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Trees and flowers on a billiard table

INTRODUCTION, MOTIVATION AND OVERVIEW OF RESULTS

A tiling billiard is a model of light propagation in a heterogeneous medium constructed as a union of homogeneous pieces, see [START_REF] Davis | Negative refraction and tiling billiards[END_REF] and [START_REF] Glendinning | Geometry of refractions and reflections through a biperiodic medium[END_REF]. For any tiling of a plane by polygons, a tiling billiard billiard on it is defined as follows. A light ray moves in a straight line till a moment when it reaches a border of a tile. Then it passes to the neighboring tile, and its direction follows Snell's law with a refraction coefficient k ≡ -1, see Figure 1. The dynamics of a tiling billiard depends very strongly on the shapes (but not sizes) of tiles in the underlying tiling.

The study of tiling billiards has been proposed in [START_REF] Davis | Negative refraction and tiling billiards[END_REF] and continued in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF][START_REF] Davis | Periodicity and ergodicity in the trihexagonal tiling[END_REF][START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]. For now, only two non-trivial examples of tiling billiards have been undestood, a trihexagonal tiling (see [START_REF] Davis | Periodicity and ergodicity in the trihexagonal tiling[END_REF]) and a periodic triangle tiling (see [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF][START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] and this work). Tiling billiards are of interest because of their relation to the study orientable vertical foliations on non-orientable flat surfaces, a non-explored area of the general theory.

The materials with the refraction index equal to -1 can be quite easily constructed (as slabs of photonic crystals) even though most of usual materials have refraction indices bigger than 1. An even more physically relevant tiling billiard model should incorporate a refraction coefficient k(f ) as a function of light frequency f . The tiling billiards dynamics corresponds to the resonances in the full wave picture. The research in physics and optics of metamaterials is very active, see in particular [START_REF] Guenneau | Negative refraction in 2-D checkerboards related by mirror anti-symmetry and 3-D corner lenses[END_REF][START_REF] Liu | Ramakrishna Focusing light in a bianisotropic slab with negatively refracting materials[END_REF][START_REF] Guenneau | Perfect corner reflector[END_REF][START_REF] Ramakrishna | Gralak Confining light with negative refraction in checkerboard metamaterials and photonic crystals[END_REF], with numerous applications such as invisibility, see [START_REF] Wood | Metamaterials and invisibility[END_REF].

This work considers tiling billiards on two tilings with many common features. These are a triangle tiling and a cyclic quadrilateral tiling and are defined by applying central symmetries to a fixed triangular (or cyclic, i.e. inscribed in a circle, quadrilateral) shape with respect to the middle points of its edges, see Figure 2. We denote the angles of a tile by α, β, γ (and δ) and the sides by a, b and c (and d). We suppose that any tile is oriented so that a counterclockwise tour of its boundary reads the sides in the alphabetical order. Both tilings are 2-colorable. We call the tiles of one of the colors positively oriented, and of another color negatively oriented, in an arbitrary way.

Triangle tiling billiards were studied in [START_REF] Davis | Negative refraction and tiling billiards[END_REF] and in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]. Even though some understanding of the dynamics has been achieved, a precise description of symbolic dynamics was far from being complete. Triangle tiling billiards are especially attractive because of their relation to the classical Arnoux-Rauzy family of IETs on the circle and the real-rel deformations of corresponding translation surfaces. In the present work we give a complete description of the dynamics.

1. Symbolic dynamics of triangle tiling billiards 1.1. Overview of known results. -Let A ∆ := {a, b, c}. A symbolic code of an oriented curve on the tiled plane is a word in A N ∆ that corresponds to the sequence of sides of triangular tiles, crossed by it. We denote by w an infinite periodic word with period w. An accelerated symbolic code in the alphabet A 2 ∆ := {ab, ba, bc, cb, ca, ac} is defined analogously as a sequence of couples of croissed edges. For example, a symbolic (or an accelerated symbolic) code of a curve making a clockwise tour of a vertex is equal to abc (or ab bc ca). This defines the symbolic dynamics of triangle tiling billiards via the shift map on the space of admissible sequences.

Example. -A symbolic code of a periodic trajectory from Figure 3 is given by a periodic word w with minimal period w = abacacacbacac (half of the trajectory).

The state of art on the symbolic behavior of trajectories is summarized in 1. Every trajectory passes by each tile at most once; the oriented distance between a segment of a trajectory in a tile and its circumcenter is an invariant of the trajectory; 2. all bounded trajectories are periodic and simple closed curves; 3. all bounded trajectories deform to the trajectories with the same symbolic code under small perturbations (form of a tile, initial condition); 4.* the period of any periodic trajectory belongs to the set {4n + 2 | n ∈ N * }; 5.* the symbolic code of any periodic trajectory has its smallest period w ∈ A ∆ of odd length.

This theorem implies tha the periodicity is an open property and trajectory on Figure 3 is stable. The points 1.-3. have been proven and 4. has been conjectured in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]. The points 1.-3. follow from the folding, see Section 3. The point 4. is a simple consequence of 5. The statements 4.-5. have been announced to be proven in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] by P. Hubert and myself. Our proof is based on the relation (see [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]) of triangle tiling billiards with interval exchange transformations (IETs) with flips, is quite technical and, unfortunately, incomplete as we have discovered while working on this paper, see more comments in the Appendix. In this work, we give a first complete proof of 4. and 5., known as 4n + 2 Conjecture, see [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF].

We say that a triangle tiling billiard trajectory is escaping if it is not periodic. This definition makes sense by point 1. of the theorem above. A trajectory is linearly escaping if it escapes to infinity by staying in a bounded distance from a fixed line. Any triangle tiling billiard trajectory is either periodic, linearly escaping or non-linearly escaping, as follows from 1.-2. in Theorem 1, [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]. Moreover, any trajectory of a tiling billiard in almost any fixed triangle tiling is either periodic or linearly escaping, [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]. We now define a set of measure 0 if triangle tilings on which the trajectories can potentially non-linearly escape.

Let ∆ 2 := {(x 1 , x 2 , x 3 )|x i ≥ 0, x 1 + x 2 + x 3 = 1} ⊂ R 3 and define the Rauzy subtractive algorithm on ∆ 2 as follows. If x j > 1 2 for some j, one maps a triple (x 1 , x 2 , x 3 ) to a new triple (x 1 , x 2 , x 3 ), where x j := 2x j -1 and x i = x i , i = j. Then we normalize by x j to get back to ∆ 2 . In projective coordinates, this is equivalent to subtracting the sum of two smaller coordinates from the biggest one. The subset R ⊂ ∆ 2 of triples on which the Rauzy subtractive algorithm can be applied infinitely, was first defined in [START_REF] Arnoux | The Rauzy gasket, Birkhäuser Boston. Further Developments in Fractals and Related Fields[END_REF] by P. Arnoux and S. Starosta. They have proven that it is homeomorphic to the Sierpinsky triangle. We define R ⊂ R for which x j = 1 2 at each step of the Rauzy subtractive algorithm. In the following we call this set R the Rauzy gasket. The set R appears as a set of parameters of interesting maps in various dynamical contexts and is of great interest, see for example the works by Avila-Hubert-Skripchenko on systems of isometries [START_REF] Avila | Diffusion for chaotic plane sections of 3-periodic surfaces[END_REF][START_REF] Avila | On the Hausdorff dimension of the Rauzy gasket[END_REF], by Dynnikov-DeLeo [START_REF] Leo | Geometry of plane sections of the infinite regular skew polyhedron {4, 6 | 4}[END_REF] on sections of 3-periodic surfaces, by Arnoux-Rauzy [START_REF] Arnoux | Représentation géométrique des suites de complexité 2n+1[END_REF] on 6-IETs on the circle. This set is also related to the dynamics of tiling billiards since it parametrizes the triangle tilings admitting non-linearly escaping trajectories.

It is an open question to calculate dim H R.

Consider the set of triangular tiles such that the point ρ ∆ ∈ ∆ 2 defined by

(1)

ρ ∆ := 1 - 2 π α, 1 - 2 π β, 1 - 2 π γ verifiers ρ ∆ ∈ R.
A trajectory of a triangle tiling billiard is exceptional if it passes through the circumcenter of its starting tile (and hence, any crossed tile) and ρ ∆ ∈ R. Exceptional trajectories of triangle tiling billiards are of great interest since they describe the arithmetic orbits of minimal maps in the Arnoux-Rauzy family. ∈ R then all of the trajectories in such a tiling are either periodic or linearly escaping. On the contrary, if ρ ∆ ∈ R, a trajectory escapes to infinity non-linearly only if it passes by the circumcenters of tiles.

In the second part of this work, we prove that the only if can be replaced by if and only if. It has already been proven in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] for almost all ρ ∆ ∈ R with respect to the Avila-Hubert-Skripchenko measure on the Rauzy gasket defined in [START_REF] Avila | Diffusion for chaotic plane sections of 3-periodic surfaces[END_REF][START_REF] Avila | On the Hausdorff dimension of the Rauzy gasket[END_REF].

1.2. Tree Conjecture: formulation and motivation. -Consider a triangle tiling. Denote by Λ ∆ := (V, E) an abstract graph (with its natural embedding in the tiled plane) such that the set V consists of the vertices of tiles in the plane, two vertices in V being connected by an edge in E if they are connected in the tiling. For any periodic billiard trajectory δ we denote a domain of the plane that it encloses by Ω δ ⊂ R 2 , ∂Ω δ = δ. We prove Theorem 3 (Tree Conjecture). -Take any periodic trajectory δ of a triangle tiling billiard. Then the graph G δ ∆ := Ω δ ∩ Λ ∆ (as a subgraph of Λ ∆ ) is a tree. In other words, a trajectory δ passes by all the tiles that intersect its interior Ω δ , see Figure 4.

This proves a so-called Tree Conjecture that was first formulated in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF] and proven there for the case of tilings by obtuse triangles, a graph G δ ∆ is in this case a chain. We also prove a generalization of this theorem for non-periodic trajectories, the so-called Density property. Although, the analogue of the Tree Conjecture for cyclic quadrilaterals is open.

Our interest in the Tree Conjecture comes from its relationship to the density properties of arithmetic and algebraic orbits of the Arnoux-Rauzy family, putting triangle tiling billiards in a larger perspective. These orbits are fractal curves related to the Peano curve studied in [START_REF] Arnoux | Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore[END_REF] by P. Arnoux, and another Peano curve studied in [START_REF] Mcmullen | Cascades in the dynamics of measured foliations[END_REF] by C. McMullen and in [START_REF] Lowenstein | Interval exchange transformations over algebraic number fields: the cubic Arnoux-Yoccoz model[END_REF] by J. Lowenstein, G. Poggiaspalla and F. Vivaldi. We discuss more on these curves in paragraph ??. It is possible that the trees we recover in this work are repelling real trees of the automorphisms of the corresponding free group , see [START_REF] Coulbois | Tree substitutions and Rauzy fractals[END_REF]. Moreover, as a corollary of Theorem 3, with some additional work, we obtain that non-singular exceptional trajectories pass by all tiles in the triangle tiling.

1.3. Classification of billiard trajectories. -Take a triple of renormalized angles of a tile

(2) (l 1 , l 2 , l 3 ) := α π , β π , γ π ∈ ∆ 2 .
We now define a map on the set ∆ 2 that can be seen as a map on triangle tilings. Let l j = min{l k } 3 k=1 , j ∈ N ∆ := {1, 2, 3}. Then one defines (l 1 , l 2 , l 3 ) ∈ ∆ 2 via l k := l k -l j for k = j and l j = l j , and subsequent rescaling. This algorithm is a fully subtractive algoritm and was studied in [START_REF] Arnoux | The Rauzy gasket, Birkhäuser Boston. Further Developments in Fractals and Related Fields[END_REF]. The fully subtractive algorithm is not well defined when l j = l i for i = j. Let E ⊂ ∆ 2 be the set of points ρ ∆ such that a corresponding (via (1) and ( 2)) triple of lengths (l 1 , l 2 , l 3 ) is a pre-image of a point (1/3, 1/3, 1/3) under some iteration of the fully subtractive algorithm. We prove the following Theorem 4 (Classification of triangle tiling billiard trajectories.) -For any triangle tiling billiard, the following holds:

1. if ρ ∆ /
∈ R ∪ E then any trajectory is either linearly escaping or periodic, and both behaviors are realized. Moreover, the set of symbolic codes realized by periodic trajectories is finite; there exist two functions

ω 1 , ω 2 : ∆ 2 \ R ∪ E → A N
∆ such that the symbolic behaviour of any linearly escaping trajectory is an infinite word in the alphabet {ω 1 (ρ ∆ ), ω 2 (ρ ∆ )}; 2. if ρ ∈ R then a trajectory escapes to infinity (is periodic) if and only if it passes (doesn't pass) through a circumcenter of a tile. Moreover, a list of symbolic codes of periodic trajectories is countable;

3. ρ ∈ E if and only if all the trajectories are periodic;

4. ρ ∈ Q 3 \ E if and only if there exists a drift-periodic trajectory.

The proof of this result is based on the connection of triangle tiling billiards with the set CET 3 τ of fully flipped 3-interval exchange transformations defined in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]. The set of squares of the maps in the family CET 3 τ coincides with the set of real-rel deformations of the Arnoux-Rauzy maps. This helps us prove the following conjecture of P. Hooper and B. Weiss, from [START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF]: the arithmetic orbits of the Arnoux-Yoccoz map converge, up to rescaling, to the Rauzy fractal. The proof of this result, as well as that of Theorem 4, are based on two of our main tools -tiling billiard foliations and renormalization in the family CET 3 τ that we describe in detail in the body of this work.

Plan of the article

This work is split into three parts. The first two parts cover on the dynamics of triangle tiling billiards. In the Part I, we study this dynamics from the geometric point of view. In Section 3 we remind the folding argument, in order to subsequently define tiling billiard foliations in Section 4. In Section 5 we prove the Tree Conjecture.

In the Part II, we study the dynamics of the family CET 3 τ of fully flipped IETs. In Section 6, we remind the connection of their dynamics to that of the triangle tiling billiards as well as to real-rel leaves of the Arnoux-Rauzy surfaces and their arithmetic orbits. In Section 7 we introduce the renormalization process on CET 3 τ and use it in order to characterize the symbolic dynamics. In Section 8 we give a complete classification of the billiard trajectories. In Section 9 we study the exceptional trajectories and show the convergence of arithmetic orbits of the Arnoux-Yoccoz map to the Rauzy fractal.

The Part III focuses on cyclic quadrilateral tiling billiards and open questions related to them, see Section 10. In the Appendix, we comment on our previous work [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] with P. Hubert.

PART I. ON A PROOF OF THE TREE CONJECTURE FOR TRIANGLE TILING BILLIARDS

A strategy of the proof of the Tree Conjecture is the following: the symbolic dynamics of any periodic trajectory is defined by a sequence of flowers (unions of singular leaves) in a periodic tiling billiard foliation.

Tiling billiards in locally foldable tilings

We present the folding construction proposed in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF] for triangle tiling billiards, in a slightly more general context. The locally foldable tiling is a two-colorable polygonal tiling of the plane such that the sum of the angles of tiles of one color around any vertex is equal to π. Obviously, both triangle and cyclic quadrilateral tilings are locally foldable.

Lemma 1. -Consider any locally foldable tiling and some tile θ 0 in it. Let Λ = (V, E) be a graph with V (E) being the set of vertices (edges) of tiles. Then there exists a unique map F = F(θ 0 ) : R 2 → F(R 2 ) ⊂ R 2 such that 1. for any tile θ the restriction F| θ is an isometry and F| θ0 = id; 2. for any two tiles θ and θ e sharing an edge e ∈ E their images F(θ) and F(θ e ) are symmetric one to each other with respect to a line bisector of F(e),

3. two different folding maps (with different θ 0 ) differ by a global isometry.

