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Abstract

Amplicon-based next-generation sequencing (NGS) of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements
for clonality assessment, marker identification and quantification of minimal residual disease (MRD) in lymphoid neoplasms
has been the focus of intense research, development and application. However, standardization and validation in a
scientifically controlled multicentre setting is still lacking. Therefore, IG/TR assay development and design, including
bioinformatics, was performed within the EuroClonality-NGS working group and validated for MRD marker identification
in acute lymphoblastic leukaemia (ALL). Five EuroMRD ALL reference laboratories performed IG/TR NGS in 50
diagnostic ALL samples, and compared results with those generated through routine IG/TR Sanger sequencing. A central
polytarget quality control (cPT-QC) was used to monitor primer performance, and a central in-tube quality control (cIT-QC)
was spiked into each sample as a library-specific quality control and calibrator. NGS identified 259 (average 5.2/sample,
range 0-14) clonal sequences vs. Sanger-sequencing 248 (average 5.0/sample, range 0—14). NGS primers covered possible
IG/TR rearrangement types more completely compared with local multiplex PCR sets and enabled sequencing of bi-allelic
rearrangements and weak PCR products. The cPT-QC showed high reproducibility across all laboratories. These
validated and reproducible quality-controlled EuroClonality-NGS assays can be used for standardized NGS-based
identification of IG/TR markers in lymphoid malignancies.

Introduction

Specific antigen recognition by cells of the adaptive
immune system (B cells, T cells) is mediated through
receptors (immunoglobulin, IG, and T-cell receptor, TR)
that are uniquely formed during immune development in
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bone marrow and thymus, respectively. Through recombi-
nation of IG/TR loci a diverse (polyclonal) repertoire of
unique IG/TR receptors is created. In certain autoimmune
diseases this repertoire is skewed (oligoclonal), whereas in
lymphoid malignancies receptors are largely identical
(monoclonal) [1-7]. IG/TR rearrangements thus form
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unique genetic biomarkers (molecular signatures) for
studying immune cells for clinical, diagnostic and research
applications [8—11]. Classically, methods for immunoge-
netic analysis mostly concern fragment analysis and Sanger-
based sequencing. The introduction of NGS makes deeper
analysis of IG/TR rearrangements possible, with impact on
the main immunogenetic applications: clonality assessment,
MRD detection, repertoire analysis [12—29].

The EuroClonality-NGS  working group (euro-
clonalityngs.org; Supplementary Figure 1) has ample
expertise in development, standardization and validation of
IG/TR assays, to address the challenges in the translational
research towards clinical application.

Here we report on the development and standardization
(see also accompanying manuscript by Knecht et al. [30]) of
novel amplicon-based IG/TR NGS assays between Sep-
tember 2012 and October 2017, via a total of 14 interna-
tional coordination and evaluation meetings (Supplementary
Table 1). This study focuses on IG/TR marker identification
in lymphoid malignancies for subsequent MRD analysis,
and their multicentre validation in acute lymphoblastic leu-
kaemia (ALL). Assay optimizations and modifications for
other applications of IG/TR NGS are partly still ongoing and
will be reported in separate publications.

Materials and methods
General concept of assay design

With the objective of developing a universal amplicon-
based NGS approach for IG/TR sequence analysis at the
DNA level, applicable in all lymphoid malignancies, assays
for multiple IG/TR loci were designed: 1G heavy (IGH), IG
kappa (IGK), TR beta (TRB), TR gamma (TRG) and TR
delta (TRD), including complete and incomplete rearran-
gements whenever applicable. IG lambda (IGL) was
excluded due to its limited complementarity to other IG loci
and its reduced diversity. TR alpha (TRA) was excluded
due to its high complexity, severely hampering a reasonable
multiplex PCR approach at the DNA level.

The IGH locus is rearranged in two steps. After initial
coupling of a single IGHD gene to an IGHJ gene, an IGHV
gene is joined to the incomplete IGHD-IGHJ rearrange-
ment, resulting in a complete IGHV-IGHJ rearrangement.
For amplification of complete IGH rearrangements, primers
located in the FR1, FR2 and FR3 regions were designed,
but here we only discuss the FR1 assay for marker identi-
fication in ALL (for application of IGH-VJ-FR3 assay in
clonality testing see accompanying manuscript by Scheijen
et al. [31]). IGHD-IGH]J rearrangements were amplified in a
separate multiplex PCR reaction. The IGK light chain locus
is composed of functional IGKV and IGKJ genes, as well as
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the so-called kappa deleting element (Kde) that can rear-
range to IGKV genes, or to a recombination signal sequence
(RSS) in the IGKJ-IGKC intron, leading to functional
inactivation of the IGK allele. The IGKV forward primers
were designed to be used in combination with IGKJ and
Kde reverse primers in one multiplex reaction, whereas a
second PCR was developed for the forward intron RSS and
reverse Kde primers.

The TRB locus also features a two-step process with
initial formation of incomplete TRBD-TRBJ rearrange-
ments followed by complete TRBV-TRBJ rearrangements.
Incomplete and complete TRB rearrangements are detected
in two separate multiplex PCR reactions. As TRG locus
rearrangements are one-step VJ recombinations involving a
limited number of TRGV and TRGJ genes, a single mul-
tiplex assay could be developed. Finally, in the TRD locus,
complete VJ rearrangements are preceded by DD, VD and
DJ rearrangements. In addition, certain TRAV genes can
rearrange to both TRDJ and TRAJ, whereas TRDV-TRAJ
rearrangements, usually involving TRAJ29, can also occur.
All of these rearrangements were designed to be amplified
in one multiplex PCR assay.

