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TREES AND FLOWERS ON A BILLIARD TABLE

OLGA PARIS-ROMASKEVICH

to Manya and Katya

Résumé. In this work we completely describe the dynamics of triangle tiling billiards. In the first
part of this work, we propose a geometric approach of dynamics by introducing natural foliations
associated to it. In the second part, we exploit the relationship between triangle tiling billiards and
a family of fully flipped 3-interval exchange transformations on the circle. We give a combinato-
rial approach of dynamics via renormalization. By uniting the two approaches, we prove several
conjectures on the dynamics of triangle tiling billiards. First, we prove the Tree Conjecture and the
4n+2 Conjecture, both concerning the symbolic dynamics of periodic trajectories, and both stated
by Baird-Smith, Davis, Fromm and Iyer. Second, we study a family of exceptional trajectories
which are closely related to the orbits of minimal Arnoux-Rauzy maps. We prove that all of these
exceptional trajectories pass by all tiles, which confirms our own conjecture with P. Hubert on
their non-linear escape. Moreover, we use tiling billiards to prove the convergence, up to rescaling,
of arithmetic orbits of the Arnoux-Yoccoz map to the Rauzy fractal, conjectured by Hooper and
Weiss. All of these conjectures have been stated in print in the last three years.

Introduction, motivation and overview of results.

A tiling billiard is a model of movement of light in a heterogeneous medium that is constructed
as a union of homogeneous pieces, see [16] and [18] for the first mathematical approaches of the
subject and definitions. The defintion of a tiling billiard is the following. Take any tiling of a plane
by polygons and define a billiard on it such that a point particle moves in a straight line till the
moment when it reaches a border of a tile. Then it passes to a neighboring tile, and its direction
follows Snell’s law with a fixed local refraction coefficient k. In this work, we only consider the
case where k ≡ −1, see Figure 1. We are interested in the dynamics of particles in such a class of
dynamical systems, the so-called tiling billiards [16]. The dynamics of a tiling billiard depends
very strongly on the underlying tiling, see Figure 2 for examples.

The mathematical study of tiling billiards was proposed in [16] several years ago. The study
of tiling billiards is quite a new subject in mathematics. Although tiling billiards have already
proven their richness and interest from the point of view of dynamics, see [11, 14, 23]. The study
of tiling billiards stays for now a highly unexplored area even though its interest for mathematics
is straightforward. Indeed, such a dynamics is related to the dynamics of geodesic flows on non-
orientable flat surfaces which is an unexplored area of the general theory. The only non-trivial
examples of tiling billiards for which the dynamics has been studied in some detail are that of a
tiling billiard on a trihexagonal tiling [14] and on a periodic triangle tiling [11, 23].

Concerning physical relevance of tiling billiards, the materials having the refraction index equal
to −1 can be quite easily constructed 1 (for example, as slabs of photonic crystals) even though it
would necessarily imply for these materials to be strongly dispersive with frequency. This implies
that an even more physically relevant (and more complicated...) model of a billiard in a tiling should

Date: July 2019.
1. Most of usual plastic or glass materials have indices of refraction bigger than 1, and metamaterials with

negative indices of refraction are usually artificially constructed.
1



2 OLGA PARIS-ROMASKEVICH

Figure 1. Snell’s law of refraction. On the left : a ray of light crosses the boundary
between two homogeneous materials with refraction indices n1, n2 ∈ R. Then for
any ray of light, the relationship between the angles ϕ1 and ϕ2 is defined by the
Snell’s law of refraction sinϕ1

sinϕ2
= n2

n1
=: k. For example, for the air and the water

correspondingly, n1 ≈ 1, n2 ≈ 1.333. On the right : the behavior of a ray of light in
the case where the refraction coefficient k = −1.

include an additional parameter f which corresponds to the light frequency, with the refraction
coefficient k = k(f) depending on it.

There has been quiet a big body of research in physics of metamaterials related to tiling billiards.
In particular, we send our readers to the works [19, 28, 20, 34]. The periodic trajectories in tiling
billiards model (with k(f) = −1) correspond to the resonances in the full wave picture (where
k = k(f) is a function of the initial frequency), which are important for super resolution. Negative
refraction materials, as well as complementary media, remain active areas of research for modern
physics, with numerous possible applications. One of such applications could be the construction
of invisibility cloaks, see [39] and references within. We hope that a subject of tiling billiards could
potentially reunite mathematics and physics communities around this fascinating dynamics.

This work considers tiling billiards on two tilings that have many common features. These are
a periodic triangle tiling and a periodic cyclic quadrilateral tiling, and are defined as
follows. Each of these two tilings consists of congruent triangles (or cyclic quadrilaterals 2) and has
a property that each of two neighbouring tiles are centrally symmetric to each other with respect
to the middle of their common side, see Figure 3. Such a periodic tiling of a plane by quadrilaterals
always exists, whatever the form of a quadrilateral. Although in this work we are interested only in
the special case of cyclic quadrilateral tilings, since these are the only ones that admit the folding
construction. We discuss this construction in Section 4.

Whenever we refer to a tiling billiard, we suppose that this is a tiling billiard in a periodic
triangle or cyclic quadrilateral tiling. We call these two tilings simply triangle and quadrilateral
tilings and corresponding dynamical systems triangle (quadrilateral) tiling billiards.

The dynamics of a triangle (quadrilateral) tiling billiard is equivariant under homothety of the
plane. The parameters of such dynamics hence encode a form of a tile but not its size. Denote the
angles of a tile by α, β, γ (and δ, in case of a cyclic quadrilateral tiling). Let the corresponding

2. A cyclic quadrilateral is a quadrilateral inscribed into a circle.
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Figure 2. Examples of tiling billiards and related questions. From left to right :
1. A square tiling with trivial behavior of trajectories : all trajectories are either of
period 4 or are vertically (or horizontally) shift 2-periodic. All bounded trajectories
are periodic. Does this property persist for a larger class of tilings ? 2. Penrose tiling
and a periodic trajectory in it. How often do periodic trajectories occur in Penrose
tilings ? 3. Trihexagonal tiling billiard ’s trajectories exhibit ergodic properties as was
shown in [14]. Are the ergodic properties preserved in the bifurcation to a periodic
triangle tiling, where all of the positively oriented triangles grow bigger, all of the
negatively oriented triangles grow smaller, and hexagons converge to triangles ? 4.
Do all of the trajectories in a parallelogram tiling escape linearly to infinity ?

Figure 3. On the left - a triangle tiling, on the right - a cyclic quadrilateral tiling.
In both tilings, the neighbouring tiles are centrally symmetric with respect to the
middle of their common side. Both tilings are colorable in two alternating colors
and for each vertex a sum of angles of tiles of each color containing it is equal to
π. For the triangle tiling such a relation on the angles is trivial, and for a general
quadrilateral tiling this relationship is equivalent to the fact that the tile is cyclic.

sides be a, b and c (and d 3). Moreover, suppose that any tile in the tiling is oriented in such a
way that a counterclockwise tour of its boundary reads the letters in the alphabetical order. Both
triangle and quadrilateral tilings can be colored into two colors in such a way that neighbouring
tiles have different colors and that tiles with the same color can be identified by a translation. We
call the tiles of one of the colors positively oriented, and of another color negatively oriented,
in an arbitrary way, see Figure 3.

3. For a triangle tiling, the sides corresponding to the angles are opposite sides. For a quadrilateral tiling, the
correspondance of sides and angles is reflected on Figure 3.
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Triangle tiling billiards with the refraction index equal to −1 were introduced in [16] by D. Davis,
K. DiPietro, J. Rustad and A. St Laurent. They were subsequently studied in much more detail
by P. Baird-Smith, D. Davis, E. Fromm and S. Iyer in [11]. In particular, the authors show the
relationship between triangle tiling billiards and fully flipped 3-interval exchange transformations
on the circle. With P. Hubert we continued their study. In our work [23] we have given a qualitative
description of generic trajectories as well as have described the set of trajectories with non-generic
behavior. Even though some understanding of the dynamics of triangle tiling billiards was achieved
in [11] and [23], a precise description of symbolic dynamics of trajectories was far from being
complete.

In the present work we describe completely the dynamics of triangle tiling billiards. A first
ingredient in our description are tiling billiard foliations, to which is dedicated the first part of this
work. With the use of these foliations, we prove the Tree Conjecture (formulated in [11]) on the
symbolic dynamics of periodic trajectories as a main result of the first part. 4

A second ingredient in the complete description of triangle tiling billiard dynamics is a renor-
malization process for fully flipped 3-interval exchange transformations that we describe in the
second part of this work. By putting these two ingredients together we give simpler proofs of the
main results in [23] and prove several additional results.

In the following two sections of this Introduction, we remind our reader on previously discovered
results on triangle tiling billiards. We also provide the context by giving the definitions of classical
objects that reveal themselves related to triangle tiling billiards. In these two sections we also
present our main results, athough in the body of the article most of these results are formulated
in a greater generality. Finally, in the Section 3 of the Introduction, we give a detailed plan of this
article.

1. Symbolic dynamics of triangle tiling billiards.

1.1. Triangle tiling billiards : known results. The results of this paragraph come entirely
from [11] and [23]. 5

A symbolic code of an oriented curve on the plane with respect to some triangle tiling is
defined as a word in the alphabet of sides A∆ := {a, b, c}. This symbolic code corresponds to the
sequence of sides, crossed by this curve. For example, a code of a curve δ making a clock-wise
circular tour of a vertex in a tiling is abcabc. This code can be considered as an infinite word in
AN

∆ (and in this case we write it as abcabc = abc 6) or as a periodic cyclic word.
In the following, we also use another coding for an oriented curve in the triangle tiling which is

defined in the alphabet of couples of sides A2
∆ := {ab, ba, bc, cb, ca, ac}. The accelerated symbolic

code of an oriented curve on the plane with a tiling is defined by a sequence of couples of crossed
edges. For example, the accelerated symbolic code of the circular curve δ is now ab bc ca ab bc ca.
Of course, a symbolic code in A∆ and an accelerated symbolic code in A2

∆ obviously translate
one into another. The accelerated symbolic code is a redundant notation for a symbolic code of a
periodic trajectory but it happens to be more convenient in some situations as we will see in the
future.

One can now speak about the symbolic dynamics of triangle tiling billiards by defining a
shift map on the subset of possible symbolic codes of trajectories.

4. A pinch of the second ingredient also appears in the first part, since 4n + 2 Conjecture is used to prove the
Tree Conjecture.

5. We make a following bibliographical remark. Even though the article [23] has been published (and even,
appeared online) before [11], we have studied in detail an early draft by Baird-Smith, Davis, Fromm and Iyer from
2017, and our work [23] (as well, as this work) is based on their results and ideas.

6. In our notations, a word under the bar in such a representation is a period of an infinite word in AN
∆ .
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Figure 4. Example of a periodic trajectory of a triangle tiling billiard. The first four
letters abac in a symbolic code label the corresponding crossed sides, one contines
along a trajectory to form a complete symbolic code.

Example. For a periodic trajectory of a triangle tiling billiard depicted on Figure 4, 7 its symbolic
code in the alphabet A∆ is given by a periodic word w = abacacacbacac.

One of our main interests in this work is the symbolic dynamics of triangle tiling billiards.
We are interested in a following question. What words in the alphabet A∆ (and A2

∆) correspond
to triangle billiard trajectories ? We answer this question in the second part of this work, see in
particular Proposition 10.

The state of art on the symbolic behavior of triangle tiling billiard trajectories can be summarized
in a following

Theorem 1. [11, 23] Consider a triangle tiling billiard. Then the following holds :
1. Every trajectory passes by each tile at most once. Additionally, the oriented distance between a

segment of a trajectory in some tile and its circumcenter is preserved along all the trajectory ;
2. all bounded trajectories are periodic and simple closed curves ;
3. all bounded trajectories are stable under small perturbations (form of a tile, initial condition),

i.e. they deform to bounded trajectories with the same symbolic code in AN
∆ ;

4.* the period of any periodic trajectory belongs to the set {4n+ 2 | n ∈ N∗} ;
5.* the symbolic code w ∈ AN

∆ of any periodic trajectory has its smallest period s ∈ A∆ of odd
length. A complete period of a periodic trajectory is then described by the word s2, and w = s2.

This Theorem implies that the periodic trajectory on Figure 4 is not exotic but generic and
stable, since the periodicity of trajectories is an open property in triangle tiling billiards.

The statements 1.–3. have been proven and 4. has been conjectured in [11]. The first three
statements are consequences of an important folding idea, see Section 4. The point 4. is a simple
consequence of 5.

The statements 4.–5. have been announced to be proven in [23] by P. Hubert and myself. Our
proof of 4. and 5. presented in [23] is based in a crucial way on the relation of triangle tiling
billiards with interval exchange transformations with flips that was discovered in [11]. This proof

7. The Figures 4, 6 and 23 representing triangle tiling billiard trajectories are drawn with the help of the
program by P. Hooper and A. St Laurent accessible online. Our reader can go and play with triangle tiling billiards
by following the link http://awstlaur.github.io/negsnel/. This program doesn’t only model triangle tiling
billiards but also parallelogram, two-square, trihexagon and octagon-square tiling billiards.

http://awstlaur.github.io/negsnel/
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is quite technical (it uses the explicit construction of Nogueira-Rauzy graphs), and, unfortunately,
incomplete as we have discovered while working on this paper. The proof could be easily completed
and finished combinatorially, along the lines and methods of the initial article. In this work, we
give an alternative and much simpler proof of 4. and 5. (see Theorem 12) and hence give a first
complete proof of these two statements that are known as 4n + 2 Conjecture and were initially
formulated in [11]. See the Appendix for more comments on the work [23].

We say that a triangle tiling billiard trajectory is escaping to infinity (or simply escaping)
if it is not periodic. This name makes sense since by the point 1. in Theorem 1, any trajectory
which is not periodic, is not "spiraling" in and out in a bounded domain of a plane 8 but genuinely
escapes to infinity. A trajectory is linearly escaping if it escapes to infinity and stays in a
bounded distance from a fixed straight line. Any triangle tiling billiard trajectory is either periodic,
linearly escaping or non-linearly escaping, as follows from 1.–2. in Theorem 1 and was proven
in [11]. As proven in [23], almost any trajectory of a tiling billiard in a fixed triangle tiling is either
periodic or linearly escaping. In order to make this statement more precise, we need one more
definition. We start by defining a set of measure 1 of triangle tilings in which all trajectories are
periodic or linearly escaping.

Let ∆2 := {(x1, x2, x3)|xi ≥ 0, x1 + x2 + x3 = 1} ⊂ R3. If xj > 1
2
for some j, one maps a

triple (x1, x2, x3) to a new one where x′j := 2xj − 1 and the other two coordinates xi, i 6= j, stay
unchanged. Then we normalize by xj to get back to ∆2. In projective coordinates, this is equivalent
to subtracting the sum of two smaller coordinates from the biggest one. We call this operation
on ∆2 the Rauzy subtractive algorithm. The subset R ⊂ ∆2 of triples on which the Rauzy
subtractive algorithm can be applied infinitely, was defined in [6] by P. Arnoux and S. Starosta.
They have also proven that the set R is homeomorphic to the Sierpinsky triangle. The questions
related to it were studied in many works, see for example [5, 9, 10]. See Figure 5 for the illustration
of the set R. We define R ⊂ R as a set on which for the Rauzy subtractive algorithm xj 6= 1

2
at

each step, in other words the inequality xj > 1
2
is strict. In the following we call this set R the

Rauzy gasket (even though one usually calls R the Rauzy gasket but in this work we exclude its
boundary to define R).

The set R, seemingly unnatural if introduced as above, appears to be a set of parameters for the
set of interesting maps in various dynamical contexts, see for example the works by Avila-Hubert-
Skripchenko on systems of isometries [9, 10], by Dynnikov-DeLeo [17] on sections of 3-periodic
surfaces, by Arnoux-Rauzy [5] on 6−interval exchange transformations on the circle. These works
and many others show that the set R represents a great interest for modern dynamics. It is still not
completely understood, for example it is an open question to calculate its Hausdorff dimension.

The set R is related to triangle tiling billiards, as shown in [23]. Indeed, this set parametrizes the
rare forms of tiles for which the corresponding triangle tiling billiards admit trajectories escaping
in a non-linear way.

The forms of tiles in triangle tilings are parametrized by their angles. Consider the set of trian-
gular tiles such that the point

ρ∆ :=

(
1− 2

π
α, 1− 2

π
β, 1− 2

π
γ

)
∈ ∆2 (1)

belongs to the Rauzy gasket R, ρ∆ ∈ R. Of course, this set is just an affine re-parametrization of
R. A trajectory of a triangle tiling billiard is called exceptional if first, a corresponding ρ∆ ∈ R
and second, this trajectory passes through the circumcenter of some tile (and hence, by point 1.
of Theorem 1, of any tile it crosses).

8. The absence of spiraling for tiling billiards is a priori possible, see for example the dynamics of tiling billiards
in trihexagonal tilings.
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Figure 5. The sett R ⊂ ∆2 is a fractal set homeomorphic to Sierpinsky triangle.

Theorem 2. [23] Fix a triangle tiling. If the angles of the tiles are such that ρ∆ /∈ R then all of
the trajectories in such a tiling are either periodic or linearly escaping. On the contrary, if ρ∆ ∈ R,
a trajectory escapes to infinity non-linearly only if it passes by the circumcenters of tiles.

In the second part of this work, we give an alternative proof of a stronger version of this Theorem.
We prove that in Theorem 2 the only if can be replaced by if and only if. The only if direction has
already been proven in [23] for almost all ρ∆ ∈ R with respect to the Avila-Hubert-Skripchenko
measure on the Rauzy gasket defined in [9, 10]. Here we prove it for all angle parameters ρ∆ ∈ R,
see points 1. and 2. in Theorem 5 and Theorem 4.

Exceptional trajectories of triangle tiling billiards are of great interest because of their relation-
ship to arithmetic orbits of a famous Arnoux-Rauzy family of interval exchange transformations.
The better understanding of the behavior of exceptional trajectories (and their density properties)
is achieved in this work by apporaching these trajectories by bigger and bigger periodic trajectories.

The next paragraph discusses a beautiful property of periodic trajectories of triangle tiling
billards that revealed itself to be not only beautiful but useful for the global understanding of the
dynamics.

1.2. Tree Conjecture : formulation and motivation. The Tree Conjecture concerns the sym-
bolic behavior of any periodic trajectory of a triangle tiling billiard, see Figure 6.

First, for any periodic trajectory δ in a tiling billiard denote a domain of the plane that it
encloses by Ωδ ⊂ R2, ∂Ωδ = δ.

Consider a triangle tiling. Denote by Λ∆ := (V,E) an abstract graph such that the set V consists
of the vertices of tiles in the plane, two vertices in V being connected by an edge in E if they are
connected in the tiling. The abstract graph Λ∆ comes with its embedding in the plane, it is a graph
we see when we look at the triangle tiling.

Conjecture 1 (Tree Conjecture for triangle tilings). Take any periodic trajectory δ of a triangle
tiling billiard. Then the graph Gδ

∆ := Ωδ ∩ Λ∆ (as a subgraph of Λ∆) is a tree. In other words, a
trajectory δ passes by all the tiles that intersect its interior Ωδ.

This conjecture was first formulated three years ago in [11] and proven there for the case of
tilings by obtuse triangles, a graph Gδ

∆ in question is in this case a chain.
Our interest in the Tree Conjecture comes from its relationship to the density properties of other

interesting and already studied objects, putting tiling billiards in a larger perspective. Indeed, the
Tree conjecture is a first step in our approach of the arithmetic orbits of the Arnoux-Yoccoz map
(and other minimal maps in the Arnoux-Rauzy family). These orbits are fractal curves related
to the Peano curve studied in [3] by P. Arnoux, and another Peano curve studied in [30] by C.
McMullen and in [27] by J. Lowenstein, G. Poggiaspalla and F. Vivaldi. We discuss more on these
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Figure 6. From left to right, from top to bottom : several examples of triangle
tiling trajectories and the corresponding trees. First, the simplest trajectory is a
six-periodic trajectory and the corresponding graph is a simplest tree with only one
vertex. Second, for the obtuse triangle tilings, the corresponding trees are always
paths. We then provide three more examples of trees for acute triangles : the forms
of the trees can be quite different. This Figure is based on the program by Patrick
Hooper and Alexander St Laurent.

curves in paragraph 2.3. Of course, the Tree Conjecture is interesting in itself since it gives a partial
description of the symbolic dynamics of tiling billiards.