Moreover, if the initial tiling is a triangle or cyclic quadrilateral tiling, then F(V ) ⊂ C, where C is a circumcircle of the tile θ 0 . Proof. -For any tile θ, we construct its image F(θ) as follows. Take a sequence of tiles θ 0 , θ 1 , . . . , θ n = θ connecting θ 0 to θ: the tiles θ k and θ k+1 share an edge. Then, fold the union θ 1 ∪ . . . ∪ θ n by a global isometry on θ 0 . This defines F(θ 1 ). Then, we fold θ k ∪ . . . ∪ θ n on θ k-1 for k = 2, . . . , n. At the end of the process, one defines F(θ) with F| θ an isometry.

It is left to prove that F(θ) doesn't depend on the connecting sequence {θ k }, or equivalently, F(θ 0 ) = θ 0 for any connecting loop (θ 0 = θ N ). First, when one folds one polygon on another in a tour around a vertex, the difference between the angles of positively and negatively oriented tiles in the vertex defines the displacement of the initial tile θ 0 with respect to its initial position. Since this difference is zero by definition, F | θ0 = id. By breaking any loop into a sum of loops around vertices, one finishes the proof. Clearly, two folding maps differ by an isometry.

Let us now prove that F(V ) ⊂ C for triangle and cyclic quadrilateral tilings. Indeed, F(v) ∈ C obviously for the vertices of θ 0 , and by folding for all the vertices of the tiles sharing an edge with θ 0 . see Figure 5. Hence, F(v) ∈ C for any v ∈ V by recurrence.

We call the map F a folding map, or simply, a folding. We call the image of the plane by a folding map a bellow, B := F(R 2 ). A name bellow comes from accordeon bellows.

Remark 1. -The arguments of the above lemma are not new since the class of locally foldable tilings has been known for centuries in the origami community, see [START_REF] Hull | The combinatorics of flat folds: a survey[END_REF], and also appeared recently in the discrete complex analysis for the dimer model [START_REF] Affolter | Miquel Dynamics, Clifford Lattices and the Dimer Model[END_REF][START_REF] Kenyon | Russkikh Dimers and circle patterns[END_REF][START_REF] Chelkak | Russkikh Dimer model and holomorphic functions on T-embeddings of planar graphs[END_REF]. In this paper we concentrate ourselves on triangle and cyclic quadrilateral tilings. We hope to develop the general theory of tiling billiards in locally foldable tilings in the future.

3.1. Basic orbit properties. -We generalize the proof from [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF] given for triangle tiling billiards to any locally foldable tiling.

Theorem 5. -The points 1.-3. of Theorem 1 hold for any locally foldable tiling.

Proof. -Consider a trajectory δ of a tiling billiard starting in some tile θ 0 , and a folding map F = F(θ 0 ). Then F(δ) is a subset of a segment in the bellow B given by the intersection of B with some line l. Hence for any tile θ the intersection l ∩ F(θ) is equal to at most one segment. If δ is bounded then at some moment δ comes back to the same tile, and hence δ is periodic. Then, a periodic trajectory δ can't intersect itself in a transverse way inside a tile θ, since it intersects this tile in a segment equal to F -1 (F(θ) ∩ l). Finally, a periodic trajectory is stable under a small enough perturbation since a sequence of tiles crossed by its perturbation δ is the same as that for δ. Hence this sequence is a loop, and δ is periodic with the symbolic dynamics of δ.

Note. -In Hamiltonian dynamics, Arnold-Lioville integrability implies the existence of additional integrals of motion. For tiling billiards, the direction of a trajectory in folded coordinates is a first integral. The folding map reduces the dimension of the phase space.

Tiling billiard foliations

Take any locally foldable tiling, fix a tile θ 0 in it and a folding F. Slice up the bellow B by either a family of parallel chords, or a family of chords emanating from one point and pull this slicing back to the tiled plane by F -1 . This defines two families of foliations on the tiled plane, and any trajectory can be included as a leaf of these foliations.

4.1. When hitting a corner. -In a classic setting of billiards in bounded domains with piecewise smooth boundary, a billiard trajectory that arrives to a non-regular point on the boundary is not well-defined. In the context of tiling billiards in locally foldable tilings, one can correctly define, although possibly branching, singular trajectories as boundaries of cylinders of parallel trajectories.

A piece-wise linear simple curve γ on the tiled plane that passes through at least one vertex of a tiling is called a singular trajectory (a separatrix), if the Snell's refraction law with coefficient k = -1 holds in all non-regular points of such a trajectory. We call the segment θ ∩ γ of a singular trajectory γ in the tile θ a separatrix segment if γ ∩ θ ∩ V = ∅, i. e. γ passes by a vertex of θ. If a singular trajectory is a closed curve, we call it a separatrix loop.

Consider a singular trajectory γ with a singular point v ∈ V . One associates to it a finite number of singular trajectories passing by v, via folding. Indeed, γ folds into some chord l in the bellow such that l ∩ F(V ) = ∅. One considers all of the connected components of the set F -1 (l ∩ B) \ {v} such that their intersection with the set Θ v := ∪ θ:θ v θ is non-empty. These connected components (eventually united with a point {v}) are exactly the separatrix curves passing by v that fold into the same chord as γ. We call the union of all separatrices passing by a fixed vertex v ∈ V and mapping to the same chord under folding, a flower in v. We call each of the separatrix loops in one flower a petal of this flower. We call v ∈ V a pistil. A flower is bounded if all of its separatrices are petals. To any line l such that F(V ) ∩ l = ∅, one may associate a flower. 4.2. Parallel and ray foliations. -From now on, we restrict ourselves to the case of triangle or cyclic quadrilateral tilings. Fix some base tile θ 0 and a corresponding folding map F. Then the bellow B is a subset of the disk D, ∂D = C.

Take τ ∈ S 1 and consider a foliation of the plane by parallel lines with a common direction exp(iτ ). One considers the intersections of the leaves of this foliation with the bellow B. Then, by applying F -1 to these intersections, one obtains a parallel foliation P τ (or simply, P) of the plane with a tiling. Now take a point p ∈ C. Consider all the chords in D passing by p, slicing up the bellow B. By unfolding these slices back to the plane with a tiling one obtains the ray foliation R p (or simply, R). The set F -1 (p) is non-empty if and only if p = F(v) for some v ∈ V . Moreover, if the angles of tiles are ratinonally independent, in this case F -1 (p) = {v}. It will be sufficient for us to study the ray foliations with p ∈ F(V ) ⊂ S 1 . Lemma 2. -Fix a tile θ 0 in a triangle (cyclic quadrilateral) tiling. Fix τ ∈ S 1 and p ∈ C S 1 such that p = F(v) for some v ∈ V . Then, the following holds for the foliations P τ and R p :

1. the foliations P τ and R p are well defined and orientable. Moreover, their oriented connected leaves define tiling billiard trajectories; 2. the set of singularities for both foliations coincides with the set V ; 3. for any v ∈ F -1 (p), there exist finitely many separatrices in P τ passing by v, at most one by each tile θ ⊂ Θ v . Two separatrices through v in P τ belong to the same flower; 4. take any (possibly singular) trajectory δ. Then there exists a unique τ such that δ is a leaf of P τ =: P δ .

If δ folds into a chord l such that intersects l ∩ F(V ) = ∅, then δ can be also included in a radial foliation R p =: R δ for each (of at most two) p ∈ F(V ) ∩ l; 5. for any periodic trajectory δ its interior Ω δ is foliated by the leaves of P δ (and of R δ ).

Proof. -This is a simple corollary of Lemma 1 and Theorem 5. If a tile θ 0 is positively oriented, then the orientation of R p and P τ coincides with (is opposite to) the orientation of sheaves of lines on the bellow on positively (negatively) oriented triangles. v and τ ∈ S 1 . This defines a flower γ in P τ with a pistil in v ∈ V . Denote by s ∈ N the number of its separatrix segments containing v. Then s ∈ {0, 2, 4, 6} and each tile θ ⊂ Θ v = ∪ θ v θ contains at most one separatrix segment of γ. Moreover, up to a possible change of orientation τ → -τ , the set γ ∩ Θ v has one of the combinatorial behaviors represented on Figure 6.

Proof. -Finiteness of s follows from the point 3. in Lemma 2, and s is even since the foliation P τ is oriented. The separatrices passing by v are leaves of both P τ and R p with p = F(v). Moreover, the ray foliation R p has a very simple form in restriction to the union Θ v : all of its leaves pass by v and their directions alternate from one tile to its neighbor. This finishes the proof.

The list given in Proposition 1 is realizable although not necessarily by bounded flowers. Moreover, the analogous statement can also be proven for quadrilateral tilings. 

Proof of the Tree Conjecture

We give a proof of the Tree Conjecture by first reducing it to the Bounded Flower Conjecture.

5.1. Flower Conjecture. -Let us introduce some notations. Two tiles are neighbouring in e if they share an edge e and opposite in a vertex v if they both pass by v and are centrally symmetric to each other with respect to v. For any tile θ 0 , e ∈ E, v ∈ V such that e ⊂ θ 0 , v ∈ θ 0 we denote by θ e 0 its neightbouring tile in e, and by θ v 0 its opposite tile in v, see Figure 7. The Flower Conjecture holds for a petal γ if for any v ∈ γ ∩ V , there exists e ∈ E such that v ∈ e ⊂ Ω γ , and γ passes by the tiles θ and θ e , see Figure 7. The Flower conjecture holds for a tiling if it holds for all the possible petals. The Bounded Flower Conjecture holds for a tiling if the Flower Conjecture holds for all possible petals of bounded flowers.

Obviously, the Flower Conjecture implies the Bounded Flower Conjecture. The Flower Conjecture also implies that two petals γ 1 and γ 2 of the same flower have the same index and the domains Ωγ1 and Ωγ2 are disjoint. Theorem 7 excludes petals passing by two opposite triangles, as well as petals passing by neighbouring triangles but not contouring an edge between them, see Figure 10. Of course, the second theorem is a stronger version of the first. We reduce the Tree Conjecture to Theorem 6 and postpone the proof of Theorem 7 to Section 10. The Tree Conjecture can be formulated for any locally foldable tiling (and we denote by G δ a subgraph of the tiling graph bounded by a trajectory δ) even though it doesn't always hold, e.g. it breaks for a triangle tiling with six additional tiles cut out by a triangle tiling billiard trajectory. Proposition 2. -For any locally foldable tiling, the Bounded Flower Conjecture is equivalent to the Tree Conjecture.

Proof. -Suppose that the Bounded Flower Conjecture fails for the petals γ j , j ∈ J of some flower γ with a pistil v ∈ V . Take all of the petals γ i that are not contained in Ω γj for some j ∈ J, j = i, with indices in a subset J 0 ⊂ J. Then there exists a periodic trajectory δ passing by the same tiles as ∪ j∈J0 γ j , with ∪ j∈J0 Ω γj ⊂ Ω δ , that contours a tile. Suppose now that the Bounded Flower Conjecture holds. Take a periodic trajectory δ. Then the domain Ω δ is foliated by the leaves of P δ , among which only a finite number of singular ones. We contract δ in P δ in a direction of the inner normal to ∂Ω δ , in order to obtain a flower γ with a singularity in some vertex v ∈ Ω δ ∩ V . If γ = {v}, then G δ = γ and Tree Conjecture obviously holds.

Suppose now that δ contracts to a non-trivial flower γ. We can assume that such flower has its only singularity in v ∈ V . If not, under folding γ maps into a chord l between F(v) and F(v ), v, v ∈ V, v = v . But then we perturb the initial direction of δ to obtain a trajectory δ with the same symbolic dynamics, in such a way that a perturbed chord l such that F(δ ) ⊂ l , passes by v but doesn't pass by v . This can be done since the set F(V ) is countable.

Thus we obtain a flower γ with a pistil in v ∈ V with m ∈ N petals (m is bounded by the half of the valency). Now we approach each of the petals γ j by periodic leaves

δ j ⊂ Ω γj in P γ . ThenG δ ∆ = ∪ j G δj ∆ ∪ e j
, where e j are the edges passing through v inside each of the petals γ j . Such a recurrence process eventually stops since the period of δ j diminishes.

Example. -The proof of Proposition 2 is constructive. The graph G δ is built as a growing union of finite graphs, G δ = ∪ K k=1 G k . On the step k one adds to the graph G k the pistils of new flowers with the edges inside the petals of these new flowers connected to these pistils. Any vertex v ∈ Ω δ ∩ V is a pistil of a flower on some step, by Lemma 2.

Obstructions to the Bounded Flower

Conjecture for triangle tilings. -Till the end of this Section, we only study the periodic triangle tiling and only bounded flowers in it. We denote flowers by γ, and their petals by the same letter with indices.

The only cases of global behavior of flowers contradicting the Bounded Flower Conjecture while respecting Proposition 1 are enumerated on Figure 9 and in the following list in which we stress the set O of petals for which the Bounded Flower Conjecture fails.

Flower obstructions to the Bounded Flower Conjecture for triangle tilings. 

Ω γ1 ∪ Ω γ2 ⊂ Ω γ3 , O = {γ 3 }.
The first number in the name of the obstruction is the number of separatrix segments. This list is given modulo a possible change of orientations of all the petals. Without loss of generality, we fix the orientations as shown on Figure 9. We now prove that these obstructions are never realized by triangle tiling billiard trajectories. We first present our main tools.

In order to prove Theorem 6, we use two properties specific to a periodic triangle tiling. First, we use the square property from point 5. in Theorem 1 which is a corollary of the renormalization process we introduce in the second part. We postpone the proof of this property to the paragraph 8.1. Second, we use the symmetry of the ray foliation R p for p = F(v), v ∈ V . Neither of these properties holds for cyclic quadrilateral tilings. We consider the (accelerated) symbolic codes of periodic trajectories as cyclic words, i.e. for us the two periodic words w 0 . . . w n and w k w k+1 . . . w n w 0 . . . w k-1 are equal for any j, k ∈ {0, 1, . . . , n}, k = 0 and any

w j ∈ A 2 ∆ .
Example. -The accelerated (cyclic) symbolic code of a 6-periodic orbit is (ab bc ca) 2 = (bc ca ab ) 2 . Its corresponding sign code in both cases is (+ + +) 2 .

In the following, we denote by γ j the petals and by δ j the periodic trajectories approaching these petals or their unions. We identify the trajectories with their symbolic orbits, i.e. we denote by the same letter a closed curve on the plane as well as a corresponding cyclic periodic word in the alphabets A 2 ∆ or S.

Proposition 3. -A configuration 2.1 is never realized by a bounded flower.

Proof. -Suppose that a configuration 2.1 is realized by a one-petal flower γ 1 in the vertex v. We now perturb γ 1 in the foliation P γ1 in order to obtain two periodic trajectories δ in and δ out in a small neighbourhood of γ 1 with δ in ⊂ Ω γ1 and δ out Ω γ1 , see Figure 10. Suppose that outside the set Θ v the trajectories δ in , δ out and γ 1 pass by the same tiles. Then there exists a word S ∈ S N of even length such that the sign codes of δ in and δ out are: δ in = + --+ S and δ out = -+ + -S. We split S = ss into a concatenation of two words of equal length, s, s = ∅. Then δ in = -+ ss + -and δ out = + -ss -+.