Both the design and further testing were coordinated by
the respective ‘Target’ network leaders: IGH-VJ by C. Pott,
Kiel and R. Garcia Sanz, Salamanca; IGH-DJ by F. Davi,
Paris and K. Stamatopoulos, Thessaloniki; IGK-V/intron-
IGKJ/Kde by P.J.T.A. Groenen, Nijmegen and A.W. Lan-
gerak, Rotterdam; TRB by M. Briiggemann, Kiel and M.
Hummel, Berlin; TRG by G. Cazzaniga, Monza and J.J.M.
van Dongen, Leiden; and TRD by E. Macintyre, Paris.
Initial testing of each assay was performed by 2-3 experi-
enced laboratories per target and final assays were validated
for IG/TR marker identification in ALL in a multicentre
setting. In addition, central quality control procedures were
developed to monitor assay performance.

The bioinformatic platform ARResT/Interrogate [32],
developed from the ground-up within the EuroClonality-
NGS to assist with its multi-faceted activities, was further
adapted for this study as described below.

Primer design and technical validation of primer
performance

Primers were designed to be gene-specific, but in case of
allelic variants, degenerate primers were designed to avoid
differential annealing in individuals with different allelic
variants. For the same reason, single mismatches in the
middle or at the 5’-end of the primer were accepted.
Primer3 [33], Primer Digital (PrimerDigital Ltd,
Helsinki, Finland) MFEprimer-2.0 [34] and Oligo
(Molecular Biology Insights, Inc., Colorado, USA) were
used for checking primer specificity and multiplexing.
Common primer design criteria were followed for all loci:
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primer melting temperature 57-63 °C; comparable size of
final amplicon; primer length 20-24 nt; avoidance of primer
dimers; minimal distance of 3’ primer end to the junctional
region of, preferably, >10-15bp to avoid false-negativity
for rearrangements with larger nucleotide deletions from the
germline sequence; avoidance of regions with known single
nucleotide polymorphisms to allow identical primer
annealing for all alleles of the respective V, D or J genes;
targeting of, preferably, all V, D and J genes known to be
rearranged plus the intronRSS and Kde regions for IGK.

Following in silico design, primers were first tested in
monoplex and multiplex reactions using primary patient
samples or cell lines with defined rearrangements. In
occasional cases where no such samples were available,
healthy tonsil or mononuclear DNA samples were
employed. Oligoclonal template pools were then created
from mixtures of rearranged cell lines and diagnostic sam-
ples with defined rearrangements covering many different
V, D and/or J genes. Alternatively, for some loci, plasmid
pools were produced, covering as many different rearran-
gements as possible. These multi-target pools allowed fine-
tuning of reaction conditions and/or primer concentrations
to assess comparable amplification efficiencies. This itera-
tive process of testing also led to a reduction of primers if
these appeared redundant. Further multicentre testing was
performed with a limited number of monoclonal and poly/
oligoclonal samples on different sequencing platforms,
which allowed assessment of robustness of the primer mixes
and protocols.

As assays were designed with the aim to be platform-
independent, a two-step PCR was employed, that enabled
switching of sequencing adaptors and to reduce the total
number of primers even if many barcodes are necessary.
Also, maximal amplicon lengths were defined with respect
to the possible maximal sequencing read lengths of current
sequencers. PCR conditions were optimized with the aim to
find optimal conditions common for all reactions, thus
allowing for parallel library preparation. Various numbers
of PCR cycles in 1st and 2nd PCR, different polymerases
and several library purification methods were tested and
compared.

Multicentre validation of assays for MRD marker
identification in ALL

Five experienced laboratories tested the robustness and
applicability of the optimized assays for NGS-based IG/TR
marker identification in ALL in comparison to standard
techniques. All laboratories (Bristol/London, Paris, Monza,
Prague and Kiel) are members of the EuroMRD consortium
and reference laboratories for ALL MRD analysis. Each of
them performed NGS-based IG/TR MRD marker identifi-
cation in 10 patients with B- or T-lineage ALL. A central

standard operating procedure was strictly followed. The
study was executed using the Illumina MiSeq (2 x 250 bp
v2 kit). NGS analyses were performed fully in parallel to
conventional PCR plus Sanger sequencing of clonal pro-
ducts following standard guidelines [11]. For a part of the
cases with unexplained discrepant results between the two
methods, allele-specific PCR assays (either for digital dro-
plet PCR or real-time quantitative PCR) were designed to
clarify if the respective clonal rearrangement represented
the leukaemic bulk. EuroMRD guidelines were used to
design and interpret allele-specific PCR assays [35, 36].

Results

Primer design and technical validation of primer
performance

Based on the results of the testing and validation phases
(Supplementary Table 2), the final IG/TR primer mixes
consisted of eight tubes with 92 forward and 30 reverse
primers, 15 of the latter being used in pairs of different
tubes (Supplementary Table 3). Primer positions and
sequences are presented in Fig. 1.

Implementation of quality control procedures

Quality control of robust amplification, library preparation
and sequencing are of utmost importance for these complex
assays. Different primers need to work under the same
reaction conditions, while additional variability can be
introduced by sample characteristics and sequencing. Pri-
mer performance must be monitored longitudinally, and for
the exact estimation of clonal abundance it is important to
correct for the number of sequencing reads per input
molecule.

To address these issues, we established and validated two
types of quality control procedures: (i) a ‘central in-tube
quality control’ (cIT-QC) spiked to each tube as library
control and calibrator, and (ii) a ‘central poly-target quality
control’ (cPT-QC), or run control, to monitor general primer
performance and sequencing.

