Having that in mind, it is easy to conclude that numbers in the form 6l 

+ 1, could never be Sophie Germain primes since their safe primes are in the form 

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1), 

and that is a composite number divisible by 3. Hence, the prime number that can potentially 

be a Sophie Germain prime must be in the form 6s – 1. The safe prime will then be in the form 

6(2s) - 1. 

We denote any composite number (that is represented as a product of prime numbers bigger 

than 3) with CPN5. A number in the form 6l + 1 is marked with mpl, while a number in the 

form 6s - 1 is marked with mps (l, s ϵ N). That means that any composite number CPN5 can 

be expressed in the form mpl x mpl, mps x mps or mpl x mps.  

If we represent all composite numbers in mps form with 6k - 1 (k ϵ N) it must hold 

 𝑘 =
஼௉ேହ ା ଵ

଺
. (2.1) 

Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product mpl x 

mps, or 

mpl = 6x + 1 and mps = 6y - 1(x, y ϵ N), 

which leads to 

 CPN5 = mpl x mps = 6(6xy - x + y) – 1,  (2.2) 

or, due to symmetry 

mpl = 6y + 1 and mps = 6x - 1, 

which leads to 

 CPN5 = mpl x mps = 6(6xy + x - y) – 1,  (2.3) 
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If (2.2) or (2.3) is replaced in (2.1) forms of k that will not produce a Sophie Germain prime 

number will be obtained. Those forms are expressed by the following equations 

 𝑘 = (6𝑥 − 1)𝑦 + 𝑥 (2.4a) 

 𝑘 = (6𝑥 + 1)𝑦 − 𝑥 (2.4b)  

where x, y ϵ N. These equations are equivalent (they will produce the same numbers) and 

can be used interchangeably. 

Also, in order to have Sophie Germain pair (which consists of prime p and safe prime 2p+1), 

a safe prime which is generated by 2k cannot be composite. If the safe number is composite 

the following equation must hold 

 𝑘 =
஼௉ேହା ଵ

଺∙ଶ
, (2.5) 

where CPN5 is a composite number in the mps form. Using the same analysis as in the 

previous case and replacing for instance (2.2) in (2.5), additional cases in which k cannot be 

used to produce Sophie Germain prime pairs are obtained. They are defined by the following 

equation 

 𝑘 = ൝
(6𝑥 + 1)𝑦 −

௫

ଶ
, 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

(6𝑥 + 1)𝑦 − 3𝑥 −
௫ାଵ

ଶ
, 𝑥 𝑖𝑠 𝑜𝑑𝑑

 (2.6a) 

where x, y ϵ N. Alternatively, it is possible to use the equation (2.3) and replace it in (2.5) 

and then the following equation holds 

 𝑘 = ൝
(6𝑥 − 1)𝑦 +

௫

ଶ
, 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

(6𝑥 − 1)𝑦 − 3𝑥 +
௫ାଵ

ଶ
, 𝑥 𝑖𝑠 𝑜𝑑𝑑

. (2.6b) 

A different equation that produces the same numbers as the equation (2.6a) is obtained. 
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Equations (2.4a) and (2.6a) (and other alternatives like (2.4b) and (2.6b)) give a sufficient 

and necessary condition for k, so that it cannot be used for the generation of prime pairs in 

the form (p, 2p + 1).  In order to prove that there are infinitely many prime pairs in the form 

(p, 2p + 1) it is necessary to prove that infinitely many natural numbers s (s ϵ N) exist, that 

cannot be expressed in the form (2.4a) or (2.6a). 

First, the forms of (2.4a, 2.6a) for some values of x are checked. 

Case x=1:  k = 7y - 4, k = 5y + 1 

Case x=2:  k = 13y - 1, k = 11y + 2 

Case x=3: k = 19y - 11, k = 17y + 3 

Case x=4: k = 5(5y) - 2, k = 23y +4 (here we should have the equivalence of the equations 

(2.6a) and (2.6b) in mind) 

Case x=5: k = 31y - 18, k = 29y + 5 

Case x=6: k = 37y - 3, k = 5(7y+1) + 1 

Case x=7: k = 43y - 25, k = 41y + 7 

Case x=8: k = 7(7y) - 4, k = 47y + 8 

It can be seen that k is represented by the threads that are defined by prime numbers bigger 

than 3. From examples (cases x=4 and x = 8), it can be seen that if (6x - 1) or (6x + 1) 

represent a composite number, k that is represented by the thread defined by that number, 

is also represented by the thread defined by one of the prime factors of that composite 

number. This can be easily proved by direct calculation in the general case, where 
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representations similar to (2.2) and (2.3) are used. Here only one case is going to be 

analyzed. All other cases can be analyzed analogously. In this case we assume 

(6𝑥 − 1) = (6𝑙 + 1)(6𝑠 − 1), 

where (l, s ϵ N). Thus, the following equation holds  

 𝑥 = 6𝑙𝑠 − 𝑙 + 𝑠. 