The main result of the first part of this work is

Theorem 3. Conjecture 1 holds.

The Tree Conjecture has a stronger form that we call Density property, see Section 11.2. This
Density property is a generalization of the Tree conjecture for any trajectory, not necessarily
periodic. We prove that this property holds in Theorem 15 of this work.

Of course, analogously to the definitions of the sets Λ∆ and Gδ
∆ for triangle tiling billiards, one

can define Λ� and Gδ
� for cyclic quadrilateral tiling billiards. We suspect the analogue of the Tree

Conjecture to hold for cyclic quadrilateral tilings as well but we haven’t manage to prove it yet,
see the discussion in Section 11.
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The idea of the proof of the Tree Conjecture is as follows. In order to study the symbolic behavior
of one trajectory, it is helpful to study an entire foliation of parallel in each tile trajectories that
comes with it. Thanks to this study, the Tree Conjecture (which deals with global behavior of
trajectories) is reduced to the Bounded Flower Conjecture which deals with the local behavior of
separatrices in associated foliations, see paragraph 6.1 for its formulation.

In the second part of this work, we reinforce the methods used in the proof of the Tree Conjecture
with some additional renormalization arguments, in order to prove that exceptional trajectories in
triangle tiling billiards pass by all triangles of the tiling.

Theorem 4. An exceptional trajectory of a triangle tiling billiard passes by all tiles if and only if
it doesn’t hit any vertex.

This Theorem is given in a slightly more general form in the text. See Theorem 13, where we
also cover the case of singular trajectories.

It is interesting to compare the resul t of Theorem 4 with the results of Lowensten-Poggiaspala-
Vivaldi [27] on the density behaviour of algebraic dynamics of the Arnoux-Yoccoz map.

1.3. Complete description of the dynamics of triangle tiling billirds. Any triangle tiling
defines a point in a simplex by simply taking a vector of its normalized angles

(l1, l2, l3) :=

(
α

π
,
β

π
,
γ

π

)
∈ ∆2. (2)

The renormalization we define in the Section 8 of this work can be seen as the algorithm of induc-
tion on the orbits of triangle tiling billiards. To any orbit of a triangle tiling billiard one associates
another orbit in an a priori different triangle tiling billiard. It happens that the renormalization
process we introduce on triangles coincides with the fully subtractive algorithm.

Define a following algorithm on the triples (l1, l2, l3) ∈ ∆2. Suppose that for some j ∈ N∆ :=
{1, 2, 3}, lj < lk, k 6= j. Then to the initial triple (l1, l2, l3) ∈ ∆2 one associates a new triple
(l′1, l

′
2, l
′
3) ∈ ∆2 by linear relations l′k := lk − lj for k 6= j and l′j = lj and subsequent rescaling. This

algorithm is called a fully subtractive algoritm. The boundary ∂∆2 is its set of fixed points,
and the fully subtractive algorithm is not well defined when two (or more) of lj are equal, see the
work [6] of P. Arnoux and S. Starosta and Section 8 here for more details.

Let E ⊂ ∆2 be the set of points ρ∆ such that a corresponding triple of lengths (l1, l2, l3) is a
pre-image of a point (1/3, 1/3, 1/3) under some iteration of the fully subtractive algorithm. The
correspondance is assured by the relations (1) and (2).

Theorem 5. For any triangle tiling billiard with angle parameters α, β, γ, the following holds :
1. if ρ∆ /∈ R ∪ E then any trajectory on a corresponding tiling is either linearly escaping or

periodic, and both behaviors are possible. Moreover, first, the list of words in the alphabet A∆

realized by periodic trajectories on such a tiling is finite ; second, there exist two functions
ω1, ω2 : ∆2 \R∪E → AN

∆ such that the symbolic behaviour of any linearly escaping trajectory
on the underlying tiling is an infinite concatenation two finite subwords ω1(ρ∆) and ω2(ρ∆) ;

2. if ρ ∈ R then any trajectory on a corresponding tiling escapes to infinity (is periodic) if and
only if it passes (doesn’t pass) through a circumcenter of a tile. Moreover, a list of symbolic
codes of periodic trajectories is infinite (countable), as well as a corresponding list of trees ;

3. if ρ ∈ E, then all the trajectories on a corresponding tiling are periodic ;
4. drift-periodic trajectories exist on tilings for which ρ ∈ Q3 \ E∆ and only on them.

The proof of this theorem uses both of the main tools that we introduce in this article - tiling
billiard foliations (Section 5) and renormalization for fully flipped 3-interval exchange transforma-
tions (Section 8).
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This section presented some of our results from the point of view of tiling billiards. In the follo-
wing section, we precise the connection between tiling billiards and fully flipped interval exchange
transformations on the circle, and hence give another point of view on the study of the a priori
new object, triangle tiling billiards. This point of view is that of a study of parametric families of
locally isometric maps, a classical topic in dynamics.

2. Fully flipped interval exchange transformations on the circle.

Fix (l1, . . . , ln) ∈ ∆n :=
{

(l1, . . . , ln) ∈ Rn
+ | l1 + . . .+ ln = 1

}
. Define a family CETn

τ of interval
exchange transformations with flips on the circle as follows. Cut the circle S1 of length 1 into n
disjoint intervals Ij of lengths lj, j = 1, . . . , n.

Define a map F0 as a global involution of S1 which is a composition of n (commuting) involutions
on each one of n intervals of continuity. We say that a map F belongs to the family CETn

τ if it is a
composition F = Rτ ◦F0, where Rτ is a rotation by an angle τ ∈ S1. See Figure 8 for an illustration.
The family CETn

τ is a family of fully flipped n-interval exchange transformations on the
circle with trivial combinatorics. In the following we often write F = F l1,...,ln

τ in order to stress
the corresponding parameters.

Note that the map F = R1/2 ◦ F0 is a composition of two non-commuting involutions.
For the family CET3

τ of maps acting on the circle S1 of unit length, we mark a point 0 ∈ S1

as a beginning of the first interval of continuity. Then the three intervals of continuity are I1 :=
(0, l1), I2 := (l1, l1+l2) and I3 := (l1+l1, l1+l2+l3). We consider the bijection between the alphabets
N∆ = {1, 2, 3} and A∆ = {a, b, c} defined by the alphabetical order. This defines the symbolic
dynamics for any map F ∈ CET3

τ with respect to the alphabet A∆ = {a, b, c} in a standard way
by associating to any point p ∈ S1 a sequence of labels in A∆ corresponding to the labels j ∈ N∆

of the intervals Ij visited by its orbit {F ◦k(p)}k∈N.
In this work we study in detail the dynamics (and the symbolic dynamics) of the family CET3

τ .
This dynamics reunites the dynamics of the Arnoux-Rauzy family, with that of rel deformations of
Arnoux-Rauzy surfaces and of the triangle tiling billiards, as we show in the following paragraphs.

2.1. Family CETn
τ and tiling billiards. We defined the symbolic dynamics of the maps in CET3

τ

with the help of the same alphabet A∆ as that for the dynamics of triangle tiling billiards. This
notation is intentional : indeed, as has been proven in [11], the study of the dynamics of a tiling
billiard in a triangle tiling defined by a tile with angles α, β, γ can be reduced to the study of the
dynamics of a subfamily of maps {

F l1,l2,l3
τ ∈ CET3

τ | τ ∈ [0, 1]
}

with (l1, l2, l3) defined by (2). The parameter τ corresponds to the position of a segment of the
trajectory in the circumcircle of a tile it crosses, and it doesn’t change along the trajectory by
point 1. of Theorem 1. Such a correpondance follows from the process of folding of a tiling along a
trajectory of a tiling billiard that we descrive in Section 4. In the "folded coordinates", a triangle
moves while a direction of the trajectory doesn’t change (modulo orientation) and is encoded by
τ ∈ S1 coordinates.

Analogically to the case of triangle tiling billiards, the behavior of cyclic quadrilateral tiling
billiards is completely described by the family CET4

τ . For any cyclic quadrilateral and a trajectory
of some parameter τ , a corresponding map F ∈ CET4

τ is defined by the lengths lj, j ∈ N� :=
{1, 2, 3, 4} corresponding to the angles (α1, α2, γ1, γ2 in which the diagonal of a tile splits the
opposite angles of the quadrilateral, see Figure 7 for the definition of these angles. Any cyclic
quadrilateral is defined by the quadruple of angles (α1, α2, γ1, γ2) up to homothety. 9

9. Indeed, each of the angles α1, α2, γ1, γ2 bounds an arc corresponding to the chords of length b, c, d and a. In
other words, a cyclic quadrilateral is defined by the lenghts of its sides up to homothety. Although the quadruple
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Figure 7. Cyclic quadrilateral tile and the corresponding angle parameters. The
angles α1, α2, γ1, γ2 define the quadruple (α, β, γ, δ) by the relations : α1+α2 = α, β =

γ1 +α2, γ = γ1 +γ2, δ = α1 +γ2. The corresponding map is a map F = F
α1
π
,
γ2
π
,
γ1
π
,
α2
π

τ ∈
CET4

τ .

l1 + l2 1− l40 1l1

0 1τl1 + τ l1 + l2 + τ τ − l4

Figure 8. A pictorial representation of a map F l1,...,l4
τ ∈ CET4

τ . The shapes above
the intervals are drawn in order to facilitate the understanding. This representation
visualizes the action of the map F : S1 → S1 on the circle and shows that the
beginning of each of the intervals Ij maps to the end of each interval F (Ij), j ∈ A�.
The idea of such a pictorial representation comes from [Figure 9, [11]].

The symbolic code and the accelerated symbolic code for quadrilateral tiling billiard
trajectories (and for maps in CET4

τ ) are defined analogically to the case of triangle tiling billiards.
The alphabets for the symbolic codes of trajectories in quadrilateral tiling billiards are A� :=
{a, b, c, d} and A2

� := {ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc} correspondingly.

The take-away from this paragraph is that the study of symbolic dynamics of a map in CETn
τ

for n = 3 and 4 is equivalent to the study of a related tiling billiard.
The question of symbolic dynamics in the family CETn

τ is interesting in itself and can be studied
for any n. In this work, we concentrate on the case of the maps in CET3

τ simply because it is the
only case that we were able to treat. See Section 11 for the discussion of the family CETn

τ for n ≥ 4
and open questions.

2.2. Arnoux-Rauzy family. By a classical Keane’s Theorem proven in [25], almost every n-
interval exchange transformation (IET) with irreducible combinatorics is minimal. A very inter-
esting question and generally not solved question is to study the minimality in the k-parametric

(α, β, γ, δ) doesn’t define uniquely the form of a cyclic quadrilateral : for example a hyperplane α = β = γ = δ = π
2

defines all the rectangles.
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families of n-IET for k < n. Many recent works shead some light on the partial answers, see for
example [36, 10].

One of the examples of parametric families for which the question of minimality has been expli-
citely solved is the so-called Arnoux-Rauzy family AR(S1) of 6-IET on the circle of unit length,
with the set of parameters being a 2-simplex.

Take (x1, x2, x3) ∈ ∆2. Then a map T = T x1,x2,x3 ∈ AR(S1) is defined as follows. Cut the
circle S1 into six disjoint intervals of lengths xj

2
, j = 1, 2, 3 such that intervals of equal length

are neighbouring. Then a map T x1,x2,x3 ∈ AR(S1) is a composition of two involutions : first, a
simultaneous exchange of intervals of equal length and second, the rotation R 1

2
. The family AR(S1)

was first defined and studied by P. Arnoux and G. Rauzy in [5] and subsequently in [2, 6, 8, 12]
and many other works.

Example. A map T a := T a,a2,a3 with a ∈ R such that

a+ a2 + a3 = 1, (3)

is called the Arnoux-Yoccoz map. It was first introduced and studied in [7, 4]. This map is the
simplest minimal map in the family AR(S1), and has many autosimilarity properties.

The family AR(S1) happens to be related to the Rauzy gasket R. By a result in [5], the Rauzy
gasket coincides with the set of parameters (x1, x2, x3) for which the maps T x1,x2,x3 are minimal.

Theorem 6. [5] A map in the Arnoux-Rauzy family is minimal, if and only if (x1, x2, x3) ∈ R.

The proof by P. Arnoux and G. Rauzy is based on a process of renormalization which is defined
as a first return map on the union of two intervals of continuity of the biggest (and equal) length.
In this work we give a new proof of this theorem by defining a renormalization process on a family
of the natural "square roots" of the maps in AR(S1) which happens to be a subfamily in CET3

τ .

Proposition 1. [23] The following sets of 6-IET on the unit circle coincide :{
T x1,x2,x3 ∈ AR(S1), (x1, x2, x3) ∈ ∆2

}
=

{
F 2 | F l1,l2,l3

1
2

∈ CET3
1
2
, (l1, l2, l3) ∈ ∆2,max(lj) <

1

2

}
.

Moreover, the correspondance between parameters is given by linear relations :

lj =
1− xj

2
, xj = 1− 2lj, j = 1, 2, 3. (4)

This Theorem has been proven in [23] by following the ideas in [11]. In this work, we extend the
equality in Proposition 1 in a way that the set on the right is enlarged to contain the maps for any
τ , and on the left the family AR(S1) is enlarged to the family of its real-rel deformations.

2.3. Real-rel deformations of Arnoux-Rauzy maps. For any translation surface X, one can
consider local deformations of X in its stratum in such a way that the singularities are moving one
with respect to another while keeping the translational holonomies of closed curves on X fixed.
This defines a rel-foliation in the stratum. The rel-foliations have been studied, among others, in
[37, 31, 22] (under different terminologies). In the following we use the terminology from [22], so
we refer our reader there for more details.

In this work we are interested in a family of translation surfaces X = Xx1,x2,x3 constructed
as suspensions of maps T = T x1,x2,x3 ∈ AR(S1) with (x1, x2, x3) ∈ ∆2. We study the correspon-
ding real-rel foliations constructed by variation of only horizontal holonomies. All of the surfaces
Xx1,x2,x3 belong to the stratum H(2, 2), have genus 3 and two singularities. Hence for a fixed point
(x1, x2, x3) ∈ ∆2, the real-rel leaf {Xx1,x2,x3

r } of the surface Xx1,x2,x3 is parametrized by one real
parameter r ∈ R. Here Xx1,x2,x3

0 = Xx1,x2,x3 . Naturally, the surface X0 is a double cover of a
non-orientable surface constructed as a suspension of a map in CET3

1
2
by Proposition 1. Hence,
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its real-rel deformation corresponds through the first-return map to the subset of maps in CET3
τ

and hence, to triangle tiling billiards. Moreover, τ = 1
2
− r and the parameters (x1, x2, x3) do not

change on a real-rel leaf. This connection has already been noticed in [11] for the Arnoux-Yoccoz
map T a.

We are especially interested in the real-rel deformations of minimal Arnoux-Rauzy maps and
their symbolic dynamics. From the discussion above follows that the symbolic dynamics and arith-
metic orbits of these maps are in direct correspondence with the dynamics of triangle tiling billiard
trajectories. In particular, by describing the symbolic dynamics of maps in CET3

τ we manage to
understand it for their squares, and hence to prove the fractal properties of arithmetic orbits of the
Arnoux-Yoccoz map. In particular, we prove the following conjecture by P. Hooper and B. Weiss
from their work [22] where they studied real-rel deformations of the surface Xa.

Conjecture 2. Any arithmetic orbit of the Arnoux-Yoccoz map T a converges up to rescaling and
uniform affine coordinate change to the Rauzy fractal 10 in the Hausdorff topology.

We prove this conjecture in the following Theorem 14. The idea of the proof is to first, replace
an arithmetic orbit by an exceptional billiard trajectory in the tiling defined by ρ∆ = (a,a2,a3) ∈
R. Then, one approaches such a trajectory by a family of periodic trajectories with growing
periods included in the same global foliation of the tiled plane. This construction is based on the
periodicity of vertical flows for any surface Xa

r in a real-rel leaf of Xa for r 6= 0. 11 The periods
of growing periodic trajectories are calculated via renormalization and coincide with the set of
doubled Tribonacci numbers.

In addition to its arithmetic orbits, a few other fractal objects may be associated to the map T a.
Initially, P. Arnoux in [3] constructed a semi-conjugacy h between the map T a and a translation
on the torus with a translation verctor equal to (a,a2). A curve defined as h(S1) is a Peano curve
on the torus which can be approximated by a sequence of piecewise linear curves (since the map
h maps the T a-orbit of 1

2
to the orbit of 0 under the translation on the torus).

Moreover, to the Arnoux-Yoccoz map T a one can also associate its algebraic dynamics : for any
p ∈ Q[a,a2] its image F a(p) ∈ Q[a,a2]. The field Q[a,a2] can be seen as a three-dimensional
vector space with basis 1,a,a2. For any point p one draws a piece-wise linear curve connecting the
subsequent points in its orbit. It happens that such a curve is contained in a small slice of space
between two parallel planes. By projecting it on one of these planes, for a typical point p ∈ Q[a,a2],
one obtains a fractal curve, see [Figure 5 in [30]] for its representation by C. McMullen. In [27], J.
Lowenstein, F. Poggiaspala and F. Vivaldi study the density properties of such a curve. For more
details, see [27] and [30].

The algebraic Peano curve (associated to the work of McMullen and Lowenstein-Poggiaspala-
Vivaldi) converges, up to reparametrization, to the Peano curve constructed by Arnoux which in
its turn converges to the Rauzy fractal (up to rescaling), as proven in [2] by P. Arnoux, J. Bernat
and X. Bressaud.

Even though the arithmetic orbit of the Arnoux-Yoccoz map is not exactly the same as the
algebraic Peano curve studied in [30] and LPV07, they converge one to another after rescaling, as
follows from the results in [2] and our results in this article, see Theorems 4 and 2. Even more, we
think that possibly by using the results of the work [2] connecting algebraic orbits and the Rauzy
fractal, and the results of this work connecting the Rauzy fractal with the arithmetic orbits (see
paragraph 10.2 in the following), one could possibly prove the stronger density results for algebraic
Peano curves associated to the Arnoux-Yoccoz map than those proven in [27]. We hope to provide
the formalization of these connections in our future work.

10. The Rauzy fractal is a famous classical fractal set that we define in paragraph 10.2.
11. This periodicity has been proven in [22] but in this work we reprove it with the use of tiling billiard foliations.
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Of course, the Arnoux-Yoccoz map is the first and simplest example of a minimal map in the
family AR(S1). Although, all of the points in the Rauzy gasket that give rise to the translation
surfaces Xx1,x2,x3 admitting a pseudo-Anosov map are interesting. The questions are many for each
of these surfaces : what fractal curves arise as arithmetic orbits ? (as algebraic orbits ?) what are
possible dilatation coefficients of corresponding pseudo-Anosov maps ? Our methods can simply
be generalized for the periodic points of the Rauzy subtractive algorithm. For other points in R,
additional work has to be done.

3. Plan of the article.

The dynamics of the maps in the family CET3
τ and the dynamics of triangle tiling billiards are

closely related, and can be seen as the same dynamical system. We have split this work into two
parts, each of which gives different tools to study this same system. At the end of the second part,
we reunite these tools. We now give a more detailed plan.

In the first part of this work, we present a geometric approach to tiling billiards via folding and
foliations. In Section 4 we remind the standard folding argument and generalize it. In Section 5 we
define and study tiling billiard foliations. In Section 6 we prove the Tree Conjecture for triangle
tiling billiards.

In the second part of the work, we study the symbolic dynamics of the family CET3
τ and its

subfamily, the Arnoux-Rauzy family. In Section 7, we precise the connection between the arith-
metic orbits of the real-rel leaves of Arnoux-Rauzy surfaces and triangle tiling billiards that we
touched on in paragraph 2.3. In Section 8, central to the second part of the work, we introduce the
renormalization process on CET3

τ and use it in order to characterize the symbolic dynamics and
prove minimality results. By reuniting the geometric and combonatorial approaches to triangle
tiling billiards, in Section 9 we finally give a complete classification of their trajectories. In Section
10 we study the exceptional trajectories of triangle tiling billiards and prove the density results. In
particular, we show the convergence of arithmetic orbits of the Arnoux-Yoccoz map to the Rauzy
fractal.

Finally, in the third part of this work, i.e. in Section 11, we state the open questions, with a
focus on the cyclic quadrilateral tiling billiards.