But since the words δ in and δ out are squares of some words in the alphabet S, length considerations give that simultaneously -+ s = s + -and + -s = s -+. These two equations imply that the word s finishes by + and at the same time, which is a contradiction. Now we observe that for the case 2.2 a following property holds. There exists a petal γ 1 and a tile θ 0 v such that γ 1 ∩ θ 0 = ∅ and θ v 0 ⊂ Ω γ1 . In this case, we say that the tile θ 0 is a hungry tile and that it eats up θ v 0 . We call a flower γ (not necessarily bounded) a hungry flower if there exists a petal in this flower passing by a hungry triangle, see Figure 7.

Proposition 4. -1. The ray foliation R p with p = F(v), v ∈ V is centrally symmetric with respect to v, modulo a change of orientation of leaves in opposite tiles. 2. A configuration of separatices forming a hungry flower is never realized by triangle tiling billiard foliations.

Proof. -For any separatrix segment of the trajectory γ 0 starting in a vertex v and in the tile θ 0 v, consider a separatrix segment starting in v and crossing the tile θ v 0 such that it belongs to the same line as the initial segment. By symmetry, the corresponding trajectory γ v 0 is centrally symmetric to γ 0 with respect to v, and has different orientation. This proves 1.

Consider now a hungry flower γ in the vertex v and include it in its ray foliation R γ . This foliation contains a symmetric flower γ v defined as in the proof of point 1 by symmetry. The hungry flower configuration implies that these two flowers γ and γ v intersect outside v. This is not possible since γ and γ v are leaves of the same foliation, see Figure 11. Proof. -Consider the case 4.1a. We denote γ in := γ 2 and γ out := γ 1 . We approach γ in by a trajectory δ 1 , δ 1 ⊂ Ω γin ), and γ out by a trajectory δ 2 , δ 2 ⊂ R 2 \ Ω γout . One can choose a trajectory δ, δ ⊂ Ω γout \ Ω γin close enough to the boundary, in such a way that it passes by the same tiles as γ in ∪ γ out . All of the trajectories δ 1 , δ 2 , δ are chosen to be periodic, non-singular and belong to the same foliation P γ . Then there exist the words w, u ∈ S N such that

δ 1 = (w --) 2 , δ 2 = (u -+ + -) 2 , δ = + + w --w + +u -+ + -u.
Since δ is a symbolic square, and from length considerations, we obtain the word equality -w + +u -+ = + -u + +w-which is impossible since -= +. The argument for the case 4.1b is the same, with γ in := γ 1 and γ out := γ 2 . Proposition 6. -Configuration 4.2 is never realized by a bounded flower.

Proof. -Define three non-singular periodic trajectories δ 1 , δ 2 and δ in the parallel foliation P γ . First, δ j ∈ Ω γj and δ j passes by the same tiles as γ j for j = 1, 2. Then, we take a trajectory δ that passes by the same tiles as the flower γ and such that γ ⊂ Ω δ . Then, there exist the words s, s, w ∈ S N such that the words s and s have equal length and

δ 1 = -+ + -ss, δ 2 = (--w) 2 , δ = + + w --w + +ss.
Length considerations imply the following two equations: s -+ = + -s and -w + +s = s + +w-. These two are incompatible, since the word s has to finish byand + simultaneously. Proof. -We choose periodic non-singular trajectories δ 1 , δ 2 , δ 3 and δ 4 as follows. First, the trajectories δ j pass by the same tiles as γ j and δ j ⊂ Ω γj for j = 1, 2; second, a trajectory δ 3 is close to the boundary ∂ (Ω γ1 ∪ Ω γ3 ) ⊂ Ω δ3 ; third, a trajectory δ 4 ⊂ Ω γ3 \ Ω γ2 and is close to its boundary. Then there exist the words w, v, U ∈ S N such that

δ 1 = (w --) 2 , δ 2 = (v + +) 2 , δ 3 = + + w --w + +U, δ 4 = --v + +v --U.
Since both δ 3 and δ 4 are symbolic squares, one can split the word U in two words u, ū ∈ S N of equal length, U = uū. The length considerations for δ 3 and δ 4 imply that -w + +u = ū + +w-and ū --v-= +v --u. Since the word ū can't start from + andat the same time, we have a contradiction.

Theorem 6 now follows. Indeed, for any bounded flower γ with a pistil in v ∈ V one can suppose that v is the only singularity of γ, see the proof of Proposition 2. From all of the above follows that γ satisfies the Bounded Flower Conjecture. By Proposition 2, this finishes the proof of Theorem 3. Our strategy also gives a new proof of the following Proposition 8 ( [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]). -A periodic trajectory on an obtuse triangle tiling encloses a path.

Proof. -Any flower in some vertex v ∈ V in an obtuse tiling has at most two petals (and this implies that contoured trees are paths). It follows from applying the folding map to Θ v . One simply verifies that relative position of a tile with respect to the folded trajectory p ∈ S 1 (via folding F)

F (θ v α ) ∩ F (θ α ) = {p} and F θ v β ∩ F (θ β ) = {p}, see
starting tile θ 0 of fixed orientation p 0 ∈ S 1 (via folding, p 0 ∈ F(θ 0 ) ∩ C)
the set V of vertices and a corresponding set F(V )

C(p 0 ) := {nα + mβ + p 0 , n, m ∈ Z} (by identification C S 1 )
ray foliation R p0 with p 0 = F(v 0 ) action of a subfamily with fixed (l 1 , l 2 , l 3 ) ∈ ∆ 2 and varying τ , on the subset

C(p 0 ) ⊂ S 1 parallel foliation R τ , τ ∈ S 1
action of a subfamily with fixed (l 1 , l 2 , l 3 ) ∈ ∆ 2 and varying τ (ε), on the set C(p(ε)), here τ (ε) = τ 0 + 2ε and p(ε) = p 0 + ε Table 1. Vocabularly between the triangle tiling billiards dynamics and that of the maps in CET 3 τ .

PART II. RENORMALIZATION FOR FULLY FLIPPED 3-INTERVAL EXCHANGE TRANSFORMATIONS 6. Fully flipped interval exchange transformations and their squares 6.1. Definition of the family

CET n τ . -Fix (l 1 , . . . , l n ) ∈ ∆ n := (l 1 , . . . , l n ) ∈ R n + | l 1 + . . . + l n = 1 . Cut the circle S 1 of length 1 into n disjoint intervals I j , |I j | = l j . Define a map F 0 : S 1 → S 1
as a composition of n (commuting) involutions on each one of these intervals. We say that a map F belongs to the family

CET n τ if F = R τ • F 0 ,
where R τ is an angle τ ∈ S 1 rotation . In the following we often write F = F l1,...,ln τ in order to stress the corresponding parameters. Note that the map F = R 1/2 • F 0 is a composition of two non-commuting involutions. The symbolic dynamics of the map F ∈ CET n τ is defined in a standard way as a map from S 1 to {1, . . . , n} N associating to each point the labels of intervals visited by its orbit

{F •k (p)} k∈N .
The dynamics of a triangle (cyclic quadrilateral) tiling billiard trajectory can be reduced to the study of a map in CET 3 τ (or CET 4 τ ). For triangle tilings, it has been proven in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF] by inducing the dynamics of the billiard to that on the circumcircle C via folding, see [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF][START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] for more details. We summarize the connection between triangle tiling billiards and the family CET 3 τ in the vocabularly in the Table 1, for the most part established in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]. We add to it the two last lines.

Analogously, to any cyclic quadrilateral, one associates a subfamily of maps in CET 4 τ is defined by the lengths where the angles on the right in (3) are those in which the diagonal of a tile splits the opposite angles of the quadrilateral, see Figure 13. Any cyclic quadrilateral is defined by such a quadruple of angles up to homothety, even though it is not uniquely defined by its angles α, β, γ, δ.

(3) (l 1 , l 2 , l 3 , l 4 ) = α 1 π , γ 2 π , γ 1 π , α 2 π ,
In the following, we study the dynamics (symbolic dynamics) of the family CET 3 τ which reunites the dynamics of the rel deformations of Arnoux-Rauzy surfaces and that of the triangle tiling billiards. The question of symbolic dynamics in the family CET n τ can be studied for any n. In this work, we concentrate on the case of the maps in CET 3 τ simply because it is the only case that we were able to treat. See Section 10 for the discussion of the case n ≥ 4 and related open questions.

6.2. Square roots of the Arnoux-Rauzy maps. -By a classical Keane's Theorem proven in [START_REF] Keane | Interval exchange transformations Math[END_REF], almost every n-interval exchange transformation (IET) with irreducible combinatorics is minimal. An interesting question and open question is to study the minimality in the k-parametric families of n-IET for k < n. Many recent works give partial answers, e.g. [START_REF] Skripchenko | On the Hausdorff dimension of minimal interval exchange transformations with flips[END_REF][START_REF] Avila | On the Hausdorff dimension of the Rauzy gasket[END_REF].

Let us remind the definition of the Arnoux-Rauzy family AR(S 1 ) of 6-IETs on the circle of unit length, with parameters in the 2-simplex. Cut the circle S 1 into six disjoint intervals of lengths xj 2 , j = 1, 2, 3 such that intervals of equal length are neighbouring. Then any map T x1,x2,x3 ∈ AR(S 1 ), (x 1 , x 2 , x 3 ) ∈ ∆ 2 is a composition of two involutions: first, a simultaneous exchange of intervals of equal length and second, the rotation R 1 2 . The family AR(S 1 ) was first defined and studied by P. Arnoux and G. Rauzy in [START_REF] Arnoux | Représentation géométrique des suites de complexité 2n+1[END_REF] and subsequently in [START_REF] Arnoux | Geometrical models for substitutions[END_REF][START_REF] Arnoux | The Rauzy gasket, Birkhäuser Boston. Further Developments in Fractals and Related Fields[END_REF][START_REF] Avila | Delecroix Some monoids of Pisot matrices[END_REF][START_REF] Berthé | Balance properties of Anoux-Rauzy words[END_REF] and many other works.

Example. -A map T a := T a,a 2 ,a 3 with a ∈ R such that (4) a + a 2 + a 3 = 1,
is called the Arnoux-Yoccoz map. It was first introduced and studied in [START_REF] Arnoux | Construction de difféomorphismes pseudo-Anosov[END_REF][START_REF] Arnoux | Un invariant pour les échanges d'intervalles et les flots sur les surfaces[END_REF]. This map is the simplest minimal map in the family AR(S 1 ), and has many autosimilarity properties.

The question of minimality in the Arnoux-Rauzy family has been explicitely solved by P. Arnoux and G. Rauzy in [START_REF] Arnoux | Représentation géométrique des suites de complexité 2n+1[END_REF] where they have proven the following

Theorem 8. -[6] A map in the Arnoux-Rauzy family is minimal, if and only if (x 1 , x 2 , x 3 ) ∈ R.
The proof by P. Arnoux and G. Rauzy is based on a process of renormalization which is defined as a first return map on the union of two intervals of continuity of the biggest (and equal) length. In this work we give a new proof of this theorem which is based on the following Proposition 9. - [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] The following sets of 6-IET on the unit circle coincide:

T x1,x2,x3 ∈ AR(S 1 ), (x 1 , x 2 , x 3 ) ∈ ∆ 2 = F 2 | F l1,l2,l3 1 2 ∈ CET 3 1 2 , (l 1 , l 2 , l 3 ) ∈ ∆ 2 , max(l j ) < 1 2 .
(5)

Moreover, l j = 1 -x j 2 , j ∈ N ∆ .
In this work we are interested in the dynamics of vertical foliations on a family of translation surfaces X = X x1,x2,x3 constructed as suspensions of maps T = T x1,x2,x3 ∈ AR(S 1 ) with (x 1 , x 2 , x 3 ) ∈ ∆ 2 , as well of their real-rel leaves. For any translation surface X, one can consider local deformations of X in its stratum in such a way that the singularities are moving one with respect to another while keeping the translational holonomies of closed curves on X fixed. This defines a rel-foliation in the stratum. The rel-foliations have been studied, among others, in [START_REF] Schmoll | Spaces of elliptic differentials[END_REF][START_REF] Mcmullen | Navigating moduli space with complex twists[END_REF][START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF] (under different terminologies). In the following we use the terminology from [START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF].

Here we study the corresponding real-rel foliations constructed by variation of only horizontal holonomies on X := X x1,x2,x3 . A surface X belongs to the stratum H(2, 2), has genus 3 and two singularities. Hence for a fixed point (x 1 , x 2 , x 3 ) ∈ ∆ 2 , its real-rel leaf {X r } is parametrized by one real parameter r ∈ R. Here X 0 = X. By Proposition 9, the surface X 0 is a double cover of a non-orientable surface constructed as a suspension of a map in CET 3 . Hence, its real-rel deformation X r naturally has its first-return map in CET 3 τ with τ and r connected by [START_REF] Arnoux | Représentation géométrique des suites de complexité 2n+1[END_REF] r := 1 2 -τ.

Moreover, the parameters (x 1 , x 2 , x 3 ) do not change on a real-rel leaf. This extends the equality in the Proposition 9 to, on the right, all of the maps in CET 3 τ and, on the left, the family of real-rel deformations of Arnoux-Rauzy maps.

6.3. Arithmetic orbits of real-rel leaves and billiard trajectories. -For the following study of the family CET 3 τ with τ ∈ S 1 we suppose, without loss of generality, τ ∈ [0, 1/2]. Indeed, a map

F + τ := F l1,l2,l3 τ ∈ CET 3 τ is conjugated to a map F - 1-τ := F l3,l2,l1 1-τ ∈ CET 3 τ via a change of orientation, F + τ = i • F - 1-τ • i.
Here i is a global involution on S 1 , i : p → 1 -p. In particular, this means that the maps in CET have extra symmetries and commute with a global involution as noticed in [paragraph 4.1, [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]].

Lemma 3. -Take any triple (x 1 , x 2 , x 3 ) ∈ ∆ 2 \ ∂∆ 2 . Let T := T x1,x2,x3 ∈ AR(S 1
) and X := X x1,x2,x3 an associated translation surface. Then for any r ∈ 0, 1 2 the following holds: 1. let T r be a first-return map on a horizontal transversal of a vertical flow on X r in a real-rel leaf of X.

Then T r = F 2 with F = F l1,l2,l3 τ ∈ CET 3 τ defined by ( 5) and (6); 2. for any point p ∈ S 1 the displacement T r (p) -p belongs to a finite set {0, ±l j | j ∈ N ∆ }; 3. moreover, if r ≤ min{x j } 3 j=1 , then for any p ∈ S 1 , T r (p) -p = 0 and the map T r : S 1 → S 1 is a 6-IET with the intervals of continuity

I ± j , |I ± j | = xj 2 ± r, j ∈ N ∆ .
Proof. -For r = 0, the statement of this Lemma is equivalent of that of Proposition 9. Moreover, the point 1. follows from the discussion above, since X is a double-cover of a projective plance with a first-return map equal to F l1,l2,l3

1/2
. Suppose now that r ∈ 0, min j xj 2 or, equivalently, 1/2 > τ > max(l j ). By a direct calculation, the map F 2 has 6 intervals of continuity:

I + 2 := (l 2 + τ, 1) , I - 2 := (0, τ -l 2 ) , I + 3 := (τ -l 2 , l 1 ) , I - 3 := (l 1 , l 1 + τ -l 3 ) , I + 1 := (l 1 + τ -l 3 , l 1 + l 2 ) , I - 1 := (l 1 + l 2 , l 2 + τ ) .
The lengths of these intervals verify

|I ± j | = xj 2 ± r.
Then one has ( 7)

I 1 = I - 2 ∪ I + 3 , I 2 = I - 3 ∪ I + 1 , I 3 = I - 1 ∪ I + 2 ,
for the intervals I j , j ∈ N ∆ of continuity of F . The map F is an orientation reversing isometry on each of the intervals I ± j , j ∈ N ∆ and for any couple (j, k),

with j = k, |I + j | + |I - k | = (x j + x k )/2 = |I - j | + |I + k |.
This implies that the previous decomposition can be rewritten as

I 1 = F (I - 3 ) ∪ F (I + 2 ), I 2 = F (I - 1 ) ∪ F (I + 3 ), I 3 = F (I - 2 ) ∪ F (I + 1 ),
and this decomposition is written with respect to the order on the circle. Then, one concludes by applying F one more time that the map T = F 2 maps the intervals I ± j onto the circle in a way that the intervals of the same index map to the neighbouring intervals but change the respective order.