To compose the cIT-QC, IG/TR rearrangements of many
human lymphoid cell lines were comprehensively char-
acterized by amplicon- and capture-based NGS and Sanger
sequencing. Nine cell lines were selected to form the cIT-
QC with at least three different clonal rearrangements for
each of the eight PCR tubes, totalling 24 rearrangements.
The current design requires an equal number of cell line
DNA copies to be spiked into each tube, as
described below.

For the cPT-QC a mixture of different lymphoid speci-
mens was considered to cover the whole IG/TR repertoire
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a
Vit OH I

IGHV-FRIA (IGHVI-2°01)  (:277) CTGGGGCTGAGGTGAAGAAG
IGHV-FRI-B-1 (IGHVS-51°01) (-282) GCAGICTGGAGCAGAGGTGAAAA

CTTACCTGAGGAGACGGTGACC  (+68) (IGHJ6'01) IGH-J-A1
CTCACCTGAGGAGACAGTGACC  (+58) (IGHI2*01) IGH-J8-1
IGHV-FRI-C-1 (IGHV2:5°01)  (-297) TCACCTTGAAGGAGICTGGTCC
IGHV-FRI-D-1 (IGHV3-7°01)  (-295) AGGTGCAGCTGGTGGAGIC
IGHV-FRI-E-1 (IGHV3-23°01) (-296) GAGGTGCAGCTGTIGGAGIC
IGHV-FRI-F-1 (IGHV4401)  (-272) CCAGGACTGGTGAAGCCTIC
IGHV-FRI-G-1 (IGHV4-34°01) (-278) CAGTGGGGCGCAGGACTGTT
IGHV-FRIH-1 (IGHV4401)  (-272) CCAGGACTGGTGAAGCCTCC
-1 (IGHV6-1°01)  (-302) GTACAGCTGCAGCAGTCAGG

IGHV-FRI-J-1  (IGHV7-4-1°01) (-286) GCTGGTGCAATCTGGGICTG
IGHV-FRIK-1 (IGHV1-45°01) (-250) CCTCAGIGAAGGTTTCCTGCAAGG
(IGHV2-26°01)  (-265) AAACCCACAGAGACCCTCACGCTGAC

M-1 (IGHV3-16°01) (-256) CTGGGGGGTCCCTGAGACTCTCCTG
IGH-FRI-N-1 (IGHV4-31°01) (-259) CTTCACAGACCCTGICCCTCACCTG
IGH-FRI-O-1 (IGHV6-1°01)  (-263) TCGCAGACCCTCTCACTCACCTGTG

»}Dn I Ju 4

CTTACCTGAGGAGACGGTGACC  (+68) (IGHI6'01) IGH-JA1

IGH-D-AT (IGHDI-1"01)  (44)  GATTCYGAACAGCCCCGAGTCA
IGHD-B-1 (GHD22'01) (:58) GATTTTGI

IGH-D-C-1 (GHD33'01) (:58) ~ GITIGRRGIGAGGICTGIGICA
IGH-D-D-1 (IGHD33'01)  (:58)  GTTTRGRRIGAGGICTGIGICACT
IGH-D-E1 (IGHD4-4'01)  (43)  CTTTTIGIGAAGGSCCCTCCTR
IGHD-F1  (GHDS5'01) (47)  GTTATIGICAGGSGRIGICAGAC
IGHD-G1 (IGHDS5'01) (47) ~ GTTATIGICAGGGGGIGYCAGRC
IGHD-H1 (GHD66'01) (45) GITICTGAAGSTGICTGIRTCAC

3 Dp »

(TRBV2'01)  (96)  CTCAGTTGAAAGGCCTGATGGA
(TRBV31°01)  (-111)  AGTTCCARATCGCTTCTCACCT
1 (102) TCGCTTCTCACCTGAATGCCC

(TRBVS3'01)  (-109) TTCCCTAATCGATTCTCAGGGC
(TRBVS4'01)  (99)  GATTCTCAGGTCTCCAGTTCCC
(TRBVS6'01)  (:95)  CTCAGGTCACCAGTTCCCTAAC
(TRBVS8'01)  (-103) CCTAGATTTTCAGGICGCCAGT
(TRBV6-2'01)  (-129) TACAACTGCCAAAGGAGAGGTC
(TRBV6-4'01)  (-129) TACCACTGGCAAAGGAGAAGTC
(TRBV66'01)  (-120) TAAAGGAGAAGTCCCGAATGGC
(-116) GGAGAAGTTCCCAATGGCTACA
(-108)  CAACGATCGGTTCTTTGCAGTC
(121) TAAATCAGGGCTGCTCAGTGAT
(TRBV7-7'01)  (-108) CAGTGATCGGTTCTCTGCAGAG
(TRBV78'01) (133 CTCAACTAGACAAATCGGGGCT
(TRBV9'01)  (-106) CTTGAACGATTCTCCGCACAAC
(TREVI0-2'01)  (-121) ATAAAGGAGAAGTCCCCGATGG
(TRBVI03'01)  (-120) CARAGGAGAAGTCTCAGATGGC
(TRBVI1-1°01)  (-103) ATCGATTTTCTGCAGAGAGGCT
(TRBV12:3'01)  (-109) CCGAGGATCGATTCTCAGCTAA
(TRBVI2:5°01)  (130) CTCTAGATGATTCGGGGATGCC
(TRBVI3'01)  (116) GGAAGCATCCCTGATCGATICT
(TRBVI4'01)  (117) CGGTATGCCCAACAATCGATTC
(TRBVIS®01)  (-120) TGAAGCAGACACCCCTGATAAC
(TRBVI6®01)  (95)  TCAGCTAAGTGCCTCCCAAATT
(TRBVIS™0N)  (111) GCCAAAGGAACGATTTTCTGCT
(TRBVIS0N)  (106) CTGAAGGGTACAGCGTCTCTC
(TRBV201°01)  (95)  TTTCTCATCAACCATGCAAGCC
(TRBV21-1°01)  (-105) TGAGCGATTTTTAGCCCAATGC
(TRBV23-1°01)  (-117) GGAGATGCACAAGAAG!

