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Abstract This article presents the coupling between

multi-fidelity kriging and a database generated on-the-

fly by model reduction to accelerate the generation of

a surrogate model. The two-level multi-fidelity kriging

method Evofusion is used for data fusion. The remark-

able point is the generation of low-fidelity and high-

fidelity observations from the same solver using the

Proper Generalized Decomposition, a model-order re-

duction method. A 17× speedup is obtained here on an

elasto-viscoplastic test case.

Keywords Metamodels, Reduced-order models,

Viscoplasticity, Data fusion

Introduction

Engineering simulation provides the best design prod-

ucts by allowing many conception options to be quickly

explored and tested, reducing the need for physical pro-

totyping. Many companies also want to generate deeper

insights with each simulation, by integrating more phy-

sics variables, investigating more nonlinear materials,

and evaluating more complex environmental conditions.

But fast-time-to-result requirement remains a crit-

ical factor to meet aggressive time-to-market demands

and using high-fidelity direct resolution solvers is not

suitable for (virtual) charts generation for engineering

design and optimization. Metamodels are commonly

considered to explore design options without computing

the solution for the whole set.
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Metamodels are here models of input-output data

that are obtained from numerical simulations. Inputs

are design parameters chosen in a design space and

outputs are scalar quantity of interest (QoI) generated

from the full spatio-temporal mechanical fields. So the

compution of each value of the QoI requires several

hours.

Nonlinear relationships require a large amount of

data, especially when the number of input parameters

increases. Finding the best design space sampling is dif-

ficult without any a priori information. A possibility is

to use further data sources to generate a multi-fidelity

surrogate model. With this aspect, many low-fidelity

and low-cost calculations can be performed first to es-

timate the QoI function. In a second phase, local en-

richment is made by doing high-fidelity computations.

Low-fidelity information is also calculated to add cor-

rection on all low-fidelity data. Further developments

have already made on this subject by using different

methods of multi-fidelity kriging [9,12,39].

Another possibility is to take advantage of the re-

dundancy of information in mechanical fields by us-

ing model reduction. Model reduction techniques con-

stitute one of the possible tools to bypass the limited

calculation budget by seeking a solution to a problem

on a reduced order basis (ROB). Popular methods for

model reduction are Proper Orthogonalized Decompo-

sition (POD) [4,38], reduced-basis methods [27,33] or

Proper Generalized Decomposition [22,23,5].

The purpose of this paper is to show how to pair

these two approaches to quickly create a metamodel

of the QoI. Note that a coupling between multi-fidelity

kriging and POD reduction has already been performed

for the quantification of uncertainty [21,1] with snap-

shots of a high-fidelity model calculated offline.
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In this paper, an online method for building a multi-

fidelity metamodel is given by calculating the QoI from

the PGD modes generated on-the-fly with the LATIN-

PGD framework. Low-fidelity fields are obtained by

stopping the solver before convergence, and high-fidelity

information is obtained with converged fields. In addi-

tion, the solver ability to reuse information from previ-

ously calculated PGD modes is exploited. The demon-

stration of the coupling of these methods was done on

elasto-viscoplastic elasticity test cases and an accelera-

tion of 17× was obtained on a test case, allowing a first

highlight of performances of this approach.

Generation of virtual charts with multi-fidelity krig-

ing is described on Section 1. Data observations are

computed thanks to the LATIN-PGD solver given in

Section 2 and some results obtained with this solver

are in Section 3. The link between multi-fidelity kriging

and model reduction can be found on Section 4 with

first results.

