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Abstract In this paper a proof of the existence of an infinite number of Sophie Germain primes, is 

going to be presented. In order to do that, we analyze the basic formula for prime numbers and decide 

when this formula would produce a Sophie Germain prime, and when not. Originally very difficult 

problem (in observational space) has been transformed into a simpler one (in generative space) that 

can be solved.  

1 Introduction 

A prime p is a Sophie Germain prime if 2p + 1 is prime, too [1]. In that case the prime number 

2p + 1 is called safe prime. These special primes have applications in public key 

cryptography, pseudorandom number generation, and primality testing; see, for example, [2, 

4, 6]. Originally, they have been used also in the investigation of cases of Fermat's last 

theorem [3]. It has been conjectured that there exist infinitely many Sophie Germain primes, 

but this was unproven (see for instance, [5]). 

In this paper it is going to be proved that exists an infinite number of Sophie Germain primes. 

The problem is addressed in generative space, which means that prime numbers are not 

going to be analyzed directly, but rather their representatives, in the other space, that can be 

used to produce them. 
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Remark: Prime numbers 2 and 3 are in a sense special primes, since they do not share some 

of the common features of all other prime numbers. For instance, every prime number,  part 

from 2 and 3, can be expressed in the form 6l + 1 or 6l - 1, where l ϵ N. So, in this paper most 

of the time we analyze prime numbers bigger than 3. It has to be said that both 2 and 3 are 

Sophie Germain primes, but that has no impact on the conclusion of this paper. 

 

2 Proof 

Outline of the proof: First, the numbers that cannot be used for generation of Sophie Germain 

primes, are going to be analyzed. It is going to be shown that that number is smaller than the number 

of numbers that are used for generation of composite odd numbers. It is well known that exist infinite 

number of numbers that are used for generation of the prime numbers (odd prime numbers), and 

they represent the numbers that are not composite odd numbers. From that fact, it is easy to conclude 

that the number of numbers that can be used for generating Sophie Germain primes is infinite, too. 

 

It is easy to check that any prime number (apart form 2 and 3) can be expressed in the form 

6l+1 or 6s-1 (l, s ϵ N). Having that in mind, it is easy to check that numbers in the form 6l + 

1, could never be Sophie Germain primes since the safe prime is in the form 

 

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1), 

 

and that is composite number divisible by 3. So, the prime number that can potentially be 

Sophie Germain prime must be in the form 6s - 1 and then the safe prime is going to be in 

the form 6(2s) - 1. 
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We denote any composite number (that is represented as a product of prime numbers bigger 

than 3) with CPN5. Also, we mark with mpl a number in the form 6l + 1, and with mps a 

number in the form 6s - 1 (l, s ϵ N). In that case, it is easy to check that any composite number 

CPN5 can be expressed in the form mpl x mpl, mps x mps or mpl x mps.  

So, if we have a number in the form 6k - 1 that is composite number it must hold 

𝑘 =
𝐶𝑃𝑁5 + 1
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Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product mpl x 

mps, or 

mpl = 6x + 1 and mps = 6y - 1(x, y ϵ N), 

which leads to 

 CPN5 = mpl x mps = 6(6xy - x + y) – 1,  (2.2) 

or, due to symmetry 

mpl = 6y + 1 and mps = 6x - 1, 

which leads to 

 CPN5 = mpl x mps = 6(6xy + x - y) – 1,  (2.3) 

So, if we replace (2.2) or  (2.3) in (2.1) we obtain forms of k that potentially cannot produce 

a Sophie Germain prime number. Those forms are expressed by the following equation 

 𝑘 = (6𝑥 − 1)𝑦 + 𝑥 (2.4a) 

 𝑘 = (6𝑥 + 1)𝑦 − 𝑥 (2.4b)  

where x, y ϵ N, and they are equivalent (they will produce the same numbers). Having that 

in mind, it is possible to use one or the other form interchangeably. 
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Also, we know that safe prime which is generated by 2k cannot be composite if we would 

like to have Sophie Germain pair. If the safe number is composite the following equation 

must hold 

 𝑘 =
∗

 (2.5) 

where CPN5 is composite number in the mps form. Using the same analysis as in the previous 

case, and replacing for instance (2.2) in (2.5), we obtain additional cases in which k cannot 

be used to produce Sophie Germain prime pairs, and they are defined by the following 

equation 

 𝑘 =
(6𝑥 − 1)𝑦 + , 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

(6𝑥 − 1)𝑦 + 3𝑥 + , 𝑥 𝑖𝑠 𝑜𝑑𝑑
 (2.6) 

where x, y ϵ N. Alternatively, it is possible to use the equation (2.3) and replace it in (2.5). In 

that case we can obtain different equations  that produce the same numbers as the equation 

(2.6). 

