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Abstract

In this paper a proof of the existence of an infinite number of Sophie Germain

primes, is going to be presented. In order to do that, we analyse the basic formula

for prime numbers and decide when this formula would produce a Sophie Germain

prime, and when not. Originally very difficult problem (in observational space) has

been transformed into a simpler one (in generative space) that can be solved.

1 Introduction

A prime p is a Sophie Germain prime if 2p + 1 is prime, too [1]. In that case the prime

number 2p + 1 is called safe prime. These special primes have applications in public key

cryptography, pseudorandom number generation, and primality testing; see, for example,
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[2, 4, 6]. Originally, they have been used also in the investigation of cases of Fermat’s last

theorem [3]. It has been conjectured that there exist infinitely many Sophie Germain primes,

but this was unproven (see for instance, [5]).

In this paper it is going to be proved that exists an infinite number of Sophie Germain

primes. The problem is addressed in generative space, which means that prime numbers are

not going to be analysed directly, but rather their representatives, in the other space, that

can be used to produce them.

Remark: Prime numbers 2 and 3 are in a sense special primes, since they do not share

some of the common features of all other prime numbers. For instance, every prime number,

apart from 2 and 3, can be expressed in the form 6l + 1 or 6l − 1, where l ∈ N . So, in this

paper most of the time we analyse prime numbers bigger than 3. It has to be said that both

2 and 3 are Sophie Germain primes, but that has no impact on the conclusion of this paper.

2 Proof

It is easy to check that any prime number (apart form 2 and 3) can be expressed in the form

6l+ 1 or 6s− 1 (l, s ∈ N). Having that in mind, it is easy to check that numbers in the form

6l + 1, could never be Sophie Germain primes since the safe prime is in the form

2(6l + 1) + 1 = 12l + 3 = 3(4l + 1)

and that is composite number divisible by 3. So, the prime number that can potentially be

Sophie Germain prime must be in the form 6s− 1 and then the safe prime is going to be in



3

the form 6(2s)− 1.

We denote any composite number (that is represented as a product of prime numbers

bigger than 3) with CPN5. Also, we mark with mpl a number in the form 6l + 1, and

with mps a number in the form 6s− 1 (l, s ∈ N). In that case, it is easy to check that any

composite number CPN5 can be expressed in the form mpl×mpl, mps×mps or mpl×mps.

So, if we have a number in the form 6k − 1 that is composite number it must hold

k =
CPN5 + 1

6
. (2.1)

Since CPN5 should be in the mps form, CPN5 can be generally expressed as a product

mpl ×mps, or

mpl = 6x + 1 and mps = 6y − 1(x, y ∈ N),

which leads to

CPN5 = mpl ×mps = 6(6xy − x + y)− 1, (2.2)

or, due to symmetry

mpl = 6y + 1 and mps = 6x− 1,

which leads to

CPN5 = mpl ×mps = 6(6xy + x− y)− 1. (2.3)

So, if we replace (2.2, 2.3) in (2.1) we obtain forms of k that potentially cannot produce a

Sophie Germain prime number. Those forms are expressed by the following equation

k =


(6x− 1)y + x

(6x + 1)y − x

, (2.4)
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where x, y ∈ N .

Also, we know that safe prime which is generated by 2k cannot be composite. If the safe

number is composite the following equation must hold

k =
CPN5 + 1

6× 2
, (2.5)

where CPN5 is composite number in the mps form. Using the same analysis as in the

previous case, and replacing (2.2) and (2.3) in (2.5), we obtain additional cases in which k

cannot be used to produce Sophie Germain prime pairs, and they are defined by the following

equation

k =



(6x− 1)y + x
2
, x is even

(6x + 1)y − x
2
, x is even

(6x− 1)y + 3x + x−1
2

, x is odd

(6x + 1)y − 3x− x+1
2

, x is odd

, (2.6)

where x, y ∈ N . Equations (2.4) and (2.6) give a sufficient and necessary condition for k,

