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Abstract In  this  paper  a  proof  of  the  existence  of  an  infinite  number  of  Sophie  Germain  primes is  going  to  be

presented.  Originally very difficult  problem (in  observational  space)  has  been transformed into a  simpler  one  (in

generative space) that can be solved.  It will be shown that Sophie Germain primes could be obtained through two stage

sieve process, and that will be used to prove that infinitely many Sophie Germain primes exists.

1 Introduction

A prime p is a Sophie Germain prime if 2p + 1 is a prime too [1]. In that case the prime number  2p

+ 1  is  called  safe  prime.  These  special  primes  have  applications  in  public  key  cryptography,

pseudorandom number generation, and primality testing; see, for example [2, 3, 4]. Originally, they

have been used in the investigation of cases of Fermat's last theorem [5]. It has been conjectured

that infinitely many Sophie Germain primes exist, but this was unproven (see for instance, [6]).

In this paper it is going to be proved that an infinite number of Sophie Germain primes exists. The

problem is addressed in generative space, which means that prime numbers are not going to be

analyzed directly, but rather their representatives that are used to produce them. It will be shown

that Sophie Germain primes could be generated by two stage recursive type process. This process

will be compared to another two stage sieve process that leaves infinitely many numbers. Fact that

sieve  process  that  generate  Sophie Germain primes  leaves  more numbers  than the  other  sieve

process, will be used to prove that infinitely many Sophie Germain primes exist. 

 

Remark 1: In this paper any infinite series in the form c1*l ± c2 is going to be called a thread

defined by number c1 (in literature these forms are known as linear factors – however, it seems that

the term thread is probably better choice in this context). Here c1 and c2 are numbers that belong to



the set of natural numbers (c2 can also be zero and usually is smaller than c1) and l represents an

infinite series of consecutive natural numbers in the form (1, 2, 3, …).

2 Proof of the conjecture

It is easy to check that any prime number (apart from 2 and 3, which are Sophie Germain primes)

can be expressed in the form 6l + 1 or 6s – 1 (l, s ϵ N). Having that in mind, it is easy to conclude

that numbers in the form 6l + 1 could never be Sophie Germain primes since their “safe” primes are

in the form

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1),

and that is a composite number divisible by 3. Hence, the prime number that can potentially be a

Sophie Germain prime must be in the form 6s – 1 (here numbers 2 and 3 are ignored, and that

obviously has no impact on the analysis that follows). The safe prime will then be in the form 6(2s)

– 1. In the text that follows, a number in the form 6l + 1 is denoted with mpl, while a  number in the

form 6s - 1 is denoted with mps (l, s ϵ N). 

Now, a two stage process that can be used for generation of Sophie Germain primes is going to be

presented. In the first stage prime numbers are going to be produced by removal of all composite

numbers from the set of natural numbers. In the second stage, we are going to analyze the prime

numbers themselves, as a potential generators of odd primes. In the second stage all prime numbers

that create composite numbers are going to be removed.  Basically, we are going to implement two

stage recursive process. At the end, only the prime numbers in the  mps form, that represent the

Sophie Germain primes, are going to stay.  It is going to be shown that their number is infinite. It is

easy to check that all numbers in  mpl form are going to be removed from the set, based on the

analysis made at the beginning of this chapter.

STAGE 1

Prime numbers can be obtained in the following way: 



First, we remove all even numbers (except 2) from the set of natural numbers. Then, it is necessary

to remove the composite odd numbers from the rest of the numbers. In order to do that, the formula

for the composite odd numbers is going to be analyzed. It is well known that odd numbers bigger

than 1, here denoted by a, can be represented by the following formula

a = 2n +1,

where n ϵ N. It is not difficult to prove that all composite odd numbers a
c
 can be represented by the

following formula

ac=2 (2 i j+i+ j)+1=2((2 j+1)i+ j )+1. (1)

where i, j ϵ N. It is simple to conclude that all composite numbers could be represented by product