(TRBV241°01)  (122)  ACARA
(TRBV25-1°01)  (107) TCCTCTGAGTCAACAGTCTCCA
(TRBV27°01)  (-118) AGGGAGATGTTCCTGAAGGGTA
(TRBV28'01)  (-107) CCTGAGGGGTACAGTGICTCTA
VAK1  (TRBV29-1'01)  (-133) CTGAGGCCACATATGAGAGTGG
(TRBV30'01)  (-101) CAGAATCTCTCAGCCTCCAGAC

CTACAACTGTGAGICTGGTGCC  (+48) (TRBJI-1°01) TRB-FA-1
CTACAACGGTTAACCTGGTCC (+48) (TRBJ1-2°01) TRE-}8-1
TACAACAGTGAGCCAACTICCC  (+49) (TRBJ1-3°01) TRB-JC-1
CAAGACAGAGAGCTGGGTTCC (+50) (TRBJ1-4°01) TRE-J-D-1
CTAGGATGGAGAGTCGAGICCC  (+50) (TRBJI-5*01) TRBLE-1
CTGTCACAGTGAGCCTGGTC  (+53) (TRBJI-6%01) TRBJF-1
CCTICTTACCTAGCACGGTGAG (+59) (TRBJ2-1°01) TRB-J-G-1
TTACCCAGTACGGTCAGCCTAG  (+55) (TRBJ2:2°01) TRB-JH-1
CTTACCGAGCACTGTCAGCC  (+54) (TRBJ2:3°01)  TRE-H-1
CTTACCCAGCACTGAGAGCC  (+55) (TRBJ2-4"01) TRB--J-1
TCACCGAGCACCAGGAGCC  (+52) (TRBJ2-5"01) TRB-FK-1
GAAAACTCACCCAGCACGGTC (+63) (TRBI26°01) TR
TCACCCAGCACGGTCAGCC  (+57) (TRBJ246°01) TRB-J-M-1
GAATCTCACCTGTGACCGTGAG  (+56) (TRBJ2-7°01) TRB-3N-1

A

TRB-ALY

TRD-D-A1 (TREDI®01) (114) CCTCCACTCCCCTCARAGGA
TRD-O-8-1  (TRBD2'01) (117) CAGACTAACCTCTGCCACCTG

Fig. 1 Schematic diagrams of rearrangements and primer sets. a
Schematic diagrams of IGHV-IGHJ and IGHD-IGHJ rearrangements.
The relative position of the VH family primers, DH family primers and
consensus JH primers is given according to their most 5’ nucleotide
upstream (—) or downstream (+) of the involved RSS. b Schematic
diagrams of IGKV-IGKJ rearrangement and the two types of Kde
rearrangements (V-Kde and intronRSS—Kde). The relative position of
the IGKV, IGKJ, Kde, and intronRSS (INTR) primers is given
according to their most 5’ nucleotide upstream (—) or downstream (+)
of the involved RSS. ¢ Schematic diagrams of TRBV-TRBJ rearran-
gement and TRBD-TRBJ rearrangement. The relative position of the
TRBYV family primers, TRBD primers and the TRBJ primers is given

more comprehensively. To this end we produced material
consisting of equal ratios of DNA from peripheral blood
mononuclear cells (MNCs), thymus and tonsil. For more
details see accompanying manuscript by Knecht et al. [30].

Laboratory protocol

Primers were tailed with universal and T7-linker sequences,
and divided over eight tubes (IGH-VJ, IGH-DJ, IGK-VJ-
Kde, intron-Kde, TRB-VJ, TRB-DJ, TRG, TRD). The PCR
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Vi x
IGKVAT  (GKVI-12°01) (123) AAGTGGGGICCCATCAAGGTICAG ACGTTTGATCTCCACCTIGGTCCC (+40) (IGKI4*01) 1GK-JA-1

IGKVB1  (GKVI-37°01) (117) AGICCCATCTCGGTTCAGIGGCAG ACGTTIGATATCCACTTTGGTCCC (+40) (IGKI3O1) IGK-J-8-1

IGKVC (IGKVI-33°01) (125) GAAACAGGGGTCCCATCAAGGTIC ACGTTTAATCTCCAGTCGTGTCCC (+40) (IGKIS01) 1GK-3-C-1
IGKVD-l  (IGKV2:24°01) (-115) TCCCAGACAGATICAGIGGCAGIG