Equations (2.4b) and (2.6) (alternatively (2.4a) and (2.6) give a sufficient and necessary 

condition for k, so that it cannot be used for generation of the prime pairs in the form (p; 2p 

+ 1).  In order to prove that there are infinitely many prime pairs in the form (p, 2p + 1) we 

need to prove that exists infinitely many k that cannot be expressed in the form (2.4b) or 

(2.6). First, we will check the form of (2.4b, 2.6) for some values of x. 

Case x=1:  k = 7y - 1, k = 5y + 3 

Case x=2:  k = 13y - 2, k = 11y + 2 

Case x=3: k = 19y - 3, k = 17y + 10 
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Case x=4: k = 5(5y-1) + 1, k = 23y + 2 (equivalence of the equations (2.4a) and (2.4b) is 

used) 

Case x=5: k = 31y - 5, k = 29y + 17 

Case x=6: k = 37y - 6, k = 5(7y) + 3 

Case x=7: k = 43y - 7, k = 41y + 24 

Case x=8: k = 7(7y - 1) - 1, k = 47y + 4 

So, we can see that k is represented by the threads (series of numbers) that are defined by 

prime numbers bigger than 3. From examples, we can see that if (6x - 1) or (6x + 1) represent 

a composite number, k that is represented by that number has also representation by one of 

the prime factors of that composite number. This can be easily proved in the general case, by 

direct calculation, using representations similar to (2.2, 2.3). Here only one case is going to 

be analyzed. All other cases can be analyzed analogously. In this case we assume 

(6𝑥 − 1) = (6𝑙 + 1)(6𝑠 − 1) 

where (l, s ϵ N), we have  

 𝑥 = 6𝑙𝑠 − 𝑙 + 𝑠. 

Having that in mind, and selecting one representation of k that includes form (6x - 1), we 

have 

𝑘 = (6𝑥 − 1)𝑦 + 𝑥 = (6𝑙 + 1)(6𝑠 − 1)𝑦 + 6𝑙𝑠 − 𝑙 + 𝑠 

or 

𝑘 = (6𝑥 − 1)𝑦 + 𝑥 = (6𝑙 + 1)(6𝑠 − 1)𝑦 + 𝑠(6𝑙 + 1) − 𝑙 = (6𝑙 + 1) (6𝑠 − 1)𝑦 + 𝑠 − 𝑙 
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which means 

𝑘 = (6𝑙 + 1)𝑓 − 𝑙 

and that represents already existing form of the representation of k for factor (6l+1), where 

𝑓 = (6𝑠 − 1)𝑦 + 𝑠. 

Here we used the equivalency of the equations (2.4a) and (2.4b). It can be seen that all 

patterns for k that potentially result in composite number, include prime numbers. Now, it 

is going to be proved that the number of k that cannot be represented by the models (2.4b, 

2.6) is infinite.  

In order to do that, we are going to analyze the formula for the odd numbers and formula for 

the odd composite numbers. It is well known that odd numbers a can be represented by the 

following formula  

𝑎 = 2𝑛 + 1, 

where n ϵ N. It is not difficult to prove that all composite odd numbers ac could be presented 

by the following formula 

 𝑎 = 2(2𝑖𝑗 + 𝑖 + 𝑗) + 1 = 2 (2𝑗 + 1)𝑖 + 𝑗 + 1, (2.7) 

 

where i, j ϵ N. (Hint: It is simple to conclude  that all composite numbers could be represented 

by the product (i+1) * (j+1), where i, j ϵ N. If we check how that formula looks like  for the 

odd numbers, after simple calculation, equation (2.7) is obtained.) 

It is clear that prime numbers are odd numbers that cannot be represented by the previous 

formula and we know that the number of the primes is infinite. Now, we are going to check 

what numbers can be presented by the formula m = 2ij+i+j for some j. 
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Case j=1: m = 3i + 1 

Case j=2: m = 5i + 2 

Case j=3: m = 7i + 3 

Case j=4: m = 3(3i + 1) + 1 

Case j=5: m = 11i + 5 

Case j=6: m = 13i + 6 

Case j=7: m = 5(3i + 1) + 2 

Case j=8: m = 17i + 8 

Again we can see that we have m that is represented by threads that are represented by odd 

prime numbers. Here, again, we can see that the threads that are generated by composite 

numbers can be generated by some of the threads defined by one of the factors of that 

composite number. That can be easily checked. Comparing to the threads that define k, that 

represent numbers that cannot generate Sophie Germain primes, we can see that in both 

cases we have threads defined by the same numbers, with the only difference that in the case 

of composite primes we have an additional thread that is defined by number 3. Having in 

mind that threads that define m will leave infinite number of numbers that cannot be 

represented by (2.7), we can conclude that the number of k that cannot be represented by 

the models (2.4b, 2.6) is also infinite.  And that completes the proof that number of Sophie 

Germain primes is infinite. 

Although, it is not going to be analyzed here, it can be said that using very similar method it 

can be proved that the number of twin primes is infinite. 
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