In the Appendix, we give several comments on our previous work [23] with P. Hubert concerning
tiling billiards.

Our methods are elementary, no prerequisits are needed to understand the proofs.
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Part I.– On a proof of the Tree Conjecture for triangle tiling billiards
In this part, we introduce tiling billiard foliations and flowers (unions of singular leaves) in these

foliations. In a nutshell, the main message of this part is the following. The symbolic dynamics of
every periodic trajectory is defined by the symbolic dynamics of a sequence of flowers on which
it is contracted. This gives a strategy of the proof of the Tree Conjecture. In the following three
sections, we give the necessary definitions and arguments to realize this strategy.

4. Folding in triangle and cyclic quadrilateral tiling billiards.

Tiling billiards on triangle and cyclic quadrilateral tilings have unusual (for generic tiling billiards)
rigidity properties. These properties are explained by the folding construction which has a central
place in this work.

Folding for triangle tiling billiards was proposed in [11]. In this Section we present their construc-
tion, although our proof is more general and doesn’t use in an explicit way the structure of the
tiling (triangle or quadrilateral).

Lemma 1 ([11]). Consider a periodic triangle (cyclic quadrilateral) tiling and some tile θ0 in
it. Let Λ = (V,E) be a corresponding graph (Λ = Λ∆ or Λ�). Then there exists a unique map
F = F(θ0) : R2 → F(R2) ⊂ R2 such that

1. for any tile θ the restriction F|θ is an isometry and F|θ0 = id ;
2. for any two tiles θ and θ sharing an edge e ∈ E their images F(θ) and F(θ)e are symmetric

one to each other with respect to a line bisector of F(e),
3. two different folding maps of the same tiling (with different θ0) differ by a global isometry of

R2.
Moreover, F(V ) ⊂ C, where C is a circumcircle of θ0.

Démonstration. For any tile θ, we construct its image F(θ) as follows. Take a sequence of tiles
θ0, θ1, . . . , θn = θ connecting θ0 to θ : the tiles θk and θk+1 share an edge. Then, fold the union
θ1 ∪ . . .∪ θn by a global isometry on θ0. This defines F(θ1). Then, we fold θk ∪ . . .∪ θn on θk−1 for
k = 2, . . . , n. At the end of the process, one defines F(θ) with F|θ an isometry.

It is left to prove that F(θ) doesn’t depend on the connecting sequence {θk}, or equivalently,
F(θ0) = θ0 for any connecting loop (θ0 = θN). First, when one folds one polygon on another in a
tour around a vertex, the difference between the angles of positively and negatively oriented tiles
in the vertex defines the displacement of the initial tile θ0 with respect to its initial position. Since
this difference is zero (see Figure 3), F |θ0= id. By breaking any loop into a sum of loops around
vertices, one finishes the proof. Clearly, two folding maps differ by an isometry.

Let us now prove that F(V ) ⊂ C. Indeed, F(v) ∈ C obviously for the vertices of θ0, and by
folding for all the vertices of the tiles sharing an edge with θ0 (see Figure 9). Hence, F(v) ∈ C for
any v ∈ V by recurrence. �

We call the map F a folding map, or simply, a folding. We call the image of the plane by a
folding map a bellow, B := F(R2). A name bellow comes from accordeon bellows.

Remark 1. The two tilings we study in this work belong to a much bigger class of tilings, the
so-called locally foldable tilings, for which the statements 1.-3. of Lemma 1 directly apply. The
locally foldable tiling is a two-colorable tiling with the equilibrium of the angles preserved at
every vertex, i.e. the sum of the angles of tiles of one color around any vertex is equal to π. This
class has been known for centuries in the origami community, and it also appears in the discrete
complex analysis for the dimer model. The arguments of Lemma 1 are not new, and are used for
example in [24, 1, 26, 13] in different contexts. In this paper we concentrate ourselves on triangle
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Figure 9. Folding on a circle for a patch of a triangle (and cyclic quadrilateral)
tiling. A tile θ0 maps to itself, and the other tiles map inside its circumcircle C under
the folding map F(θ0).

and quadrilateral tilings. We hope to develop the general theory of tiling billiards in locally foldable
tilings in the future. 12

4.1. Basic orbit properties in triangle and cyclic quadrilateral tiling billiards. In this
paragraph we copy the proof from [11] for triangle tiling billiards, in order to apply it to the case
of cyclic quadrilateral tilings. This result was announced without an explicit proof in [23]. The
main idea is that a tiling billiard trajectory folds into a subset of a straight chord in C. The proof
is written in a way to apply to any locally foldable tiling.

Theorem 7. The points 1.-3. of Theorem 1 hold for any cyclic quadrilateral tiling (locally foldable
tiling).

Démonstration. Consider a trajectory δ of a tiling billiard starting in some tile θ0, and a folding
map F = F(θ0). Then F(δ) is a subset of a segment in the bellow B given by the intersection of
B with some line l.

Hence for any tile θ the intersection l ∩ F(θ) is equal to at most one segment. If δ is bounded
then at some moment δ comes back to the same tile, and hence δ is periodic.

A periodic trajectory δ can’t intersect itself in a transverse way inside a tile θ, since it intersects
this tile in a segment equal to F−1 (F(θ) ∩ l).

Finally, a periodic trajectory is stable under a small enough perturbation since a sequence of
tiles crossed by its perturbation δ′ is the same as that for δ. Hence this sequence is a loop, and δ′
is periodic with the same symbolic dynamics as that of δ. �

Note. In the context of Hamiltonian dynamics, Arnold-Lioville integrability implies the existence
of additional integrals of motion, or the laws of preservation of energy. For tiling billiards we
consider here, the direction of a trajectory in "folded coordinates" is a first integral of the system.
The folding map reduces the dimension of the phase space, and the dynamics on the plane is
reduced to the dynamics on the circle, that of the family CETn

τ of fully flipped maps on the circle
(see paragraph 2.1) for n = 3 and 4.

5. Tiling billiard foliations.

Any tiling billiard trajectory may be folded into a segment of a line in the bellow. We now do an
inverse procedure. Fix some tile θ0 and the folding F(θ0). Denote also by D a disk bounded by C.
Slice up the disk D in a union of non-intersecting segments by either a family of parallel chords, or

12. Although some properties of tiling billiards in locally foldable tilings are already clear. Indeed, the Tree
Conjecture, as well as the the Flower and the Bounded Flower Conjectures in paragraph 6.1 can be restated for
locally foldable tiling billiards and associated foliations. Moreover, Theorem 7 and Proposition 3 can be proven in
this more general context.
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a family of chords emanating from one point on the boundary of C. Finally, pull this slicing back
to the tiled plane by F−1.

This defines two families of foliations on the plane, and tiling billiard trajectories can be included
in these naturally defined foliations.

5.1. What happens when a trajectory hits a corner of a tile ? In a classic setting of a
billiard in a bounded domain with piecewise smooth boundary, a billiard trajectory that arrives to
a non-regular point on the boundary, stops (or is not well defined). In the context of tiling billiards,
as in that of geodesic flows on flat surfaces, one can correctly define, although possibly branching,
singular trajectories as boundaries of cylinders of parallel trajectories.

A piece-wise linear simple curve γ on the tiled plane that passes through at least one vertex of a
tiling is called a singular tiling billiard trajectory, if the Snell’s refraction law with coefficient
k = −1 holds in all non-regular points of such a trajectory (even if a non-regular point is a vertex
v ∈ V of a tiling). We call the segment θ ∩ γ of a singular trajectory γ in the tile θ a separatrix
segment if γ∩θ capV 6= ∅, i. e. γ passes by a vertex of θ. If a singular trajectory is a closed curve,
we call it a separatrix loop.

Consider a singular trajectory γ with at least one singular point v ∈ V . One associates to
it a finite number of singular trajectories passing by v, via folding. Indeed, γ folds into some
chord l in the disk D such that l ∩ C = F(v). One considers the connected components of the set
F−1(l∩D)\{v} such that their intersection with ∪θ:θ3vθ is non-empty. These connected components
(eventually united with a point {v}) are exactly the separatrix curves passing by v that fold into
the same chord as γ.

We call the union of all separatrices passing by a fixed vertex v ∈ V and mapping to the same
chord under folding, a flower in v. We call each of the separatrix loops in one flower a petal of
this flower. We call v ∈ V a pistil. A flower is bounded if all of its separatrices are petals. To
any line l that cuts out a non-empty chord in D and passes by F(v), one may associate a flower.

As we show in the following, the symbolic dynamics of any trajectory can be described in terms
of dynamics of singular trajectories on which it is contracted in the parallel tiling billiard foliation
that we define right away.

5.2. Parallel and ray tiling billiard foliations. We call a foliation of a plane with a tiling
a tiling billiard foliation if it is an oriented foliation with all of its leaves being tiling billiard
trajectories. We define two tiling billiard foliations for triangle and quadrilateral tilings as preimages
of two sheaves of lines on the plane containing the bellow.

Take a tiling, fixe some base tile θ0 and a corresponding folding map F .
Then for any τ ∈ S1 consider a foliation of the plane by parallel lines with a common direction

exp(iτ). One considers the intersections of the leaves of this foliation with the bellow B. Then,
by applying F−1 to these intersections, one obtains a parallel foliation Pτ (or simply, P) of the
plane with a tiling.

Now, take a point p ∈ C. Consider all the chords in D passing by p, slicing up the bellow B. By
unfolding these slices back to the plane with a tiling one obtains the ray foliation Rp (or simply,
R). The set F−1(p) is non-empty if and only if p = F(v) for some v ∈ V . Moreover, if the angles
of tiles are ratinonally independent, in this case F−1(p) = {v}. In this work we restrict the class
of ray foliations to those with p ∈ F(V ) ⊂ S1.

Example. On Figure 10 we give an example of a (very symmetric) square tiling with periodic
parallel and ray foliations. Although in general these two foliations are not periodic but quasi-
periodic. Moreover, for the square tiling, the set V of vertices maps to a finite subset of a circle
C (consisting of four points) which is also non-generic for triangle and cyclic quadrilateral tiling
billiards. Indeed, generically, the set F(V ) is a dense subset of the circle.
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Figure 10. Parallel and radial foliations in a square tiling. On the left the parallel
foliation Pτ for some τ ∈ S1 and on the right the radial foliationRp, p = F(v), v ∈ V .
Every flower in either foliation consists of 0 or 2 petals. Red trajectories are contained
in both Pτ and Rp.

Lemma 2. Fix some tile θ0 in a triangle (cyclic quadrilateral) tiling. Take any τ ∈ S1 and p ∈
C ' S1 such that p = F(v) for some v ∈ V . Then, the parallel and ray foliations Pτ and Rp verify
the following properties :

1. the foliations Pτ and Rp are well defined and orientable. Moreover, their oriented connected
leaves define tiling billiard trajectories ;

2. the set of singularities of each of these foliations coincides with the set V ;
3. for any v ∈ F−1(p), there exists a finite number of singular leaves in Pτ passing by v, at most

one by each tile θ such that v ∈ θ. Conversely, two separatrices in Pτ passing by v belong to
the same flower ;

4. take any (possibly singular, not necessarily periodic) trajectory δ. Then there exists a unique
τ such that δ is a leaf of Pτ . We denote this foliation Pδ. If under folding δ folds into a chord
l that intersects F(V ), then δ can be included in a radial foliation Rp for each (of at most
two) p ∈ F(V ) ∩ l. We denote such a foliation Rδ ;

5. for any periodic trajectory δ its interior Ωδ is foliated by the leaves of Pδ (and of Rδ, if it
exists).

Démonstration. This follows from Lemma 1 and Theorems 1 (points 1.-3.) and 7. If a tile θ0 is
positively oriented, then the orientation ofRp and Pτ coincides with (is opposite to) the orientation
of sheaves of lines on the bellow on positively oriented triangles. �

5.3. Local behavior of separatrices of triangle tiling billiards. In the following, we describe
the possible combinatorics of local behavior of separatrix segments in flowers for triangle tiling
billiards.

Proposition 2. Fix some τ ∈ S1, a vertex v ∈ V and a tile θ0 3 v. This defines a flower γ in Pτ
with a pistil in v ∈ V in a triangle tiling. Denote the number of its separatrix segments containing
v by s.

Then s ∈ {0, 2, 4, 6} and each tile θ, θ 3 v contains at most one separatrix segment of γ.
Moreover, up to a possible change of orientation τ 7→ −τ , in the restriction to the union Θv :=
∪θ3vθ , the flower γ has one of the combinatorial behaviors represented on Figure 11.

Démonstration. Finiteness of s follows from the point 3. in Lemma 2, and s is even since the
foliation Pτ is oriented.
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Figure 11. All possible local combinatorial behaviors of restrictions γ ∩ Θv of a
flower γ ∈ Pτ on the union Θv of six tiles containing v. For s = 0 the only possible
behavior is trivial. For s = 2 two behaviors are possible. For s = 4 and 6 only
one combinatorial behavior is possible. This Figure contains the information on the
number of separatrix segments and their relative positions.

Figure 12. An example of possible restriction of the periodic foliation Pτ and a ray
folation Rp to the set Θv with v ∈ F−1(p). In red are given their common separatrix
segments.

The separatrices passing by v are leaves of both Rp and Pτ . Moreover, the ray foliation Rp

is orientable and has a very simple form in restriction to the union Θv of six tiles containing v.
Indeed, all of its leaves pass by v and their directions alternate from one tile to its neighbor, see
Figure 12. �

Remark 2. The list given in Proposition 2 is realizable : one can find examples of triangle tiling
billiard foliations Pτ (by choosing the forms of tiles and the directions τ) and flowers in them with
all of the listed local behaviors. In this work we also classify possible global topological behaviors,
e.g. we prove that the first case for s = 2 on Figure 11 is not realizable by separatrix loops but
only by unbounded separatrices, see Proposition 12.

The statement analogous to that of Proposition 2 can also be proven for quadrilateral tilings :
in this case s ∈ {0, 2, 4} and for each value of s the only one combinatorial distribution of tiles
intersecting the flower γ is possible (for s = 2, these tiles are neighbouring). Although, the combi-
natorics of sides crossed by the separatrix segments is richer than in the case of triangle billiards.
We do not discuss this issue in more detail, the case of cyclic quadrilaterals is still quiet mysterious
for us.

6. Tree conjecture for triangle tiling billiards.

In this Section, we prove the Tree Conjecture for triangle tiling billiards.
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Figure 13. Possible topological behaviors of bounded flowers for triangle tiling
billiards, up to orientation, supposing the Bounded Flower Conjecture.

6.1. Reducing the Tree Conjecture to the Bounded Flower Conjecture. The Tree Conjec-
ture is a statement about the global symbolic behavior of periodic trajectories. We reduce it to
the Bounded Flower Conjecture which is a local statement about the topology of separatrix loops
in one vertex.

We introduce some notations. We say that two tiles are neighbouring in e if they share an
edge e. Additionaly, and only for triangle tilings, we say that two tiles are opposite in a vertex
v if they both pass by v and are centrally symmetric to each other with respect to v. For any tile
θ0 such that e ⊂ θ0, v ∈ θ0 with e ∈ E, v ∈ V we denote by θe0 its neightbouring tile in e, and by
θv0 its opposite tile in v, see Figure 16.

We say that the Flower Conjecture holds for a separatrix loop γ such that for any
v ∈ γ ∩ V , there exists e ∈ E such that e 3 v, γ passes by θ and θe and e ∈ Ωγ. In other words,
a separatrix loop in v has to pass by two neighbouring tiles and to contain their common edge in
its interior, see Figure 16.

We say that the Flower conjecture holds for a tiling if it holds for all the separatrix loops
of a tiling billiard on this tiling. We say that the Bounded Flower Conjecture holds for a
tiling if the previous property is verified by all the petals of all the bounded flowers in parallel
foliations.

• Obviously, the Flower Conjecture implies the Bounded Flower Conjecture.
• The Flower Conjecture implies that two separatrix loops γ1 and γ2 in a vertex belonging to
the same parallel foliation Pτ have the same index with respect to infinity. In other words,
the corresponding open domains Ω̊γ1 and Ω̊γ2 are disjoint.

• The Flower Conjecture for periodic triangle tiling excludes a separatrix loop passing by two
opposite triangles, as well as a separatrix loop passing by neighbouring triangles but not
contouring an edge between them. These two topological configurations (that the Flower
Conjecture excludes) are represented on Figure 17.

Theorem 8. The Bounded Flower Conjecture holds periodic triangle tilings.

Theorem 9. The Flower Conjecture holds for periodic triangle tilings.

Theorem 8 together with Proposition 2 give four possible topological forms of bounded flowers
with the number of petals in the range from 0 to 3, see Figure 13. A singular point with no petals
is also considered a flower, even though in real life such flowers are a little sad.

We postpone the proof of the Theorem 9 to Section 11. We prove the Theorem 8 in this section.
Finally, for the proof of the Tree Conjecture, it suffices to reduce it to Theorem 8.

Proposition 3. For a triangle (cyclic quadrilateral) tiling, the Bounded Flower Conjecture is
equivalent to the Tree Conjecture.
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Figure 14. Contraction of a periodic trajectory onto a sequence of flowers in the
parallel foliation. Figure by Ofir David.

Démonstration. Suppose that the Bounded Flower Conjecture fails for the petals γj, j ∈ J of some
flower γ with a pistil v ∈ V . Take all of the petals γi in this family that are not contained in Ωγj

for some j ∈ J, j 6= i. Suppose that their indices belong to a subset J0 ⊂ J . Then there exists
a periodic trajectory δ passing by the same tiles as ∪j∈J0γj, with ∪j∈J0Ωγj ⊂ Ωδ. This trajectory
then contours a tile. 13

Now we prove that the Bounded Flower Conjecture implies the Tree Conjecture. Take some
periodic trajectory δ. Then the domain Ωδ contoured by δ is foliated by a family of trajectories in
Pδ, among which only a finite number of singular ones. Now we contract δ inside Ωδ in a direction of
the inner normal to ∂Ωδ, in order to obtain a flower γ with a singularity in some vertex v ∈ Ωδ∩V .

If the trajectory δ contracts to a vertex, hence the corresponding graph Gδ
∆ is a point and the

proof is finished.
Suppose now that δ contracts to a non-trivial flower γ. We can assume that such flower has its

only singularity in v ∈ V . Indeed, if it hasn’t, then under folding γ maps to a chord l which connects
F(v) with F(v′) for some v, v′ ∈ V, v 6= v′. But then one may perturb the initial direction of δ to
obtain a perturbed trajectory δ′, in such a way that a perturbed chord l′ (defined by F(δ′) ⊂ l′)
passes by v but doesn’t pass by v′ anymore, and the symbolic dynamics of the trajectory δ′ is the
same as that of δ. This can be achieved since the set F(V ) is a countable subset of S1.

Hence we obtain a flower γ with a pistil in some vertex v ∈ V with m petals, where m ∈
{0, 1, 2, 3} for triangle tilings and m ∈ {0, 1, 2} for quadrilateral tilings. Now approach each of
the petals γj (from the inside) by periodic trajectories δj ⊂ Ωγj as leaves of Pγ. Then we have
a decomposition : Gδ

∆ = ∪jG
δj
∆ ∪ ej, where ej are the edges passing through v inside each of the

petals γj. 14 We define in this way a recurrence process (by the length of δ) that will eventually
stop at a trajectory of period 6. This proves that the Tree Conjecture follows from the Bounded
Flower Conjecture. �

Example. The proof of the Tree Conjecture from the Bounded Flower Conjecture is constructive.
For any periodic trajectory δ, the tree Gδ

∆ can be constructed as a growing union of finite graphs,
Gδ

∆ = ∪Kk=1Gk. On each step one adds to the graph Gk pistils of new flowers at each step with the

13. Our reader can easily find a trajectory δ for all obstructions for the Flower Conjecture for periodic triangle
tilings on Figure 15.
14. Moreover, the symbolic dynamics of the initial periodic trajectory δ is defined by the dynamics of the periodic

trajectories δj .
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edges inside their petals connected to these pistils. Any vertex v ∈ Ωδ ∩ V is a pistil of a flower on
some step of this process, by the point 2. of Lemma 2.

For a trajectory δ on Figure 14, on the first step, one obtains a flower with one pistil and 3
petals, and G1 is a graph with one vertex marked by 1 on Figure 14. One then defines G2 as a
1-level tree with a parent marked by 1 and three children marked by 2 connected to it. Then, G3

is the union of G2 with edges going to additional vertices marked by 3, and G4 is G3 with one
additional vertex marked by 4 and a corresponding edge. The final graph Gδ

∆ is a tree.