IGKVED  (IGKV2:29'01) (-121) CTGGAGTGCCAGATAGGTTCAGIG

IGKV-F-1 (IGKV2-40°01) (-123) CCCTGGAGTCCCAGACAGGTTCAG

IGKV-G-1 (IGKV3-11°01) (-118) GCATCCCAGCCAGGTTCAGTG

IGKVH1  (GKVA-1°01)  (-116) GICCCTGACCGATTCAGIGGCA

1GKV-1 (IGKVS-2'01)  (-117) AATCCCACCTCGATTCAGTGGC

1GKV-J-1 (IGKV6-21°01)  (-123)  CTCAGGGGTCCCCTCGAGGTT

IGKVKT  (GKVZ-3°01)  (126) AGACACTGGGGTCCCAGCCA

GCAGCTGCAGACTCATGAGGAG  (+48) (IGKDE)  IGK-DE-A-T

Jx-Cx intron Kde +

e | =

IGKINTRAT  (ntron)  (-111)  GAGIGGCTTTGGTGGCCATGE

TRGV-AT  (TRGV2'01)  (83) GCACAAGGAACAACTIGAGATTG AGIGITGITCCACTGCCAAAG (+39) (TRGJ1*01) TRG-FA-1
GTTCCGGGACCAARTACCTTG (+45) (TRGIP*01) TRG--8-1
GAGCTTAGTCCCTTCAGCAAATA (+44) (TRGIPI*01) TRGJ-C-1
CCTAGTCCCTTTIGCARACG  (+41) (TRGJP2°01) TRGD-1

TRGV-F1  (TRGV9'O1)  (78) ACGTCTACATCCACTCTCACC
TRGV-G1  (TRGVIO'01)  (79) CTCTCACTICAATCCTTACCATCAA
TRGVAH1  (TRGVII'OI)  (80) CTICCACTICCACTTTGAAAATAAAGT

e A D5 D& 5
TROVA1 (TROVI*01) (120) GAATGCAAAAAGTGGTCGCTATTC TTCCACAGICACACGGGT (+47) (TRDJI*O1) TRD-J-A-1
TROV81  (TRDV2°01) (79) TGCAAAGAACCTGGCTGTACT GGTTCCACGATGAGTTGIGIT (+52) (TRDJ2°01) TRO-J8-1

TROV-C1 - (TRDV3*01) -117) TGCAGATTTTACTCAAGGACGG CACGAAGAGITTGATGCCAGT (+52) (TRDJ3*01) TRD-J-C-1
TROV-D-1  (TRAVI4DVA*01)  (-123) GCAAAATGCAACAGAAGGTCG GTTGTTGTACCTICCAGATAGGTT (+48) (TRDJ4"01) TRO-}D-1
TROVE-D ) g TCACTGT TGGCTAGAAACACTTACTIGCA (+77) (TRA)9"01)  TRD-JE-1
TROVA-1  (TRAV23DV6'01)  (:89)  CTCCTICAATAAAAGTGCCAAGC

TROV-G-1 ) 118 \GGAAGACTAAGT

TRO-VH-1  (TRAV3S-2/DV8'01) (:87) TCCAGARAGCAGCCAAATCC

D5 D5 5%
> 1l —-

TRD.D-A1 (TRDD2'01) (-104) AGGGGTATTGTGGATGGCAG

D5 D&
[ [l | -]

(CCCAGGGAAATGGCACTTTTG (+80) (TRDD3*01) TRD-D-8:1

!

Vs D5 D3

according to their most 5'nucleotide upstream (—) or downstream (+4)
of the involved RSS. d Schematic diagrams of TRGV-TRGJ rear-
rangement and the relative position of the TRGV and TRGJ primers.
The relative position of the TRGV primers and the TRGJ primers is
given according to their most 5’ nucleotide upstream (—) or down-
stream (4) of the involved RSS. e Schematic diagram of TRDV-
TRDJ,TRDD-TRDJ, TRDD-TRDD, and TRDV-TRDD, TRDV-
TRAJ29 rearrangements, showing the positioning of TRDV, TRDJ,
TRDD, and TRAJ29 primers, all combined in a single tube. The
relative position of the TRDV, TRDD, and TRDJ primers is indicated
according to their most 50 nucleotides upstream (—) or downstream
(+) of the involved RSS

protocol is summarized in Table 1. Sequencing libraries
were prepared via a two-step PCR, each using a final
reaction volume of 50 pl with 100 ng diagnostic DNA and
10ng of polyclonal DNA. For the cIT-QC, 40 cell
equivalents of the nine different cell lines were spiked into
all samples (see accompanying manuscript by Knecht et al.
[30]). MgCl, was intended to be used at a final concentra-
tion of 1.5 mM, but needed optimization for some tubes.
Therefore, master-mixes for the 1st PCR were tube-specific,
but the temperature profile was uniform for all tubes.
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Table 2 Mean size of PCR products after the 2nd PCR (containing the
Illumina sequencing adaptors and barcodes)

Gene Amplicon length (bp)
TRB-VI 309-407
TRB-DJ 300-408
TRG 256-360
TRD 309-450
IGH-VJ 484-681
IGH-DJ 266-358
IGK-VIJ-Kde 296-384
intron-Kde 309-382

Concentrations of all primers are shown in Supplementary
Table 3. After 1st PCR, gel electrophoresis was performed
to check for successful amplification of all targets. For TRB,
gel extraction of the specific PCR products was performed
prior to the 2nd PCR.

All 1st round PCR products, except TRB PCR products,
were diluted 1:50 unless amplicons were very weak. TRB
PCR products and PCR products with weak amplicons were
used undiluted. Master-mixes for the 2nd PCR and the
temperature profiles were identical for all tubes (Table 1).
Primers for the 2nd PCR contained sequencing adaptors and
sequencing indexes (barcodes). Unique combination of
forward and reverse indexes was used for each library.
Three microlitres of undiluted TRB PCR products and 1 pl
of 1:50-diluted IGH, IGK, TRG and TRD PCR products
were amplified in the 2nd PCR.