The intervals I ± j can be distinguished by their symbolic dynamics, e.g.

I + 1 = {p ∈ S 1 : p ∈ I 2 , F (p) ∈ I 3 }.
Analogically, the first steps of accelerated symbolic codes of I - 1 , I + 2 , I - 2 , I + 3 , I - 3 are cb, ca, ac, ab and ba correspondingly. The displacement for every p ∈ I ± j , j ∈ N ∆ can be calculated explicitely by the use of these codes. The displacement is equal to zero if and only if F has a 2-periodic interval (this happens if and only if τ ≤ max(l j )). Remark 2. -From the point of view of triangle tiling billiards, the inclusion T r (p) -p ∈ {±l j } represents a change of the direction of a trajectory after two refractions, see Figure 14 and [Theorem 3.6, [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]]. If the displacement for a map F ∈ CET 3 τ is equal to 0, there is no corresponding billiard trajectory. The six-element set {±l j } has also been considered in relation to the artihmetic orbits of Arnoux-Rauzy maps by P. Hopper and B. Weiss in [START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF], see their Proposition 4.6. The set of displacement values of T r doesn't depend on r.

We now define the arithmetic orbits of the family of squares of the maps in the family CET 3 τ , here we follow [START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF]. For any map

F = F l1,l2,l3 τ ∈ CET 3 τ , let T := F 2 .
Let H be a group of rotations of S 1 = R/Z generated by six numbers ±l j , j ∈ N ∆ . Denote Γ the Cayley graph of H with respect to these six generators. Consider a periodic triangle tiling with the angles of tiles defined by the relation [START_REF] Affolter | Miquel Dynamics, Clifford Lattices and the Dimer Model[END_REF]. We embed Γ to the plane to be the set of edges connecting the barycenters of all positively oriented triangles in this tiling. A point p ∈ S 1 defines an embedded curve in the graph Γ, i.e. a sequence of elements h n ∈ H such that T n (p) -p = h n mod Z. We call {h n } the arithmetic orbit of p.

On a corresponding triangle tiling billiard the piece-wise linear curve γ(p) (p and τ here define the initial conditions of the trajectory) starting in a barycenter of θ 0 , and visiting the barycenters of the crossed tiles of the same orientation, coincides with the arithmetic orbit of p. This implies that the study of arithmetic orbits of the Arnoux-Rauzy maps and their real-rel deformations is equivalent to the study of triangle tiling billiard trajectories which are finer objects since they make two steps when an arithmetic orbit makes only one.

Note. -For all of the maps T = F 2 with F ∈ CET 3 τ their SAF invariant (see [START_REF] Arnoux | Un invariant pour les échanges d'intervalles et les flots sur les surfaces[END_REF] for definition) is zero. More generally, a square of any fully flipped IET has a zero SAF invariant. This statement has already been proven in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] but we now give a simpler proof which is a remark by Victor Kleptsyn. A fully flipped map F : S 1 → S 1 can be represented as a composition F = i • H with H ∈ IET(S 1 ) and i the global involution on

S 1 . Obviously, SAF (i • H • i) = -SAF (H). Since SAF : IET → R ∧ Q R is a group homomorphism, we have: SAF (F 2 ) = SAF (i • H • i • H) = SAF (i • H • i) + SAF (H) = -SAF (H) + SAF (H) = 0.

Renormalization

A goal of this Section is to describe a renormalization process on the family CET 3 τ .

7.1. Complete periodicity and integrability. -First,we deal with several simple cases.

For any map F ∈ CET 3 τ we say that an interval I ⊂ S 1 is k-periodic if F k | I = id for some k ∈ N * (and such k is minimal). We call the set P F of all k ∈ N * such that there exists a k-periodic interval, the set of interval periods of the map F . Lemma 4. -Fix (l 1 , l 2 , l 3 ) ∈ ∆ 2 and τ ∈ [0, 1 2 ]. Then, the following holds for F = F l1,l2,l3 τ ∈ CET 3 τ : 1. if τ ≤ max(l j ) then F is completely periodic. Moreover, if τ ∈ (0, min(l j )] then P F = {2, 6}. If τ ∈ (min(l j ), mid(l j )] then P F = {2, 4n + 2, 4n + 6}, where n = τ min(lj ) ∈ N * . In particular, if l j > 1 2 for some j, and τ ≤ 1 -l j then F is completely periodic; 2. if l j > 1 2 for some j, and τ > 1 -l j , then for any point p ∈ S 1 either F 2 (p) = p or F 2 (p) = R κ where R κ is a rotation by κ = l3 l2+l3 , defined on an entire interval I (with its endpoints identigied). This interval is defined as a connected component of points q such that F 2 (q) = q, containing p;

3. the set P F is finite in any of these cases, and P F ⊂ {4n + 2 | n ∈ N * } for point 1. and in point 2. it is as well if κ / ∈ Q.

Proof. -We suppose that l 1 ≥ l 2 ≥ l 3 . Define for any j ∈ N ∆ the sets (8) K j := I j ∩ F (I j ).

If τ ≤ l 3 , then F 2 | ∪j Kj = id and the complement splits into 3 intervals in the same 6-orbit.

Second, if τ ∈ (l 3 , l 2 ], then F has two 2-periodic intervals K 1 and K 2 . Denote I - 1 := (0, l 3 ),

I + 1 := (l 3 , τ ), I - 2 := (l 1 , l 1 + τ -l 3 ), I + 2 := (l 1 + τ -l 3 , l 1 + τ ). Then [0, 1] = I - 1 I + 1 K 1 I - 2 I + 2
K 2 I 3 and we have a following chain of images:

(0, l 3 ) = I - 1 F -→ I + 2 → I 3 F -→ (τ -l 3 , τ ) ⊂ (0, τ ); (l 3 , τ ) = I + 1 F -→ I + 2 F -→ (0, τ -l 3 ) ⊂ (0, τ ).
Then in restriction to (0, τ ) the first return map F of F is a 2-interval exchange transformation with combinatorics

I - 1 I + 1 I + 1 I - 1
, where the flopped intervals are marked with bars, see [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] for more details on the notation.

By [START_REF] Keane | Interval exchange transformations Math[END_REF], such map is completely periodic, with P F = {2n, 2n + 2}, where

|I - 1 | |I - 1 |+|I + 1 | = l3 τ ∈ [ 1 n+1 , 1 n ).
This gives

P F = {4n + 2, 4n + 6}.
Finally, suppose τ ∈ (l 2 , l 1 ], then K 1 is the only 2-periodic interval for F . Consider now a subdivision:

I 1 = I - 1 ∪ I 0 1 ∪ I + 1 ∪ K 1 , I 2 = I - 2 ∪ I + 2 , I 3 = I - 3 ∪ I + 3 , with
I - 1 := (0, τ -l 2 ), I 0 1 := (τ -l 2 , l 3 ), I + 1 := (l 3 , τ ) I - 2 := (l 1 , τ + l 1 -l 3 ), I + 2 := (τ + l 1 -l 3 , l 1 + l 2 ) I - 3 := (l 1 + l 2 , l 1 + τ ), I - 3 := (l 1 + τ, 1).
Then we have a following chain of images:

I - 1 F -→ I + 3 F -→ (l 2 , τ ) ⊂ (0, τ ) I 0 1 F -→ I + 2 F -→ I + 3 F -→ (τ -l 3 , l 2 ) ⊂ (0, τ ) I + 1 F -→ I - 2 F -→ (0, τ -l 3 ) ⊂ (0, τ ).
This gives that the first-return map on (0, τ ) has the combinatorics

I - 1 I 0 1 I + 1 I + 1 I 0 1 I - 1
, with the lengths of its

intervals of continuity |I - 1 | = τ -l 2 , |I 0 1 | = l 2 + l 3 -τ, |I + 1 | = τ -l 3 .
This first return map is completely periodic since the Nogueira-Rauzy induction (see [START_REF] Nogueira | Almost all interval exchange transformations with flips are nonergodic, Ergodic Theory Dynam[END_REF][START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] for more details) for this map stops, and its Rauzy diagram is finite. Indeed, one has a following Rauzy diagram:

(9) I - 1 I 0 1 I + 1 I + 1 I 0 1 I - 1 |I + 1 |>|I - 1 | |I - 1 |>|I + 1 | I - 1 I 0 1 I + 1 I + 1 I - 1 I 0 1 |I 0 1 |>|I + 1 | → I - 1 I + 1 I 0 1 I + 1 I - 1 I 0 1 |I + 1 |>|I - 1 | → I - 1 I + 1 I 0 1 I - 1 I + 1 I 0 1 .
We do not give a full Rauzy diagram but only one of its parts, since the diagram is symmetric with respect to the exchange of I - 1 and I + 1 . After a finite number of steps of the Rauzy-Nogueira induction, one obtains a completely periodic map (indeed, a permutation on the right in ( 9) is completely periodic). This proves the point 1.

For the point 2., if l 1 > 1 2 and τ > 1 -l 1 then we have 0 < l 1 + τ -1 < τ < l 1 . Then the map F has two 2-periodic intervals I - 1 := (0, l 1 + τ -1) and I + 1 := (τ, l 1 ), I -

1 ∪ I + 1 = K 1 .
The first return map F 2 on the interval I 2 ∪ I 3 = (l 1 , 1) coincides with a rotation R κ with with κ = l3 l2+l3 . Finally, for all the maps studied above the elements of P F have the form {4n + 2 | n ∈ N} (except for the point 2. and κ ∈ Q that may induce periods of the form 4n, n ∈ N). The set P F is always finite. Remark 3. -In terms of triangle tiling billiards, the maps from Lemma 4 are integrable, i.e. the corresponding trajectories are either periodic (correspond to periodic intervals of period different from 2) or linearly escaping (correspond to the intervals of rotation in point 2. of the Lemma 4). The point 2. characterizes the linear escape on the obtuse triangle tilings. The point 1. corresponds to the trajectories that start far enough from the circumcenter and are periodic. For more on the integrability for tiling billiards, see [Section 5, [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]].

0 1 l 1 0 1 τ τ -l 3 τ -l 2 l 1 + τ -l 3 Figure 15.
Interval S3 of the induction. Here F = F l 1 ,l 2 ,l 3 τ ∈ CET 3 τ with the parameters satisfying the relations l3 < l2 ≤ l1 and τ ∈ l1, 1 2 . One step of renormalization gives a map R3F which is a rescaled first return map on the interval S3. The middlepoint of S3 is equal to τ + l1 -1 2 and coincides with a singularity l1 and only if τ = 1 2 .

l 3 x 3 l 1 τ -l 3 τ τ -l 2 l 1 + τ -l 3 Figure 16.
First return map on S3 is a fully flipped interval exchange transformation with dynamics defined by( 10) and [START_REF] Avila | On the Hausdorff dimension of the Rauzy gasket[END_REF]. By regluing the extremities of S3, a singularity between J 1 c and J 2 c dissapears.

7.2. Renormalization process. -Now we are ready to define the renormalization process on the family CET 3 τ : we will do it for all the cases that were not covered by the Lemma 4.

Theorem 9. -Take a map F = F l1,l2,l3 τ ∈ CET 3 τ with τ ∈ [0, 1 2 ]. Let max{l j } 3 j=1 ≤ 1 2 and τ > max{l j } 3 j=1 . Define x j and r via the relations (5) and (6). Then the following holds.

1. A map T = F 2 : S 1 → S 1 is a 6-IET with intervals of continuity I ± j of lengths |I ± j | = xj 2 ± r, j ∈ N ∆ . Moreover, I + j and I - j are neigbouring in the preimage, and their images T (I + j ) and T (I - j ) are neighbouring in the image. 2. Suppose that l j = min{l j } 3 j=1 for some j ∈ N ∆ . Consider the interval S j := I + j ∪ I - j =: (s - j , s + j ) and reglue its endpoints to obtain a circle S j /s - j ∼ s + j . Then a first return map on this circle is well-defined. Let R j F : S 1 → S 1 be its rescaling back to the unit circle. Then R j F ∈ CET 3 τ and its parameters (l 1 , l 2 , l 3 , τ ) ∈ ∆ 2 × [0, 1/2] are defined as follows: (l 1 , l 2 , l 3 ) is th image of (l 1 , l 2 , l 3 ) under the fully subtractive algorithm, and

τ = 1 2 -r , r = r |S 3 | ≥ r.
3. A map R j F has a 2-periodic interval if and only if l j ≥ 1 4 -r 2 . We call the interval I j the interval in play.

Proof. -The point 1. follows from the proof of Lemma 3. As already mentionned before, the inequality τ > l j is equivalent to the absence of 2-periodic intervals for F .

In the following we suppose that l 3 = min{l j } 3 j=1 or, equivalently, x 3 = max{x j } 3 j=1 . Then S 3 = (τ -l 2 , l 1 + τ -l 3 ) and we study the first return map on S 3 , see Figure 15.

Cut each of the intervals I + 3 and I - 3 into two subintervals by points l 3 and x 3 correspondingly. Then

I + 3 = J 2 3 ∪ J 1 and I - 3 = J 2 ∪ J 1 3
, where the intervals J 1 , J 2 , J 1 3 and J 2 3 are defined by

J 1 3 := (l 1 + l 2 -l 3 , l 1 -l 3 + τ ) , J 2 3 := (τ -l 2 , l 3 ) , J 1 := (l 3 , l 1 ) , J 2 := (l 1 , l 1 + l 2 -l 3 ) .
We see that

|J 1 | = x3-x1 2 = l 1 -l 3 , |J 2 | = x3-x2 2 = l 2 -l 3 and |J 1 3 | + |J 2 3 | = x2 2 -r + x1 2 + r = l 3 .
Moreover, the interval S 3 is cut into four disjoint intervals in the following order: (10)

S 3 = J 2 3 J 1 J 2 J 1 3 .
One can easily see that F (J 1 ) ∪ F (J 2 ) ⊂ S 3 , and that F (J 1 ) is put to the right end of S 3 , and F (J 2 ) is put to the left end of S 3 by the dynamics. For the intervals J 1 3 and J 2 3 , one has the following chains of iterations:

J 1 3 F -→ I - 2 F -→ (l 1 + l 2 , l 1 + τ ) F -→ (l 2 , τ ) ⊂ S 3 , J 2 3 F -→ I + 1 F -→ (l 1 + τ, 1) F -→ (τ -l 3 , l 2 ) ⊂ S 3 .
Hence the first return map on S 3 coincides with F 3 in restriction to J 1 3 ∪ J 2 3 , see Figure 16. Finally, we conclude that the images of the four intervals J 1 , J 2 , J 1 3 , J 2 3 under the first return map cover S 3 without intersection. Indeed, we have ( 11)

S 3 = F (J 2 ) F 3 (J 2 3 ) F 3 (J 1 
3 ) F (J 1 ). Hence after regluing the ends of S 3 together and rescaling, we obtain a map R 3 F ∈ CET 3 τ with three intervals of continuity: the (rescaled) intervals J 1 , J 2 and

J 3 = J 1 3 ∪ J 2 3 . The direct calculation shows that τ = τ -l3 |S3| . By writing out τ = l1+l2+l3 2 -r we conclude τ = 1 2 -r |S3| . Thus the point 2. is proven. Since τ > l j ,F (J 2 ) ∩ J 2 = ∅ and F (J 1 ) ∩ J 1 = ∅ since τ > l j . Finally, F 3 (J 1 3 ) ∩ J 1 3 = ∅ is equivalent to the inequality l 1 + l 2 -l 3 ≤ τ ⇔ l 3 ≥ 1 4 + r 2 . Analogously, F 3 (J 2 3 ) ∩ J 2 3 = ∅ is equivalent to the analogous inequality τ -l 3 ≤ l 3 ⇔ l 3 ≥ 1 4 -r 2 .
By uniting these two inequalities, we finish the proof of point 3.