6.2. Obstructions to the Flower Conjecture. Starting from here and till the end of this
Section, the only tiling we consider is a periodic triangle tiling.

The only cases of global behavior of bounded flowers contradicting the Bounded Flower Conjec-
ture and respecting Proposition 2 can be simply enumerated, see Figure 15 and the following
list. In this list, in each of the cases we stress the set of petals O for which the Bounded Flower
Conjecture doesn’t hold.

Till the end of this Section, all of the flowers are considered bounded. We denote flowers by γ,
and their petals by the same letter with indices.

Topological obstructions to the Bounded Flower conjecture.
2.1 A flower has one petal γ1 that passes by a pair of opposite tiles, O = {γ1}.
2.2 The petal γ1 passes by a pair of neighbouring tiles in e but e /∈ Ωγ1 , O = {γ1}.
4.1 A flower has two petals γ1, γ2 of different indices as curves. For 4.1a and 4.1b, a petal γ1

passes by opposite tiles and a petal γ2 passes by two neighbouring tiles. The two cases occur
when 4.1a Ωγ2 ⊂ Ωγ1 (and O = {γ1}) or 4.1b Ωγ1 ⊂ Ωγ2 (and O = {γ2}). In the case 4.1c
both petals γ1 and γ2 pass by neighbouring tiles but Ωγ1 ⊂ Ωγ2 and O = {γ2}.

4.2 The petals γ1 and γ2 are of the same index but γ1 passes by opposite triangles, O = {γ1}.
6.1 A flower has three petals γj, j = 1, 2, 3. One of the loops γ3 passes by opposite triangles and

Ωγ2 ⊂ Ωγ3 , O = {γ3}.
6.2 The petals γj, j = 1, 2, 3 are such that Ωγ3 ⊂ Ωγ2 ⊂ Ωγ1 , and O = {γ1, γ2}.
6.3 A flower has three petals γj, and all of them pass by neighbouring tiles. Although Ωγ1∪Ωγ2 ⊂

Ωγ3 and O = {γ3}.

Note. This list is given modulo a possible change of orientations of all the petals. Without loss of
generality, we fix the orientations as shown on Figure 15.

Our goal is now to prove that all of the cases listed above are not realized by triangle tiling
billiard trajectories. We first present our main tools.

As said before, the parallel and ray foliations can be defined for a very large class of tilings, see
Remark 1. But more specifically, we use two tools which are proper to a periodic triangle tiling.
First, the periodic symbolic words are the squares of some symbolic words, see 5. in Theorem 1.
This square property is a very strong property. We prove it in Theorem 12 but for now we use it
as acquiered to obtain the proof of the Bounded Flower Conjecture. 15

Second, we use the symmetry of the ray foliation R for triangle tiling billiards centered at a
singularity. Both of these tools are very strongly related to the special features of the periodic
triangle tiling. For example, both of these two properties break for cyclic quadrilateral tilings.

We first show in detail how to exclude the cases 2.1 and 2.2, and then treat all the other cases.

15. If our reader wants to be sure that there is no logical loop in the argument (and they are right !), we send
them to study Section 8 of the second part of the work. The Section 8 is completely independent from the first part
of this work, and gives a proof of the square property as a corollary of the renormalization process introduced in it.
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Figure 15. A list of topological obstructions for the Bounded Flower Conjecture
for triangle tiling billiards. The first number in the name of the obstruction is the
number s of separatrix segments (twice the number of petals) in a bounded flower.
This Figure carries topological information, i.e. the way the trajectories are placed
with respect to each other globally as well as the local combinatorics in the union
Θv of six trianglular tiles containing v ∈ V .

6.3. Exclusion of topological obstructions for one petal flowers. Define a sign alphabet
S := {+,−} and a sign map σ : A2

∆ → S explicitely by σ(ab) = σ(bc) = σ(ca) = + and
σ(ba) = σ(cb) = σ(ac) = −. This sign map extends to the map σ : (A2

∆)
N → SN that we denote

by the same letter. This map simplifies any accelerated symbolic code of a curve into its sign
code.

Very importantly, we consider the (accelerated) symbolic codes of periodic trajectories as cyclic
words, i.e. for us the two periodic words w0 . . . wn and wkwk+1 . . . wnw0 . . . wk−1 are equal for any
j, k ∈ {0, 1, . . . , n}, k 6= 0 and any wj ∈ A2

∆. Any (accelerated) symbolic code is a square of some
word in the alphabet A2

∆, and hence in the alphabet S.
Example. The accelerated (cyclic) symbolic code of a 6-periodic orbit in a triangle tiling billiard
can be written as (ab bc ca)2 but also as (bc ca ab )2. Its corresponding sign code for both cases is
(+ + +)2.

A word on the notation. In the following, we denote by γj the petals and by δj the periodic
trajectories approaching these petals or their unions. Second, we identify the trajectories with their
symbolic orbits. We denote by the same letter an oriented closed curve on the plane as well as a
corresponding cyclic periodic word in the alphabet A2

∆ or in the alphabet S, via the sign map.
In order to exclude the case 2.1, one uses the square property.

Proposition 4. A configuration 2.1 is never realized by a bounded flower.



24 OLGA PARIS-ROMASKEVICH

Figure 16. Different notations related to triangle tilings and flowers in them. From
left to right, from top to bottom : first, for a tile θ0 we mark here two out of three
of its neighbouring tiles thetaa0 (sharing an edge a) and θb0 (sharing an edge b) as
well as its opposite tile θv0 in the vertex v ∈ V ; second, an illustration for the Flower
Conjecture on the triangle tiling, a loop γ satisfying the Flower Conjecture passes
by θ and θe and the set Ωγ contains the edge e ; third, a petal of a hungry flower γ is
represented on the last picture, passing by a tile θ0 and such that the opposite tile
θv0 is contained inside Ωγ.

Démonstration. Suppose that a configuration 2.1 is realized by some petal γ1 in the vertex v of a
triangle tiling billiard, the only petal of its flower γ, γ = γ1.

We now perturb γ1 in the foliation Pγ in order to obtain two periodic trajectories δin and δout

in a small neighbourhood of γ1 with δin ⊂ Ωγ1 and δout * Ωγ1 , see Figure 17.
We suppose that outside the set Θv the trajectories δin, δout and γ1 pass by the same tiles. Then

there exists a word S ∈ SN of even length such that the accelerated cyclic symbolic words of δin

and δout in the sign alphabet are : δin = +−−+ S and δout = −+ +− S. We split S = ss̄ into a
concatenation of two words of equal length, s, s̄ 6= ∅. Then δin = −+ ss̄+− and δout = +− ss̄−+.

But since the words δin and δout are squares of some words in the alphabet S, length considera-
tions give that simultaneously −+ s = s̄ +− and +− s = s̄−+. But these two equations imply
that the word s finishes by + and − at the same time, which is a contradiction. �

In order to exclude 2.2, one uses the symmetry of the ray foliation Rp with p = F(v).

Proposition 5. A configuration 2.2 is never realized by a bounded flower.

We observe that for the case 2.2 a following property holds. There exists a petal γ1 and a tile
θ0 3 v such that γ1 ∩ θ0 6= ∅ and θv0 ⊂ Ωγ1 . In this case, we say that the tile θ0 is a hungry tile
and that it eats up θv0 . We call a flower γ (not necessarily bounded) a hungry flower if there
exists a petal in this flower passing by a hungry triangle, see Figure 16. This property is shared by
configurations 2.2, 4.1c, 6.2 and 6.3. In order to prove Proposition 5, we prove a more general
statement that excludes all the cases that we have just mentionned.

Proposition 6. 1. The ray foliation Rp with p = F(v), v ∈ V is centrally symmetric with respect
to v, modulo a change of orientation of leaves in opposite tiles. 2. A configuration of separatices
forming a hungry flower is never realized by triangle tiling billiard foliations.

Démonstration. For any separatrix segment of the trajectory γ0 starting in a vertex v and in the
tile θ0 3 v, consider a separatrix segment starting in v and crossing the tile θv0 such that it lies
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Figure 17. This Figure serves several illustration purposes : 1. For any petal γ,
the Flower Conjecture obstructions for it are represented by two possible behaviours
represented on this Figure ; 2. if γ is an only petal in its bounded flower, then this
Figure represents the obstructions 2.1 and 2.2 ; 3. this is an illustration for the proofs
of Propositions 4 and 5. For the case 2.1 : a petal γ1 and two periodic trajectories
δin, δout approaching it in the parallel foliation Pγ1 . The sign codes of δin and δout

while passing by Θv are correspondingly +−−+ and − + +−. For the case 2.2, a
hungry tile θ0 (with a petal γ1 passing through it) eats up the tile θv0 .

on the same line as the initial segment. Simply by symmetry, the corresponding trajectory γv0 is
globally centrally symmetric to γ0, although its orientation is different from that of γ0. This proves
1.

Consider now a hungry flower γ in the vertex v and include it in its ray foliation Rγ. This
foliation contains a symmetric flower γv defined as in the proof of point 1 by symmetry. But the
hungry flower configuration implies that these two flowers γ and γv intersect outside v. This is not
possible since γ and γv are leaves of the same foliation, see Figure 18. �

Note. The two tiles θ0 and θv0 fold into two triangles in the bellow, symmetric with respect to the
diameter d of the circle C such that d 3 F(p). The corresponding symmetric trajectories γ0 and γv0
constructed in the proof of the above Proposition 6 fold into the chords symmetric with respect to
the same diameter d, see Figure 18. In the ray foliation Rp the trajectories crossing θ0 (θv0) go out
of (into) v.

Corollary 1. Configurations 2.2, 4.1c, 6.2 and 6.3 are never realized by bounded flowers.

The possible obstructions that are left to exclude are 4.1a, 4.1b, 4.2, and 6.1. They are treated
analogously to 2.1 in the next paragraph, by using the square property of accelerated symbolic
codes in the sign alphabet.

6.4. Exclusion of remaining cases and finalisation of the proof.

Proposition 7. Configurations 4.1a and 4.1b are never realized by bounded flowers.

Démonstration. Consider the case 4.1a. We denote γin := γ2 and γout := γ1. We approach γin by a
trajectory δ1 from the inside (δ1 ⊂ Ωγin), and γout by a trajectory δ2 from outside (δ2 ⊂ R2 \Ωγout).
One can choose a trajectory δ inside the set Ωγout \ Ωγin close enough to its boundary (in such a
way that it passes by the same tiles as γin ∪ γout). All of the trajectories δ1, δ2, δ are chosen to be
periodic, non-singular and belong to the same foliation Pγ.
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Figure 18. Symmetry of the ray foliation Rp with p = F(v), v ∈ V . From left to
right : 1. Folded triangles F(θ0) and F(θv0) are symmetric to each other with respect
to the diameter d 3 p. 2. Associated unfolded segments. 3. A hungry flower γ and a
flower γv : their petals have to intersect but they can’t !

Then, by the square property and from the combinatorics of such a configuration, we conclude
that there exist the words w, u ∈ SN such that

δ1 = (w −−)2,

δ2 = (u−+ +−)2,

δ = + + w −−w + +u−+ +−u.

But since δ is also a symbolic square, from length considerations, we obtain the word equality
−w + +u−+ = +− u+ +w− which is impossible since − 6= +. The argument for the case 4.1b
is the same, with γin := γ1 and γout := γ2. �

Proposition 8. Configuration 4.2 is never realized by a bounded flower.

Démonstration. Define three non-singular periodic trajectories δ1, δ2 and δ in the parallel foliation
Pγ. First, δj ∈ Ωγj and δj passes by the same tiles as γj for j = 1, 2. Then, we take a trajectory δ
that passes by the same tiles as the flower γ and such that γ ⊂ Ωδ. Then, there exist the words
s, s̄, w ∈ SN such that the words s and s̄ have equal length and

δ1 = −+ +− ss̄,
δ2 = (−− w)2,

δ = + + w −−w + +ss̄.

Length considerations imply the following two equations : s̄−+ = +−s and −w++s = s̄++w−.
These two are incompatible, since the word s has to finish by − and + simultaneously. �

Proposition 9. Configuration 6.1 is never realized by a bounded flower.

Démonstration. We choose periodic non-singular trajectories δj, j = 1, 2, 3, 4 as follows :
• the trajectories δj pass by the same tiles as γj and δj ⊂ Ωγj for j = 1, 2,
• a trajectory δ3 is close to the boundary ∂ (Ωγ1 ∪ Ωγ3) and Ωδ3 contains this boundary,
• a trajectory δ4 is close to the boundary of the set Ωγ3 \ Ωγ2 and is contained inside this set.

Then there exist the words w, v, U ∈ SN such that
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δ1 = (w −−)2,

δ2 = (v + +)2,

δ3 = + + w −−w + +U,

δ4 = −− v + +v −−U.
Since both δ3 and δ4 are symbolic squares, one can split the word U in two words u, ū ∈ SN of
equal length, U = uū. The length considerations for δ3 and δ4 imply :

−w + +u = ū+ +w−,
ū−−v− = +v −−u.

Since the word ū can’t start from + and − at the same time, we have a contradiction. �

The Bounded Flower Conjecture for triangle tilings (Theorem 8) now follows.

Démonstration. Take any vertex v ∈ V in a triangle tiling and a bounded flower in it. One can
suppose that v is the only singularity that this flower meets. 16 Then such a flower has to satisfy
the Bounded Flower Conjecture since "it has no choice" : all the obstructions have been excluded
in Propositions 4–9. �

By Proposition 3, this finishes the proof of the Tree Conjecture for triangle tiling billiards. Our
strategy gives a new proof of the Tree Conjecture for obtuse triangle tiling billiards, previously
proven in [11].

Corollary 2 (Theorem 5.7., [11]). Any periodic trajectory in an obtuse triangle tiling billiard
encloses a tree which is a path.

Démonstration. Consider flower in a vertex v ∈ V (bounded or not) in an obtuse triangle tiling.
Let γ be an obtuse angle, and denote the six tiles in Θv as θ• and θv• correspondingly for the
opposite to θ• tile. Here • ∈ {α, β, γ} is an angle a tile θ• (and θv•) has in the vertex v.

Any flower in an obtuse tiling has at most two petals. Indeed, fold Θv into a bellow. Then one
simply verifies that F (θvα)∩F (θα) = {p} and F

(
θvβ
)
∩F (θβ) = {p}, see Figure 19. Hence a flower

in v can’t simultaneously pass by the interior of the tiles θα and θvα (the same for θβ and θvβ). This
gives that each flower has at most 4 separatrix segments in v (two passing by θγ and θvγ and two
passing by one representative of each of the couples with angles α and β in v). Hence, the graphs
inside periodic trajectories in obtuse triangle tiling billiards are paths. �

16. The proof of this fact is word by word coming from the argument in the proof of Proposition 3. A statement
in the proof we are interested in is marked with italics.
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Figure 19. On the left the neighbourhood of a vertex v ∈ V in a triangle tiling
is represented as a union of three pairs of opposite tiles. The tile θβ has its angle
equal to β in the vertex v, as well as its opposite tile θvβ. On the right one can see
the image F(Θv) under the folding map. The images of tiles θ• and θv• with acute
angle in v intersect only in the point p = F(v).

Part II.– Renormalization for fully flipped 3-interval exchange transformations
In this part, we introduce the renormalization process on the family CET3

τ of fully flipped 3-
IET on the circle (see Section 2 for definitions). This renormalization process is a combinatorial
counterpart of the process of contraction of periodic trajectories of tiling billiards onto flowers that
has been described in paragraph 6.1 and used in the proof of Tree Conjecture (Conjecture 1) in
the Part I.

7. Arithmetic orbits of real-rel leaves and billiard trajectories.

Any map F ∈ CET3
τ is defined by a triple (l1, l2, l3) ∈ ∆2 and a parameter τ ∈ S1, see Section 2.

The family CET3
τ has a 3-dimensional space of parameters ∆2 × S1 with a symmetry around the

plane τ = 1
2
. Indeed, a map F+

τ := F l1,l2,l3
τ is conjugated to a map F−1−τ := F l3,l2,l1

1−τ via a change of
orientation, F+

τ = i ◦ F−1−τ ◦ i. Here i is a global involution on S1, i : p 7→ 1− p. In particular, this
means that the maps in CET3

1
2
have extra symmetries and commute with a global involution. This

was already noticed in [paragraph 4.1, [23]]. For the following we suppose τ ∈ [0, 1/2].
In this Section and till the end of the article we associate to a quadruple of parameters (l1, l2, l3, τ) ∈

∆2 × [0, 1
2
] a quadruple (x1, x2, x3, r) ∈ ∆2 × [0, 1

2
] connected to it by linear relations (4) and the

relation

r :=
1

2
− τ, r ∈ [0,

1

2
]. (5)

The connection between these two sets of parameters is one-to-one, and in this work we navigate
from one to another.

In the following Lemma, we formalize the connection between triangle tiling billiards and real-rel
deformations of Arnoux-Rauzy maps discussed in the paragraph 2.3.

Lemma 3. Take any triple (x1, x2, x3) ∈ ∆2\∂∆2. Define T := T x1,x2,x3 ∈ AR(S1) a corresponding
Arnoux-Rauzy map. Then for any r ∈

[
0, 1

2

]
the following holds :
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1. let Tr be a first-return map of a vertical flow on the translation surface Xx1,x2,x3
r in a real-rel

leaf of XT on a horizontal transversal. Then Tr = F 2 for F = F l1,l2,l3
τ ∈ CET3

τ , where its
parameters lj are defined by (4) and (5) ;

2. for any point p ∈ S1 the displacement Tr(p)− p belongs to a finite set {0,±lj | j ∈ N∆} ;
3. moreover, if r ≤ min{xj}3

j=1, then for any p ∈ S1, Tr(p) − p 6= 0 and the map Tr : S1 → S1

is a 6-IET with the intervals of continuity I±j of lenghts |I±j | =
xj
2
± r, j ∈ N∆.

Démonstration. For r = 0, the statement of this Lemma is equivalent of that of Proposition 1
and has already been proven in [23]. Moreover, the point 1. follows from the fact that the surface
Xx1,x2,x3

0 is a double-cover of a non-orientable surface with a first-return map equal to F l1,l2,l3
1/2 ,

by Proposition 1. The horizontal moves of singularities for the fully flipped interval exchange
transformation F are giving birth to horizontal moves of singularities on the surface X. The
change of parameter r is exactly that of the relative positions of singularities on the surface Xr in
the real-rel foliation.

Suppose now that τ := 1
2
− r and r 6= 0. We suppose that r ∈

[
0,minj

{xj
2

})
or, equivalently,

τ > max(lj). Then, by a direct calculation, one shows that the map F 2 has 6 intervals of continuity
defined as follows :

I+
2 := (l2 + τ, 1) , I−2 := (0, τ − l2) ,

I+
3 := (τ − l2, l1) , I−3 := (l1, l1 + τ − l3) ,

I+
1 := (l1 + τ − l3, l1 + l2) , I−1 := (l1 + l2, l2 + τ) .

The lengths of these intervals verify |I±j | =
xj
2
± r. 17 Here the intervals of continuity of F can be

represented as unions :

I1 = I−2 ∪ I+
3 , I2 = I−3 ∪ I+

1 , I3 = I−1 ∪ I+
2 . (6)

The map F is an orientation reversing isometry on each of the intervals I±j , j ∈ N∆ and for any
couple (j, k), with j 6= k :

|I+
j |+ |I−k | =

xj + xk
2

= |I−j |+ |I+
k |.