(i + 1)(j + 1), where i, j ϵ N. If it is checked how that formula looks like for the odd numbers, after

simple calculation, equation (1) is obtained. This calculation is presented here. The form 2m + 1, m

ϵ N will represent odd numbers that are composite. Then the following equation holds

2 m+1=(2 i+1)(2 j+1) ,

where i, j ϵ N. Now, it is easy to see that  m must be in the form

m = 2ij + i + j. (2)

When all numbers represented by m are removed from the set of odd natural numbers bigger than 1,

only the numbers that represent odd prime numbers are going to stay. In other words, only odd

numbers  that cannot  be represented by (1)  will  stay.  This  process is  equivalent  to  the sieve of

Sundaram [7].

The numbers that are left after this stage are prime numbers. If  we denote with π(n) number of

primes smaller than some natural number n, the following equation holds [8]

π(n)≈
n

ln (n)
. (3)



STAGE 2

Now,  we  should  analyze  numbers  a that  are  left  in  observational  space,  or  prime  numbers

themselves.  With  the  exception  of  number  2 all  other  prime numbers  are  odd  numbers.  Since

number 2 is Sophie Germain prime it will not be removed from the set. We are interested in removal

of all numbers  a that will create composite number when we generate number 2a + 1.  So, once

more we are interested in removal of all numbers that generate composite odd numbers. So, once

more we are going to implement (2) and remove all a in the form

a = 2ij + i + j. (4)

That will leave us with prime numbers in mps form that represent the Sophie Germain primes.  As it

has been already explained, prime numbers in mpl form produce composite odd numbers divisible

by 3, when formula 2·mpl + 1 is applied on them, so they all are going to be removed in second

stage. We denote sieve defined by (4) as SGP sieve, and number of Sophie Germain primes (SGP)

with π
SGP

.

Now, the other two stage sieve process is going to be presented. In the first stage of this process

prime numbers are going to be produced. In the second stage the  indexes of prime numbers are

going to be processed. In the second stage only the prime numbers whose indexes are Mersenne

numbers (numbers in the form 2i-1, i ϵ  N) are going to stay. We are going to call those primes semi-

Mersenne primes (or SMP). The sieve process in the second stage is going to be called Mersenne

sieve. In the first step of Mersenne sieve all even indexes are going to be removed. Then, all odd

indexes defined by the following equation are going to be removed (p(i) is i-th prime number)

mi=2 p (i) j− 1, i=2,3, 4,... , (5)

where  j ϵ  N. It is simple to understand that the number of Mersenne numbers (indexes) is infinite,

since the number of Mersenne numbers smaller than some natural number n (MN(n)) is given by the

following equation

MN (n)= floor ( log2(n)) . (6)



Since it can be shown that the number of numbers left by the second stage sieve that produces

Sophie Germain primes is  bigger  than the number of  numbers left  by Mersenne sieve,  we can

conclude that the number of Sophie Germain primes is infinite. In order to explain the previous

conclusion we are going to compare sieves of the second stage of both processes, closely. 

In  the second stage,  the only numbers left  are  prime numbers  (actually,  the stage one, as it  is

presented,  is  going to  leave number 1 too, but  it  can be ignored).  In  the second stage of  SGP

generation, the sieve (4) is applied on indexes of odd natural numbers that are also primes. In the

second stage of the SMP the Mersenne sieve is applied on the subset of natural numbers (natural

numbers from 1 to the number of prime numbers) that represent indexes of prime numbers. In both

cases, the same number of numbers (number of prime numbers) is analysed. In the following two

tables the prime numbers and their indexes in both previously mentioned cases, are presented.

Table 1 Odd natural numbers (numbers in the form 2i +1) that are primes and their indexes

that are available after the first stage of SGP generation

Index 2 3 5 7 ...

Number 3 5 7 11 13 17 19 ...

Table 1 - continuation

11 13 17 19 ...

23 29 31 37 ...

Table 2 Prime numbers and their indexes

Index 1 2 3 4 5 6 7 8 9 ...

Number 2 3 5 7 11 13 17 19 23 ...

