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Abstract. A stochastic version of the restoring force surface method is
proposed and used to identify the parameters of a clamped-free beam
with nonlinear effects induced by the presence of a magnet near to the
free extremity. This system recalls a Duffing oscillator, which is used as a
single-degree-of-freedom mathematical model to represent the mechani-
cal system. Experimental and theoretical responses are compared taking
into account a probabilistic band of confidence. The results show that the
stochastic model identified can predict the beam’s vibration responses,
which ensure the robustness of the stochastic identification method.
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1 Introduction

It is known that many engineering structures can present nonlinear behavior
caused by geometric effects, operating conditions, materials with complex struc-
ture and others. So, to perform a reliable analysis of a structure, the nonlinear
effects have to be taken into account [1]. In this sense, Masri and Caughey [2]
presented the method of restoring force surface (RFS), that showed to be effec-
tive [3]. Many other approaches can be used to describe nonlinear systems, such
as Hilbert transform, Narmax Models, High-Order Frequency Response Func-
tions [4, 5], Volterra series [6], Harmonic balance or Artificial neural network [7].
However, once the approaches described above are deterministic, they are not
robust to variations in the system parameters, neither offer a confidence interval
to the identified model. Since any real system is uncertain with regard to the
nominal project values (due to material imperfections, noise, etc. [8]), a reliable
system identification technique must take into account the model parameters
uncertainties, also known as data uncertainties.
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Techniques of stochastic system identification are available in the literature,
for instance using convex analysis [9], Bayesian statistics [10–15] or a nonpara-
metric probabilistic approach [16–18]. These methods are very sophisticated and
powerful tools, generally used to identify a mechanical system with a large num-
ber of degree of freedoms (DoFs). Although these techniques can be used to
identify systems with one or a few DoFs, the low dimension of these systems
allows one to develop a more simple framework for stochastic identification. It
is proposed to use a stochastic version of the RSF method to identify a single
degree-of-freedom (DoF) system, developed in a probabilistic framework, which
models the system parameters as random variables assuming underlying uncer-
tainties. In this way, the main contribution is to propose a stochastic version of
the RFS method, where the probability density functions (PDFs) of model pa-
rameters are identified, instead of the parameters deterministic values, as made
by conventional RFS methods. The conclusions show that the method is simple
and reaches useful results, so that it is suitable for application in simple sys-
tems, with low order, where the use of more sophisticated techniques may be
complicated.

2 Experimental apparatus

The experimental setup is composed by a clamped-free beam (300 × 18 × 3
[mm3]) with a steel mass glued in the free extremity, which is connected to
cause a magnetic interaction between the beam and a magnet (Fig. 1). A shaker
is used to excite the structure considering different levels of voltage amplitude.
A vibrometer laser is utilized to measure the beam free extremity velocity. It is
important to note that, the input signal considered in this work is the voltage
applied to the shaker. By using this strategy, the input signal is kept constant
over a range of frequencies. The magnetic interaction of the system generates a
hardening nonlinear behavior showed in Fig. 2(a), which presents the jump phe-
nomenon, that is represented by a sudden drop in the amplitude of the response
with a low increment in the excitation frequency. Additionally, the spectrogram
of the system response can be seen in Fig. 2(b) where it is observed the presence
of the second and third order harmonics in the response.

3 Mechanical-mathematical modeling

The experimental setup presents nonlinear behavior only for large displacements,
so a Duffing oscillator can well approximate its dynamic behavior [19]

mẍ(t) + c ẋ(t) + k x(t) + k2 x(t)
2 + k3 x(t)

3 = U(t), (1)

where m is the system equivalent mass, c is the damping coefficient, k is the
linear stiffness, k2 is the quadratic stiffness, k3 is the cubic stiffness, and U(t)
is the external force. The displacement, velocity and acceleration in the free
extremity of the beam are represented, respectively, by x(t), ẋ(t) and ẍ(t). Once
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in the application of the RFS method no form for the restoring force is assumed
initially, Eq. (1) is rewritten in terms of the restoring force F(x, t) as

mẍ(t) + c ẋ(t) + F(x, t) = U(t). (2)

(a) Experimental apparatus. (b) Schematic representation.