We now define the renormalization process on the family CET 3 τ as follows. Take any map F ∈ CET 3 τ and let k = 0, F 0 = F . If the conditions of Theorem 9 do not hold (equivalently, conditions of Lemma 4 do hold) for it, we say that the renormalization process stops for the map F . If these conditions do hold, that defines the index t 1 ∈ N ∆ of the interval in play and a map R t1 F ∈ CET 3 τ . One continues by recurrence. On the k-th step of the renormalization process (it if is defined), one obtains a map F k ∈ CET 3 τ defined by ( 12)

F k = R t k • . . . • R t1 F.
Here {t k } ∈ N N ∆ is a sequence of indices corresponding to the intervals in play. Let λ := (l 1 , l 2 , l 3 , τ ) ∈ ∆ 2 × [0, 1 2 ] a vector of parameters for any map F ∈ CET 3 τ . Then we denote by {λ (k) } k∈N a sequence of such vectors corresponding to the maps F k . Here λ (k) = (l

(k) 1 , l (k) 2 , l (k) 3 , τ (k) ) ∈ ∆ 2 × [0, 1/2].
The corresponding vectors (x 1 , x 2 , x 3 , r) are also defined in an analogous manner via ( 5) and [START_REF] Arnoux | Représentation géométrique des suites de complexité 2n+1[END_REF].

We denote by S (k) ⊂ S 1 a set of definition of F k , considered as a subset of the initial circle S (0) , for any k ∈ N * . Obviously, the lengths S (k) diminish along the renormalization process since S (k) ⊂ S (k-1) . Remark 4. -From the proof of Theorem 9 follows that one step (for example, F → R 3 F ) of the renormalization process corresponds to one step of the fully subtractive algorithm: [START_REF] Berthé | Balance properties of Anoux-Rauzy words[END_REF] l

2 : l

(1) 3 = [l 1 -l 3 : l 2 -l 3 : l 3 ].
The renormalization process in itself does not depend on the parameter τ (although the moment it stops does depend on τ ). In coordinates x j , the map ( 13) is nothing else than the Rauzy subtractive algorithm.

The fully subtractive algoritm is defined for all triples of l j . Hence the Rauzy subtractive algorithm can be expanded to any triple (x 1 , x 2 , x 3 ) with x j ∈ [-1, 1], not necessarily positive, and it always continues with the index j in play for x j = max{x j } 3 j=1 . Define the simplex ∆ ± 2 as a convex hull of the points (1, 1, -1), (1, -1, 1) and (-1, 1, 1). Then the Rauzy gasket is a part of ∆ ± 2 on which the fully subtractive algorithm is chaotic, and it is the complement of the three basins of attraction. This idea has been formulated in [START_REF] Arnoux | The Rauzy gasket, Birkhäuser Boston. Further Developments in Fractals and Related Fields[END_REF] by P. Arnoux and S. Starosta, see in particular their Figure 10. In terms of triangle tiling billiards, the fully subtractive algorithm is a renormalization on tilings, sending one tiling to an a priori different one. τ is minimal if and only if τ = 1 2 and (x 1 , x 2 , x 3 ) ∈ R. Our initial proof of this result with P. Hubert was based first, on Theorem 8 by Arnoux-Rauzy and second on the explicit study of (big) Rauzy graphs of 4-IET with flips. Indeed, we have proven the existence of an invariant of these graphs that implied the hyperbolicity of the Rauzy-Nogueira induction in the neighbourhood of the repelling hyperplane {τ = 1 2 }. Although, the standard Rauzy-Nogueira induction is not the most appropriate tool to study the families of fully flipped maps since already one step of this induction gets out of such family. The renormalization process we propose above gives a much smaller graph -one vertex.

Here is a standard Lemma 5. -Consider a map F ∈ CET 3 τ and the renormalization process for this map. Then a map F is minimal if and only if the renormalization process is infinite, and lim k→∞ |S (k) | = 0. Now we are ready to prove Theorem 10.

Proof. -Take a map F ∈ CET 3 τ with a vector λof parameters. If the renormalization process reaches the k-th step, then for the map F k ∈ CET 3 τ , k ∈ N * defined by [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF] we have

λ (k) = A t k λ (k-1) ,
where t k ∈ N ∆ are the indices of intervals in play and the matrices A j , j ∈ N ∆ are defined explicitely by

A 1 :=     1 0 0 0 -1 1 0 0 -1 0 1 0 -1 0 0 1     , A 2 :=     1 -1 0 0 0 1 0 0 0 -1 1 0 0 -1 0 1     , A 3 :=     1 0 -1 0 0 1 -1 0 0 0 1 0 0 0 -1 1     . Define now B j := A -1 j T , j ∈ N ∆ . Then B 1 =     1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1     , B 2 =     1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1     , B 3 =     1 0 0 0 0 1 -1 0 1 1 1 1 0 0 0 1     . A map F ∈ CET 3 1 2
if and only if (λ, v ⊥ ) = 0 for v ⊥ := (1, 1, 1, -2). Moreover, the vector v ⊥ is invariant for all three matrices B j , j ∈ N ∆ , i.e. B j v ⊥ = v ⊥ . This implies that

λ (0) , v ⊥ = A -1 t1 • . . . • A -1 t k λ (k) , v ⊥ = λ (k) , B t k • . . . B t1 v ⊥ = λ (k) , v ⊥ = S (k) -2τ (k) S (k) .
This calculation gives that τ

(k) = 1/2 - (λ (k) ,v ⊥ ) |S (k) | . Then r (k) = r (0) |S (k) | .
Suppose now that F is minimal. Hence necessarily by Lemma 4, all renormalized maps F k satisfy the conditions of Theorem 9. Then, by Lemma 5, one obtains that if λ (k) , v ⊥ = 0, then r (k) tends to -∞ while k → ∞ which is impossible since r (k) ∈ [0, 1 2 ]. Hence necessarily λ (k) , v ⊥ = 0 and τ (0) = τ (k) = 1 2 . Then, for F ∈ CET 3 to be minimal, by Theorem 9, for every k ∈ N * the following inequality should hold: [START_REF] Chelkak | Russkikh Dimer model and holomorphic functions on T-embeddings of planar graphs[END_REF] l

(k) t k < 1 4 - r (k) 2 .
Since r (k) = 0, this implies l (k)

t k < 1
4 for all k ∈ N * . In terms of parameters x t k these are equivalent to x (k)

t k > 1 -x (k) t k which, by definition gives (x 1 , x 2 , x 3 ) ∈ R.
To prove the inverse statement,one can directly reference Theorem 8 and Proposition 9. Or, alternatively, if

F ∈ CET 3 1 2
with the parameters (x 1 , x 2 , x 3 ) ∈ R, then the renormalization is always defined and S (k) → 0. This implies the minimality by Lemma 5.

Classification of dynamics of triangle tiling billiards

We use the renormalization process on the family CET 3 τ and tiling billiard foliations in order to completely describe the dynamics of triangle tiling billiards.

8.1. Symbolic dynamics of triangle tiling billiards. -Now we prove the points 4. and 5. of Theorem 1, and confirm a so-called 4n + 2 Conjecture in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF].

Proof. -For any periodic billiard trajectory, consider a corresponding map F ∈ CET 3 τ and periodic interval I of F . The map F is not minimal, and hence, the renormalization process stops for F . Then, by Theorem 9 and Lemma 4, I is necessarily flipped on itself or is periodic under a rational rotation R κ (point 2. in Lemma 4). In the latter case, a map F can be perturbed by a slight change of parameters (l 1 , l 2 , l 3 ) ∈ ∆ 2 in order for κ = l3 l2+l3 / ∈ Q. Then, the corresponding periodic interval disappears which is not the case for periodic orbits of triangle tiling billiards, see point 3. in Theorem 1. Indeed, this second case defines drift-periodic orbits. Hence, I is flipped on itself after a certain (odd) number of iterations, which proves the statement. Now let us relate the symbolic dynamics of F ∈ CET 3 τ with that of its renormalization RF ∈ CET 3 τ .

Proposition 10. -Consider one step of the renormalization process on CET 3 τ . Then for any orbit of the induced map R j F, j ∈ N ∆ , the symbolic code of a corresponding orbit of F is obtained via the substitution σ j , where

σ 1 :        a → bca, if a precedent symbol was not b, a → cba, if a precedent symbol was not c, b → b, c → c.
;

σ 2 :        a → a, b → acb, if a precedent symbol was not a, b → cab, if a precedent symbol was not c, c → c ; ( 15 
)
σ 3 :        a → a, b → b, c → bac, if a precedent symbol was not b, c → abc, if a precedent symbol was not a.
Consequently, if F k is defined by [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF] then the symbolic code of any orbit of F is deduced from a symbolic code of a corresponding orbit of F k by applying to it a substitution σ t1 • . . . σ t k .

Proof. -The proof follows from the proof of Theorem 9 and uses its notations. Suppose that j = 3. Then any orbit of the map F passes by a Poincaré section S 3 . Moreover, for any point p ∈ J 1 ∪ J 2 , its F -and

R 3 F - orbits coincide, hence σ 3 (a) = a, σ 3 (b) = b. Finally, J 1 3 ⊂ I 2 , F (J 1 3 ) ⊂ I 1 , F 2 (J 1 3 ) ⊂ I 3 and J 2 3 ⊂ I 1 , F (J 2 3 ) ⊂ I 2 , F 2 (J 2 
3 ) ⊂ I 3 . Since both J 1 3 and J 2 3 both have the symbolic code c, σ 3 is defined conditionally.

8.2.

Complete description of the dynamics of triangle tiling billiards. -Now we are ready to prove Theorem 4 which is a much stronger version of Theorem 2 proven in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF].

Proof. -First, via the relations ( 2) and ( 5), we have ρ ∆ = (x 1 , x 2 , x 3 ). We now study the dynamics of a subfamily of maps in CET 3 τ with fixed (x 1 , x 2 , x 3 ) and varying τ , which corresponds to the study of the dynamics of a tiling billiard on a fixed tiling. Take a map F in this family.

Step 1. If the renormalization process stops for F , then by Lemma 4, all the corresponding billiard trajectories are either periodic or linearly escaping. Indeed, we have that τ (k) ≤ max{l

(k) j } 3 j=1 or l (k) j
> 1 2 for some j ∈ N ∆ . In both cases, the dynamics of the map F k is integrable, and hence is that of F .

If ρ ∆ / ∈ R, the renormalization process will necessarily stop, see Theorem 10.

Step 2. Take ρ ∆ / ∈ R. The linearly escaping behaviour exists on a corresponding tiling if and only if for some k ∈ N * , the map F k verifies the conditions of point 2. in Lemma 4. An additional calculation shows that it is indeed true for all ρ ∆ ∈ R \ E. The argument goes as follows.

Suppose that there exists some k ∈ N * such that l (k+1) i = 0 for all i ∈ N ∆ and ( 16)

l (k+1) j > 1 2 |S (k+1) |, and ∀m < k max{l (m) i } 3 i=1 ∈ [0, 1 2 
).

In the above relation, necessarily j = t k . Indeed, since max{l

(k) j } 3 j=1 < 1 2 for j = t k , we have l (k) j -l (k) t k < 1 2 1 -2l (k) t k which is equivalent to l (k+1) j < 1 2 .
Although, it is possible that ( 16) holds for j = t k . This condition can be rewritten as [START_REF] Davis | Interval exchange transformations from tiling billiards[END_REF] l

(k+1) t k > 1 2 |S (k+1) | ⇐⇒ l (k) t k > 1 2 (|S (k) | -2l (k) t k ) ⇐⇒ l (k) t k > 1 4 |S (k) |.
But the last inequaity holds for all ρ ∆ / ∈ R ∆ for some k ∈ N * . This implies that if l (k+1) i

= 0 for all i ∈ N ∆ then the linearly escaping behavior does occur on the triangle tiling defined by ρ ∆ . Indeed, it suffices to take τ (k+1) = τ (0) = 1 2 , by Lemma 4. The case which is left is to study is what happens if for some i = t k , l

(k) i = l (k) t k (and hence l (k+1) i = 0). First, l (k) 1 = l (k) 2 = l (k) 3 = 1
3 is equivalent to ρ ∈ E. Since the dynamics on the equilateral triangle tiling is 6-periodic, then for any ρ ∆ ∈ E, by Theorem 9, all of the tiling billiard trajectories on the tiling defined by ρ ∆ , are periodic.

Otherwise, if there exists only one j = k such that of l

(k) j = l (k)
t k coincide, without loss of generality we can suppose t k = 3 and j = 2. Then l

(k) 3 = l (k) 2 ∈ [ 1 4 , 1 3 ) and l (k) 1 ∈ ( 1 3 , 1 2 ]. Take τ (0) = 1 2 , then τ (k) = 1 2 .
Then a map F k is explicitely verified to have two types of orbits: fully flipped intervals of periods 6 (corresponding to periodic orbits) and a periodic interval of period 4 which corresponds to a periodic linear drift Our argument also shows that 4 is the shortest period of the drift behaviour in a triangle tiling billiard. This implies that F has necessarily drift periodic orbits.

Step 3. If ρ ∆ ∈ R and τ = 1 2 , all corresponding trajectories are periodic. Indeed, it follows from Lemma 4, since the renormalizaiton stops at some step k ∈ N * with max{l (k) j } < 1 2 . For τ = 1 2 , F is minimal by Theorem 10, and the corresponding trajectories escape. The inverse is true as well: escaping trajectories exist only for τ = 1 2 .

Step 4. Finally, as shown in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF], drift-periodic behaviour only occurs if (l 1 , l 2 , l 3 ) ∈ Q 3 . This also follows obviously from renormalization. Moreover, the arguments above show that for any tiling such that (l 1 , l 2 , l 3 ) ∈ Q 3 \ E the drift-periodic trajectories exist, and only for them.

Step 5. First, for a tiling with ρ ∆ ∈ R the set {G δ ∆ } of trees bounded by periodic trajectories is countable. Indeed, the symbolic codes of periodic trajectories coincide with the set {σ t1 •. . .•σ t k abcabc} k∈N , by Proposition 10. Second, for a tiling with ρ ∆ / ∈ R, the number of possible periodic behaviours is finite. Indeed, it is obviously true for any ρ ∆ ∈ E and for ρ ∆ / ∈ E, the renormalization process stops at some obtuse triangle tiling on the step k. On this tiling, realizable trajectories with τ ∈ (1 -max{l (k) j }, 1 2 ] linearly escape by Lemma 4. For the tiling obtained on the k step, and τ (k) = 1 -max{l (k) j }, the periods of corresponding trajectories are bounded. All of the other combinatorial behaviors are obtained by contraction of flowers inside these trajectories, hence the set of these is finite. Finally, the statement about the symbolic dynamics of linear escaping trajectories follows directly from point 2. in Lemma 4 and Proposition 10.

Example.