This implies that the previous decomposition (6) can be rewritten as

I1 = F (I−3 ) ∪ F (I+
2 ), I2 = F (I−1 ) ∪ F (I+

3 ), I3 = F (I−2 ) ∪ F (I+
1 ),

Moreover, the images F (I±j ) cover the interval [0, 1] in the following order : [0, 1] = F (I−3 )∪F (I+
2 )∪

F (I+
1 ) ∪ F (I−3 ) ∪ F (I−2 ) ∪ F (I+

1 ). Then, one more application of F maps the intervals F (I±j ) onto
the circle in the following order S1 = T (I−3 ) ∪ T (I+

3 ) ∪ T (I−1 ) ∪ T (I+
1 ) ∪ T (I−2 ) ∪ T (I+

2 ).
The intervals I±j can be distinguished one from another by their symbolic dynamics, e.g. I+

1 =

{p ∈ S1 : p ∈ I2, F (p) ∈ I3}. Analogically, the first steps of accelerated symbolic codes of
I−1 , I

+
2 , I

−
2 , I

+
3 , I

−
3 are cb, ca, ac, ab and ba correspondingly. The displacement for every p ∈ I±j , j ∈

N∆ can be calculated explicitely by the use of these codes. The displacement is equal to zero if
and only if F has a 2-periodic interval (this happens if and only if τ ≤ max(lj)). �

Remark 3. From the point of view of triangle tiling billiards, the inclusion Tr(p) − p ∈ {±lj}
is represented by the fact that a trajectory changes its direction after two refractions exactly by
this amount, see Figure 20 and Theorem 3.6 in [11] for details. If the displacement for a map
F ∈ CET3

τ is equal to 0, there is no corresponding billiard trajectory. The six-element set {±lj}
has also been considered in relation to the artihmetic orbits of Arnoux-Rauzy maps (in different
terminology) by P. Hopper and B. Weiss in [22], see their Proposition 4.6 and following discussion.
Most importantly, the set of displacement values of Tr doesn’t depend on r.
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Figure 20. For a trajectory that has an angle equal to 2πp with some fixed line, p ∈
S1, after two reflections with respect to the side c and then side b, the trajectory has
an angle equal to 2πp+ 2α = 2π(p+ l1) with respect to that same line. Analogously,
the displacements in all the other directions are measured by ±lj, j ∈ N∆.

We now define the arithmetic orbits of the family of dynamical squares of the maps in the family
CET3

τ . Here we follow almost word by word the definition in [Section 4, [22]] modulo one important
difference.

For any map F ∈ CET3
τ , define an interval exchange transformation T : S1 → S1 by T := F 2.

Let H be a group of rotations of S1 = R/Z generated by six numbers ±lj, j ∈ N∆. Denote Γ the
Cayley graph of H with respect to these six generators. Consider a periodic triangle tiling with the
angles of tiles defined by the relation (2). We isomorphically embed Γ to the plane (as a graph) to
be the set of edges connecting the barycenters of all positively oriented triangles in this tiling. Of
course, one could see this graph in a slightly simpler way (as it is done in [22]). Although the way
we propose to do it here is a great use for us since Γ is a conformal copy of the graph Λ∆.

A choice of a point p ∈ S1 defines an embedded curve in the graph Γ, i.e. a sequence of elements
hn ∈ H such that T n(p)− p = hn mod Z. We call {hn} the arithmetic orbit of p.

For any triangle tiling billiard trajectory δ in a tiling corresponding to a map T ∈ AR(S1)
via Proposition 1, we define a piece-wise linear curve γ(p) that follows the orbit (T a)◦k(p) =
F ◦2k(p), p ∈ S1 in a following way. It starts in a barycenter of a starting tile θ0 that the trajectory
δ crosses, and connects it to the barycenter of a tile in which δ arrives after two reflections. Without
loss of generality, we suppose that θ0 is positively oriented.

Then the (oriented) segments that form γ(p) belong to a six-element set
{
±
−→
AB,±

−−→
BC,±

−→
CA
}
.

Here A,B,C are the vertices of a tile θ0 marked on the plane. From all of the above follows that
the curve γ(p) coincides with the arithmetic orbit of p under the map T .

To sum up, the study of arithmetic orbits of the Arnoux-Rauzy maps and their real-rel deforma-
tions is equivalent to the study of triangle tiling billiard trajectories. In some sense, the latter are
finer objects since their dynamics is a "square root" of the dynamics of the real-rel deformations
of the family AR(S1).

Note. For all of the maps T = F 2 with F ∈ CET3
τ their SAF invariant is zero. 18More generally,

a square of any fully flipped interval exchange transformation has a zero SAF invariant. This
statement has already been proven in [Proposition 18 in [23]]. We give now a simpler proof which is a

17. For r = 0 the intervals I+
j and I−j have equal length, and are exactly the interavls of continuity of the maps

in the Arnoux-Rauzy family AR(S1).
18. For the definition of the SAF-invariant, see [4]. The Arnoux-Yoccoz map T a is a map for which SAF (T a) = 0

coexists with minimality, see [7].
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remark by Victor Kleptsyn. A fully flipped map F : S1 → S1 can be represented as a composition
F = i ◦ H with H ∈ IET(S1) and i the global involution on S1. Obviously, SAF (i ◦ H ◦ i) =
−SAF (H). Since SAF : IET → R ∧Q R is a group homomorphism, we have : SAF (F 2) =
SAF (i ◦H ◦ i ◦H) = SAF (i ◦H ◦ i) + SAF (H) = −SAF (H) + SAF (H) = 0.

8. Renormalization.

A goal of this Section is to describe a renormalization process on the family CET3
τ .

8.1. Complete periodicity and integrability. First,we deal with several simple cases.
For any map F ∈ CET3

τ we say that an interval I ⊂ S1 is k-periodic if F k |I= id for some
k ∈ N∗ (and such k is minimal). We call the set PF of all k ∈ N∗ such that there exists a k-periodic
interval, the set of interval periods of the map F .

Lemma 4. Fix (l1, l2, l3) ∈ ∆2 and τ ∈ [0, 1
2
]. Then, the following holds for F = F l1,l2,l3

τ ∈ CET3
τ :

1. if τ ≤ max(lj) then F is completely periodic. Moreover, if τ ∈ (0,min(lj)] then PF = {2, 6}.
If τ ∈ (min(lj),mid(lj)] then PF = {2, 4n+2, 4n+6}, where n = b τ

min(lj)
c ∈ N∗. In particular,

if lj > 1
2
for some j, and τ ≤ 1− lj then F is completely periodic ;

2. if lj > 1
2
for some j, and τ > 1 − lj, then for any point p ∈ S1 either F 2(p) = p or

F 2(p) = Rκ where Rκ is a rotation by κ = l3
l2+l3

, defined on an entire interval I (with its
endpoints identigied). This interval is defined as a connected component of points q such that
F 2(q) 6= q, containing p ;

3. the set PF is finite in any of these cases, and PF ⊂ {4n + 2 | n ∈ N∗} for point 1. and in
point 2. it is as well if κ /∈ Q.

Démonstration. We suppose that l1 ≥ l2 ≥ l3. Let for any j ∈ N∆

Kj := Ij ∩ F (Ij). (7)

First, if τ ≤ l3, F has three 2-periodic intervals Kj. The set S1\∪3
j=1Kj splits into three intervals,

all belonging to the same 6-periodic interval orbit.
Second, if τ ∈ (l3, l2] then F has two 2-periodic intervals K1 and K2. Denote I−1 := (0, l3), I+

1 :=
(l3, τ), I−2 := (l1, l1 + τ − l3), I+

2 := (l1 + τ − l3, l1 + τ). Then [0, 1] = I−1 t I+
1 tK1t I−2 t I+

2 tK2t I3

and we have a following chain of images :

(0, l3) = I−1
F7−→ I+

2 7→ I3
F7−→ (τ − l3, τ) ⊂ (0, τ);

(l3, τ) = I+
1

F7−→ I+
2

F7−→ (0, τ − l3) ⊂ (0, τ).

Then in restriction to (0, τ) the first return map F ′ of F is a 2-interval exchange transformation

with combinatorics

(
I−1 I+

1

I+
1 I−1

)
. 19 Such a first return map is completely periodic (as first proven in

[25]) with PF ′ = {2n, 2n+2}, where |I−1 |
|I−1 |+|I

+
1 |

= l3
τ
∈ [ 1

n+1
, 1
n
). This gives that PF = {4n+2, 4n+6}.

Finally, suppose τ ∈ (l2, l1], then K1 is the only 2-periodic interval for F . Consider now a
following subdivision of the initial intervals of continuity : I1 = I−1 ∪I0

1 ∪I+
1 ∪K1, I2 = I−2 ∪I+

2 , I3 =

19. The notation here is analogous to the standard notation for the combinatorics of the dynamics of IET. The
difference is that some of the intervals (e.g. here the interval I−1 ) may be flipped. In this case we write a bar over
such intervals. For more on these notations and in general, dynamical behavior of IETs with flips, see [32, 23].
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I−3 ∪ I+
3 , with

I−1 := (0, τ − l2), I0
1 := (τ − l2, l3), I+

1 := (l3, τ)

I−2 := (l1, τ + l1 − l3), I+
2 := (τ + l1 − l3, l1 + l2)

I−3 := (l1 + l2, l1 + τ), I−3 := (l1 + τ, 1).

Then we have a following chain of images :

I−1
F7−→ I+

3
F7−→ (l2, τ) ⊂ (0, τ)

I0
1

F7−→ I+
2

F7−→ I+
3

F7−→ (τ − l3, l2) ⊂ (0, τ)

I+
1

F7−→ I−2
F7−→ (0, τ − l3) ⊂ (0, τ).

This gives that the first-return map on (0, τ) has the combinatorics
(
I−1 I0

1 I+
1

I+
1 I0

1 I−1

)
, with the

lengths of its intervals of continuity |I−1 | = τ − l2, |I0
1 | = l2 + l3 − τ, |I+

1 | = τ − l3.
This first return map is completely periodic since the Nogueira-Rauzy induction for this map

stops, and its Rauzy diagram is finite. 20 Indeed, one has a following Rauzy diagram :

(
I−1 I0

1 I+
1

I+
1 I0

1 I−1

) |I+1 |>|I−1 |
�

|I−1 |>|I
+
1 |

(
I−1 I0

1 I+
1

I+
1 I−1 I0

1

)
|I01 |>|I

+
1 |→

(
I−1 I+

1 I0
1

I+
1 I−1 I0

1

)
|I+1 |>|I

−
1 |→

(
I−1 I+

1 I0
1

I−1 I+
1 I0

1

)
. (8)

We do not give a full Rauzy diagram but only one of its parts, since the diagram is symmetric
with respect to the exchange of I−1 and I+

1 . After a finite number of steps of the Rauzy-Nogueira
induction, one obtains a completely periodic map (indeed, a permutation on the right in (8) is
completely periodic). 21 This proves the point 1.

For the point 2., if l1 > 1
2
and τ > 1− l1 then we have 0 < l1 + τ − 1 < τ < l1. This means that

the map F has two 2-periodic intervals I−1 := (0, l1 + τ − 1) and I+
1 := (τ, l1), I−1 ∪ I+

1 = K1. Then,
the first return map on the interval I2 ∪ I3 = (l1, 1) is equal to F 2 and coincides with a rotation
Rκ with with κ = l3

l2+l3
.

Finally, for all the maps studied above the elements of PF have the form {4n + 2 | n ∈ N}
(except for the point 2. and κ ∈ Q that may induce periods of the form 4n, n ∈ N). The set PF is
always finite. �

Remark 4. In terms of triangle tiling billiards, the maps with parameters described in Lemma 4 are
integrable, i.e. the corresponding trajectories are either periodic (correspond to periodic intervals)
or linearly escaping (correspond to the point 2. of the Lemma 4). The point 2. corresponds to the
case of obtuse triangle tilings : on any of such tilings one finds linearly escaping trajectories. The
point 1. corresponds to the case when trajectories start far enough from the circumcenter and are
periodic. For more on the notion of integrability for tiling billiards, see [Section 5, [23]].

8.2. Renormalization process. Now we are ready to define the renormalization process on the
family CET3

τ : we will do it for all the cases that were not covered by the previous pargraph.

Theorem 10. Take a map F = F l1,l2,l3
τ ∈ CET3

τ with τ ∈ [0, 1
2
]. Let max{lj}3

j=1 ≤ 1
2
and τ >

max{lj}3
j=1. Define xj and r via the relations (4) and (5). Then the following holds.

20. This induction is the Rauzy-Nogueira induction for IETs with flips and was first introduced in [32].This
induction is defined in an analogous way to the standard Rauzu induction, by inducing on each step on the difference
between the initial and losing intervals. For almost any IET with flips the Rauzy-Nogueira induction stops, as proven
by A. Nogueira. For more details, see for example [23].
21. One can also explicitely calculate the set PF in this case but we do not need it in the following.
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0 1l1

0 1ττ − l3τ − l2 l1 + τ − l3

Figure 21. Interval S3 of the induction. Here F = F l1,l2,l3
τ ∈ CET3

τ with the para-
meters satisfying the relations l3 < l2 ≤ l1 and τ ∈

(
l1,

1
2

]
. One step of renormaliza-

tion gives a map R3F which is a rescaled first return map on the interval S3. The
middlepoint of S3 is equal to τ + l1 − 1

2
and coincides with a singularity l1 and only

if τ = 1
2
.

l3 x3l1

τ − l3 ττ − l2 l1 + τ − l3

Figure 22. First return map on S3 is a fully flipped interval exchange transforma-
tion.The intervals Ja, Jb, J1

c , J
2
c are intervals of continuity of such a map, and the

dynamics is defined by equations (9) and (10). By regluing the extremities of S3, a
singularity between J1

c and J2
c dissapears and a rescaled map R3F ∈ CET3

τ .

1. A map T = F 2 : S1 → S1 is a 6-IET with intervals of continuity I±j of lengths |I±j | =
xj
2
± r, j ∈ N∆. Moreover, I+

j and I−j are neigbouring in the preimage, and their images
T (I+

j ) and T (I−j ) are neighbouring in the image.
2. Suppose that lj = min{lj}3

j=1 for some j ∈ N∆. Consider the interval Sj := I+
j ∪I−j =: (s−j , s

+
j )

and reglue its endpoints to obtain a circle Sj/s−j ∼ s+
j . Then a first return map on this circle

is well-defined. Let RjF : S1 → S1 be its rescaling back to the unit circle. Then RjF ∈ CET3
τ

and its parameters (l′1, l
′
2, l
′
3, τ
′) ∈ ∆2 × [0, 1/2] are defined as follows : (l′1, l

′
2, l
′
3) is th image

of (l1, l2, l3) under the fully subtractive algorithm, and

τ ′ =
1

2
− r′, r′ =

r

|S3|
≥ r.

3. A map RjF has a 2-periodic interval if and only if lj ≥ 1
4
− r

2
.

We call the interval Ij the interval in play.

Démonstration. The point 1. follows from the proof of Lemma 3. As already mentionned before,
the inequality τ > lj is equivalent to the absence of 2-periodic intervals for F .

In the following we suppose that l3 = min{lj}3
j=1 or, equivalently, x3 = max{xj}3

j=1. Then
S3 = (τ − l2, l1 + τ − l3) and we study the first return map on S3, see Figure 21.
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Cut each of the intervals I+
3 and I−3 into two subintervals by points l3 and x3 correspondingly.

Then I+
3 = J2

3 ∪ J1 and I−3 = J2 ∪ J1
3 , where the intervals J1, J2, J

1
3 and J2

3 are defined by

J1
3 := (l1 + l2 − l3, l1 − l3 + τ) , J2

3 := (τ − l2, l3) ,

J1 := (l3, l1) ,

J2 := (l1, l1 + l2 − l3) .

We see that |J1| = x3−x1
2

= l1− l3, |J2| = x3−x2
2

= l2− l3 and |J1
3 |+ |J2

3 | =
(
x2
2
− r
)

+
(
x1
2

+ r
)

= l3.
Moreover, the interval S3 is cut into four disjoint intervals in the following order :

S3 = J2
3 t J1 t J2 t J1

3 . (9)

One can easily see that F (J1) ∪ F (J2) ⊂ S3, and that F (J1) is put to the right end of S3, and
F (J2) is put to the left end of S3 by the dynamics.

For the intervals J1
3 and J2

3 , one has the following chains of iterations :

J1
3

F7−→ I−2
F7−→ (l1 + l2, l1 + τ)

F7−→ (l2, τ) ⊂ S3,

J2
3

F7−→ I+
1

F7−→ (l1 + τ, 1)
F7−→ (τ − l3, l2) ⊂ S3.

This proves that the first return map on S3 coincides with F 3 in restriction to J1
3 ∪J2

3 , see Figure
22.

Finally, we conclude that the images of the four intervals J1, J2, J
1
3 , J

2
3 under the first return

map cover S3 without intersection. Indeed, we have

S3 = F (J2) t F 3(J2
3 ) t F 3(J1

3 ) t F (J1). (10)
Hence after regluing the ends of S3 together, the first return map becomes a map in R3F ∈ CET3

τ

with three intervals of continuity : the (rescaled) intervals J1, J2 and J3 = J1
3 ∪ J2

3 . The direct
calculation shows that τ = τ−l3

|S3| . By writing out τ = l1+l2+l3
2
− r we conclude τ ′ = 1

2
− r
|S3| . Thus

the point 2. is proven.
For the point 3. we see that F (J2)∩J2 = ∅ and F (J1)∩J1 = ∅ since τ > lj. Finally, F 3(J1

3 )∩J1
3 6= ∅

is equivalent to the inequality l1 + l2 − l3 ≤ τ ⇔ l3 ≥ 1
4

+ r
2
. Analogously, F 3(J2

3 ) ∩ J2
3 6= ∅ is

equivalent to the analogous inequality τ − l3 ≤ l3 ⇔ l3 ≥ 1
4
− r

2
. By uniting these two inequalities,

we finish the proof. �

We now define the renormalization process on the family CET3
τ as follows. Take any map

F ∈ CET3
τ and let k = 0, F0 = F . If the conditions of Theorem 10 do not hold (equivalently,

conditions of Lemma 4 do hold) for F , we say that the renormalization process stops for the
map F . If these conditions do hold, that defines the index t1 ∈ N∆ of the interval in play and one
defines Rt1F ∈ CET3

τ .
Then, one continues by recurrence. On the k-th step of the renormalization process (it if is

defined), one obtains an interval exchange map Fk ∈ CET3
τ defined by

Fk = Rtk ◦ . . . ◦Rt1F. (11)

Here {tk} ∈ NN
∆ is a sequence of indices corresponding to the intervals in play.

Define λ := (l1, l2, l3, τ) ∈ ∆2 × [0, 1
2
] as a vector of parameters for any map F ∈ CET3

τ .
Then we denote by {λ(k)}k∈N a sequence of such vectors corresponding to the maps Fk. Here
λ(k) = (l

(k)
1 , l

(k)
2 , l

(k)
3 , τ (k)) ∈ ∆2 × [0, 1/2].

The corresponding vectors (x1, x2, x3, r) are also defined in an analogous manner via (4) and (5).
We denote by S(k) ⊂ S1 a set of definition of Fk, considered as a subset of the initial circle

S(0), for any k ∈ N∗. Obviously, the lengths S(k) diminish along the renormalization process since
S(k) ⊂ S(k−1).
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Remark 5. From the proof of Theorem 10 follows that one step (for example, F 7→ R3F ) of the
renormalization process corresponds to one step of the fully subtractive algorithm for the triple
(l1, l2, l3) ∈ ∆2 : [

l
(1)
1 : l

(1)
2 : l

(1)
3

]
= [l1 − l3 : l2 − l3 : l3]. (12)

The renormalization process does not depend on the parameter τ (although the moment it stops,
does depend on τ , see Theorem 10). In restriction to the coordinates xj, the map (12) is the Rauzy
subtractive algorithm :

[x1 : x2 : x3] 7→ [x′1 : x′2 : x3] = [x1 : x2 : x3 − x1 − x2].

The fully subtractive algoritm is defined for all triples of lj, and one of the lengths can be
bigger that 1/2. Hence the Rauzy subtractive algorithm can be expanded to any triple (x1, x2, x3)
with xj ∈ [−1, 1], not necessarily positive, and it always continues with the index j in play for
xj = max{xj}3

j=1.
Define the simplex ∆±2 as a convex hull of the points (1, 1,−1), (1,−1, 1) and (−1, 1, 1). Then

the Rauzy gasket is a part of ∆±2 on which the fully subtractive algorithm is chaotic, and it is the
complement of the three basins of attraction. This idea has been formulated in [6] by P. Arnoux
and S. Starosta, see in particular their Figure 10. In the following we interpret the renormalization
process in terms of triangle tiling billiards. Indeed, it can be seen as acting on the space of orbits of
periodic triangle tiling billiards (via (2)), moving from one tiling to another, with the set of right
triangles being invariant.

8.3. Minimality in the family CET3
τ . The goal of this paragraph is to give a new proof of

Theorem 11 ([23]). A map F l1,l2,l3
τ ∈ CET3

τ is minimal if and only if τ = 1
2
and (x1, x2, x3) ∈ R.