Following 2nd PCR, products from all samples of a run
were pooled in equimolar ratios into eight tube-wise sub-
pools and purified by gel extraction (see Table 2 for the
amplicon lengths). Finally, the subpools were pooled
equimolarly into one final pool. Sequencing was performed
on Illumina MiSeq sequencers, using 2 x 250 bp v2 chem-
istry with a final concentration of 7 pM for the amplicon
library and 10% PhiX control added to avoid low-
complexity library issues. The detailed standard operating
procedure is provided as supplementary information.

Bioinformatic protocol

ARResT/Interrogate [32] was the main bioinformatics
platform used in this study. Both Vidjil [37] and IMGT [38]
resources are available through ARResT/Interrogate as
built-in tools and were employed for specific aspects of this
work, mainly analysis of rearrangements with unclear
annotation. Data are deposited at EMBL/EBI European
Nucleotide Archive (ENA), accession code PRJEB32668.

Demultiplexing was performed accepting no mis-
matches. Reads were annotated with EuroClonality-NGS
primer sequences (to trim non-amplicon sequences, and for
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the cPT-QC-based quality control), paired-end joined,
dereplicated, immunogenetically annotated [39], and even-
tually classified into rearrangement types (complete and
incomplete, and other special types like intron-Kde rear-
rangements), or ‘junction classes’. Reads without rearran-
gement were excluded from the total read count used for
relative abundances.

cIT-QC sequences described above and elsewhere (see
accompanying manuscript by Knecht et al. [30]), were
identified in the data through their immunogenetic annota-
tion. Their counts served both as ‘in-tube’ control and for
normalization per primer set: total cIT-QC cells are divided
by cIT-QC total reads, the resulting factor used to convert
rearrangement reads to cells, and those cells then further
divided by total input cells (15,000 in this study). Identified
IG/TR sequences were defined as index sequences if their
abundance after cIT-QC normalisation exceeded 5%.

ARResT/Interrogate can track the DNJ 3’ stem of a
junction, the sequence remaining stable during IGH or TRB
clonal evolution in case of V replacement or ongoing V to
DIJ rearrangements. The stem consists of the last < 3nt of D
(or of the NDN if no D is identifiable), any and all of N2
nucleotides, and the J nucleotides of the junction. This stem
is available as a separate immunogenetic feature across all
samples and thus can be linked to other features, e.g.
clonotypes.

Multicentre validation of assays for MRD marker
identification in ALL

Next, 50 ALL diagnostic samples (29 BCP-ALL and 21 T-
ALL; Supplementary Table 4) were analysed for the mul-
ticentre validation study. Each of the five participating
laboratories received preconfigured 96-well plates contain-
ing the different multiplexed NGS primer combinations per
target (Fig. 2).

In total, 96 libraries were generated per lab (total of 480
libraries), and sequenced with a collective output of 47M
reads (2 9.2 M/lab). Centralised analysis was performed
with ARResT/Interrogate [32] using IMGT germline
sequences [39]—further analyses and verifications were
performed with Vidjil [37] and IMGT/V-QUEST [38].

Overall, 311 clonal IG/TR rearrangements (clonotypes)
were identified, with a mean of 5.2 (0—14)/sample by NGS (a
5% threshold was applied for NGS after cIT-QC-based nor-
malization) vs. 5.0 (0-14)/sample by Sanger, while 217
(45%) libraries demonstrated no clonotypes above threshold
by either method. A total of 196/311 (63%) clonotypes were
fully concordant between NGS and Sanger (Fig. 3). NGS
exclusively identified 63/311 (20%) index sequences, whereas
52/311 (17%) IG/TR Sanger sequences were not assigned as
NGS index sequence by ARResT/Interrogate. 26/63 NGS
positive/Sanger negative cases showed a clonal PCR product
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Fig. 2 Schematic overview of the workflow for multicentre validation
of IG/TR NGS assays for MRD marker identification in ALL. The IG
and TR gene rearrangements are amplified in a two-step approach
using multiplex PCR assays. Each of the participating laboratories
performed NGS-based IG/TR MRD marker identification in 10

also in the respective low-throughput approach but sub-
sequent Sanger sequencing failed due to polyclonal back-
ground, mixed sequences or weak PCR products. In an
additional 6/63 NGS positive/Sanger negative cases the
respective primer was missing in the low-throughput
approach. For the remaining 31/63 discrepancies no

compile junctions

alignment vs germlines, junction analysis

profile

clustering and clonotype identification

¢IT-QC analysis, quantification factors

\ converting reads to cells
patients with ALL. A central polytarget control (cPT-QC) was used to
monitor primer performance, and central in-tube controls (cIT-QC)
were spiked to each sample as library-specific quality control and
calibrator. Pipetting was performed in a 96-well format. The data

analysis was performed using ARResT/Interrogate

technical explanation for Sanger failure could be found. In 16/
19 ¢/ddPCR evaluated cases the rearrangement was con-
firmed by ASO-PCR, in three of these on a subclonal level.