The set E is a countable set of preimages of a point [1 : 1 : 1] ∈ ∆ 2 under the fully subtractive algorithm that defines all of the triangle tilings on which billiard trajectories are always periodic. For example, a point [1 : 2 : 2] corresponds to a tiling by triangles with angles 36 • , 72 • , 72 • and all billiard trajectories in it have periods 6 or 10. The question whether the equilateral triangle tiling is the only tiling permitting only periodic trajectories was initially asked by Serge Troubetzkoy. Theorem 4 gives a negative answer to it.

Arithmetic orbits of Arnoux-Rauzy surfaces and exceptional trajectories

We are especially interested in the real-rel deformations of minimal Arnoux-Rauzy maps and their symbolic dynamics. The arithmetic orbits of minimal Arnoux-Rauzy maps are in the direct correspondance with exceptional triangle tiling billiard trajectories , see paragraph 6.3. 9.1. Exceptional trajectories pass by all tiles. -We remind our reader that by definition, the exceptional trajectories are those that are defined in the triangle tilings with ρ ∆ ∈ R and pass through the circumcenters of crossed tiles.

Theorem 11. -For any exceptional triangle tiling billiard trajectory δ the following holds:

1. if δ doesn't pass by any vertex of a tiling, then it passes by the interiors of all tiles. 2. if δ passes by some vertex v ∈ V (is a singular ray) there exist 5 additional singular rays in a corresponding flower such that the union of these six rays passes by all tiles, and this union doesn't pass by any other vertex.

Proof. -First, for any ρ ∆ ∈ R, the corresponding triangles are acute. Consider a base tile θ 0 and the folding map F = F(θ 0 ). Let l be a chord in a bellow such that F(δ) ⊂ l.

Let δ be a non-singular trajectory, hence l ∩ F(V ) = ∅. Suppose that δ doesn't pass by all of the tiles. Hence there exists some tile θ in a tiling and its edge e such that δ ∩ θ = ∅ and δ ∩ θ e = ∅. Consider a leaf δ of the parallel foliation P δ passing by a circumcenter of θ e . Then δ = δ and δ ∩ e = δ ∩ e = ∅.

Consider now two singular segments of the foliation P δ in the tiles θ and θ e . One can easily see from the folding that these segments may pass by the same vertex v ∈ e. Then, the corresponding singular trajectories are periodic by Theorem 4 and have to coincide since δ and δ escape. We denote a corresponding periodic petal by δ τ1 , see Figure 17. Now consider a family {δ τ } τ ∈[τ1,1/2] of trajectories passing by θ, with δ 1 2 = δ. Since δ and δ are escaping and belong to the same foliation, the trajectory δ τ is periodic and passes by θ e for any τ = 1 2 . Moreover, we see that Ω δτ -⊂ Ω δτ + for any τ -, τ + ∈ [τ 1 , 1/2] such that τ -< τ + . Hence, by passing to the limit, the trajectories δ and δ can be both approached by a subsequence in a set of nested trajectories {δ τ } with τ → 1 2 . Hence δ ∩ δ = ∅. If δ is non-singular, then δ = δ and δ = lim τ → 1 2 δ τ and δ passes by all the triangles.

Otherwise, if δ ∩ δ = ∅ then necessarily δ ∩ δ = {v} for v ∈ V , then δ and δ are singular rays in some unbounded flower. Then the parallel foliaiton P δ has 6 singular rays going out in each of the tiles in Θ v since all the tiles are acute and the rays pass by a vertex and a circumcenter. Analogously to previous arguments, each of the sectors defined by these rays is foliated by sequences of periodic orbits with growing periods. Each ray separately spirals non-linearly to infinity.

Finally, a singular trajectory δ passing by a curcumcenter of a tile can't pass by two vertices of the tiling since there are no rational relationships between the angles of the tile with ρ ∆ ∈ R.

Obviously, a trajectory passing by all points can't be linearly escaping. Hence the Theorem 11 implies that all of the exceptional trajectories (singular and non-singular) are non-linearly escaping which proves our conjecture with P. Hubert from [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF].

It can be interesting to study the growing fractal forms to which the exceptional trajectories converge after reparametrization and corresponding spanning trees. We do it in the following for the family of exceptional trajectories corresponding to the Arnoux-Yoccoz map. 9.2. A missing link: the Arnoux-Yoccoz map and the Rauzy fractal. -Consider the Arnoux-Yoccoz map T a ∈ AR(S 1 ) defined in paragraph 6.2. By Lemma 3 and the vocabularly in the Table 1, we associate to it a map F a ∈ CET 3 with its length parameters defined by ( 18)

l 1 := 1 -a 2 , l 2 := 1 -a 2 2 , l 3 := 1 -a 3 2
and a periodic triangle tiling with ρ ∆ = (a, a 2 , a 3 ) defined by [START_REF] Davis | Negative refraction and tiling billiards[END_REF] and its angles

(19) α = π 2 (1 -a), β = π 2 (1 -a 2 ), γ = π 2 (1 -a 3 ).
A corresponding triangle is a Tribonacci triangle with α ≈ 41 • , β ≈ 63 • , γ ≈ 76 • , and a corresponding billiard is the Tribonacci billiard. This billiard is the simplest one from all those that admit exceptional trajectories. The symbolic dynamics of these trajectories coincides with the arithmetic orbits of the Arnoux-Yoccoz map, see paragraph 6.3. Here we prove their convergence to the Rauzy fractal. We first remind some standard definitions.

A Tribonacci substitution σ R acts on N ∆ N and is defined as an extension of the map σ R defined by

σ R :    1 → 12 2 → 13 3 → 1 .
The substitution σ R has a unique fixed point w R ∈ N ∆ N which is a sequence of letters w R,j ∈ N ∆ , j ∈ N and w R := 1213121121312 . . .. We interpret the sequence w R as an infinite ladder in the space R 3 =< e 1 , e 2 , e 3 > with standard cartesian coordinates and a standard basis. Each subsequent symbol w R,j ∈ N ∆ , j ∈ N is interpreted as an addition of the step e w R,j to the growing ladder. The infinite ladder constructed in this way has a principal direction. After projecting on a plane orthogonal to this direction, we consider the image of the set of endpoints. This set is, by definition, the Rauzy fractal and was defined by G. Rauzy in 1981, see [START_REF] Rauzy | Nombres algébriques et substitutions[END_REF].

To a classic Tribonacci substitution σ R one also associates a sequence of Tribonacci numbers, i.e. the sequence of lengths of iterations of the word 123 under the action of the substitution σ R : [START_REF] Glendinning | Geometry of refractions and reflections through a biperiodic medium[END_REF] T n+4 := |σ n R (123)| , n ∈ N. We also set T 1 = T 2 = T 3 := 1 . It is standard (and trivial) that for all n the following relation holds, generalizing the Fibonacci relation: [START_REF] Guenneau | Negative refraction in 2-D checkerboards related by mirror anti-symmetry and 3-D corner lenses[END_REF] T n+3 = T n+2 + T n+1 + T n , which can also be seen as the definition. This sequence is the A000213 sequence of the on-line encyclopedia [START_REF]Online encyclopedia of integer sequences[END_REF] of integer sequences [START_REF]Online encyclopedia of integer sequences[END_REF].

The following is based on the fact that the point ρ ∆ = (a, a 2 , a 3 ) ∈ ∆ 2 is a 3-periodic point of the Rauzy subtractive algorithm and equivalently, a triple ( 18) is a 3-periodic point of the fully subtractive algorithm. Indeed, we have a : a 2 : a 3 → aa 2 -a 3 : a 2 : a 3 = a 3 , a 2 , a . This implies that as an abstract tiling, the Tribonacci tiling is a fixed point of the renormalization. This also implies that the map F a is a fixed point of the renormalization algorithm. Although, the map R 1 F a has the labels of its intervals of continuity changed. By Theorem 10, the map F a is minimal hence all the corresponding exceptional trajectories are escaping, as already has been noticed in [START_REF] Baird-Smith | Tiling billiards on triangle tilings, and interval exchange transformations[END_REF]. Moreover, by Proposition 10, the symbolic dynamics of its generic point is an invariant point of the substitution σ := σ 1 • σ 2 • σ 3 with σ j defined explicitely by [START_REF] Coulbois | Tree substitutions and Rauzy fractals[END_REF]. Define a following map υ rel : A N ∆ → A N ∆ by extending via concatenation the following map on the letters in A ∆ :

υ rel :    a → b, b → c, c → a, .
Now let ς R := υ rel • σ 3 be a substitution on cyclic periodic words in the alphabet A ∆ . Since all the words in the orbit {ς j R (cba)} j are symbolic codes of Tribonacci tiling billiard trajectories, they do not contain two equal letters subsequently and in restriction to this orbit, one can define ς R as [START_REF] Guenneau | Perfect corner reflector[END_REF] ς R :

       a → b b → c c → cba, if a precedent symbol is a c → bca, if a precedent symbol is b .
We now define the factorization map υ fac on the words in A 2 ∆ (or, equivalently, on the even-length words in A ∆ ). Define υ fac : A 2 ∆ → N ∆ by extension of the map explicitely defined on the letters if A 2 ∆ by υ fac (ab) = υ fac (ba) := 3,

υ fac (ac) = υ fac (ca) := 2, υ fac (cb) = υ fac (cb) := 1.

Define for any map ϕ

: (A 2 ∆ ) N → (A 2 ∆ ) N its factorization ϕ * : (N ∆ ) N → (N ∆ ) N
as the solution of the commutative relationship: υ fac • ϕ = ϕ * • υ fac . The connection between σ R and ς R is now apparent through this factorization.

Proposition 11. -The factorizations σ * j , υ * rel and ς * R of the substitutions σ j , j ∈ N ∆ , υ rel and ς R are well defined. Moreover, even though the substitutions σ j are defined only for cyclic words, their factorizations σ * j are well defined for string words. Finally,

ς * R = σ R .
Proof. -This is a simple verification. First, for the action of σ 1 on two-letter words, we have that σ 1 (ba) = bcba and σ 1 (ab) = cbac bcab .

These three equations factorize correctly into one equation σ * 1 (3) = 13 which proves that σ * 1 (3) is well-defined. Similarly, σ 1 (ac) = cbac or bcac and σ 1 (ca) = cbca and σ * 1 (2) = 12 is well defined. The rest of verifications is done analogously and one obtains that the maps σ * j are well-defined on string words as extensions of the following substitutions:

σ * 1 :    1 → 1 2 → 12 3 → 13 , σ * 2 :    1 → 21 2 → 2 3 → 23 , σ * 3 :    1 → 31 2 → 32 3 → 3 .
The factorization of the map υ rel is obviously given by υ

* rel (1) = 2, υ * rel (2) = 3, υ * rel (3) = 1. The final calculation gives that ς * R = υ * rel • σ * 3 = σ R . For σ = (σ 1 • σ 2 • σ 3 ) we have σ * = σ * 1 • σ * 2 • σ * 3 = σ 3 R .
Example. -The image of the cyclic periodic word cbacba by σ and a corresponding relabelled sequence {w j } with w j = ς j-1 R cba , j ∈ N * , are calculated as follows:

w 1 = cba σ3 -→ bacba σ2 -→ cabacacba σ1 -→ w 4 = cbcabcbacbcacbcba, w 1 = cba ς R -→ w 2 = cbacb ς R -→ w 3 = bcacbcbac ς R -→ w 4 = cbcabcbacbcacbcba.
Since υ fac (cbacba) = 123, then by Proposition 11, we have υ fac (w j ) = σ j-1 R (123). As already noticed before, the words w j describe the complete set of symbolic codes of periodic trajectories of the Tribonacci billiard.

Let us now make the emerging connection between the Tribonacci billiard and the Rauzy fractal precise. Let us inroduce the following notations. We write U 1 = U 2 for two elements U 1 , U 2 ∈ A N ∆ if their corresponding cyclic words are equal and we write U 1 ≡ U 2 if these two elements coincide symbol by symbol as string words in A N ∆ . We define a sequence of words {s j } ∞ j=-2 , s j ∈ A N ∆ with s j ≡ s 1 j . . . s lj j , s i j ∈ N ∆ and l j = |s j | ∈ N * as follows. First let s -2 :≡ a, s -1 :≡ b, s 0 :≡ c, s 1 :≡ cba.

Then, for any j ∈ N * we deduce the word s j+1 by recurrence from s j . If s 1 j = c, let s j+1 :≡ ς R (s j ). Otherwise, if s 1 j = c, s j = c s 2 j . . . s lj j , we define the string s j+1 by

ς R (s j ) ≡ k j 1 k j 2 a ς R (s 2 j ) . . . ς R (s lj j ) = a ςR(s 2 j ) . . . ς R (s lj j ) k j 1 k j 2 ≡: s j+1 .
Here

(k j 1 , k j 2 ) = (b, c) if s lj j = b and (k j 1 , k j 2 ) = (c, b) if s lj j = a.
Of course, the equality of cyclic words s j+1 = ς R (s j ) holds.

Define the cyclic words w j := s 2 j . Obviously, as cyclic words, they are as above, the subsequent images of the word cba under the substitution ς R . Denote P j := |w j |, i.e. P j = 2l j . We also define the word w ∞ as a fixed point of ς R . In the following, we consider s j as string words and w j as cyclic words. The string words s j here coincide with the symbolic codes of a singularity for the maps F a r in the family of real-lef deformations for the Arnoux-Yoccoz map F a , with the parameter r → 0 as j → ∞. While interested in [START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF] in the dynamics of real-rel leafes of Arnoux-Yoccoz surfaces, P. Hooper and B. Weiss conjectured that the arithmetic orbits of the Arnoux-Yoccoz map T a converge to the Rauzy fractal in the Hausdorff topology, up to rescaling and uniform affine coordinate change. Subsequently, P. Baird-Smith, D. Davis, E. Fromm and S. Iyer, following the connection between the arithmetic orbits and trajectories of tiling billiards they have discovered, restated the Hooper-Weiss Conjecture in terms of triangle tiling billiards. The following Theorem gives a proof of their conjecture by including all of the real-rel deformations of the Arnoux-Yoccoz surface in one dynamical system, the Tribonacci billiard.

For any word w ∈ A N ∆ , if this word finishes by a word κ, we denote by w κ the word such that w = w κ κ.