The proof of this Theorem that we give with P. Hubert in [23] was based first, on Theorem 6 by
Arnoux-Rauzy and second, on a "miracle". By explicitely studying the Rauzy graphs of 4-IET with
flips, we have proved the existence of some invariant of these graphs that implied the hyperbolicity
of the Rauzy-Nogueira induction in the neighbourhood of the repelling hyperplane {τ = 1

2
}.

Although, we think that the standard Rauzy-Nogueira induction is not the most appropriate
tool to study the families of fully flipped maps. Indeed, already after one step of this induction
the induced map is not anymore a fully flipped map. The renormalization process we propose
in paragraph 8.2 is better adapted to such families, and corresponding Rauzy graphs are much
smaller. For the family CET3

τ , such graph is one vertex.
Here is a standard

Lemma 5. Consider a map F ∈ CET3
τ and the renormalization process for this map. Then a map

F is minimal if and only if the renormalization process is infinite, and limk→∞ |S(k)| = 0.

Now we are ready to prove Theorem 11.

Démonstration. Take a map F ∈ CET3
τ with a vector of parameters defined by λ. If the re-

normalization process reaches the k-th step, then by Theorem 10 and Remark 5, for the map
Fk ∈ CET3

τ , k ∈ N∗ defined by (11) we have

λ(k) = Atkλ
(k−1),

where tk ∈ N∆ are the indices of intervals in play and the matrices Aj, j ∈ N∆ are defined
explicitely by

A1 :=


1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

 , A2 :=


1 −1 0 0
0 1 0 0
0 −1 1 0
0 −1 0 1

 , A3 :=


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 −1 1

 .
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Define now Bj :=
(
A−1
j

)T
, j ∈ N∆. Then

B1 =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 , B2 =


1 0 0 0
1 1 1 1
0 0 1 0
0 0 0 1

 , B3 =


1 0 0 0
0 1 −1 0
1 1 1 1
0 0 0 1

 .

A map F ∈ CET3
1
2
if and only if (λ,v⊥) = 0 for v⊥ := (1, 1, 1,−2). Moreover, the vector v⊥ is

invariant for all three matrices Bj, j ∈ N∆, i.e. Bjv
⊥ = v⊥. This implies

(
λ(0), v⊥

)
=
(
A−1
t1
· . . . · A−1

tk
λ(k), v⊥

)
=
(
λ(k), Btk · . . . Bt1v

⊥) =
(
λ(k), v⊥

)
=
∣∣S(k)

∣∣−2τ (k)
∣∣S(k)

∣∣ .
This calculation gives that

τ (k) =
1

2
−
(
λ(k), v⊥

)
|S(k)|

.

We see from here that r(k) = r(0)

|S(k)| . Suppose now that F is minimal. Hence necessarily by Lemma
4, F satisfies (infinitely) the conditions of Theorem 10. Then, by Lemma 5, one obtains that if(
λ(k), v⊥

)
6= 0, then r(k) tends to −∞ while k → ∞ which is impossible since r(k) ∈ [0, 1

2
]. Hence

necessarily
(
λ(k), v⊥

)
= 0 and τ (0) = τ (k) = 1

2
. Then, for F ∈ CET3

1
2
to be minimal, by Theorem

10, for every k ∈ N∗ the following inequality should hold :

l
(k)
tk

<
1

4
− r(k)

2
. (13)

Since r(k) = 0, this implies l(k)
tk

< 1
4
for all k ∈ N∗. In terms of parameters xtk these are equivalent

to x(k)
tk
> 1− x(k)

tk
which, by definition gives (x1, x2, x3) ∈ R.

To prove the inverse statement, if F ∈ CET3
1
2
with the parameters (x1, x2, x3) ∈ R, one can

directly reference the result by Arnoux and Rauzy, see Theorem 6. Or, alternatively, we see that
the renormalization process is defined infinitely and

∣∣S(k)
∣∣ → 0. This proves the minimality of F

by Lemma 5.
�

9. Classification of dynamics of triangle tiling billiards.

We use the renormalization process R on the family CET3
τ and tiling billiard foliations in order

to completely describe the dynamics of triangle tiling billiards.

9.1. Vocabularly : tiling billiards and the family CET3
τ . We now make the connection bet-

ween triangle tiling billiards and maps in the family CET3
τ discussed above explicit. We provide a

vocabularly between these, which was for the most part established in [11]. We add to it the two
last lines.
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Triangle tiling billiards CET3
τ (and translation)

angles of a tile
α, β, γ

parameters (l1, l2, l3) ∈ ∆2 (via rescaling (2))

oriented distance d from a segment
of a trajectory to the circumcenter of a tile τ ∈ S1 (via d = cosπτ , see [Proposition 1, [23]])

relative position of a tile with respect
to the folded trajectory p ∈ S1 (via folding F)

starting tile θ0

of fixed orientation p0 ∈ S1 (via folding, p0 ∈ F(θ0) ∩ C)

the set V of vertices
and a corresponding set F(V )

C(p0) := {nα +mβ + p0, n,m ∈ Z}
(by identification C ' S1)

ray foliation Rp0 with p0 = F(v0)
action of a subfamily with fixed (l1, l2, l3) ∈ ∆2

and varying τ , on the subset C(p0) ⊂ S1

parallel foliation Rτ , τ ∈ S1
action of a subfamily with fixed (l1, l2, l3) ∈ ∆2

and varying τ(ε), on the set C(p(ε)),
here τ(ε) = τ0 + 2ε and p(ε) = p0 + ε

All of these connections follow from [11] and the discussions above. The only calculation is that
of the parameters τ(ε) and p(ε) in the last line of the table. It follows from the definition of the
coordinate τ in [11] in a straightforward way.

9.2. Symbolic dynamics of triangle tiling billiards. First, as a corollary of Theorem 10, we
give a simple proof of points 4. and 5. of Theorem 1. We remind the reader that initially 4. was
announced as a 4n+ 2 Conjecture in [11] and a first attempt of a proof was given in [23].

Theorem 12 (4n+ 2 Conjecture). Points 4. and 5. of Theorem 1 hold.

Démonstration. It is sufficient to prove the statements 4. and 5. of Theorem 1 for the symbolic
dynamics of any map F ∈ CET3

τ . Indeed, if some triangle tiling billiard trajectory is periodic,
there exists a periodic interval for a corresponding map in CET3

τ .
22In this case, the map F is not

minimal, and hence, the renormalization process stops for F . Then, by Theorem 10 and Lemma
4, the periodic interval is necessarily flipped on itself or comes as a periodic orbit of a rational
rotation Rκ (see point 2. in Lemma 4). But in the latter case, a map F can be perturbed by a
slight change of parameters (l1, l2, l3) ∈ ∆2 in order for κ = l3

l2+l3
/∈ Q. Then, the corresponding

periodic interval disappears which is not the case for periodic orbits of triangle tiling billiards, see
point 3. in Theorem 1. Indeed, this second case defines drift-periodic orbits. �

One may give a much more precise description of symbolic dynamics of triangle tiling billiards
than that of Theorem 12 with the help of the following

Proposition 10. Consider one step of the renormalization process on CET3
τ . Then for any orbit

of the induced map RjF, j ∈ N∆, the symbolic code of a corresponding orbit of F is obtained via

22. The inverse is not true since periodic intervals of F ∈ CET3
τ may also define drift-periodic orbits of tiling

billiards.
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the substitution σj, where

σ1 :


a 7→ bca, if a precedent symbol was not b,
a 7→ cba, if a precedent symbol was not c,

b 7→ b,
c 7→ c.

;

σ2 :


a 7→ a,

b 7→ acb, if a precedent symbol was not a,
b 7→ cab, if a precedent symbol was not c,

c 7→ c

; (14)

σ3 :


a 7→ a,
b 7→ b,

c 7→ bac, if a precedent symbol was not b,
c 7→ abc, if a precedent symbol was not a.

Consequently, if Fk is defined by (11) then the symbolic code of any orbit of F is deduced from a
symbolic code of a corresponding orbit of Fk by applying to it a substitution σt1 ◦ . . . σtk .
Démonstration. The proof follows from the proof of Theorem 10, and we use the notations coming
from there. Suppose that the induced map is R3F ∈ CET3

τ (j = 3). Then any orbit of the
map F passes by a Poincaré section S3 and has a corresponding orbit in R3F . Moreover, for
any point p ∈ J1 ∪ J2, its F - and R3F -orbits coincide, hence σ3(a) = a, σ3(b) = b. Finally,
J1

3 ⊂ I2, F (J1
3 ) ⊂ I1, F

2(J1
3 ) ⊂ I3 and J2

3 ⊂ I1, F (J2
3 ) ⊂ I2, F

2(J2
3 ) ⊂ I3. Since both J1

3 and J2
3

both have the symbolic code c, σ3 is defined conditionally. This finishes the proof. �

9.3. Complete description of the dynamics of triangle tiling billiards. Now we are ready
to prove Theorem 5 which is a much stronger version of Theorem 2 proven in [23].

Démonstration. First, via the relations (2) and (4), we have ρ∆ = (x1, x2, x3). We now study the
dynamics of a subfamily of maps in CET3

τ with varying τ and fixed (x1, x2, x3), which corresponds
to the dynamics of a tiling billiard on a fixed tiling. Take a map F in this family.
Step 1. First of all, if the renormalization process stops for F , then F is integrable (see Remark

4), i.e. all the corresponding tiling billiard trajectories are either periodic or linearly escaping.
Indeed, we have that τ (k) ≤ max{l(k)

j }3
j=1 or l(k)

j > 1
2
for some j ∈ N∆. In both cases, the dynamics

of the map Fk is integrable, and hence is that of F .
If ρ∆ /∈ R, the renormalization process will necessarily stop, see Remark 5 and the proof of

Theorem 11.
Step 2. Take ρ∆ /∈ R. The linearly escaping behaviour exists on a corresponding tiling if and

only if for some k ∈ N∗, the map Fk verifies the conditions of point 2. in Lemma 4. An additional
calculation shows that it is indeed true for all ρ∆ ∈ R \ E . The argument goes as follows.

Suppose that there exists some k ∈ N∗ such that l(k+1)
i 6= 0 for all i ∈ N∆ and

l
(k+1)
j >

1

2
|S(k+1)|, and ∀m < k max{l(m)

i }3
i=1 ∈ [0,

1

2
). (15)

In the above relation, necessarily j = tk. Indeed, since max{l(k)
j }3

j=1 <
1
2
for j 6= tk, we have

l
(k)
j − l

(k)
tk

<
1

2

(
1− 2l

(k)
tk

)
which is equivalent to l(k+1)

j < 1
2
. Although, it is possible that (15) holds for j = tk. This condition

can be rewritten as

l
(k+1)
tk

>
1

2
|S(k+1)| ⇐⇒ l

(k)
tk

>
1

2
(|S(k)| − 2l

(k)
tk

)⇐⇒ l
(k)
tk

>
1

4
|S(k)|. (16)
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But the last inequaity holds for all ρ∆ /∈ R∆ for some k ∈ N∗. This implies that if l(k+1)
i 6= 0

for all i ∈ N∆ then the linearly escaping behavior does occur on the triangle tiling defined by ρ∆.
Indeed, it suffices to take τ (k+1) = τ (0) = 1

2
, by Lemma 4.

The case which is left is to study is what happens if for some i 6= tk, l
(k)
i = l

(k)
tk

(and hence
l
(k+1)
i = 0). First, l(k)

1 = l
(k)
2 = l

(k)
3 = 1

3
is equivalent to ρ ∈ E∆. Since the dynamics on the

equilateral triangle tiling is 6-periodic, then for any ρ∆ ∈ E∆, by Theorem 10, all of the tiling
billiard trajectories on the tiling defined by ρ∆, are periodic.

Otherwise, if there exists only one j 6= k such that of l(k)
j = l

(k)
tk

coincide, without loss of generality
we can suppose tk = 3 and j = 2. Then l(k)

3 = l
(k)
2 ∈ [1

4
, 1

3
) and l(k)

1 ∈ (1
3
, 1

2
]. Take τ (0) = 1

2
, then

τ (k) = 1
2
. Then a map Fk is explicitely verified to have two types of orbits : fully flipped intervals of

periods 6 (corresponding to periodic orbits) and a periodic interval of period 4 which corresponds
to a periodic linear drift, see Figure 23. 23 This implies that F has necessarily drift periodic orbits.
Step 3. If ρ∆ ∈ R and τ 6= 1

2
, all corresponding triangle tiling billiard orbits are periodic by

Lemma 4. Indeed, the renormalizaiton stops at some step k ∈ N∗ and max{l(k)
j } < 1

2
are all smaller

than 1
2
. For τ = 1

2
, F is minimal by Theorem 11, and the corresponding trajectories escape. 24 The

inverse is true as well : escaping trajectories exist only for τ = 1
2
.

Step 4. Finally, as already shown in [11], drift-periodic behaviour only occurs if (l1, l2, l3) ∈ Q3.
This also follows obviously from renormalization. Moreover, the arguments above show that for any
tiling such that (l1, l2, l3) ∈ Q3 \E the drift-periodic trajectories indeed exist, and for (l1, l2, l3) ∈ E
they do not.
Step 5. The statements about symbolic dynamics follow from Lemma 4 and Theorem 10. Indeed,

for a tiling with ρ∆ ∈ R the set of possible obtained trees {Gδ
∆} with δ - periodic trajectories, is

infinite. Indeed, there exists a sequence of periodic trajectories with monotonously growing periods
by renormalization. The set {Gδ

∆} is although countable. 25 Then, we show that the number of
possible periodic dynamical behaviours (and hence, contoured trees, by Theorem 3) is finite on
any tiling except that with ρ∆ ∈ R. If ρ∆ ∈ E this is, indeed, true, since the renormalization
process defines the list of possible periodic trajectories uniquely, from one 6-periodic trajectory.

Then, if ρ∆ /∈ E , the renormalization process stops at some obtuse triangle tiling on the step
k. On this tiling, for τ = 1

2
, one obtains zero possible periodic behaviours since the corresponding

map goes into the point 2. of Lemma 4 (only linear escape). 26 For smaller τ , the point 1. of Lemma
4 applies. The only thing that one now needs to prove that in this case, the periods of all possible
symbolic codes of trajectories are bounded. This is true since for τ (k) = 1 − max{l(k)

j } all the
trajectories are periodic and the number of their combinatorial behaviors is bounded. The other
combinatorial behaviors are obtained by contraction of flowers inside these trajectories, hence one
obtains a finite number of trees.

Finally, the statement about symbolic dynamics of linear escaping trajectories follows directly
from point 2. in Lemma 4 and Proposition 10. �

Question. Given a triangle tiling, what is a list of possible trees that billiard trajectories on
this tiling contour ? Theorem 10 and Proposition 10 above give an algorithm to compute the
symbolic behavior of trjaectories and hence, the corresponding trees. But we wonder if a tree can
be calculated in a more direct way.
Note. The set E is the set of preimages of a point [1 : 1 : 1] ∈ ∆2 under the fully subtractive
algorithm. Here is a list of preimages up to level 3.

23. Our argument also shows that 4 is the shortest period of the drift behaviour in a triangle tiling billiard.
24. In Theorem 13 we show that their escape is non-linear.
25. This set can be explicitely calculated via the substitutions σj , j ∈ N∆ defined in Proposition 10.
26. Then, by renormalization for τ = 1

2 , there always is linear escape in obtuse tilings.
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Figure 23. A drift-periodic trajectory of period 4, with for γ = β = 50◦, α = 80◦.

[1 : 1 : 1] [1 : 2 : 2]

[2 : 3 : 4]

[4 : 6 : 7]

[3 : 5 : 7]

[2 : 5 : 6]

[1 : 3 : 3]

[3 : 4 : 6]

[1 : 4 : 4]

All the trajectories on corresponding tilings are periodic. For example, a point [1 : 2 : 2] corres-
ponds to a tiling by triangles with angles 36◦, 72◦, 72◦ and all billiard trajectories in it are periodic
with periods 6 or 10. The question whether the equilateral triangle tiling is the only tiling per-
mitting only periodic trajectories was initially asked by Serge Troubetzkoy. Theorem 5 gives a
negative answer to it.

10. Arithmetic orbits of Arnoux-Rauzy surfaces and exceptional trajectories.

While interested in [22] in the dynamics of real-rel leafes of Arnoux-Yoccoz surfaces, P. Hooper
and B. Weiss conjectured the convergence of the arithmetic orbits of the Arnoux-Yoccoz map to the
Rauzy fractal, under reparametrization. Subsequently, P. Baird-Smith, D. Davis, E. Fromm and
S. Iyer, following the connection between the arithmetic orbits and trajectories of tiling billiards
they have discovered, restated the Hooper-Weiss Conjecture in terms of triangle tiling billiards. In
this Section we prove this Conjecture.

10.1. Exceptional trajectories pass by all tiles. We are especially interested in the exceptional
trajectories of triangle tiling billiards since they are connected to arithmetic orbits of the Arnoux-
Rauzy maps, see Section 7. We remind our reader that by definition, the exceptional trajectories
are those that are defined in the triangle tilings with ρ∆ ∈ R and pass through the circumcenters
of crossed tiles.

Theorem 13. For any ρ∆ ∈ R and any tiling billiard trajectory δ on a corresponding tiling passing
by a circumcenter of the tile θ0, the following holds :

1. if δ doesn’t pass by any vertex of a tiling, then it passes by the interiors of all tiles.
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Figure 24. Two neighbouring tiles θ and θe and trajectories δ and δ′ passing by
circumcenters of the tiles. The trajectory δτ1 is a periodic loop containing e.

2. if δ passes by some vertex v ∈ V (is a singular ray) there exist 5 additional singular rays in a
corresponding flower such that the union of these six rays passes by all tiles, and this union
doesn’t pass by any other vertex.

Démonstration. First, for any ρ∆ ∈ R, the corresponding triangles are acute. Consider a folding
map F = F(θ0). Let l be a chord in a bellow such that F(δ) ⊂ l.

Suppose that δ doesn’t pass by any singularity in a tiling. This implies l ∩ F(V ) = ∅. Suppose
first that δ doesn’t pass by all of the triangles. Hence there exists some tile θ in a tiling and its
edge e such that δ ∩ θ 6= ∅ and δ ∩ θe = ∅. Consider a trajectory δ′ passing by a circumcenter of θe
in the same parallel foliation Pδ. Then δ′ 6= δ and δ ∩ e = δ′ ∩ e = ∅.

Consider now two singular segments of the foliation Pδ in the tiles θ and θe. One can easily see
from the folding that the only way these segments may behave is to pass by the same vertex v ∈ e.
Then, the corresponding singular trajectories are periodic by Theorem 5 and have to coincide since
δ and δ′ escape. We denote a corresponding periodic petal by δτ1 , see Figure 24. Now consider a
family {δτ}τ∈[τ1,1/2] of trajectories starting by the segments in θ. Here δ 1

2
= δ. Analogously to

the above argument, the trajectory δτ is periodic and passes by θe for any τ 6= 1
2
(since δ and

δ′ are escaping and belong to the same foliation). Moreover, we see that Ωδτ−
⊂ Ωδτ+

for any
τ−, τ+ ∈ [τ1, 1/2] such that τ− < τ+.

Hence, by passing to the limit, the trajectories δ and δ′ can be both approached as a set of
nested trajectories {δτ} with growing τ, τ → 1

2
. Hence δ ∩ δ′ 6= ∅. If δ is non-singular, then δ = δ′

and δ = limτ→ 1
2
δτ and δ passes by all the triangles.

Otherwise, if δ ∩ δ′ 6= ∅ then necessarily δ ∩ δ′ = {v}, v ∈ V and δ and δ′ are singular rays in
some unbounded separatrix flower. Then the parallel foliaiton Pδ has 6 singular rays going out
in the tiles neighbouring to v ∈ V since all the tiles are acute and the rays pass by a vertex and
a circumcenter. Analogously to previous arguments, each of the sectors defined by these rays is
foliated by sequences of periodic orbits with growing periods. Each ray separately spirals non-
linearly to infinity (in positive or negative time).

Finally, a singular trajectory δ passing by a curcumcenter of a tile can’t pass by two vertices of
the tiling since there are no rational relationships between the angles of the tile with ρ∆ ∈ R. �

Obviously, a trajectory passing by all points can’t be linearly escaping. Hence the Theorem 13
implies that all of the exceptional trajectories (singular and non-singular) are non-linearly escaping
which proves our conjecture with P. Hubert from [23].
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It can be interesting in the future to study the growing fractal forms to which the exceptional
trajectories converge after reparametrization. We do it in the following for the family of exceptional
trajectories corresponding to the Arnoux-Yoccoz map.