Fig. 1: Illustration of the experimental apparatus used.
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(b) System response spectrogram.

Fig. 2: Illustration of the system nonlinear behavior: (a) Stepped sine test for
different levels of voltage applied in the shaker. - 0.01 V, - 0.10 V and - 0.15
V; (b) Spectrogram of the system response.

The parameters uncertainties are induced by measurements noise, variation
in the boundary conditions, the position of the shaker, sensor and magnet, un-
certainties related to the methods of parameters estimation [8]. Thus, the model
parameters are random variables or random processes, defined on the probability
space (Θ,Σ,P), where Θ is sample space, Σ is a σ-algebra over Θ, and P is a
probability measure. Thus, the stochastic equivalent of Eq. (2) is given by

m(θ) ẍ(θ, t) + c(θ) ẋ(θ, t) + F(x(θ, t), t) = U(t), (3)

where the random processes (θ, t) ∈ Θ×R 7→ x(θ, t), (θ, t) ∈ Θ×R 7→ ẋ(θ, t), and
(θ, t) ∈ Θ × R 7→ ẍ(θ, t), respectively represent the displacement, velocity and
acceleration in the beam free extremity. The stochastic model of Eq. (3) is used
to describe the nonlinear random dynamics of the mechanical system emulated
by the experimental apparatus.
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4 Stochastic system parameters identification

Two types of experimental tests were performed. The first one excites the me-
chanical system with a chirp signal with a low level (0.01 V) of the constant
voltage amplitude, while in the second test, the level is high (0.15 V). The two
tests were executed in sequence, so that chirp signal range of frequencies varied
with a rate of 10 Hz/s, from 10 to 50 Hz. Each test was repeated 200 times on
different days.

The identification of system parameters m and c uses the underlying linear
dynamics of the beam assuming the low level of input amplitude. The system
equivalent mass and damping coefficient are estimated using the Impulse Re-
sponse Function. After, identifying several realizations of these parameters (200
in fact), their PDFs are nonparametrically estimated through histograms and
kernel smoothed curves [20].

Then, using the nonlinear dynamics of the beam, obtained when the input
signal has a high level of amplitude (0.15 V), the restoring force F(x(θ, t), t)
is estimated to each realization θ. In this case, the RFS method defines the
restoring force from the equation

F(x(θ, t), t) = U(t)− [m ẍ(θ, t) + c ẋ(θ, t)] , (4)

where all objects of the equation right-hand side are known. Note that the nonlin-
ear function F is a stochastic process, once it is defined as the difference between
the excitation U and the stochastic process mẍ + cẋ. In practice, realizations of
F are constructed utilizing realizations of the system parameters as well as from
velocity and acceleration time series. Additionally, the reader can observe that,
for a fixed time t, each experimental realization of F defines a three-dimensional
surface, i.e., F = g(x, ẋ) for some scalar map g : R2 → R. Thus, the polyno-
mial coefficients (k, k2 and k3), to each realization, can be estimated through
the polynomial regression based on the minimization of the squared error (least
squares method). As performed with the mass and damping, the PDFs of k, k2

and k3 are nonparametrically estimated.

5 Results and discussion

The nonparametric estimations for mass and damping coefficient PDFs can be
seen in Fig. 3. The figures show PDFs of normalized random variables, i.e., ran-
dom variables with zero mean and unit standard deviation, in addition to the
nominal values. The PDFs show that both parameters have unimodal behav-
ior. It is possible to observe that m has mean value of µm = 0.233 [kg] with
low dispersion around the nominal value. The coefficient of variation, standard
deviation divided by the mean, is δm = 2.44 %. The damping coefficient c has
concentration across the mean value µc = 1.226 [Ns/m] and δc = 1.77 %.