so that it cannot be used for generation of the prime pairs in the form (p, 2p + 1). In order

to prove that there are infinitely many prime pairs in the form (p, 2p + 1) we need to prove

that exists infinitely many k that cannot be expressed in the form (2.4) or (2.6). First, we

will check the form of (2.4, 2.6) for some values of x.
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Case x = 1 Case x = 2 Case x = 3 Case x = 4

k = 5y + 1 k = 11y + 2 k = 17y + 3 k = 23y + 4

k = 5y + 3 k = 11y + 1 k = 17y + 10 k = 23y + 2

k = 7y − 1 k = 13y − 2 k = 19y − 3 k = 5(5y − 1) + 1

k = 7y − 4 k = 13y − 1 k = 19y − 11 k = 5(5y − 1) + 3

Case x = 5 Case x = 6 Case x = 7 Case x = 8

k = 29y + 5 k = 7(5y + 1)− 1 k = 41y + 7 k = 47y + 8

k = 29y + 17 k = 5(7y) + 3 k = 41y + 24 k = 47y + 4

k = 31y − 5 k = 37y − 6 k = 43y − 7 k = 7(7y − 1)− 1

k = 31y − 18 k = 37y − 3 k = 43y − 25 k = 7(7y − 1) + 3

From examples, we can see that if (6x − 1) or (6x + 1) represent a composite number, k

that is represented by that number has also representation by one of the prime factors of

that composite number. This can be easily proved in the general case, by direct calculation,

using representations similar to (2.2, 2.3). Here only one case is going to be analysed. All

other cases can be analysed analogously. In this case we assume

(6x− 1) = (6l + 1)(6s− 1),

where (l, s ∈ N). From previous equation x can be expressed as

x = 6ls− l + s.

Having that in mind, and selecting one representation of k that includes form (6x − 1), we
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have

k = (6x− 1)y − x = (6l + 1)(6s− 1)y − 6ls + l − s

or

k = (6l + 1)(6s− 1)y − s(6l + 1) + l = (6l + 1)((6s− 1)y − s) + l,

which means

k = (6l + 1)f + l

and that represents already existing form of the representation of k for factor (6l+ 1), where

f = (6s− 1)y − s.

It can be seen that all patterns for k that potentially result in composite number, include

prime numbers. It is going to be checked is the number of k that cannot be represented by

the models (2.4, 2.6), finite or infinite. In order to do it, a method similar to the sieve of

Eratosthenes [7] is going to be used.

When all numbers that can be represented in forms

5y + 1 and 5y + 3,

are removed from natural numbers, it can be seen that ratio r1 = 2/5 of all natural numbers

are removed. So, ratio c1 = 1 − 2/5 = 3/5 of all natural numbers cannot be represented

by those two patterns and they still contain some k that could be potentially used for

representation of Sophie Germain primes. If, now, in addition, the natural numbers in the

form
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7y − 1 and 7y − 4,

are removed, then the ratio of removed numbers can be calculated by the following equation

(taking care that every removed number is calculated only once; basically, we apply the

formula for calculation of the probability of occurring of two events that are not mutually

exclusive P (A ∪B) = P (A) + P (B)− P (A ∩B))

r2 = r1 +
2

7
− 2

7
× r1 = r1 +

2

7
(1− r1) =

2

5
+

2

7

(
1− 2

5

)
=

20

5× 7
.

The ratio of all natural numbers that, still, potentially can be used for ”generation” of Sophie

Germain primes, is given by the following equation

c2 = 1− r2 = 1− r1 −
2

7
(1− r1) =

(
1− 2

7

)
× c1 =

3× 5

5× 7
.

Now, we denote prime numbers bigger than 3 as p5, where p5(1) = 5, p5(2) = 7 and so

on.

Suppose that after step n we have ratio rn of all numbers removed and ratio cn of all

numbers still potentially available for generation of Sophie Germain primes. In the step n+1

we have

rn+1 = rn +
2

p5(n + 1)
− 2

p5(n + 1)
× rn.