Table 2 - continuation

10 11 12 13 14 15 16 17 18 19 ...

29 31 37 41 43 47 53 59 61 67 ...



We can now clearly see the difference between two processes.  For instance,  in the case of odd

natural numbers that are prime, number 23 is generated by number 11, while in the case of prime

numbers, number 23 is generated by index 9. However, in both cases number of numbers that are

analysed and that are smaller or equal to 23 is 9. In the first case sieve is applied on the depleted set,

while in the second case sieve is applied on the dense set. 

Another significant difference is the number of threads that are necessary for the realization of the

sieve in order to remove all unwanted numbers smaller than some natural number n. In the case of

Mersenne sieve that number is equal to  π(π(n)/2) while in the case of second stage of SGP is π(√2n)

(having in mind that realization of twin prime sieve in the second stage requires π(√n) sieves, it

gives us a hint why there is always smaller number of SGP than the number of twin prime pairs

smaller than some finite number n (starting from some number that is big enough), and why those

values are asymptotically equal). It is not difficult to be shown that the following equation holds 

 π(π(n)2 )>π(√2n) , for some n that is big enough . (7)

The value of n in (7) that is big enough can be easily found by using the fact that prime counting

function is non-decreasing and that square root function is strictly increasing (see Fig. 1). 

Fig. 1. Comparison of the number of threads required for the realization of the SMP and SGP sieves for generation of
SMP and SGP numbers smaller than some natural number n



Here, the precise value of n is not of interest since we are not going to analyse cases in which n is

finite number.

Now, we are going to analyze (4) and (5) in more detail. It can be seen that a in (4) and m in (5) are

represented by the threads that are defined by odd prime numbers. For details see Appendix A. We

are going to compare stages 2 step by step, for a few initial steps (analysis can be easily extended to

any number of steps). The sieve in the second stage of generation of SGP is marked as SGPS. 

Table 3. Comparison of the stages 2 for the generation of SGP and SMP – for threads defined

by a few smallest primes

Step MeS Step SGPS-

1 Remove even numbers 

amount of numbers left 1/2

1 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 1/2

Thread:  m = 2j Thread:  a = 3j+1

2 Remove numbers defined by thread
defined by 3 (obtained for i = 1)

amount of numbers left 2/3 of the
numbers left in previous step

2 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 3/4  of the
numbers left in previous step

Thread:  m = 3j -1 Thread:  a = 5j + 2

3 Remove numbers defined by thread
defined by 5 (obtained for i = 2)

amount of numbers left 4/5 of the
numbers left in previous step

3 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 5/6 of the
numbers left in previous step

Thread:  m = 5j - 1 Thread:  a =7j + 3

4 Remove numbers defined by thread
defined by 7 (obtained for i = 3)

amount of numbers left 6/7 of the
numbers left in previous step

4 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 9/10 of the
numbers left in previous step

Thread:  m = 7j - 1 Thread:  a = 11j + 5

5 Remove numbers defined by thread
defined by 11 (obtained for i = 5)

amount of numbers left 10/11 of the
numbers left in previous step

5 Remove numbers defined by thread
defined by 13 (obtained for i = 6)

amount of numbers left 11/12 of the
numbers left in previous step

Thread:  m = 11j - 1 Thread:  m = 13j + 6



Note: In the previous table j represents natural numbers for thread 2j, while for the other threads j

represents  odd  or  even  numbers,  so  that  corresponding  thread  defines  odd  numbers  (all  even

numbers are removed by step one in first column and in the first stage for the second column).  

Here, it has to be said that the values of the fractions in the Table 3 are asymptotically correct, but in

the finite case they are only approximately correct. In the analysis that follows only the overall

number of SGP is going to be analysed, since in that case we know that asymptomatic values are

achieved. 