1 Generation of virtual charts with

multi-fidelity kriging

1.1 Gaussian Process Regression - Kriging

Let us consider here a spatio-temporal mechanical prob-

lem defined by some input parameters x belonging to

a design space D. For each value x ∈ D, the solution of

the problem allows to compute a given quantity of in-

terest (QoI), denoted Y , which is assumed to be scalar

herein. The corresponding virtual chart is the mapping

x ∈ D 7→ Y (x) ∈ R, but it is not affordable directly

for computational cost reasons. Then, this mapping is

replaced by a metamodel x ∈ D 7→ Ŷ (x) ∈ R, where Ŷ

is built from a set of resolutions for n selected points xi
and the corresponding values of the QoI Yi = Y (xi).

Herein, the metamodel Ŷ is built using Gaussian

process regression, also called kriging. One possible strat-

egy to select n initial samples xi in the design space D
is to use Latin Hypercube Sampling [28].

A simple way to generate a metamodel is to consider

a linear regression model Ŷ :

Ŷ (x) = f(x)Tβ + Z(x) (1)

∀i, Yi = xTi β + Zi (2)

x is the input vector, β the vector of weights for the

linear model, f user-defined regression function, and

Zi the error on observations. In case of noise-free ob-

servations, Zi = 0.

Gaussian process regression [34] is an extension of

the linear model regression by considering fitting error

Z as a zero-mean Gaussian process:

Z(x) ∼ N
(
0, σ2r

)
(3)

σ2r is a user-defined covariance function with σ a scalar

parameter. With Equation (3), Ŷ is also a Gaussian

process.

Let us introduce matrix X, that contains the loca-

tion of all the observed points. The i-th column con-

tains the location of the i-th observed point xi. The

vector with all the observation responses Y is such that

Y i = Yi.

To fit observations, the Gaussian process is condi-

tioned to them: assume Y as a random vector defined

by observations, then joint distribution between them

is defined by:(
Ŷ (x)

Y

)
∼ N

((
f(x)′β

F′β

)
, σ2

(
1 r′(x)

r(x) R

))
(4)

where F designates the regression matrix defined by

Fij = f
i
(xj), R the correlation matrix between data

observed defined by Rij = r(xi, xj) and r(x) the cor-

relation vector between observed and predicted data

defined by r(x)j = r(xj , x).

Ŷ (x) conditionally to Y is given by Schur comple-

ment of R in correlation matrix of joint distribution.

Then, the generated model x −→ Ŷ (x) is a Gaus-

sian process N (m(x), C(x, x′)) conditionally to obser-

vations, with mean m(x) and covariance C(x, x′):{
m(x) = f(x)Tβ+r(x)TR−1(Y − Fβ)

C(x, x′) = σ2
(
1−r(x)TR−1r(x′)

) (5)

The Gaussian definition (5) is for Simple Kriging

when β is assumed to be known. Usually, the case of

Universal Kriging is considered when β is supposed un-

known. To do that, Ŷ is considered as the Best Linear

Unbiased Predictor [36], that is:

• Based on linear combination of observations

∃w ∈ Rn, Ŷ (x) = wT (x)Y (6)

• Unbiased (with E the mean of a random variable)

E(Ŷ (x)− Y (x)) = 0 (7)

That gives: FTw(x)− Y (x) = 0

• Which minimizes mean square error

minE
[(
Ŷ (x)− Y (x)

)2]
= σ2(1 + wTRw − wT k) (8)

Lagrange multipliers are used to minimize the quad-

ratic form from Equation (7). The details concerning

the resolution can be found in [7].
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These properties define the Gaussian process re-

gressor with respect to the covariance function and its

hyper-parameters:

m(x) = f(x)T β̂ + r(x)TR−1(Y − F β̂)

C(x, x′) = 1− r(x)TR−1r(x′)

+u(x)T (FTR−1F)−1u(x′)

β̂ = (FTR−1F)−1FTR−1Y

u(x) = FTR−1r(x)− f(x)

(9)

The kriging variance — also called Mean Squared Error

(MSE) — is defined by:

MSE = σ2
(
1− rTR−1r + uT (FTR−1F)−1u

)
(10)

Covariance function being chosen, its hyper-parameters

could be obtained by maximizing the likelihood func-

tion associated or by Cross-Validation [19]. The impact

of the covariance function choice can be seen on [34].