10.2. A missing link : the Arnoux-Yoccoz map and the Rauzy fractal. Consider the
Arnoux-Yoccoz map T a ∈ AR(S1) defined in paragraph 2.2. To this map, via Lemma 3, we
associate a map F a ∈ CET3

1
2
with a triple (l1, l2, l3) ∈ ∆2 of parameters defined by

l1 :=
1− a

2
, l2 :=

1− a2

2
, l3 :=

1− a3

2
(17)

and a periodic triangle tiling (via the vocabularly established in paragraph 9.1) with the angles
of tiles defined by

α =
π

2
(1− a), β =

π

2
(1− a2), γ =

π

2
(1− a3). (18)

In other words, ρ∆ = (a,a2,a3) with a defined by (17) and ρ∆ defined by (1).
Here the angles approximatively are equal to α ≈ 41◦, β ≈ 63◦, γ ≈ 76◦. We call such a triangle

a Tribonacci triangle and a corresponding billiard the Tribonacci (triangle tiling) billiard.
In some sense, this billiard is the simplest one from all those that admit exceptional trajectories,
because of its autosimilarity properties that we discuss in the following.

As discussed already in Section 7, the symbolic dynamics of orbits of the Tribonacci billiard
coincides with the arithmetic orbits of the Arnoux-Yoccoz map. In this paragraph we prove the
convergence of such arithmetic orbits to the Rauzy fractal. We first give some reminders about the
classical Rauzy substitution and the Rauzy fractal.

A Tribonacci substitution σR is a map on the words in the alphabet N∆ = {1, 2, 3} defined
as the extension of the following map :

σR :

 1 7→ 12
2 7→ 13
3 7→ 1

.

The substitution σR has a unique fixed point wR ∈ N∆
N (i.e. wR is an infinite word such that

σR(wR) = wR), which starts as wR := 1213121121312 . . ..
We interpret the sequence wR as an infinite ladder in the space R3 with standard cartesian

coordinates (we fix a standard basis e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)). Each subsequent
symbol (wR)j ∈ N∆, j ∈ N is interpreted as an addition of the step e(wR)j to the growing ladder.
We color an endpoint of each of these added vectors in one of three colors. The infinite ladder
constructed in this way has a principal direction. After projecting on a plane orthogonal to this
direction, we consider the image of the set of endpoints. This set is, by definition, the Rauzy
fractal, a self-similar set defined by G. Rauzy in 1981, see [33].

To a classic Tribonacci substitution σR one also associates a sequence of Tribonacci numbers,
i.e. the sequence of lengths of iterations of the word 123 under the action of the substitution σR :

Tn+4 := |σnR(123)| , n ∈ N. (19)

It is standard (and trivial) that for all n, after setting T1 = T2 = T3 := 1 we have

Tn+3 = Tn+2 + Tn+1 + Tn, (20)
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which can also be seen as the definition. The sequence {Tn} is a generalization of the Fibonacci
sequence (hence the name). The first 20 terms of the Tribonacci sequence 27 are

1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499, ...

The following is based on an important self-similarity property of the number a ∈ R defined
by (17) which has been already used in many contexts. The point ρ∆ = (a,a2,a3) ∈ ∆2 is a
3-periodic point of the Rauzy subtractive algorithm (and a corresponding triple (17) a 3-periodic
point of the fully subtractive algorithm). Indeed, we have the following calculation :(

a,a2,a3
)
7→ 1

a

(
a− a2 − a3,a2,a3

)
=
(
a3,a2,a

)
.

In the context of the renormalization on CET3
τ , we see that R3R2R1F

a = F a. Actually, the
map R1F

a is the same as F a but with the labels of the intervals of continuity changed. As an
abstract tiling, the Tribonacci tiling is a fixed point of the renormalization process. From Theorem
11, the map F a is minimal. Hence, by Proposition 10, the symbolic dynamics of its generic point
is an invariant point of a substitution σ := σ1 ◦ σ2 ◦ σ3 with σj defined explicitely by (14) for
all j ∈ N∆. All the corresponding (passing through circumcenters of tiles, in any direction) tiling
billiard trajectories are escaping, as already has been noticed in [11].

In order to control the relabelling, define a following map υrel on the alphabet A∆. We define
υrel on the letters by

υrel :

 a 7→ b,
b 7→ c,
c 7→ a,

and extend this definition to all words in A∆.
Define now a substitution ςR := υrel ◦ σ3 on periodic words in the alphabet A∆. We remind our

reader that the substitution σ3 has been defined in Proposition 10, see (14), by

σ3 :


a 7→ a
b 7→ b

c 7→ bac, if a precedent symbol was not b
c 7→ bca, if a precedent symbol was not a.

(21)

Since the words in the orbit {ςjR(cba)}j do not contain two equal letters subsequently (since they
all correspond to Tribonacci tiling billiard trajectories as discussed above), one can define ςR as

ςR :


a 7→ b
b 7→ c

c 7→ cba, if a precedent symbol is a
c 7→ bca, if a precedent symbol is b

. (22)

We now define the factorization map υfac on the words in A2
∆ (or, equivalently, on the even-

length words in A∆). Define υfac : A2
∆ → N∆ as first, defining it explicitely on letters by

υfac(ab) = υfac(ba) := 3,

υfac(ac) = υfac(ca) := 2,

υfac(cb) = υfac(cb) := 1,

and then extending it to words.

27. Tribonacci sequence is the A000213 sequence of the on-line encyclopedia of integer sequences, see https:
//oeis.org/A0000213 for more details.

https://oeis.org/A0000213
https://oeis.org/A0000213
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Define for any map ϕ : (A2
∆)N → (A2

∆)N its factorization ϕ∗ : (N∆)N → (N∆)N as the solution
of the following commutative relationship :

υfac ◦ ϕ = ϕ∗ ◦ υfac.

The connection between σR and ςR is now apparent through factorization.

Proposition 11. The following holds for the factorizations σ∗j , j ∈ N∆, υ∗rel and ς∗R of the substi-
tutions σj, j ∈ N∆, υrel and ςR :

1. these factorizations are well defined,
2. even though the substitutions σj are defined only for periodic words, their factorizations σ∗j

are well defined for non-periodic words,
3. ς∗R = σR.

Démonstration. This is a simple verification. First, for the definition of σ∗1, we study the action of
σ1 on two-letter words. Indeed, we have the following relations

σ1(ab) =

{
cbac
bcab

,

σ1(ba) = bcba.

These three equations factorize correctly into one equation σ∗1(3) = 13 which proves that σ∗1(3)
is well-defined.

Similarly, σ1(ac) = cbac or bcac and σ1(ca) = cbca and σ∗1(2) = 12 is well defined. Finally, since
σ1(bc) = bc, σ1(cb) = cb then σ∗1(1) = 1. This defines the map σ∗1 on the elements of the set N∆

and then on all words of this alphabet by extension. By analogously proceeding with σ2 and σ3

one obtains well-defined maps :

σ∗1 :

 1 7→ 1
2 7→ 12
3 7→ 13

, σ∗2 :

 1 7→ 21
2 7→ 2
3 7→ 23

, σ∗3 :

 1 7→ 31
2 7→ 32
3 7→ 3

.

Then obviously, the factorization of the map υrel is given by

υ∗rel :

 1 7→ 2
2 7→ 3
3 7→ 1

.

The final calculation gives that ς∗R = υ∗rel ◦ σ∗3 = σR. For σ = (σ1 ◦ σ2 ◦ σ3) we have σ∗ =
σ∗1 ◦ σ∗2 ◦ σ∗3 = σ3

R. �

Note. One can also associate 1+ to bc, 1− to cb, 2+ to ca, 2− to ac, 3+ to ab, 3− to ba. In this case
one defines a substitution on cyclic words in {1+, 1−, 2+, 2−, 3+, 3−}. By identifying 1+ = 1−, 2+ =
2−, 3+ = 3−, we get the substitutions in Proposition above.

Example. The image σ(cba) (as that of the periodic word cbacba) is calculated as follows :

cba
σ37−→ bacba

σ27−→ cabacacba
σ17−→ cbcabcbacbcacbcba.

The corresponding relabelled sequence of images gives with wj = ςj−1
R

(
cba
)
, j ∈ N∗ :

w1 = cba
ςR7−→ w2 = cbacb

ςR7−→ w3 = bcacbcbac
ςR7−→ w4 = cbcabcbacbcacbcba

Since the word υfac(cbacba) = 123, from the Proposition 11 follows that υfac(wj) = σj−1
R (123).

All of the words wj correspond to the symbolic trajectories in the Tribonacci billiard, and these
words are the only possible behaviors of trajectories on such tilings, see paragraph 9.1 and Theorem
10.
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The example above and Proposition 11 already sketch the connection between the symbolic
dynamics of the Tribonacci billiard and the Rauzy fractal. In the following, we make this connection
precise. For this, we choose the markings of the periodic words wj in order to be able to treat them
as strings of letters and not as cyclic words. Before doing so, we introduce the following notations :
we write U1 = U2 for two elements U1, U2 ∈ AN

∆ if their corresponding cyclic words are equal and
we write U1 ≡ U2 if these two elements coincide symbol by symbol as elements in AN

∆ .
Define a sequence of words {sj}∞j=−2, sj ∈ AN

∆ with sj ≡ s1
j . . . s

lj
j with sij ∈ N∆, i = 1, . . . , lj.

Here lj = |sj| ∈ N. First let s−2 :≡ a, s−1 :≡ b, s0 :≡ c, s1 :≡ cba.
Then, for any j ∈ N∗ we define the word sj+1 in a following reccurent way from the word sj

already defined. If s1
j 6= c, let sj+1 :≡ ςR(sj). Otherwise, if s1

j = c, sj = c s2
j . . . s

lj
j and we define a

string sj+1 (still equal to ςR(sj) as a cyclic word) by shifting its beginning two steps to the right
with respect to ςR(sj). Indeed, we have

ςR(sj) ≡ kj1 k
j
2 a ςR(s2

j) . . . ςR(s
lj
j ) = a ςR(s2

j) . . . ςR(s
lj
j ) kj1 k

j
2 =: sj+1.

Here (kj1, k
j
2) = (b, c) if sljj = b and (kj1, k

j
2) = (c, b) if sljj = a, by the definition (22) of the

substitution ςR. Define the cyclic words wj := s2
j . Obviously, as cyclic words, they are as above,

the images of the word abc under the substitution ςR. Denote by Pj the length of the word wj, i.e.
Pj = 2lj with lj = |sj|. We also define the word w∞ as a fixed point of ςR.

Very importantly for the following, we consider sj as string words 28, and we define wj := s2
j as

cyclic words.
We introduce several additional notations. Let W ⊂ AN

∆ be defined as W := {wj, wj ∈ AN
∆}.

Moreover, for any word w ∈ AN
∆ , if this word finishes by a symbol or a word κ, we denote by

wκ this same word without its last symbol or last word κ. By definition, w = wκκ.

Example. The next 4 elements of the sequence {sj}, are
s2 :≡ acbcb,

s3 :≡ bcbacbcac,

s4 :≡ cbcacbcbacbcabcba,

s5 :≡ acbcabcbacbcacbcbacbcabcbcacbcb.

Now we are ready to prove Theorem 2. We actually prove a following (stronger) statement.

Theorem 14 (Combinatorics of Tribonacci billiards). Consider the Tribonacci billiard. Take an
oriented trajectory δAY 29 in this tiling passing by a circumcenter of some tile it crosses. Suppose
first that δAY is not singular. Then the following holds for the trajectories in the parallel foliation
PδAY :

1. all of the leaves (except for δAY ) in PδAY are periodic tiling billiard trajectories and δAY
passes by all tiles,

2. for any periodic trajectory δ (once oriented as turning counterclockwise), there exists j ∈ N∗

such that a word wj = ςj−1
R (acb), wj ∈ W caracterizes its symbolic dynamics, and wj =

s2
j . Moreover, υfac(wj) = σj−1

R (123) and υfac(w∞) = wR. The period of δ is then a doubled
Tribonacci number 2Tj+3, see equation (20),

3. any fixed periodic trajectory δ ∈ PδAY with combinatorics wj defines a unique family Γδ =
{γk, k ∈ N} of flowers γk in PδAY (except for γ2 which is not a flower but a petal of γ3) with
pistils in vertices vk ∈ V 30 that satisfy the following properties :

28. The string words sj coincide with the symbolic codes of a singularity for the maps Fa
r in the family of real-lef

deformations for the Arnoux-Yoccoz map Fa, with the parameter r → 0 as j →∞.
29. The subscript AY is here to remind that δAY corresponds to an arithmetic orbit of the Arnoux-Yoccoz map.
30. For the exceptional case of γ2, we define v2 = v3 and the petal γ2 is attached to v3.
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a. if j ≥ 3, the trajectory δ with combinatorics wj is contracted onto the flower γj with the
same combinatorics, if = 1 then δ contracts on the flower γ0, and if j = 2 it contracts on
the flower γ1 (inside), and outside onto the petal γ2,

b. all of the flowers in Γ pass by all of the the six tiles in θ ⊂ Θv1 = ∪θ3vθ,
c. for all k ∈ N∗, k 6= 2, a flower (petal) γk has combinatorics wk,
d. the flower γ0 = v0 ∈ V is a vertex, γ1 is a one-petal flower, γ2 is a petal of a two-petal

flower γ3, all γk with k ≥ 4 are flowers with three petals,
4. the family Γδ has the following autosimilarity properties :

4.1 for any k ≥ 4, a flower γk has three petals with combinatorics wk−3, wk−2, wk−1, and is
contained in one petal of the flower γk+1 with three petals of combinatorics correspondingly
wk−2, wk−1, wk ; a flower γ3 has two petals of combinatorics w2, w1, and a flower γ1 also
has one petal of combinatorics w1,

4.2 the string symbolic words s2
k, j ∈ N ∪ {−2,−1} of all γk ∈ Γδ satisfy the following

relationships, depending on the value of ε(k) := k mod 3,

(sk−3 · sk−3)∗ † (s2
k−2)? ∗ (s2

k−1)† ? ≡ sk−3 · ((sk)2)sk−3 = s2
k = wk, (23)

where (∗, ?, †) : N∗ → A3
∆ is defined explicitely by (∗, ?, †) = (c, a, b) if ε = 0, = (a, b, c)

if ε = 1, = (b, c, a) if ε = 2. Moreover, the edges inserted in between for any flower γk
meet in the same point vk defined above (for all k 6= 2 this point is the pistil of the flower
γk ∈ Γ). On each new step of the construction, the pistil vk+1 is uniquely defined as a
vertex such that first, vk+1 /∈ Ωγk and such that vk+1 belongs to the edge e defined as
follows. The edge e is crossed by the smallest of the three petals of the flower γk on the
half of its length (in the symbolic code (23), it corresponds to the middlepoint · marked in
the code (23),

6. for any flower γk, k ≥ 4, we denote by Ω1
k,Ω

2
k,Ω

3
k the unions of all the tiles by which pass

its petals with combinatorics wk−1, wk−2 and wk−3 correspondingly. 31 Then for a matrix A =(
−a 1

−1− a2 −1

)
32 one has up to an isometry,

Ω1
k+1 = Ω1

k ∪ Ω2
k ∪ Ω3

k,

Ω2
k+1 = AΩ1

k,

Ω3
k+1 = AΩ2

k.

This implies that the sequence of curves A−kγk approximates the Arnoux-Rauzy curve, and
the sets of all barycenters of tiles in the partition A−kΩ1

k ∪A−kΩ2
k ∪A−kΩ3

k of A−kΩ1
k+1, give

better and better approximations of the Rauzy fractal with its standard partition into 3 cells.
Finally, a sequence of curves {A−kδAY }k∈N∗ on the plane converges to the Arnoux-Rauzy
curve, in restriction to the fundamental domain which is a limit set of the sets A−kΩk+1 in
the Haudorff topology. The distance d(θn, θ0) between the triangle θn that δAY visits at its nth
iteration and its initial triangle θ0 verifies

d(θn, θ0) ∼ C ·
√
n, n→∞.

Moreover, if δAY is singular (in some point v ∈ V ) then the corresponding foliation PδAY has
5 additional singular entering the tiles in Θv. Each of the sectors defined by these rays is folia-
ted by sequences of periodic orbits with growing periods that approach Rauzy fractal, up to the
reparametrization described above.

31. In other words, the biggest, the middle and the smallest petals of the flower γk.
32. Here A = B−1 with B defined on p. 151 of the initial article [33] by G. Rauzy, where he defines his fractal for

the first time.
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Démonstration. We consider the parallel foliation PδAY . We now show how the renormalization
process defined in Section 8 translates to a construction of a growing sequence of flowers in this
foliation, and completely describes the dynamics of δAY .

The point 1. has been already proven in Theorem 13. The point 2. follows from the renormali-
zation (Theorem 10) and Proposition 10 as explained before, the symbolic dynamics of the map
F a in the alphabet A∆ is given by the sequence wj = ςj−1

R (acb) and w∞. By Proposition 11, since
ς∗R = σR we obviously have that |wj| = 2Tj+3 with the Tribonacci sequence defined by (20).

By Theorem 8, and since all of the trajectories δ ∈ PδAY , δ 6= δAY are periodic, then the
trajectories on one side of δAY have the same winding.

Fix a trajectory δ with symbolic dynamics wj. In order to construct the family Γδ, we proceed
in the following way. We contract δ inside onto some flower, then choose the biggest petal of
this flower, and a periodic trajectory approaching this petal from inside. This periodic trajectory
contracts on another flower etc. Thus we construct a sequence of flowers γk with diminishing
periods till γ0 = {v0}. Moreover, we already know that the only periods possible belong to the
set of doubled Tribonacci numbers. Since the set of Tribonacci numbers is a number system, this
implies that for k ≥ 4, the petals of the flower γk have combinatorics wk−1, wk−2, wk−3 (since their
lengths are 2Tk+2, 2Tk+1 and 2Tk), for any step k ≥ 4. 33 The combinatorics of a sequence of flowers
{γj}, with small indices (for j ≤ 4), follows from explicit calculation, see Figure 25. This finishes
the proof of point 3. Indeed, by construction, all of the curves γk pass by the six tiles in Θv0 .

The family Γδ splits up the plane into open domains of trajectories with the same symbolic
dynamics. The more these zones approach δAY , the more the corresponding period grows. The
point 4.1 follows from point 3.

One easily checks the statement 4.2. explicitely for all k ≤ 3. Now take a flower γ4 with three
petals, and a vertex v4. We look at the combinatorics of this flower by fixing the initial starting
position to make a turn of the smallest of its petals (with combinatorics w1). Then, the two sides of
the equation (23) correspond to the symbolic code of this flower. By the symbolic code of a flower
we understand a symbolic code of a family of periodic trajectories approaching it from outside.

Indeed, the word s1 · (s2
4)s1 obviously coincides cyclically with w4. The left-hand side of (23)

coincides with w4 as well since a flower is a union of three petals, in the presented order, which
can be verified explicitely. The junctions ∗, ?, † correspond to the three edges that are crossed by a
close periodic trajectory (and not contained in the flower itself). These are three edges such that
∗ ∩ ? ∩ † = {v4}. Here ∗ = a, ? = b, † = c.

Now, the equation (23) for any k follows analogously. It suffices to say that the flower γk is
mapped to the next flower γk+1 va renormalization 34 and the pistil vk is mapped to the pistil vk+1.
The vertices {vk} are related to the symbolic dynamics in a following way. For any k there exists
a unique edge ek which is crossed by a smallest petal of γk in the middle of its symbolic dynamics
(starting from the vertex vk) 35. The vertex of this edge contained outside Ωγk is exactly vk+1, via
renormalization.

Concerning point 5., the relationships between the sets Ωj
k follow obviously from above. Indeed,

at each new step of construction of a flower γk+1, its biggest petal "eats up" the flower γk, and the
smaller petals of γk+1 are obtained from two biggest petals of γk via renormalization. Then, since
the square of the renormalization is the Rauzy substitution, the reparametrization matrix is the
same as that in [33]. All of the rest follows from standard results and arguments.