From the Table 3 it can be noticed that threads defined by the same number in the first and second

column will not remove the same percentage of numbers. The reason is  obvious – consider for

instance the thread defined by 3: in the first column it will remove 1/3 of the numbers left, but in the

second column it will remove ½ of the numbers left, since the thread defined by 3 in stage 1 has

already removed one third of the numbers (odd numbers divisible by 3 in observation space). So,

only odd numbers (in observational space) that give residual 1 and -1 when they are divided by 3

are left, and there is approximately same number of numbers that give residual -1 and numbers that

give residual 1, when the prime number is divided by 3. Same way of reasoning can be applied for

all other threads defined by the same primes in different columns. More rigorous proof for the

values of the fractions in second column (and for all other threads of SMPS that are not presented in

the Table 3), based on Dirichlet's theorem on arithmetic progressions [9], is presented in Appendix

B.

From Table 3 can be seen that in every step, except step 1, threads in the second column will leave

bigger percentage of numbers than the corresponding threads in the first column. This could be

easily understood from the analysis that follows: 

– suppose that we have two natural  numbers  j,  k  such that  j – 1 ≥  k  (j,  k ϵ N), then the

following set of equations is trivially true

j+k− 1⩾ 2k



− j− k+1⩽ − 2k

jk− j− k+1⩽ jk− 2k

( j− 1)(k− 1)⩽ ( j− 2) k

k− 1
k

⩽
j− 2
j− 1

The equality sign holds only in the case j = k + 1. In the set of prime numbers there is only one case

when j = k + 1 and that is in the case of primes of 2 and 3. In all other cases p(i) – p(i - 1) > 1 , (i >

1, i ϵ N, p(i) is i-th prime number).  So, in all cases i > 2

p(i− 1)− 1
p (i− 1)

<
p (i)− 2
p (i )− 1

.

From Table 3 (or last equation) we can see that bigger number of numbers is left in every step of

column 2 then in the column 1 (except 1st step). From that, we can conclude that after every step

bigger than 1, number of the numbers that is left by the sieve defined by column 2 is bigger than

number of numbers left by the sieve defined by the column 1 (that is also noticeable if we consider

amount of numbers left after removal of all numbers generated by threads that are defined by all

prime numbers smaller than some natural number).  

From previous analysis,  it  is  not  difficult  to understand that the following equation holds (p
SMP

represents  the  number  of  semi-Mersenne  primes,  while  p
SMP

(n)  represents  number  of  semi-

Mersenne primes smaller than some natural number n – that means that indexes have to be smaller

than π(n))

πSGP > pSMP=
lim

n→ ∞
pSMP(n) .

Having in mind (6), and since it it easy to show that the following equation holds

lim
n→ ∞

log2(π(n))=∞ ,

then it is easy to understand that the following equation holds



pSMP=
lim

n → ∞
pSMP (n)=∞ .

Now, we can safely conclude that the number of Sophie Germain primes is infinite. That concludes

the proof.  

3. Estimation of the number of Sophie Germain primes

Here we will state the following conjecture: for n big enough, number of Sophie Germain primes is

given by the following equation 

πSGP(n) ∼ 2C2

π(n)
ln (π(n))

,  

where C
2
 is twin prime constant [10]. Why it is reasonable to make such conjecture is explained in

Appendix C. If we mark the number of primes smaller than some natural number n with π(n) ≈ f (n),

where function f (n) gives good estimation of the number of primes smaller than n, than π
SGP

(n), for

n big enough, is given by the following equation

πSGP(n) ∼ 2C2⋅ f ( f (n)).

 If particular case f (n) = Li (n), the following equation holds

πSGP(n)∼ 2C2 ⋅∫
2

n

( d π (x )
ln (π( x)))=2C2 ⋅∫

2

n

(
dx

ln(x ) ln(∫
2

x

( dt
ln (t ))))

.

For small number n, starting from the following formula for the prime numbers smaller than some

natural number n 

π(n)≈
n

ln(n
2)−

1
3

,

a  good  estimation  of  Sophie  Germain  primes  smaller  than  natural  number  n is  given  by  the



following formula

πSGP(n)≈ (1+0.0129⋅ log(n))
n

(ln(n
2)−

1
3)(ln(n

2)− ln(ln(n
2
−

1
3))+1

3)
.  