Theorem 12 (Combinatorics of Tribonacci billiards). -Consider the Tribonacci billiard and its trajectory δ AY passing by a circumcenter of some tile. If δ AY is not singular then the following holds: 1. all of the non-singular leaves in P δ AY , except for δ AY , are periodic and δ AY passes by all tiles, 2. for any δ = δ AY in P δ AY (oriented counterclockwise), there exists j ∈ N * such that its symbolic code is equal to w j = ς j-1 R (cba),w j = s 2 j . The period of δ is then a doubled Tribonacci number 2T j+3 . Moreover, υ fac (w j ) = σ j-1 R (123) and υ fac (w ∞ ) = w R , 3. any trajectory δ ∈ P δ AY with its symbolic code w j defines a unique family Γ δ = {γ k , k ∈ N * } of flowers in P δ AY (except for γ 2 which is not a flower but a petal of a two-petal flower γ 3 ) with pistils in vertices v k ∈ V (for k = 2, we define v 2 = v 3 ) that satisfy the following properties: a. if j ≥ 3, the trajectory δ is contracted in the direction of its inside normal onto the flower γ j , if j = 1 then δ contracts on γ 0 = {v 1 }, if j = 2 it contracts on a one-petal flower γ 1 , b. every γ k ∈ Γ, k ∈ N * passes by all of the the six tiles in Θ v1 , c. for all k ∈ N * , a flower (petal) γ k has combinatorics w k (i.e. there exists a periodic trajectory close to this flower with this combinatorics), d. any γ k with k ≥ 4 is a flower with three petals, 4. the family Γ δ has the following autosimilarity properties:

4.1 for any k ≥ 4, a flower γ k has three petals with combinatorics w k-3 , w k-2 , w k-1 , and is contained inside the biggest petal of the flower γ k+1 ; a flower γ 3 has two petals of combinatorics w 2 , w 1 , a flower γ 1 also has one petal of combinatorics w 1 , 4.2 the string symbolic words s 2 k , j ∈ N ∪ {-2, -1} satisfy the following relationships, with ε(k) := k mod 3:

(23) (s k-3 • s k-3 ) * † (s 2 k-2 ) * (s 2 k-1 ) † ≡ s k-3 • ((s k ) 2 ) s k-3 = s 2 k = w k , where ( * , , †) : N * → A 3 ∆ is defined explicitely by ( * , , †) = (c, a, b) if ε = 0, = (a, b, c) if ε = 1, = (b, c, a) if ε = 2.
Moreover, the edges corresponding to the symbols †, * and in the representation [START_REF] Hooper | Negative Snell law tiling billiards trajectory simulations[END_REF] meet in v k . On each new step of the construction, the pistil v k+1 ∈ V is uniquely defined by first, v k+1 / ∈ Ω γ k and v k+1 ∈ e k where the edge e k is crossed by the smallest of the three petals of the flower γ k on the half of its length starting from v k (in the symbolic code [START_REF] Hooper | Negative Snell law tiling billiards trajectory simulations[END_REF], it corresponds to the middlepoint • marked on the right-hand side), 5. for any flower γ k , k ≥ 4, we denote by Ω 1 k , Ω 2 k , Ω 3 k the unions of all the tiles by which pass its petals, in the order of decreasing period. Then for a matrix A = -a 1 -1 -a 2 -1 defined in [START_REF] Rauzy | Nombres algébriques et substitutions[END_REF] one has (the two last lines, up to an isometry of the plane)

Ω 1 k+1 = Ω 1 k ∪ Ω 2 k ∪ Ω 3 k , Ω 2 k+1 = AΩ 1 k , Ω 3 k+1 = AΩ 2 k .
This implies that the sequence of curves A -k γ k approximates the Arnoux-Rauzy curve. Moreover, the sets of all barycenters of tiles in the partition

A -k Ω 1 k+1 = A -k Ω 1 k ∪ A -k Ω 2 k ∪ A -k Ω 3
k give a sequence of approximations of the Rauzy fractal. Finally, a sequence of curves {A -k δ AY } k∈N * on the plane converges to the Arnoux-Rauzy curve, in restriction to the fundamental domain which is a limit set of the sets A -k Ω k+1 in the Haudorff topology. The distance d(θ n , θ 0 ) between the triangle θ n that δ AY visits at its nth iteration and its initial triangle θ 0 verifies

d(θ n , θ 0 ) ∼ C • √ n, n → ∞.
Finally, if δ AY is singular (in some point v ∈ V ) then the corresponding foliation P δ AY has 5 additional singular rays entering the tiles in Θ v . Each of the sectors defined by these rays is foliated by sequences of periodic orbits with growing periods that approach Rauzy fractal, up to the reparametrization described above.

Proof. -The renormalization process defined in the Part II applied to the Tribonacci tiling translates to a construction of a growing sequence of flowers in the foliation P δ AY , and completely describes its dynamics.

The point 1. has been already proven in Theorem 11. The point 2. follows from Theorem 9, Proposition 10 and Proposition 11.

By Theorem 6, the periodic trajectories on one side of δ AY have the same winding. Fix a trajectory δ with symbolic dynamics w j . In order to construct the family Γ δ , we proceed as follows. We contract δ inside onto some flower, choose the biggest petal of this flower, and a periodic trajectory approaching this petal from inside, and repeat. Thus we construct a sequence of flowers γ k with diminishing periods till γ 0 := {v 0 }, with periods in the set of doubles Tribonacci numbers. It is known and easily proved that if p ∈ N * , p ≥ 8 then p has a unique Tribonacci representation p = i ε i T i , where ε i = 0, 1 and ε i ε i+1 ε i+2 = 0 for all i. This implies that for k ≥ 4, the petals of the flower γ k with combinatorics w k have combinatorics w k-1 , w k-2 , w k-3 for all k ≥ 4. The combinatorics of a sequence of flowers {γ j }, with small indices (for j ≤ 4), follows from explicit calculation, see Figure 18. By construction, all of the curves γ k pass by the six tiles in Θ v0 . This finishes the proof of point 3 and that of point 4.1.

The statement 4.2. is verified explicitely for all k ≤ 4. Let us now explain this statement for any k, by reccurence. For the flower γ k obviously, the word s k-3 • (s 2 k ) s k-3 coincides cyclically with w k . The left-hand side of ( 23) coincides with w k as well since a flower is a union of three petals, in the presented order. Indeed, the flower γ k-1 is mapped to γ k va renormalization and the pistil v k is mapped to the pistil v k+1 . The junctions * , , † in γ k hence correspond to the three edges that are crossed by a close periodic trajectory (and not contained in the flower itself). These are three edges such that * ∩ ∩ † = {v k }. The vertices {v k } are related to the symbolic dynamics in a following way. For any k there exists a unique edge e k which is crossed by a smallest petal of γ k in the middle of its symbolic dynamics (starting from the vertex v k ). The vertex of this edge contained outside Ω γ k is exactly v k+1 , via renormalization.

The relationships between the sets Ω j k follow obviously from above. Moreover, since the square of the renormalization is the Rauzy substitution, the reparametrization matrix is the same as that in [START_REF] Rauzy | Nombres algébriques et substitutions[END_REF]. All of the rest follows from standard results and arguments.

The difference between the non-singular and singular cases, is that in the first case δ AY passes by all triangles in the tiling. In the second case, is is stopped in a vertex (which coincides with some v k defined above). The rest of the argument follows from the arguments in Theorem 11. 9.3. Other fractal curves. -In addition to its arithmetic orbits, a few other fractal objects may be associated to the Arnoux-Yoccoz map. Initially, P. Arnoux in [START_REF] Arnoux | Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore[END_REF] constructed a semi-conjugacy h between the map T a and a translation T T on the torus with a translation verctor equal to (a, a 2 ). A curve defined as h(S 1 ) is a Peano curve on the torus which can be approximated by a sequence of piecewise linear curves, since the map h maps the (T a ) k ( 12 ) to T k T (0) for all k ∈ N. Following the works [START_REF] Mcmullen | Cascades in the dynamics of measured foliations[END_REF] and [START_REF] Lowenstein | Interval exchange transformations over algebraic number fields: the cubic Arnoux-Yoccoz model[END_REF], we define an algebraic fractal curve associated to the map T a . For any

p ∈ Q[a, a 2 ] =< 1, a, a 2 > its image T a (p) ∈ Q[a, a 2 ].
For any point p one draws a piece-wise linear curve connecting the subsequent points in its orbit in the 3-dimensional vector space Q[a, a 2 ]. Such a curve is contained between two parallel planes. By projecting it on one of these planes, for a typical point p ∈ Q[a, a 2 ], one obtains a fractal curve, see [START_REF] Mcmullen | Cascades in the dynamics of measured foliations[END_REF] for more details and a picture. In [START_REF] Lowenstein | Interval exchange transformations over algebraic number fields: the cubic Arnoux-Yoccoz model[END_REF], J. Lowenstein, F. Poggiaspala and F. Vivaldi study the density properties of such a curve. It is interesting to compare their results with our Theorem 11.

The algebraic fractal curve, the Peano curve on the torus, as well as the Rauzy fractal, all converge one to another up to resclaing, as proven in [START_REF] Arnoux | Geometrical models for substitutions[END_REF]. From our Theorem 12 follows that the arithmetic orbits of the Arnoux-Yoccoz map can be joined to this list of curves, thus proving that all of the fractal curves associated to the Arnoux-Yoccoz map, up to reparametrization, represent the same object. We also believe that it is interesting to include the objects constructed by T. Coulbois and M. Minervino [START_REF] Coulbois | Tree substitutions and Rauzy fractals[END_REF] in this list. We hope that our results may permit to reinforce the results in [START_REF] Lowenstein | Interval exchange transformations over algebraic number fields: the cubic Arnoux-Yoccoz model[END_REF], find simple proofs of the results in [START_REF] Arnoux | Geometrical models for substitutions[END_REF] and in general, clarify the connections between all of these beautiful fractal objects.

Theorem 12 can be generalized in order to prove the results on the convergence of other exceptional trajectories to fractals (and hence, arithmetic orbits of other minimal maps in the Arnoux-Rauzy family), at least for the periodic points of the Rauzy subtractive algorithm. It is an interesting question to study such convergence for all ρ ∆ ∈ R. At least two interesting questions follow. First, what fractal curves arise as arithmetic orbits? And second, what are possible dilatation coefficients of corresponding pseudo-Anosov maps? The theory of tiling billiards in cyclic quadrilateral tilings is in many ways analogous to that of triangle tiling billiards since a folding map into a disk is well defined as well as tiling billiard foliations. Moreover, the connection with a family of fully flipped maps on the circle persists. Although, the renormalization process we define for CET 3 τ doesn't seem to extend in a straightforward way to the family CET 4 τ . In this Section, we discuss the challenges and open questions.

10.1. Tree conjecture for quadrilateral tiling billiards. -Analogously to the case of triangle tilings, we define the graphs Λ and G δ and we formulate Conjecture 1 (Tree conjecture for cyclic quadrilateral tilings). -Take any periodic trajectory δ of a cyclic quadrilateral billiard. Then the set G δ := Ω δ ∩ Λ is a tree (as a subgraph of Λ ).

By Proposition 2, it is sufficient to prove the Bounded Flower Conjecture for cyclic quadrilateral tilings. Even though one can prove easily the analogue of Proposition 1, the global symbolic behavior of quadrilateral tiling billiards is more complicated than that of triangle tilings. The trajectories in quadrilateral tilings are not symmetric, e.g. their symbolic codes do not necessarily belong to the set {4n + 2, n ∈ N * } since already on the square tilings there exist 4-periodic orbits. This is far to be an only example: there exist highly asymmetric trajectories, see Figure 19.

We suspect that the analogue of the renormalization process can be defined for CET 4 τ . This process should correspond to the contraction of flowers in the parallel foliation, or in other words, to the contraction of leaves of measured foliations on the projective plane onto traintracks. We hope to explore this idea in our future work. 10.2. Density property for triangle and quadrilateral tiling billiards. -The behavior of periodic trajectories expressed in Theorem 3 can be generalized to escaping trajectories that dynamically construct two graphs, both of which are trees. Consider a (not necessarily periodic) trajectory δ in a triangle (or cyclic quadrilateral) tiling billiard. Define a subset V (δ) ⊂ V as V (δ) := {v ∈ V | ∃e ∈ E, e v, δ ∩ e = ∅} and a coloring map L δ : V (δ) → {0, 1} step by step, as follows. First, pick some edge e ∈ E that is crossed by δ. Denote its extremities w 0 and b 0 , in any arbitrary order. Add w 0 ∈ L -1 δ (0), b 0 ∈ L -1 δ (1). To pass from step j to the step j + 1, we add b j+1 ∈ L -1 δ (1), w j+1 ∈ L -1 δ (0) in such a way that the following conditions hold: either b j = b j+1 or w

j = w j+1 ; b j b j+1 ∩ δ = w j w j+1 ∩ δ = ∅; b j w j+1 ∩ δ = ∅, w j b j+1 ∩ δ = ∅.
Here some of the edges here may be empty (degenerate into vertices). It may also happen for some k < j -1 that b j = b k , k < j -1. The proof of the Density property follows the same strategy as the proof of Theorem 3, we give here a sketch of its proof. Consider the parallel foliation P δ and perturb δ in it onto singular trajectories.

If δ is periodic, the two singular trajectories γ + , γ -approaching δ are well defined since there are no accumulating trajectories in the neighbourhood of δ. One of them (say, γ -) is a bounded flower inside Ω δ , and another one is a petal of a bigger (not necessarily bounded) flower. In this case, the statement of the Density conjecture follows directly from Theorem 3, since the graph G δ 1 is uniquely defined by G δ 0 as the set of vertices at distance 1 from G δ 0 . If δ is exceptional then the Density property follows from Theorem 11, δ is an only non-bounded leaf in P δ . In this case, each of the graphs G δ 0 and G δ 1 is a spanning tree of the initial graph Λ ∆ . Finally, in order to finalize the proof for a linearly escaping trajectory δ, one classifies possible topological behaviours of unbounded flowers. The Proposition below finishes the proof. Proposition 12. -Consider an unbounded flower γ in v ∈ V with s separatrix segments in Θ v . Suppose that at least one of these segments defines an escaping ray. Then, up to change of orientation, γ has one of the types listed on Figure 20.

Proof. -By Proposition 1, it is left to exclude the following two obstructions for the behaviour of some unbounded flower γ. First, if s = 4 and there exists a closed petal in γ passing by two opposite triangles. And second, if s = 6 and there exist two unbounded separatrix rays passing by neighbouring triangles, and the two bounded petals of the flower have different orientations.

Both of these cases are excluded by a common symmetry argument. In both of the obstructions above, there exists a tile θ 0 , θ 0 v such that γ ∩ θ 0 defines an unbounded separatrix ray and θ v 0 is contained inside some petal of γ. Following Proposition 4, one considers a symmetric flower γ v in the ray foliation. Then γ and γ v necessarily intersect outside v which gives a contradiction. Two iterations of a system of reflections of a pentagon in its circumcircle. After each iteration, the direction of the chord defined by the parameter τ changes to its opposite. The symbolic code of the orbit (X, F (X), F 2 (X)) in this case is w = a4a2 a2a5 for some F ∈ CET 5 τ .

This Conjecture is a stronger form of Conjecture 1, it can also be reformulated in terms of scissor cuts. Indeed, we fold a cyclic quadrilateral tiling of the plane into a bellow. Then, we cut along some line in the bellow. Then, the plane "falls into" an infinite number of connected components. The Density property is equivalent to the fact that none of these components contains a full tile.

Does the Density property (and hence, the Tree Conjecture) have a simpler proof based on this interpretation? Of course, a difficulty in proving this property is that when one makes a cut of the bellow, one does not cut out one trajectory but an infinite number of them. Moreover, the Density property doesn't follow purely from folding since there exist locally foldable tilings on which the Tree Conjecture is false.

The next statement follows obviously from Theorem 3 but we present its proof in relation to the reformulation of the Density property we just gave.

Proposition 13. -There is no triangle tiling billiard trajectory δ that crosses the tiles θ e , e = a, b, c and doesn't cross the tile θ, surrounded by them.

Proof. -Take any trajectory δ, and consider its folding into a chord l in the disk D. We color each vertex v ∈ V of the plane in one of the two colors depending on what side the vertex F(v) is with respect to the oriented chord l. Suppose now that δ as in the assumption exists. Then all of the vertices of θ are colored in the same color. Although, the vertices A , B , C of the tiles θ e with e = a, b, c that do not belong to θ are all colored in the opposite color. This is impossible since at least one of these three vertices lies on the same side of the chord l as A, B and C, by folding.

Symbolic dynamics of maps in CET n

τ . -Even though there exists no periodic tiling by n-gones with n ≥ 5, a geometric interpretation of the dynamics of maps in CET n τ exists and was already discussed in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF].