Here, computations are made with the function Matern

5/2.

1.2 Using all data sources with multi-fidelity kriging

Usually, during the design process, engineers start by

testing several configurations with a fast but inaccurate

solver (coarse mesh, linear model,...) and validate their

choice after with an accurate solver. A way to reduce

design step is to reuse this process for kriging by consid-

ering multiple solvers from the coarse one to the finest

one and merge data observations. An example can be

found in [21] and the reader can refer to [8] for a review

of surrogate modeling and multi-fidelity approach.

Coming back to Equation (4), a possibility is to

build joint distribution with multiple random obser-

vation vectors which include low-fidelity observations

(XLF , Y LF ) and high-fidelity one (XHF , Y HF ). This

approach is called cokriging. Some hypotheses are need-

ed for defining interaction between observations and

can be found in [40,14,18,25]. All these methods mod-

ify covariance matrix to take into account solver quality.

So they allow expert judgement, but they are intrusive.

Other methods based on recursive metamodeling

exist: Hierarchical Kriging [13] which replaces regres-

sion function by a Gaussian process conditioned to low-

fidelity data, and Evofusion [10]. Details of Evofusion

algorithm can be seen in Algorithm 1.

The Evofusion method is the simplest one. To illus-

trate how it works, we consider that the dotted curve

in figure 1 is obtained from a low-fidelity solver and the

continuous one is obtained from a high-fidelity solver.

Data observed from both solvers are dots on curves.

Algorithm 1 Evofusion Algorithm

Require: low-fidelity and high-fidelity observations
(XLF , Y LF ), (XHF , Y HF )

1: Build a low-fidelity metamodel with only low-fidelity data
(XLF , Y LF ) −→ ŶLF

2: Compute the gap between the low-fidelity metamodel
ŶLF and high-fidelity observations Y HF on high-fidelity
points XHF :
Ycorr = YHF − ŶLF (XHF )

3: Build a correction metamodel with correction data
(XHF , Y corr) −→ Ŷcorr

4: Modify low-fidelity observations with the correction
metamodel:
Y LFcorr = Y LF + Ŷcorr(XLF )

5: Build the fused metamodel with corrected data and high-
fidelity data:
(XLF , Y corr)

⋃
(XHF , Y HF ) −→ Ŷ

6: return Fused metamodel: Ŷ

Firstly, a Gaussian process with low-fidelity data is cre-

ated. The gap between LF regressor and HF data is

used to create a correction model. A Gaussian process

conditioned by corrected LF and HF data is built with

this and is visible on figure 2. The major drawback of

this method is the wrong variance associated to low-

fidelity corrected data, which is treated as zero.

Fig. 1: Data observed (dotted curve is from a LF solver,

continuous one is from a HF solver, bullets • are data

observed and pink arrows describe LF-HF exact gap)

Benchmarks of these methods can be found in [6,24].

With these methods, results from multiple solvers can

be well exploited. One of the principal interests in krig-

ing is the variance of the Gaussian process. The kriging

variance is a powerful tool to enrich an experimental

design as a model error estimator. In the case of Evofu-

sion, Mean Squared Error from correction metamodel

is going to be used.
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Fig. 2: Evofusion method: Gaussian process with cor-

rected LF and HF data (red continuous curve is the

metamodel and the upper and lower dotted ones de-

limit the estimated confidence interval computed from

the metamodel. Blue arrows are LF-HF estimated gap

from pink arrows)

1.3 Enriching surrogate model with adaptative

resampling

Usually, kriging is used with two steps. During the first

one, a surrogate model is made with simulations chosen

from a design set sampling like Latin Hypercube Sam-

pling (LHS) [28], or low-discrepancy suite. The second

stage consists in adding simulations sequentially at new

design points by maximizing information gain for the

surrogate model until the quality indicator reaches tol-

erance. Here, new points improve the global accuracy

of the kriging model. Sequential enrichment can also be

used in optimization with notable EGO Algorithm [16],

and probabilities of failure estimation.