This equation gives good approximation of the number of Sophie Germain primes smaller than

natural number n, at least for the values of n ≤ 1014  (estimation for values n = 103 and n = 104 is

actually correct).
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APPENDIX A.

Here it is going to be shown that m in (2) is represented by threads defined by odd prime numbers.

Now, the form of  (2) for some values of i will be checked.

Case i = 1: m = 3j + 1,

Case i = 2: m = 5j + 2, 

Case i = 3: m = 7j + 3, 

Case i = 4: m = 9j + 4 = 3(3j + 1) + 1,

Case i = 5: m = 11j + 5,

Case i = 6: m = 13j + 6 , 

Case i = 7: m = 15y + 7 = 5(3j + 1) + 2, 

Case i = 8: m = 17j + 8, 

It can be seen that  m is represented by the threads that are defined by odd prime numbers. From

examples (cases i = 4, i = 7), it can be seen that if  (2i + 1) represent a composite number, m that is

represented by thread defined by that number also has a representation by the thread defined by one

of the prime factors of that composite number. That can be proved easily in the general case, by

direct calculation, using representations similar to (2). Here, that is going to be analyzed. Assume

that 2i + 1 is a composite number, the following holds  

2i + 1 = (2l + 1)(2s + 1)

where (l, s ϵ N). That leads to

i =  2ls + l + s.

The simple calculation leads to

m = (2l +1) (2s + 1) j + 2ls + l + s = (2l + 1)(2s+1)j + s(2l + 1) + l

or



m = (2l+1)((2s+1)j + s) + l

which means

m = (2l + 1)f + l,

and that represents the already exiting form of the representation of m for the factor (2l + 1), where

f = (2s + 1)j + s.

In the same way this can be proved for (4) and (5) (in that case represented by (5) analysis is even

simpler).



APPENDIX B.

Now we are going to show that the inputs in the second column of Table 3 are correct. In order to

do that, we are going to use Dirichlet's theorem on arithmetic progressions [9]. The theorem states

that for any two positive coprime integers a and d, there are infinitely many prime numbers in the

form a + nd, where n is also positive integer. Beside that, theorem also  proves that for a given value

of  d, proportion of primes in each of progressions  a +  nd, asymptotically, is 1/φ(d), where  φ(d)

represents Euler's totient function [11] that represents number of feasible progression for a given d,

such that a and d are coprimes.    

In  the analysis  that  follows  k represent  natural  number,  while  n represents nonnegative integer

numbers.  In order to simplify analysis,  it  is assumed that reader is  capable to understand when

certain context requires use of only odd or only even numbers n and/or k.

It is easy to understand that any thread in generative space, defined by some prime number in (4),

will generate the thread in observational space that is defined by the same prime number, but with a

different residual class. For instance, thread 3k in generative space will produce the thread 3(2k) +1

in  observational  space  and  so  on.  So,  from  now  on,  we  are  going  to  analyze  numbers  in

observational space in order to make analysis easier. 

Now, in the Step 1 of Stage 2 for generation of Sophie Germain primes, the numbers that are going

to be removed are generated by a thread that is defined by prime number 3. That corresponds to the

thread 3(2k)+1 in observational space. In that case one half of the prime numbers are going to be

removed. That follows directly from the Dirichlet's theorem [9], since all prime numbers can be

expressed only in the form 3n+1 or 3n+2.

In the next step we are going to analyze what is going to happen when we remove thread defined by

number 5, and which is given by 5(2k) + 3 in observational space. In order to understand that, we

are going to represent  all  numbers by the 15 threads defined by number 15. Those threads are



defined by the following progressions:

15n+1,  15n+2,  15n+3,  15n+4,  15n+5,  15n+6 15n+7,  15n+8,  15n+9,  15n+10,  15n+11,  15n+12,

15n+13, 15n+14 and 15n+15. 