Consider some cyclic polygon P with n sides and take τ ∈ S 1 . This data defines a map F of reflections in the circumcircle as follows. Consider a chord in the disk bounded by the unit circle and connecting 0 to τ . Denote the sides of P by reading the boundary in a counterclockwise order, by a 1 , a 2 , . . . , a n . We put a n+1 := a 1 . For any X ∈ S 1 we inscribe the polygon P in its circumcircle in such a way that for a vertex A = a 1 ∩ a n , one has A = X. The map F then sends a polygon into a congruent polygon of different orientation sharing one side with P , by a flip. A label of the side is defined by a positive intersection of P with a chord defined by τ , see Figure 21. For any n, the data (P, τ ) defines a map F ∈ CET n τ .

The following definition is inspired by our discussion with Pierre Dehornoy. Take A 2 n := {a i a j | i, j = 1, . . . n, i = j} an alphabet. Then the map wd : A 2 n → {0, 1, -1} defined on the letters by wd(a i a j ) = 1 if j = i + 1, wd(a i a j ) = -1 if i = j + 1, and wd(a i a j ) = 0 otherwise is the winding map. It extends to A 2 n by additivity. Of course, the winding map is a generalization of the sign map defined in paragraph 5.3.

For the following, we only consider the periodic trajectories in the system of reflections in the circumcircle as those that are stable under a small perturbation of the polygon P. We give such a definition since the the drift-periodic trajectories of tiling billiards in triangle and quadrilateral tilings also correspond to periodic trajectories of the system of reflections. One defines a winding of a periodic trajectory of the system of reflections in the circumcircle as the winding of its symbolic code.

Example. -A winding for a tour of a vertex in a triangle (quadrilateral) tiling is ±6 (or ±4). Lemma 6. -A winding of a simple closed curve δ, δ ∩ V = ∅ in the triangle (quadrilateral) tiling is equal to ±6 (±4) depending on its orientation. Moreover, for any n ∈ N, n ≥ 3, the winding of a periodic trajectory in a system of reflections in the circumcircle for a n-polygon is well-defined and equal to ±2n if n is odd, and to ±n if n is even.

Proof. -Consider a vector v ⊥ δ orthogonal to the curve δ and count the (algebraic) number of turns this vector makes when it moves along δ. One can easily see that this number is exactly 1 6 wd(δ) for the triangle tiling billiard and 1 4 wd(δ) for cyclic quadrilateral tiling billiard by decomposing δ into a sum of loops. Then, we first observe that the winding of a periodic trajectory is well-defined, i.e. doesn't depend on the string representation of the periodic trajectory. Second, the only change in winding is done by the words that use subsequent letters. Even though for n > 4 the corresponding tiling doesn't exist, one still can unfold the trajectory to some broken trajectory in a tiling with self-coverings. When one comes back to the same tile in the system of reflections, one comes back to the same tile on such an unfolding.

Conjecture 3 (Winding Conjecture). -For any map F ∈ CET n τ , a winding number is an invariant, i.e. the same for all of its periodic trajectories .

The Winding Conjecture is our attempt to generalize the Tree Conjecture for any family CET n τ , for all n ≥ 3. From Theorems 3 and 13 it follows, that the Winding Conjecture holds n = 3. We believe that the Winding Conjecture holds for at least n = 4 and concerns the asymptotic cycle for families of translation surfaces. The difficulty is that these families are not generic, so classical results do not apply.

Problem. Give an explicit description of minimal maps in CET n τ for any n ≥ 3. This Problem is answered for n = 3 in Theorem 10. Already for n = 4 this question is open. In [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] it has been shown that for n = 3 and n = 4 minimal maps in CET n τ belong to the hyperplane τ = 1 2 . Can provide a homological argument to prove this statement? Moreover, we find interesting to study the set of length parameters of minimal maps in CET 4 τ inside the hyperplane {τ = 1 2 }, a next-dimension analogue of the Rauzy gasket. Is it Lebesgue measure 0 and what is its Hausdorff dimension?

For n ≥ 5 one may exhibit the examples of minimal maps in CET n τ outside the hyperplane {τ = 1/2}. One could speculate that such a behavior of the family CET n τ (minimality implying τ = 1 2 for n = 3, 4 but only for these n) is related to the famous Novikov's conjecture on the chaotic sections of genus 3 subsurfaces of a 3-torus. Indeed, the squares of the maps in CET n τ for n = 3, 4 are interval exchange transformations corresponding to genus 3 flat surfaces.

APPENDIX. ON TRIANGLE TILING BILLIARDS AND THE EXCEPTIONAL FAMILY OF THEIR ESCAPING TRAJECTORIES: CIRCUMCENTERS AND THE RAUZY GASKET

While working on this article we have found a mistake in one of the proofs in our previous work with P. Hubert. This mistake does not influence the principal results of [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF], except for the proof of 4n + 2 Conjecture. The present work gives a new set of tools for the study of triangle tiling billiards, and reproves all of the results in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF], in a simpler way.

Here we revisit the proof of the key proposition in the proof of the 2n + 2 Conjecture in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]. We remind the statement as well as the idea of the initial proof, and then point out the hole. We remind our reader that the work [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] approached the maps in the family CET 3 τ with a tool of a standard Rauzy-Nogueira induction. Proposition 14. - [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] Take F = F l1,l2,l3 τ ∈ CET 3 τ such that li lj / ∈ Q for any i = j. Suppose that the Rauzy-Nogueira induction stops for F at some 4-interval exchange transformation F . Then for any interval Y ⊂ I of continuity for F such that F (Y ) = Y , the restriction F | Y is an involution.

A strategy proof in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] is straightforward, take a map F with F | Y = id, follow backwards the induction and prove that it never ends in CET 3 τ . The argument is correct except for the case when F = Y * * X Y * * X . We argue that the back-ward path has to go up into Y losing to some (flipped) Z, as in [START_REF] Hooper | Rel leaves of the Arnoux-Yoccoz surfaces[END_REF] Y * * X Y * * X ← Ȳ . . . Z Z . . . Ȳ .

Then one concludes Z = X. A mistake in this reasoning is that for a matrix represented by the right-hand side of (24) its number of columns may potentially be smaller than 4, i.e. Z is not necessarily equal to X. Indeed, there exist an open set of fully flipped 4-IET for which Z = X, for example the Rauzy induction can stop for them, and then reiterated on a smaller interval as in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] Z W

X Ȳ Ȳ Z W X X>Y ---→ Z W Y X Y Z W X W >Y ----→ Z Ȳ W X Ȳ Z W X Z>Y ---→ Y Z W X Y Z W X .
One can finish the proof along the lines of [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] but the proof becomes a case-by-case study of a big graph. Moreover, a chain given in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] can be modified in order to construct a counterexample to Proposition 14 for the maps in the family CET 4 τ . Indeed, it suffices to add a fifth column V V to every matrix in a chain.

Then, a matrix Z W X Ȳ V Ȳ Z W X V corresponds to the dynamics of a map in CET 4 τ . It suffices to define I 1 := Z, I 2 := W, I 3 := X, I 4 := Y ∩ V . This illustrates how the orbits of periods different from 4n + 2 may appear in cyclic quadrilateral tiling billiards, see paragraph 10.1. Moreover, the proof of the integrability result for CET 4 τ (Proposition 9 in [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF]) is hence not finished. To conclude, all of the statements of [START_REF] Hubert | Paris-Romaskevich Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket[END_REF] for triangle tiling billiards are correct, even though the proof of the 4n + 2 Conjecture is not finished. Moreover, this work doesn't provide any understanding on the dynamics of quadrilateral tilings since the [point 2, of Theorem 7] is false, and the proof of the [Proposition 9] is not finished. We strongly believe that the integrability property holds for almost all quadrilateral tiling billiards, and reflects an interesting subcase of Novikov's conjecture, see discussion at the end of Section 10. It can be checked explicitely by the study of big Rauzy-Nogueira graphs but we hope to find a simpler proof in the future.

Figure 1 .

 1 Figure 1. Snell's law of refraction. On the left: a ray of light crosses the boundary between two media with refraction indices n1, n2 ∈ R and refracts. The relationship between the angles ϕ1 and ϕ2 is defined by sin ϕ 1 sin ϕ 2 = n 2 n 1 =: k. For example, for the passage from air (n1 ≈ 1) to water (n2 ≈ 1.333), k ≈ 0.75. On the right: the behavior of a ray of light when k = -1.

Figure 2 .

 2 Figure 2. A triangle and cyclic quadrilateral tilings. For each vertex a sum of adjacent tile angles of a fixed color is equal to π. For the triangle tiling such a relation is trivial, and for a quadrilateral tiling it is equivalent to cyclicity.

Figure 3 .

 3 Figure 3. A periodic trajectory and the labelling of the edges along it.

Figure 4 .

 4 Figure 4. Billiard trajectories and corresponding trees.

Theorem 2 .

 2 -[25] Fix a triangle tiling. If ρ ∆ /

Figure 5 .

 5 Figure 5. Folding on a circle for a patch of a triangle (and cyclic quadrilateral) tiling. A tile θ0 maps to itself, and the other tiles map inside its circumcircle C under the folding map F(θ0).

4. 3 .

 3 Local behavior of flowers. -The following proposition describes the local combinatorics of flowers on periodic triangle tilings. Proposition 1. -Fix v ∈ V , a tile θ 0

Figure 6 .

 6 Figure 6. All possible behaviors of restrictions of a flower γ on the set Θv. This Figure contains the information on the number of separatrix segments and their relative positions.

Figure 7 .

 7 Figure 7. Different notations relative to flowers in triangle tilings. First, the neighbouring tiles θ a 0 (sharing an edge a) and θ b 0 (sharing an edge b) as well as the opposite tile θ v 0 to the tile θ0; second, a loop γ satisfying the Flower Conjecture passes by θ and θ e and the set Ω γ contains the edge e; third, a petal of a hungry flower γ passes by a tile θ0 and the opposite tile θ v 0 is contained inside Ω γ .

Theorem 6 .

 6 -The Bounded Flower Conjecture holds for all periodic triangle tilings.Theorem 7. -The Flower Conjecture holds for all periodic triangle tilings.

Figure 8 .

 8 Figure 8. Possible behaviors of bounded flowers on periodic triangle tilings.
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 12223 A flower has one petal γ 1 that passes by a pair of opposite tiles, O = {γ 1 }. 2.The only petal γ 1 passes by a pair of neighbouring tiles in e but e / ∈ Ω γ1 , O = {γ 1 }. 4.1. A flower has two petals of different indices as curves. For 4.1a and 4.1b, a petal γ 1 passes by opposite tiles and a petal γ 2 passes by two neighbouring tiles: 4.1a. Ω γ2 ⊂ Ω γ1 and O = {γ 1 }, 4.1b. Ω γ1 ⊂ Ω γ2 and O = {γ 2 }). 4.1c. Both petals γ 1 and γ 2 pass by neighbouring tiles, Ω γ1 ⊂ Ω γ2 and O = {γ 2 }. 4.The petals γ 1 and γ 2 have the same index, γ 1 passes by opposite triangles, O = {γ 1 }. 6.1. A flower has three petals, the petal γ 3 passes by opposite triangles,Ω γ2 ⊂ Ω γ3 , O = {γ 3 }. 6.The three petals γ 1 , γ 2 and γ 3 are such that Ω γ3 ⊂ Ω γ2 ⊂ Ω γ1 , and O = {γ 1 , γ 2 }. 6.All three petals γ 1 , γ 2 and γ 3 pass by neighbouring tiles,

Figure 9 . 2 ∆N

 92 Figure 9. A list of topological obstructions for the Bounded Flower Conjecture. This Figure carries the combinatorial information on the intersection γ ∩ Θv and the topological information on global behavior.

Figure 10 .

 10 Figure 10. Obstructions to the Flower Conjecture and illustrations for the proofs. First, for a petal γ, two possible obstructions for the Flower Conjecture; second, if γ is an only petal in its bounded flower, then these are the obstructions 2.1 and 2.2; third, illustration for the proofs of Propositions 3 and 4.

Figure 11 .

 11 Figure 11. Symmetry of the ray foliation Rp with p = F(v), v ∈ V . First, folded triangles F(θ0) and F(θ v 0 ) symmetric to each other with respect to the diameter d p; then, associated unfolded segments and third, a hungry flower γ and its opposite γ v .

Note. -

 - The two tiles θ 0 and θ v 0 fold into two triangles in the bellow, symmetric with respect to the diameter d of the circle C such that d F(p). The corresponding symmetric trajectories γ 0 and γ v 0 constructed in the proof of the above Proposition 4 fold into the chords symmetric with respect to the same diameter d, see Figure11. In the ray foliation R p the trajectories crossing θ 0 (θ v 0 ) go out of (into) v. Corollary 1. -Configurations 2.2, 4.1c, 6.2 and 6.3 are never realized by bounded flowers. Proof. -All these configurations form hungry flowers and by Proposition 4, are never realized. 5.4. Exclusion of remaining cases and finalisation of the proof. -All of the remaining cases are excluded with the use of the square property. Proposition 5. -Configurations 4.1a and 4.1b are never realized by bounded flowers.

Proposition 7 .

 7 -Configuration 6.1 is never realized by a bounded flower.

Figure 12 .

 12 Here θ • , • ∈ {α, β, γ} is a tile in Θ v with an angle • in v. Hence a flower in v can't simultaneously pass by the interior of the tiles θ α and θ v α (the same for θ β and θ v β ).

Figure 12 .

 12 Figure 12. Folding of Θv in the obtuse triangle tiling. First, the notations for the tiles θ•. Second, the images of opposite tiles with acute angle in v intersect only in p = F(v).

Figure 13 .

 13 Figure 13. Cyclic quadrilateral and the angles α1, α2, γ1, γ2. These angles define the angles α, β, γ, δ via the relations: α1 + α2 = α, β = γ1 + α2, γ = γ1 + γ2, δ = α1 + γ2.

3

 3 

Figure 14 .

 14 Figure 14. For a trajectory of angle 2πp with respect to a fixed line, after two reflections with respect to the sides c and b, this angle changes to 2πp + 2α = 2π(p + l1).

7. 3 .

 3 Minimality in the family CET 3 τ . -The goal of this paragraph is to give a new proof of Theorem 10 ([25]). -A map F l1,l2,l3 τ ∈ CET 3

Figure 17 .

 17 Figure 17. Two neighbouring tiles θ and θ e and trajectories δ and δ passing by circumcenters of the tiles. The trajectory δτ 1 is a periodic loop containing e.

Example. -

 - The next 4 elements of the sequence {s j } j∈N * are s 2 :≡ acbcb, s 3 :≡ bcbacbcac, s 4 :≡ cbcacbcbacbcabcba, s 5 :≡ acbcabcbacbcacbcbacbcabcbcacbcb.

Figure 18 .

 18 Figure 18. Flowers in the foliation P δ AY . On the left, a periodic trajectory δ of period 62 = 2 • 31.On the right, the subset {γ k } 5 k=1 of the set Γ δ of flowers defined by δ. The zones of equal symbolic behavior in P δ AY have the same color. On the right, we do not draw the exact trajectories but curves with equal symbolic codes.

Figure 19 .

 19 Figure 19. Quadrilateral billiard trajectory with a symbolic code w = cabcbabcbdbcabcbdbdb.

Figure 20 .

 20 Figure 20. Possible behaviors of unbounded flowers in parallel triangle tiling billiard foliations.

Conjecture 2 .

 2 -Density property holds for quadrilateral tiling billiards.

Figure 21 .

 21 Figure 21. Two iterations of a system of reflections of a pentagon in its circumcircle. After each iteration, the direction of the chord defined by the parameter τ changes to its opposite. The symbolic code of the orbit (X, F (X), F 2 (X)) in this case is w = a4a2 a2a5 for some F ∈ CET 5 τ .
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