Among information gain predictor, Mean Square

Error is mainly used and is fast to compute as the vari-

ance of prediction. Some other exist like the Integrated

MSE (IMSE) [32], which consists in integrating kriging

variance over the design space for the predicted surro-

gate model with the new point:

IMSE(x) =

∫
D
MSE[Ŷx](s)ds (11)

where Ŷx is a metamodel build with the same data and

the new observation (x, Ŷ (x)). The optimal point will

be the global maximum one.

This method can be costly because each point tested

needs a surrogate model building and prediction. A way

to reduce costs could be to create kriging model on

IMSE or do Bayes optimisation with EGO algorithm.

If data are suffisant, it could be interesting to consider

cross-validation (CV) based criteria like Leave-One Out

(LOO) [20]. These criteria pilot enrichment process.

About quality indicators, further methods exist. We can

cite MSE, all determination coefficients like r-squared,

Bravais-Pearson coefficient, or also cross validation cri-

teria like LOO.

Defining the enrichment strategy in a multi-fidelity

framework is still an open problem and is critical for

time computation gain. Le Gratiet [25] developed se-

quential design for multi-fidelity co-kriging models with

a reflexion about the time-ratios between the code lev-

els and the contribution of each code level to the total

predictor MSE. Here, a generic method is used with a

first step using only the low-fidelity solver, and a sec-

ond one using both solvers has described in Algorithm

2. But some more sophisticated strategies could be de-

veloped with a great estimated gain.

Algorithm 2 Multi-fidelity Surrogate Model Genera-

tion
Require: D, Solver Y
1: Design Sampling on D −→ X

2: LF Solve (Error ηLF ) X −→ Y LF
3: while r >= rtol do

4: Fit surrogate model Ŷ to observations (X, Y LF )
5: Predict quality indicator r on D
6: Find optimum x∗ of the information gain predictor

(MSE, IMSE, LOO, ...) on D
7: LF Solve x∗

8: Add (x∗, YLF (x∗)) on surrogate model observations
9: if LF Points ≥ n then

10: HF Solve (Error ηHF ) x∗ −→ YHF (x∗)
11: Add (x∗, YHF (x∗)) on surrogate model observations
12: end if
13: end while

The two algorithm parameters ηLF and n on Algo-

rithm 2 are possible keys here to reduce time compu-

tation. About this aspect, multiple studies have been

already made by using coarse and fine models [11] or

meshes [21] but considering partially and totally con-

verged solver results is recent. Here, the solver uses a

mixed formulation and generate on-the-fly space-time

ROM fields. This allows to have during computation a

space and time approximation of mechanical fields.

2 Access to multiple fidelity data with the

LATIN-PGD framework

Multi-fidelity kriging allows using multiple data sources

and multiple solvers in the case of computer experi-

ments. But using multiple solvers could be difficult be-

cause of solver and I/O configuration. With the LATIN-
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PGD framework, approximated but complete spatio-

temporal mechanical fields are computed at each con-

vergence iteration. So QoI can be estimated by stopping

the solver before convergence. LATIN-PGD framework

is used as a demonstrative example in the context of

viscoplastic problems. Detailed equations could also be

found in [2].

2.1 Elasto-viscoplasticity reference problem

The reference problem is a quasi-static isothermal evo-

lution defined over the time-space domain I×Ω, assum-

ing the hypothesis of small perturbations. The struc-

ture is subjected to body forces f
d
, traction forces F d

over a part ∂2Ω of the boundary, and to prescribed

displacements Ud over the complementary part ∂1Ω.