We know that in the first stage (generation of prime numbers) numbers divisible by 3 (1/3 of the

threads) defined by threads 15n+3, 15n+6, 15n+9, 15n+12 and 15n+15 are going to be removed, as

well as numbers divisible by 5 (1/5 of the threads left) defined by the threads 15n+5 and 15n+10. 

The threads that are left are:

15n+1, 15n+2, 15n+4, 15n+7, 15n+8, 15n+11, 15n+13 and 15n+14.

Based on Dirichlet's theorem we know that each of these threads contain 1/8 of the prime numbers.

In the first step of second stage odd numbers in the form 3k + 1, should be removed. That means

that half of the threads that can be represented in the form 3k +1 are going to be removed. Those

threads are 15n+1, 15n+4, 15n+7 ad 15n+13.

So, the threads that are left are 15n+2, 15n+8, 15n+11 and 15n+14, and each of them contain 1/8 of

the prime numbers. 

In the second step of the second stage, numbers defined by thread defined by 5, in the form 5(2k)+3

have to be removed. The only thread that was left and that can be expressed in the form  5(2k)+3 is

thread 15n+8. Now, we can easily conclude that number of primes that is removed by the thread

defined by number 5 is ¼  of the numbers left. That means that ¾ of the numbers will be left.

However, it is difficult to generalize the proposed method for the other steps in Stage 2. So, an

alternative method is going to be analyzed.

After all numbers in the form 3(2k) + 1 are removed, we know that all odd prime numbers that are

left have to be in the form 3(2k+1) + 2, or, for the sake of simplicity, in the form 3k + 2 (and reader

should have in mind that we are talking only about odd numbers,  since all even numbers were

removed in the first step of Stage 1). We know that all numbers that are left have to be in some of



the following forms

3(5n+1) +2, 3(5n+2) +2, 3(5n+3) +2, 3(5n+4) +2 and 3(5n+5) +2, or

15n + 3*1 +2 , 15n + 3*2 +2, 15n + 3*3 +2 , 15n + 3*4 +2 , 15n + 3*5 + 3*0 +2. (B.1)

Since all forms in (B.1) contain the term(s) divisible by 15 (and consequently divisible by 5), it is

clear that additional forms that are going to be removed, will be removed based on the analysis of

the following expressions

 3*1 +2 ,  3*2 +2,  3*3 +2 ,  3*4 +2 ,  3*0 +2 . (B.2)

We know that in the first stage thread that is divisible by 5 has to be removed and in the second step

of the Stage 2, thread that is in the form 5k + 3, has to be removed. We can see that all five terms in

equation (B.2) represent simple calculations on the finite field  Z5 [12]. It is known that in that case,

multiplication of all elements of the field with element of the field that is not zero, will lead to a

permutation of the elements of the field [12]. Also, addition of the one nonzero element of the field

to all other elements of the field will lead to a permutation of the elements of the field [12]. From

that we can conclude that exactly one term will be congruent to 0 by modulo 5, and only one term

will be congruent to 3 by modulo 5. That means that out of 5 threads defined by (B.1), three are

going to stay after second step in Stage 2, which means that ¾ of the numbers that were left after

step 1 in Stage 2, are going to stay after removal of the corresponding thread defined by number 5

(that is based on the Dirichelt's theorem [9] - all feasible threads defined by number 15 contain the

same number of prime numbers).

After step 2 in Stage 2, all numbers can be written in the following forms 

15n + 2, 15n + 11 and 15n + 14. (B.3)

The proposed analysis can be applied on all consecutive step of Stage 2. Now, in the step 3 of the

Stage 2, we are going to apply a similar analysis like in the step 2 of Stage 2. In this case, instead of

one thread defined by 3k + 2, we have three threads defined by (B.3). In the third step of Stage 2,

thread defined by number 7 is going to be removed. Impact of that removal is the easiest if we



analyze the following forms of the remaining threads (here we are going to present forms for thread

15k + 2; the other 2 threads could analyzed analogously) 

15(7n+1)+2, 15(7n+2)+2, 15(7n+3)+2, 15(7n+4)+2, 15(7n+5)+2, 15(7n+6)+2, 15(7n+7)+2, or