With the surfaces F = g(x, ẋ) nonparametric estimated, a parametric iden-
tification of this force to fit a function whose shape resembles the curve raised
by RFS method. A polynomial form was chosen to describe the nonlinear force,
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Fig. 3: PDFs for mass and damping parameters of the mechanical system. The
PDF is represented by the solid line and the histogram by the bars.

as described in the Duffing equation of Eq. (1). Since the nonlinear restoring
force is random, it should be assumed that the stiffnesses are also aleatory, be-
ing modeled by random variables. The nonparametric estimations for the PDFs
of k, k2 and k3 are present in Fig. 4. It can be seen in Fig. 4(a) the PDF of the
linear stiffness. The behavior is unimodal with the values concentrated around
the mean value µk = 4.954 × 103 N/m and δk = 2.21%. Fig. 4(b) shows the
PDF of the quadratic stiffness. The mean value is equal to µk2

= −30.867 N/m2

and δk2
= 2.72%. The PDF of the cubic stiffness, presented in Fig. 4(c), has

also unimodal distribution with µk3 = 39.859 × 107 [N/m3] and δk3 = 4.06%.
The large variation of these parameters is related with the uncertainties present
in the RFS method applied considering underlying variabilities (e.g. noise, the
magnet, shaker and sensor position, etc). Finally, Fig. 4(d) shows the experi-
mental F and the polynomial modeling identified with 99% of confidence bands.
The results are satisfactory considering that the model can predict the behavior
of the restoring force, mainly when it has high amplitude.

Once the stochastic model of Eq. (3) is identified, it can be used to make
predictions about the beam nonlinear dynamics behavior, offering probabilistic
limits of confidence in the response. The calculation of the model response is done
using Monte Carlo (MC) method [21]. First of all, the experimental nonpara-
metric PDFs estimated are used to generate samples of the system parameters.
In the procedure, the Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
algorithm is applied [21]. Additionally, the sampling is made considering the cor-
relation between the random variables, through the Cholesky decomposition of
the correlation matrix. Comparisons between experimental and simulated beam
velocity, in the time domain, can be seen in Fig. 5, considering the same chirp
signal used in the model identification process. One can observe that the exper-
imental response is inside the limits with 99% of confidence, that indicates the
adequate performance of the stochastic model.

The model validation was performed considering the stepped sine test, and
the results are shown in Fig. 6. It is possible to see that the stochastic model
describes well the system behavior, both in linear as nonlinear regime of motion.
The difference between the curves saw in the linear case is related to the difficulty
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Fig. 4: PDFs for mechanical system stiffnesses and the fitted restoring force. (a,
b and c) The PDF is represented by the solid line and the histogram by the bars;
(d) The model mean is presented as −, the confidence band as grey shown, and
the experimental realization as .
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Fig. 5: System response comparison. The model mean is presented as −−, the
confidence band as gray fill, and the experimental realization as − ◦ −.

of conducting the stepped sine test with very low excitation amplitude and the
possible influence of the second vibration mode shape, this can be confirmed
observing Fig. 2(a). In the nonlinear case, the stochastic model is also able to
describe the experimental behavior. The large dispersion in the nonlinear regime
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of motion in consequence of the nonlinear restoring force variation makes with
the nonlinear stiffness varies, as seen in Figs. 4(b) and 4(c).
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Fig. 6: Stepped sine curves comparison. The model mean is presented as −, the
confidence band as gray fill, and the experimental realization as − ◦ −.

6 Final remarks

A stochastic version of the restoring force surface method was proposed to iden-
tify the parameters of a Duffing oscillator. The formulation of this method was
done in terms of a stochastic process and able to take into account the intrinsic
variability of the system parameters. In the analysis of non-complex nonlinear
systems, the proposed method can be applied without the use of more sophisti-
cated mathematical tools. The effectiveness of this methodology was tested and
verified in the parameters estimation of a clamped-free beam, presenting nonlin-
ear behavior. The results showed that the identified stochastic model is robust,
once it describes well the structure behavior and specifies a reliability envelope.
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