The state of the structure is defined by the set of fields

s = (ε̇p,σ, Ak, V k) where:

– ε designates strain field corresponding to the dis-

placement field U , split between elastic part εe, and

inelastic part εp;

– σ defines Cauchy stress field;

– Ak and V k respectively primal and dual internal

variable fields.

All these quantities are defined over the time-space

domain I ×Ω and assumed to be sufficiently regular.

Kinematically admissibility U ∈ V, ε ∈ E and static

admissibility σ ∈ S must be fulfilled. Spaces and the

corresponding homogeneous vector spaces (with super-

script ∗) are described below:

– the space V of the kinematically admissible fields U
(V∗ is obtained with Ud = 0):

V =
{
U \ U |t=0 = U0, U = Ud on ∂1Ω

}
(12)

– the space S of the statically admissible fields σ such

that

−
∫
[0,T ]×Ω

σ : ε(U∗)dΩdt

+

∫
[0,T ]×Ω

f
d
· U∗dΩdt

+

∫
[0,T ]×∂2Ω

F d · U
∗dSdt = 0 (13)

– the space E of the kinematically admissible fields ε

such that ∃U ∈ V, ε = ∇symU .

2.2 Elasto-viscoplasticity behavior law

Unified viscoplastic framework previously presented in

[26] is considered. In this constitutive law, strain ε is

split between elastic reversible strain εe and plastic

strain εp like ε = εp+εe. Stress is driven by σ = Keεe
where Ke is the Hooke matrix.

Fig. 3: Yield surface influence on strain and stress

Extreme loadings create plastic behavior zone when

stress goes over an elastic limit f . This limit is usually

represented by an ellipsis in deviatoric stress principal

component space also called yield surface (figure 3).

Size and origin of the ellipsis are driven respectively by

isotropic hardening R (drag effect) and a unique linear

kinematic hardening X:

f = (σ −X)eq − σ0 (14)

where J2 = (σ−X)eq is the Von Mises equivalent stress

and σ0 = σy − R is the yield surface size. We define

the plastic strain p and the primal field linked with

X, α. Primal fields Ak = (p,α) are associated with

V k = (R,X).

The Norton-Hoff law drives the plastic strain p:

ṗ =

〈
f

k

〉N
+

(15)

where k, N are material dependant scalars, 〈· 〉+ are

Macaulay brackets.

State laws are:

σ = Keεe (16)

X =
2

3
Cα (17)

R = R∞(1− e−bp) (18)

where C,R∞, b are material dependant scalars.

A pseudo-dissipation potential F is defined:

F = f +
3γ

4C
X : X − 2γC

3
α : α (19)
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So, the evolution equations are described by:

d

dt

 εp−α
−p

 =

〈
f

k

〉N
+


√

3

2
N

−
√

3

2
N +

3γ

2C
X

−1

 (20)

With N the unitary normal vector

N =

√
3

2

σD −X
(σD −X)eq

, (N)eq = 1 (21)

The constitutive law can be described by decoupled

linear state laws (18), and nonlinear, coupled evolution

laws (20). Ad is defined as the admissibility space of

fields which respects state linear equations and admis-

sibility ones ε ∈ E and σ ∈ S. By the same way, Γ is

defined as the local manifold with respect of nonlinear

behavior laws. The mechanical solution is Γ ∩ Ad and

can be found by alternating search in the global linear

space and the local manifold.

2.3 LATIN-PGD algorithm

The LATIN framework [23] is a powerful method to

obtain the linear equilibrium of the structure with the

respect of nonlinear behavior laws. This iterative solver

consists in searching alternately the solution on Γ and

Ad, with search directions Θ+ and Θ−. which allow find-

ing a solution on one space which minimizes distance

projection to the other one.

Unlike Newton-like techniques, this approach pro-

vides a complete solution at each iteration of the algo-

rithm. The schematic representation in Figure 4 illus-

trates the differences between the two solvers.