105n+15*1+2 , 105n+15*2+2, 105n+15*3+2 , 105n +15*4+2 , 105n+ 15*5 + 2, 105n+ 15*6 + 2,

105n+15*7+ 15*0 + 2. (B.4)

Since all forms in (B.4) contain the term(s) divisible by 105 (and consequently divisible by 7), it is

clear that additional forms that are going to be removed, will be removed by analysis based on the

following expressions

15*1+2, 15*2+2, 15*3+2 , 15*4+2 ,  15*5 + 2, 15*6 + 2,  15*0 + 2, (B.5)

or having in mind that a*b (mod 7) = a mod (7) * b mod (7), the forms of interest are given by the

following equation

1*1+2, 1*2+2, 1*3+2 , 1*4+2 ,  1*5 + 2, 1*6 + 2,  1*0 + 2. (B.6)

Similarly to the situation in step 2, we can see that all  seven terms in equation (B.6) represent

simple calculations on the finite field Z7 [12].  Using the same line of reasoning like in the previous

step, we can conclude that fraction of number of numbers that are going to stay after step 3 is

exactly the one given in Table 3, and that is 5/6 of all numbers left after step 2 (here is assumed that

the same analysis can be analogously performed for the other 2 threads defined by (B.3)). After this

step 15 threads defined by number 105 are going to stay and each is going to contain the same

percentage of prime numbers. 

Now, it is obvious that proposed analysis can be applied to all consecutive steps of stage 2. In all

cases, the removal of certain threads will be based on multiplication and addition of the finite field

Zpk, where pk represents the odd prime number that defines thread that is going to be removed in

the k-th step of Stage 2. In all cases those multiplications and addition will result in the permutation



of all elements of the corresponding finite field and it can be shown that in every step they are going

to leave the ratio (pk-2)/(pk-1) of available numbers, by using reasoning similar to the cases pk =

{3, 5, 7}.  From this analysis we can understand that the values presented in the second column of

Table 3 are correct. Same can be concluded for all other threads that are not presented in the table.

The proposed analysis holds also in the case of threads that are defined by prime numbers that are

infinite (see [13]).



APPENDIX C.

Here, asymptotic density of numbers left, after implementation of the eSuS and the SGP sieve is

going to be calculated (the eSuS represents extended SuS0 sieve, in which after the removal of

thread defined by some prime number in (2), also that prime number is removed). After removal of

all even composite numbers and first k steps of the SuS0 sieve, density of numbers left is given by

the following equation

ck=
1
2
∏
j=2

k+1

(1−
1

p( j )
) ,

where p(j) is  j-th prime number. (We should have in mind that the density considered in previous

equation are asymptotically correct).

In the case of SGP sieve the density of numbers left after the first k-steps is given by the following

equation

c2k=∏
j=2

k+1

(1− 1
p ( j)− 1)=∏j=2

k+1

( p( j)− 2
p ( j)− 1).

So, if implementation of first sieve will result in the number of prime numbers smaller than n which

we denote as π(n), than implementation of the second sieve on some set of size π(n) should result in

the number of numbers gp(n) that are defined by the following equation (for some big enough n)

gp(n)=rS2S1(n)⋅
π(n)

ln (π (n))
,

where r
S2S1

(n) is defined by the following equation (k is the number of primes smaller or equal to

√2n)

r S2S1(n)=
c2k

ck

=

∏
2< p≤ √2n

( p − 2
p − 1)

∏
p≤ √2n

( p − 1
p )

=2 ∏
2<p≤ √2n

( p − 2
p − 1)(

p
p − 1)≈ 2C2 .

where p represents prime number. For n that is not big, gp(n) should be defined as   



gp(n)= f COR(n)⋅ 2C2⋅
π(n)

ln(π(n))
,

where  f
COR

(n)  represents  correction  factor  that  asymptotically  tends  toward  1  when  n tends  to

infinity. Here, the number of numbers left after eSuS is approximated by n/ln(n) (see equation (3)). 