After a few elementary calculations, the following equation is obtained

rn+1 = rn +
2

p5(n + 1)
(1− rn).

Now, the following equation holds

cn+1 = 1− rn+1 = 1− rn −
2

p5(n + 1)
(1− rn) = cn −

2

p5(n + 1)
× cn, (2.7)
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or

cn+1 =

(
1− 2

p5(n + 1)

)
× cn. (2.8)

That can be interpreted in the following way: in every step we remove 2/p5(n+ 1) numbers

of what is left for potential representation of Sophie Germain primes.

Now, one additional sieve elimination process (SEP), denoted as R25, is considered. R25

is defined by the following rule - start with all natural numbers, and in every step remove 2/5

of the numbers that is left. In this case, ratio of the numbers that are still not removed after

step n + 1, can+1, is given by the following equation (can denotes the ratio of the numbers

that are still available after removal in step n)

can+1 =

(
1− 2

5

)
× can. (2.9)

From (2.8) and (2.9) we can easily conclude that the following equation holds (since p5(n) >

5, n > 1)

can+1 < cn+1, n ∈ N, (2.10)

that can be interpreted that starting from step 2, R25 removes more balls than SEP defined

by (7). However, it is not difficult to be seen that removal of the 2/5 of the numbers from

those that are left, will result in infinite number of numbers that cannot be removed, at the

end of the process. In order to show this in an elementary way, we create an associated

experiment with boxes and balls (BB experiment).

It is going to be assumed that an infinite number of numbered balls (with all natural

numbers written on them only once), as well as, infinite number of boxes of proper (finite
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or infinite) size, are available. At the beginning of the experiment, all balls are moved from

the source box (SB) to the infinite number of experimental boxes (EB) of size 1. Our SEP

process, R25, has corresponding BB experiment that fuses 5 EB’s in every step (this step

insures EB of proper size and proper number of balls, so that it enables removal of natural

number of balls, and in the case of interest, there is no other way that insures that and

create smaller size of EB). After that, in every step, 2/5 of the balls is removed from every

EBs. We are going to check what is the number of the balls in the EB, at the end of the

experiment, finite or infinite.

Experiment:

STEP 1 - (1 minute before midnight). Move all balls from SB to EBs of size 1, and fuse

every 5 EBs to obtain the EBs of size 5 with 5 balls inside. Then, remove the 2 balls from

every EB. So, in this moment nominator of ca1 is 5− 2 = 3, and that is equal to the number

of the balls in EB.

STEP 2 - (1/2 minute before midnight). Again fuse every 5 EBs to obtain the EBs of

size 25 with 5 × 3 = 15 balls inside. Then, remove the 2/5 of the balls from every EB.

In this moment number of the balls in each EB, that is equal to the nominator of ca2, is

(1− 2/5)× 5× (5− 2) = 32.

...

STEP N-(1/2N−1 minute before midnight). Fuse every 5 EBs. Then, remove the 2/5 of

the balls from every EB. In this moment nominator(caN) = (1−2/5)×5×nominator(caN−1) =

3N , and that equals the number of the balls in every EB.
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Now, we can conclude that nominator of caN is increasing function of time and at mid-

night, without suffering from collapse of elementary reasoning (CER), we can conclude that

the number of the balls in the EB (which at midnight has the size of number of natural

numbers) is going to be infinite (limn→+∞ 3n is +∞). For instance, if we can conclude that

1 + 2 + 3 + 4 + ... = − 1

12
,

we obviously have a CER problem. Standard summation of infinite series of natural numbers

give us as a solution plus infinity, and in that case we have no CER problem.

Since the number of the balls in EB tends toward infinity at the end of BB experiment,

we can conclude that R25 will leave infinitely many numbers that cannot be removed at the

end of that SEP. Having that in mind, and equation (2.10), we can also conclude that the

SEP proposed by (2.4, 2.6), will leave an infinite number of the numbers that cannot be

represented by it. And that completes the proof that number of Sophie Germain primes is

infinite.
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