Conversely, 52/311 clonal IG/TR rearrangements were
detected by Sanger sequencing only, when applying the 5%
NGS threshold: for 5/52 sequences (1 TRG, 2 TRB-VJ and

SPRINGER NATURE
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Fig. 3 Results of multicentre validation of assays for MRD marker
identification in ALL. Blue: Index sequences identified by Sanger
sequencing. Red: Index sequences identified by NGS. Darkest blue/red
are clonal sequences identified by both methods; lightest blue/red are

D6-13 3/3/10 J4: 89.40%
-124/8/10:D6-13 3/3/10 J4: 1.24%
13/6/5:D6-13 3/3/10 J4: 1.21%

/3/7:D6-13 3/3/10 J4: 1.55%

vV-gene

Fig. 4 Clonal evolution in a BCP-ALL patient. The dominant
incomplete IGH rearrangement (IGHDG6-13 - IGHJ4) was identified
with an abundance of 89.4% together with three additional complete

2 IGH-DJ) the relevant primer was not present in the NGS
primer set, in 12/52 cases no explanation was found for the
discrepancy. However, in most discordant cases (35/52) the
Sanger identified sequences (7 TRD, 8 TRB-VJ, 6 TRG, 4
TRB-DJ, 2 IGK-VJ-Kde, 5 IGH-VJ and 3 IGH-DJ) that
were also detectable by NGS, but with an abundance below
5%. In 36/39 q/ddPCR evaluated cases the rearrangement
was confirmed by ASO-PCR (including all low NGS
positive sequences), in 14 of these on a subclonal level. The
overall concordance between Sanger and NGS, including
negative libraries, was 78%.

Interestingly, in 12/29 B-lineage ALL samples the evo-
lution of the dominant clonal IGH sequence was identified
employing a special tool in ARResT/Interrogate. The
evolved clonotypes shared the DNJ stem with the dominant
one, but the VND part of the rearrangement differed
(example in Fig. 4).

Assay performance was also analysed by standardized
evaluation of QC samples (cIT-QC and cPT-QC, see

SPRINGER NATURE

........................ TTCCACGG..

............. CCCTCT....TAGCAGCAGCTGG..

€ TCGwuw

TRB-VJ TRB-DJ TRG

Clonal sequences
positive by Sanger-
sequencing and low-
positive by NGS

Clonal sequences
positive by only one
of the two methods

sequences identified only by the respective method. Median blue/red
are clonal sequences identified by both methods, but by NGS with an
abundance of <5% after normalization

D-genes J-genes
GTGGGGTATAGCAGCAGCTGG...GGG.......... CTACTGGGGCCAGGGAACCCT
55157 CCACCT O :: GGG saunnas CTACTGGGGCCAGGGAACCCT
.GGG.......... CTACTGGGGCCAGGGAACCCT
.GCAGCAGCTGG...GGG.......... CTACTGGAGCCAGGGAACCCT

IGH rearrangements with lower abundance (1.21-1.55%) and the
same DNIJ sequence. Only the CDR3 region is shown for each
sequence

accompanying manuscript by Knecht et al. [30]) and
showed high intra- and inter-lab consistency without sta-
tistically significant differences between the five labs.

Modifications of the central SOP

During the process of multicentre validation, modifications
of the SOP were tested in particular laboratories as parallel
projects.

One-step versus two-step PCR

It was decided to use two-step PCR to enable switching of
sequencing adaptors and to limit the total number of required
primer batches even if a large number of barcodes is required.
As first round PCR products are not barcoded, identification
of contamination phenomena is hampered in this approach.
Therefore, a one-step PCR was tested in a single centre
(Paris). The one-step approach reduces the risk of
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contamination and thus favours use of NGS not only for
marker identification, but also for MRD assessment. The
standard operating procedure is shown in Supplementary
information.

Use of lon Torrent platform

Ion Torrent platform was tested in a single-centre setting
(Prague) and showed a very good concordance (R*=0.89)
with the standard approach. The standard operating proce-
dure is shown in Supplementary information.

Removal of polyclonal DNA from reaction mix

Polyclonal DNA was added to each reaction in order to
prevent excessive primer dimer formation in samples lack-
ing particular rearrangements. The addition of polyclonal
DNA, however, alters the composition of polyclonal back-
ground of the samples and hampers the analysis of the
immune repertoire. We therefore performed testing on four
samples with B- and four samples with T-cell aplasia and
showed that addition of cIT-QC is sufficient to prevent the
excessive formation of unspecific PCR products (see Sup-
plementary information).

Bead extraction

During the single target evaluation and validation phase, gel
extraction of the specific TRB amplicons turned out to lead to
more specific libraries compared with bead extraction. How-
ever, gel extraction is not used in all laboratories, therefore, in
a later phase of the study bead purification of all libraries was
also tested. Optimization of the purification processes led to
comparable ratios of specific reads irrespective of the type of
library purification (Supplementary Table 5).

Discussion

Amplicon-based IG/TR NGS provides an elegant method to
detect clonality, identify MRD markers and monitor MRD
in lymphoid malignancies. However, comprehensive SOPs
for all relevant IG/TR targets, applicable QC procedures,
suitable bioinformatic tools, and validation of the technol-
ogy in a scientifically controlled, multicentre setting are still
lacking [19].

Here we describe an in vitro and in silico protocol for the
diagnostic identification of IG/TR MRD markers in ALL,
and demonstrate its robustness and applicability across five
European laboratories. EuroClonality-NGS primer sets were
successfully used with high reproducibility and good con-
cordance to Sanger sequencing, identifying on average 4%
more markers per patient than classical low-throughput

methods. NGS was particularly successful in correctly
identifying bi-allelic rearrangements, which are technically
challenging for Sanger sequencing because this requires
prior separation of the respective clonal PCR products. NGS
also performs better in the presence of a background of
polyclonal rearrangements. Besides, it allows a more com-
prehensive coverage of rearrangement types. The
EuroClonality-NGS TRD assay for example not only
detects all types of complete and incomplete TRD gene
rearrangements but also VD-JA29 recombinations [40],
present in about 20% of all B-cell precursor (BCP) ALLs. In
our current series, these TRDV2-JA29 rearrangements were
detected in 7/29 BCP-ALL patients (24%), providing an
attractive target for MRD monitoring. Notably, rearrange-
ment coverage is not complete. The IGH-DJ tube lacks an
IGHD7 primer because that would predominantly amplify
the germline-configured IGH-IGHD7-IGHJ1.