Considering that and using the following representation of k that includes the form (6x - 1) 

𝑘 = (6𝑥 − 1)𝑦 + 𝑥, 

the simple calculations leads to 

𝑘 = (6𝑙 + 1)(6𝑠 − 1)𝑦 + 6𝑙𝑠 − 𝑙 + 𝑠 = (6𝑙 + 1)(6𝑠 − 1)𝑦 + 𝑠(6𝑙 + 1) − 𝑙, 

or 

𝑘 = (6𝑙 + 1)൫(6𝑠 − 1)𝑦 + 𝑠൯ − 𝑙, 

which means 

𝑘 = (6𝑙 + 1)𝑓 − 𝑙, 

and these values of k  are also represented by the thread defined by (6l+1), where 

𝑓 = (6𝑠 − 1)𝑦 + 𝑠. 

Here the equivalency of the equations (2.4a) and (2.4b) is used. It can be seen that all 

patterns for k are represented by the threads defined by prime numbers bigger than 3. Now, 

proof that the number of natural numbers s, that cannot be represented by the models (2.4a) 

and (2.6a) is infinite, will be provided.  
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In order to do that, the formula for odd numbers and the formula for the composite numbers 

are going to be analyzed. It is well known that odd numbers a (bigger than 1) can be 

represented by the following formula  

𝑎 = 2𝑛 + 1, 

where n ϵ N. It is not difficult to prove that all composite odd numbers ac can be presented 

by the following formula 

 𝑎௖ = 2(2𝑖𝑗 + 𝑖 + 𝑗) + 1 = 2൫(2𝑗 + 1)𝑖 + 𝑗൯ + 1, (2.7) 

 

where i, j ϵ N. (It is clear that odd prime numbers are odd numbers that cannot be represented 

by the previous formula and it is known that the number of the primes is infinite.)  It is simple 

to conclude that all composite numbers could be represented by the product (i+1) * (j+1), 

where i, j ϵ N. If it is checked how that formula looks like for odd numbers, after simple 

calculation, equation (2.7) is obtained. This calculation is presented here. The form 2m+1, 

m ϵ N, will represent odd numbers that are composite. Then the following equation holds 

2𝑚 + 1 = (𝑖ଵ + 1)(𝑗ଵ + 1), 

where i1, j1 ϵ N. Now it is easy to see that the following equation holds 

𝑚 =
𝑖ଵ𝑗ଵ + 𝑖ଵ + 𝑗ଵ

2
. 

In order to have m ϵ N, it is easy to check that i1 and j1 have to be in the forms 

i1 = 2*i and j1 = 2*j, 

 where i, j ϵ N. From that, it follows that m must be in the form  

𝑚 = 2𝑖𝑗 + 𝑖 + 𝑗. 

Now, it is going to be checked which numbers can be presented by the formula m = 2ij+i+j 

for some j. 
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Case j=1: m = 3i + 1 

Case j=2: m = 5i + 2 

Case j=3: m = 7i + 3 

Case j=4: m = 3(3i + 1) + 1 

Case j=5: m = 11i + 5 

Case j=6: m = 13i + 6 

Case j=7: m = 5(3i + 1) + 2 

Case j=8: m = 17i + 8 

It can be seen that m is represented by threads that are defined by odd prime numbers. Here, 

again, it can be seen from the examples that the threads that are defined by some composite 

number, can be generated by some of the threads defined by one of the prime factors of that 

composite number. This can be proved in the general case in the same manner as it was done 

for k that represents numbers that cannot be used for the generation of Sophie Germain 

primes. 

Both the k, that represents numbers that cannot generate Sophie Germain primes, and m, 

that represents composite odd numbers, are represented by the threads defined by odd 

prime numbers. The differences are: 

-  in the case of composite odd numbers an additional thread that is defined by number 

3, exists, 

- in the case of numbers that cannot represent Sophie Germain primes, the threads 

defined by the primes in the mpl form, potentially represent one number more than 
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the thread defined by the same prime in the case of composite odd numbers, (if they 

are not already represented by some of the threads defined by the smaller prime). 

It is not difficult to prove that the number of primes in the mpl form is much smaller than the 

number of numbers that are represented by the thread defined by number 3. However, there 

is also simpler proof. 

Here, let us ignore the fact that an additional thread that is defined by the prime 3, in the case 

of composite odd numbers, exists. (Here, again, it is going to be stressed that the number of 

numbers, that are used for generation of odd numbers bigger than 1, is the same as the 

number of the numbers that are used to produce numbers in mps form.) It is known that 

infinitely many numbers, that define odd primes (infinite number of numbers n (n ϵ N) that 

cannot be represented by (2.7)) exist.  As already stated, in the case of numbers that cannot 

represent the Sophie Germain primes, every thread that is defined by the primes in the mpl 

form, potentially represents one number more than the thread defined by the same prime in 

the case of composite odd numbers. This results in the number of numbers that can produce 

Sophie Germain primes being equal or bigger than the number obtained by subtraction of 

the number of primes in the mpl form from the number of odd primes. This calculation gives 

us the number of numbers that can generate primes in the mps form (plus the number that 

generates number 3, but this has no impact on the final conclusion). As known from the 

Dirichlet’s prime number theorem [7], infinitely many prime numbers in the mps form exist. 

That means that an infinite number of natural numbers s (s ϵ N), that cannot be represented 

by the models (2.4a) and (2.6a) exist.  And that completes the proof that the number of 

Sophie Germain primes is infinite.  
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