33. In the process of contraction, if one doesn’t choose the biggest flower, not all of the periods (and combinatorics)
will be realized.
34. The renormalization process has been defined on the orbits of the maps in CET3

τ but via the vocabularly in
paragraph 9.1 it transfers to tiling billiard foliations.
35. This edge corresponds to a break point · in the equation (23).
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Figure 25. Flowers γ0, . . . , γ5 in the foliation PδAY . On the left, we take any per-
iodic trajectory δ of period 62 = 2 · 31. Then consider the foliation PδAY inside
the domain Ωδ. On the right is presented the structure of the flowers obtained by
contraction of δ. The vertices vj, j ∈ {1, 2, 3, 4, 5} are marked. Moreover, one can
see a flower γ1 (one petal), a petal γ2 of the flower γ3 (with two petals), and finally,
the flowers γ4 and γ5 with three petals. The zones of equal symbolic behavior are
colored in the same colors. Such a renormalization construction expands to all the
plane. On the right, we didn’t draw the exact trajectories but curves with equal
symbolic codes. We note that all γj pass by all of the tiles θ ⊂ Θv0 (those crossed
by γ1).

For now we didn’t use the fact that δAY is non-singular. The difference between the non-singular
and singular cases, is that in the first case δAY passes by all triangles in the tiling. In the second
case, is is stopped in a vertex. But the limit set is also a Rauzy fractal but in this case this fractal
grows only in some sector bounded by separatrix rays in the same flower as δAY . �

This proof can be generalized to a more general case in order to prove the results on the
convergence of other exceptional trajectories to fractals, at least for the periodic points in the
Rauzy gasket. It is an interesting question to study convergence for all ρ ∈ R.
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Figure 26. Quadrilateral billiard trajectory with a symbolic code w = cabcbabcbdbcabcbdbdb.

Part III.– Generalizations and open questions.

11. Dynamics of quadrilateral triangle tiling billiards.

The theory of tiling billiards in cyclic quadrilateral tilings is in many ways analogous to that
of triangle tiling billiards. Indeed, a folding map into a disk is well defined (see Section 4) as well
as tiling billiard foliations (see Section 5). Moreover, the connection with a family of fully flipped
maps on the circle persists (see paragraph 2.1). Although, the renormalization process we define
for CET3

τ in Section 8 doesn’t seem to extend (at least, in a straightforward way) to the family
CET4

τ . In this Section, we discuss the challenges and open questions.

11.1. Tree conjecture for quadrilateral tiling billiards. Analogously to Conjecture 1 for
triangle tiling, we formulate

Conjecture 3 (Tree conjecture for cyclic quadrilateral tilings). Take any periodic trajectory δ of
a cyclic quadrilateral billiard. Then the set Gδ

� := Ωδ ∩ Λ� is a tree (as a subgraph of Λ�).

The Tree Conjecture for cyclic quadrilateral tilings seems to hold, based on simulations of dy-
namics. Although, we didn’t yet manage to prove it. By Proposition 3, it is sufficient to prove
the Bounded Flower Conjecture for cyclic quadrilateral tilings. Even though one can prove easily
the analogue of Proposition 2, the global symbolic behavior of quadrilateral tiling billiards seems
to be much more complicated than that of triangle tilings.The trajectories in quadrilateral tilings
are not symmetric, e.g. their symbolic codes do not necessarily belong to the set {4n+ 2, n ∈ N∗}
since already on the square tilings there exist 4-periodic orbits. This is far to be an only example :
there exist higly asymmetric trajectories, see for example that on Figure 26.

We suspect that the analogue of the renormalization process that we have defined in Section
8 for CET3

τ still can be defined for CET4
τ , even though with a more complicated combinatorics.

This process should correspond to the contraction of flowers in the parallel foliation that has been
disucssed in the proof of Proposition 3 and in the proof of Theorem 14. We hope to obtain this
process by contraction of measured foliations on the projective plane onto traintracks.
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11.2. Density property for triangle and quadrilateral tiling billiards. Periodic trajectories
of triangle tiling billiards pass by all of the triangles they contour, by Theorem 3. This behaviour
may be generalized to hold for any, not necessarily periodic trajectory. Indeed, every non-periodic
trajectory constructs dynamically two graphs, both of which are trees.

Consider a (not necessarily periodic) trajectory δ in a triangle (or cyclic quadrilateral) tiling
billiard. Define a subset V (δ) ⊂ V as V (δ) := {v ∈ V | ∃e ∈ E, e 3 v, δ ∩ e 6= ∅} and a coloring
map Lδ : V (δ)→ {0, 1} step by step, as follows.

First, pick some edge e ∈ E that is crossed by δ. Denote its extremities w0 and b0, in any
arbitrary order. Add w0 ∈ L−1

δ (0), b0 ∈ L−1
δ (1). To pass from step j to the step j + 1, we add

bj+1 ∈ L−1
δ (1), wj+1 ∈ L−1

δ (0) in such a way that the following conditions hold :
• either bj = bj+1 or wj = wj+1,
• bjbj+1 ∩ δ = wjwj+1 ∩ δ = ∅,
• bjwj+1 ∩ δ 6= ∅, wjbj+1 ∩ δ 6= ∅. 36

Define a subgraph Gδ
k of Λ (Λ = Λ∆,Λ�), k ∈ {0, 1} as a graph with the set of vertices coinciding

with L−1
δ (k) and two vertices are connected by an edge of Λ, if such an edge exists.

Theorem 15 (Density property). For any nonsingular triangle tiling billiard trajectory δ, at least
one of the graphs Gδ

k is a tree (say, Gδ
0). A trajectory is periodic if and only if Gδ

1 has a unique
cycle in it. 37 A trajectory δ is not periodic if and only if both of the graphs Gδ

j are trees, j = 0, 1.

The proof of the Density property follows the same strategy as the proof of Theorem 3, we
give here a sketch of its proof. Consider the parallel foliation Pδ and perturb δ in it onto singular
trajectories.

If δ is periodic, the two singular trajectories γ+, γ− approaching δ are well defined (there are no
accumulating trajectories in the neighbourhood of δ in Pδ). One of them (say, γ−) is a bounded
flower inside Ωδ, and another one is a petal of a bigger (not necessarily bounded) flower. In this
case, the statement of the Density conjecture follows directly from Theorem 3. Indeed, since the
graph Gδ

1 uniquely defined by Gδ
0 as the set of vertices at distance 1 from Gδ

0, and Gδ
0 is a tree, Gδ

1

has a unique cycle in it.
Now suppose that δ is escaping to infinity. If δ is exceptional then the Density property follows

from Theorem 13. Indeed, δ is an only non-bounded leaf in Pδ. In this case, the sets Gδ
k, k = 0, 1

are the spanning trees of the initial graph Λ∆.
Finally, suppose δ is linearly escaping. In order to finalize the proof now, one classifies possible

topological behaviours of unbounded flowers. The Proposition below finishes the proof.

Proposition 12. Consider an unbounded flower γ in v ∈ V with s separatrix segments in Θv.
Suppose that at least one of these segments defines an escaping ray. Then, up to change of orien-
tation, γ has one of the types listed on Figure 27. More precisely, for s = 2 there are possible : two
behaviours ; for s = 4 : two behaviours with 0 or 1 bounded petals ; for s = 6 : three behaviours
with 0, 1 or 2 bounded petals.

Démonstration. The starting point of the proof is the Proposition 2 that lists possible local beha-
viours of separatrix segments. It is left to exclude the following two obstructions for the behaviour
of some unbounded flower γ.

• s = 4 and there exists a closed petal in γ passing by two opposite triangles,
• s = 6 and there exist two unbounded separatrix rays passing by neighbouring triangles, and

the two bounded petals of the flower have different orientations.

36. Some of the edges here may be empty (degenerate into vertices). It may also happen for some k < j − 1 that
bj = bk, k < j − 1.
37. In this case, of course, Gδ0 = Gδ∆ defined in Theorem 3 and Gδ0 ⊂ Ωδ.
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Figure 27. Possible behaviors of unbounded flowers in parallel triangle tiling
billiard foliations.

Both of these cases are excluded by a common symmetry argument. In both of the obstructions
above, there exists a tile θ0, θ0 3 v such that γ ∩ θ0 defines an unbounded separatrix ray and θv0 is
contained inside some petal of γ. By point 1. in Proposition 6, one considers a symmetric flower γv
in the ray foliation. Then γ and γv necessarily intersect outside v which gives a contradiction. �

Conjecture 4. Density property holds for quadrilateral tiling billiards.

This Conjecture is a stronger form of Conjecture 3. The Density property for tiling billiards can
be reformulated in terms of scissor cuts.

Reformulated Density property. Consider a periodic (triangle or cyclic quadrilateral) tiling
of the plane and fold the plane into a bellow. Then, cut along some line in the bellow. Then, the
plane "falls into" an infinite number of connected components. The Density property is equivalent
to the fact that none of these components contain a full triangle.

Does the Density property (and hence, the Tree Conjecture) have a simpler proof based on this
interpretation ?

Note. A difficulty in proving such a statement directly is that when one makes a cut of the
bellow, one does not cut out one trajectory but an infinite number of them. Moreover, the Density
property doesn’t follow purely from folding since there exist locally foldable tilings on which the
Tree Conjecture is false.

The next statement follows obviously from Theorem 3. We present its proof in relation to the
Reformulated Density property.

Proposition 13. There is no triangle tiling billiard trajectory δ that crosses the tiles θe, e = a, b, c
and doesn’t cross the tile θ, surrounded by them.
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Figure 28. Two iterations of a system of reflections of a pentagon in its circumcircle.
After each iteration, one changes the direction of the chord defined by the parameter
τ to its opposite. The symbolic code of the orbit (X,F (X), F 2(X)) in this case is
w = a4a2 a2a5 for some F ∈ CET5

τ .

Démonstration. Take any trajectory δ, and consider its folding into a chord l in the disk D. We
color each vertex v ∈ V of the plane in one of the two colors depending on what side the vertex
F(v) is with respect to the oriented chord l. 38

Suppose now that δ as in the assumption exists. Then all of the vertices of θ are colored in the
same color. Although, the vertices A′, B′, C ′ of the tiles θe with e = a, b, c that do not belong to
θ are all colored in the opposite color. This is impossible since at least one of these three vertices
lies on the same side of the chord l as A,B and C, by folding. �

11.3. Symbolic dynamics of maps in CETn
τ . Even though there exists no periodic tiling by

n-gones with n ≥ 5, a geometric interpretation of the dynamics of maps in CETn
τ exists.

Consider some cyclic polygon P with n sides and take τ ∈ S1. This data defines a map F of
reflections in the circumcircle as follows. Consider a chord in the disk bounded by the unit
circle and connecting 0 to τ . Denote the sides of P by reading the boundary in a counterclockwise
order, by a1, a2, . . . , an. We put an+1 := a1. For any X ∈ S1 we inscribe the polygon P in its
circumcircle in such a way that the vertex A := a1 ∩ an is placed exactly in X. The map F sends
a polygon into a congruent polygon of different orientation sharing one side with P . A label of the
side is defined by a positive intersection of P with a chord defined by τ , see Figure 28. 39 For any
n, the data (P, τ) defines a map F ∈ CETn

τ . See [23] for more details.

The following definition is inspired by our discussion with Pierre Dehornoy.
Consider an alphabet A2

n := {aiaj | i, j = 1, . . . n, i 6= j}. 40 We say that the winding is a map
wd : A2

n → {0, 1,−1} defined on the letters by wd(aiaj) = 1 if j = i+1, wd(aiaj) = −1 if i = j+1,
and wd(aiaj) = 0 otherwise. Then the winding map is enlarged to all the words in the alphabet
A2
n by additivity.

Note. The winding map is a generalization of the sign map defined in paragraph 6.3.

For this paragraph, we define periodic trajectories in the system of reflections in the circum-
circle as those trajectories that are stable under a small perturbation of the polygon P . 41

38. This coloring coincides with Lδ on the set V (δ).
39. The dynamics of this system is equivalent to that of the dynamics of a triangle (or cyclic quadrilateral) tiling

billiard for n = 3 (or 4).
40. Of course, A2

n coincides with A∆ (A�) for n = 3(n = 4).
41. We give such a definition since the the drift-periodic trajectories of tiling billiards in triangles and quadri-

laterals correspond to periodic trajectories in reflections in the circumcircle system and we want to exclude this
case. Another way of approaching periodic trajectories is to exclude the cases of polygons with rationally dependent
angles.



TREES AND FLOWERS ON A BILLIARD TABLE 53

One defines a winding of a periodic trajectory of the system of reflections in the circumcircle
as the winding of its symbolic code, and a winding of a periodic trajectory as a winding of a
minimal period of its symbolic code.

Example. For a trajectory going clockwise around a vertex in a triangle (cyclic quadrilateral)
tiling, its winding is equal to 6 (or 4).

Lemma 6. The following holds :
1. a winding of a simple closed curve that doesn’t touch the vertices in the triangle (cyclic

quadrilateral) tiling is equal to ±6 (±4) depending on its orientation,
2. for any n ∈ N,≥ 3, the winding of a periodic trajectory in a system of reflections in the

circumcircle is well-defined, i.e. doesn’t depend on the string representation of the period.
This winding is equal to ±2n if n is odd, and to ±n if n is even.

Démonstration. For point 1., consider a vector v⊥δ orthogonal to the curve δ and count the (al-
gebraic) number of turns this vector makes when it moves along δ. One can easily see that this
number is exactly 1

6
wd(δ) for the triangle tiling billiard and 1

4
wd(δ) for cyclic quadrilateral tiling

billiard by decomposing δ into the sum of loops.
For point 2., we first observe that the winding of a periodic trajectory is well-defined. Second,

the only change in winding is done by the words that use subsequent letters. Even though for
n > 4 the corresponding tiling doesn’t exist, one still can unfold the trajectory to some broken
trajectory in a tiling with self-intersections. When one comes back to the same tile in the system
of reflections, one comes back to the same tile on this unfolding as well. �

Conjecture 5 (Winding Conjecture). For any map F ∈ CETn
τ , a winding number of its periodic

trajectory doesn’t depend on a trajectory and is an invariant wd(F ) of the map. Moreover, wd(F ) =
±2n (if n is odd), or to wd(F ) = ±n (if n is even).

In terms of tiling billiards, this conjecture states that periodic orbits obtained by the same scissor
cut have the same orientation with respect to infinity. The Winding Conjecture is our attempt to
generalize the Tree Conjecture for any family CETn

τ , for all n ≥ 3.
From Theorems 3 and 15 it follows, that the Winding Conjecture holds n = 3. We believe that

the Winding Conjecture holds for n = 4, and we have no idea for n > 4. Winding Conjecture
concerns the behavior of the asymptotic cycle for families of translation surfaces. The difficulty is
that these families are not generic and the maps in them are typically not minimal, so classical
results do not apply.

Problem. Give an explicit description of minimal maps in CETn
τ for any n ≥ 3.

This Problem is answered for n = 3 (see Theorem 11 above). Already for n = 4 this question is
open. In [23] it has been shown that for n = 3 and n = 4 minimal maps in CETn

τ belong to the
hyperplane τ = 1

2
. We wonder if one can provide a homological argument to prove this statement.

Can one calculate a Hausdorff dimension of the set of minimal maps in CET4
τ and describe a

possible analogue of the Rauzy gasket in this next dimension ?
For n ≥ 5 one may exhibit the examples of minimal maps in CETn

τ outside the hyperplane
{tau = 1/2}. One could speculate that such a behavior of the family CETn

τ (minimality implying
τ = 1

2
for n = 3, 4 but only for these n) is related to the famous Novikov’s conjecture on the

chaotic sections of 3-periodic surfaces, i.e. genus 3 subsurfaces of a 3-torus. Indeed, the squares of
the maps in CETn

τ for n = 3, 4 are interval exchange transformations corresponding to genus 3 flat
surfaces.

To conclude, in this last Section we made an attempt to clarify the relationship between the
Tree Conjecture (Density property, Winding Conjecture) for tiling billiards and the existence of
renormalization in the family CETn

τ . For n = 4, both of the questions are open.
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Appendix : some comments on Triangle tiling billiards and the exceptional family of
their escaping trajectories : circumcenters and the Rauzy gasket.

As pointed out before, while working on this article we have found a mistake in one of the proofs
of our previous work with P. Hubert [23]. This mistake does not influence the principal results of
[23] for triangle tiling billiards, except for the proof of 4n+ 2 Conjecture. It is important for us to
mention what was wrong in our arguments.

The present work gives a new set of tools for the study of triangle tiling billiards, and reproves
all of the results in [23], in a simpler way. We remind our reader that the work [23] approached
the maps in the family CET3

τ with a tool of a standard Rauzy-Nogueira induction.
Here we revisit the proof of the [Proposition 6, [23]] which is the key statement for the proof

of the 4n + 2 Conjecture (4. and 5. in Theorem 1) announced in [23]. The statement in itself is
correct, but a proof we propose in [23] has a hole in it. We remind the statement as well as the
idea of the initial proof, and then point out where the mistake is hiding.

Proposition 14. [23] Take F = F l1,l2,l3
τ ∈ CET3

τ such that li
lj
/∈ Q for any i 6= j. Suppose that the

Rauzy-Nogueira induction stops for F at some 4-interval exchange transformation F ′. Then for
any interval Y ⊂ I of continuity for F ′ such that F ′(Y ) = Y , the restriction F ′ |Y is an involution.

A proof of this proposition we propose in [23] goes as follows. Take some map F ′ with F ′ |Y = id,
follow backwards the Rauzy-Nogueira induction and prove that such a path can’t end up on
a map in CET3

τ . The argument is correct for all possible outcomes except for the case when

F ′ =

(
Y ∗ ∗ X̄
Y ∗ ∗ X̄

)
. In the argument of the proof, one argues that the back-ward path has to

go up into Y losing to some (flipped) Z, as in(
Y ∗ ∗ X̄
Y ∗ ∗ X̄

)
←
(
Ȳ . . . Z̄
Z̄ . . . Ȳ

)
. (24)

Then one concludes Z = X, and such combinatorics is indeed not possible for a map in the
family CET3

τ . A mistake in this reasoning is that for a matrix represented by the right-hand side
of (24) its number of columns may potentially be smaller than 4, i.e. Z is not necessarily equal
to X. Indeed, there exist fully flipped 4-interval exchange transformations with periodic orbits for
which this happens, here is an example of the the Rauzy-Nogueira path for one of those maps :(

Z̄ W̄ X̄ Ȳ
Ȳ Z̄ W̄ X̄

)
X>Y−−−→

(
Z̄ W̄ Y X̄
Y Z̄ W̄ X̄

)
W>Y−−−→

(
Z̄ Ȳ W̄ X̄
Ȳ Z̄ W̄ X̄

)
Z>Y−−−→

(
Y Z̄ W̄ X̄
Y Z̄ W̄ X̄

)
.

(25)
Once the Rauzy-Nogueira induction stops, one re-iterates this induction on a smaller interval.

Even though the statement of Proposition 14 still holds, additional arguments have to be applied.
By following the methods of [23], one can finish the proof with a more precise study of Rauzy-
Nogueira graphs but our proof loses its interest since it becomes a case-by-case study of a big
graph.

Finally, a chain given in (25) can be modified in order to construct a counterexample to Propo-

sition 14 for the maps in the family CET4
τ . Indeed, it suffices to add a fifth column

(
V̄
V̄

)
to every

matrix in a chain. Moreover, a matrix(
Z̄ W̄ X̄ Ȳ V̄
Ȳ Z̄ W̄ X̄ V̄

)
corresponds to the dynamics of a map in CET4

τ . It suffices to define I1 := Z, I2 := W, I3 :=
X, I4 := Y ∩ V . This illustrates how the orbits of periods different from 4n + 2 may appear in
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cyclic quadrilateral tiling billiards, see paragraph 11.1. Moreover, the proof of the integrability
result for CET4

τ (Proposition 9 in [23]) is not finished because of the problem above. It also can
be finished by an explicit graph study but we hope to find a simpler proof in the future.

To conclude, all of the statements of [23] for triangle tiling billiards are correct, even though the
proof of the 4n + 2 Conjecture is not finished in [23], but finished in the present work. Although,
the work [23] doesn’t provide any understanding on the dynamics of quadrilateral tilings. The
statement concerning the symbolic dynamics of trajectories (point 2, of Theorem 7 in [23]) is false,
and the proof of the integrability (Proposition 9) is not finished. Although, we strongly believe
that the integrability property does hold for almost all quadrilateral tiling billiards, and reflects
an interesting subcase of some version of Novikov’s conjecture, see discussion at the end of Section
11.
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