Low-throughput sequencing of clonal IG/TR gene rear-
rangements is often cumbersome. This particularly holds
true for TRB, where Sanger sequencing of clonal TRB
BIOMED-2 amplicons requires a multistep approach: first
with the complete set of primers to identify the rearranged
genes, and second, a repetition of the sequencing reaction
with gene-specific primers. In contrast, the EuroClonality-
NGS assays do not require specific workflows for particular
targets, thus enormously streamlining the process of MRD
marker identification. This becomes increasingly important
in times of MRD-based treatment requiring early patient
assignment to the respective MRD risk group.

Critically, our assays provide ways to evaluate primer
performance and overall quality of the whole NGS run
(primers in the cPT-QC) and of each tube (spike-ins in the
cIT-QC, see accompanying manuscript by Knecht et al.
[30]). Such functionalities are embedded in the ARResT/
Interrogate pipeline, further standardizing the whole work-
flow. A challenge for correct MRD marker identification in
NGS data is the phenomenon of accompanying lymphoid
clones that might be mixed up with the leukaemia-specific
ones. Therefore, information regarding blast infiltration of
the analysed sample must be related to the combined
abundance information of the clonal rearrangement, the
polyclonal background and the cIT-QC sequences. The
integration of all this information allows for a more specific
assignment compared with published approaches that define
an index sequence simply as sequence with an abundance of
>5% [16]. This is particularly necessary for tubes that
exclusively cover rearrangements being present only in a
minority of lymphoid cells (especially the TRD and intron-
Kde tubes). TRD genes are not rearranged in normal B cells
and are deleted in most TRyd cells [41]. Therefore, oligo-
clonal TCRYd T cells might give rise to dominant clono-
types in TRD NGS assay, in particular as the normal TCRyd
T-cell repertoire is strikingly skewed during childhood.

SPRINGER NATURE
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Here the cIT-QC-based abundance correction is of utmost
importance to avoid miss-assignment of (minor) clonal
TRD rearrangements from minor TCRYd cell populations as
leukaemic rearrangements. Also, knowledge on rearrange-
ment patterns in ALL is important. BCP-ALL features
neither complete TRD, nor TRBJ1 gene rearrangements, T-
ALL in contrast generally does not harbour complete IGH
or IGK gene rearrangements [42]. Hence, identification of
such rearrangements would actually reflect more the pre-
sence of accompanying T- and B-cell clones, respectively.
This immunogenetic knowledge is of particular importance
if marker identification is performed, e.g. at relapse after
stem cell transplantation, when patients often harbour a
restricted B- and T-cell repertoire. The EuroClonality-NGS
approach allows for the bioinformatic identification and
correction of this phenomenon, whereas conventional low-
throughput approaches do not harbour correction mechan-
isms. Nevertheless, we urge caution in assignment of minor
clones to the ALL. Although smaller subclones might be
missed based on an abundance threshold (which largely
explains discrepancies between Sanger sequencing and
NGS in our study), decreasing the threshold would be at the
expense of specificity.

Oligoclonality is a well-known phenomenon in ALL that
hampers conventional IG/TR MRD [43] assessment, but
this can be better identified by NGS. Multiple IG/TR gene
rearrangements in ALL result from both continuing rear-
rangement processes (e.g. continuing IGHV to DJ joining)
and from secondary rearrangements (e.g. IGH-DJ replace-
ments, V replacement in a complete IGH rearrangement)
[23, 44-49]. In 12 of 29 (41.4%) patients with B-lineage
ALL, a dominant clonal IGH rearrangement was subjected
to clonal evolution, resulting in the presence of smaller
subclones with the same D-J stem, but different V-genes. D-
J replacements are also an evolutionary possibility but
cannot be unambiguously discriminated from unrelated
lymphoid clones even with sophisticated bioinformatic
tools.

Modifications to the here described EuroClonality-NGS
assays would be possible, and have actually been tested and
approved to be suitable within the working group. In par-
ticular, a one-step instead of the two-step PCR presented
here might be a reasonable alternative for sites that would
apply NGS not only for marker identification but also for
MRD assessment. Finally, the Ion Torrent platform was
successfully tested as a replacement for the Illumina MiSeq
used in this study, and has subsequently also been applied
more extensively for clonality assessment in formalin-fixed
paraffin-embedded tissue (see accompanying manuscript by
Scheijen et al. [31]).

In summary, the EuroClonality-NGS developed an 1G/
TR marker identification protocol, which was validated
across many expert European laboratories. It covers in vitro
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and in silico requirements and allows for quality-controlled,
streamlined, comprehensive detection of clonal IG/TR
rearrangements in ALL. Compared with low-throughput
methods, more MRD markers are identified, sensitivity is
increased, processing time is reduced and labour-intensive
conventional methods to resolve mixed sequences in case of
bi-allelic rearrangements or background are avoided. In
parallel, the ARResT/Interrogate bioinformatic platform has
been developed with specific functionalities addressing
potential pitfalls of IG/TR marker identification in ALL,
thus enabling a standardized workflow. In addition, the
presented approach forms the basis for future applications in
clonality assessment, repertoire analysis and MRD quanti-
fication in a quality-controlled and accreditable assay with
the potential to meet the upcoming European criteria (EU
Regulation 2017/746) for in vitro diagnostics.
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