<latexit sha1_base64="o1LihFPIa47xxDCE9FD9dp/ixcI="></latexit>
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(a) Modified Newton-Raphson
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(b) LATIN

Fig. 4: Schematic representation of the solvers

Such strategy has also been applied for other types

of problems: multi-scale, domain decomposition, multi-

physics... Here, model-order reduction (PGD) is used

to reduce the cost of resolution of the global problem.

More details is given in [23,30] and a short analysis can

be found in [37].

Steps can be briefly described below and on figure 5:

• Elastic initialization: The algorithm is classically

initialized by computing the elastic solution of the

problem, such that s0 ∈ Ad. s0 can be enriched

by adding kinematically admissible with null condi-

tion information from previous computations. This

possibility allows the implementation of the multi-

parametric strategy presented in the section 2.5.

• Local stage: Knowing a solution s in Ad, local

stage consists in finding a local solution ŝ in Γ using

search direction (ŝ− s) ∈ Θ+.

The local problem can be solved at each time step

at each Gauss point. Here, formulation is written to

be explicit.

• Global stage: The linear stage consists in finding s

in Ad knowing ŝ ∈ Γ and using the search direction

Θ−.

s

s0

�

Ad

ŝm

sm+1

sm

E+

E�

sM

Fig. 5: Schematic representation of the LATIN strategy

The chosen error indicator is a stagnation criterion

on consecutive solutions s and ŝ:

ηLATIN =
1

2

∥∥∥ ˙̂εp − ε̇p
∥∥∥
Ke∥∥∥ 1

2 ( ˙̂εp + ε̇p)
∥∥∥
Ke

+
1

2

‖σ̂ − σ‖Ke−1∥∥ 1
2 (σ̂ + σ)

∥∥
Ke−1

(22)

where ‖•‖Ke is the norm associated to the Hooke oper-

ator.

The local search direction Θ+ (which can be seen

as a local approximation of the Ad space) is defined by

Θ+ = ∞, which means that dual quantities are con-

served between the two stages. This operator evolves

along LATIN iterations and depends on space and time.
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At the global linear stage of the LATIN method, a

linear approximation of the elastic-viscoplastic problem

is known. The PGD technique can be introduced easily

in this context. The unknowns are searched as sums

of products of time functions λi(t) and space functions

Λi(M). For example, with m− 1 pairs,

σ(t,M) =

m−1∑
i=1

λi(t)C(Λi)(M) (23a)

ε̇p(t,M) =

m−1∑
i=1

λ̇i(t)Λi(M) (23b)

With PGD modes, a preliminary step can be made

based on updating time modes (λi) to minimize search

direction. If updating is not sufficient, a new time-space

mode is created assuming s ∈ Ad.
The interested reader can refer to [31] for a review of

the different algorithms to solve a linear problem with

the PGD and [35] for the special case of the viscoplastic

LATIN algorithm. A progressive algorithm with update

is considered, based on the minimization of the linear

search direction. The stop criterion will use LATIN er-

ror estimator even if some other criterion can be used

like a QoI-based error.

2.4 LATIN-PGD algorithm in action

To illustrate, a simple test case is used here. An elasto-

viscoplastic beam (figure 6) is considered with symme-

try boundary conditions on origin planes x = 0, y = 0,

z = 0. The dimensions in (x, y, z) are 100 × 10 × 10

mm. A prescribed displacement Ud(t) is considered on

the x = 100 mm plane. The temporal evolution of Ud(t)
is visible on the figure 7 with Umax = 0.05 mm. The

eps-sigma curve is drawn at for some convergence iter-

ations on figure 8.

x

y

z

Ud(t)

Fig. 6: Elasto-viscoplastic beam test-case

2 4 6 8 10
-Umax

Umax

Time (s)

Fig. 7: Prescribed displacement evolution

-5E-4 5E-4

−45

45

εxx

σxx (MPa)

Elastic initialisation

Iter 3 - LATIN error estimator 10−1

Iter 6 - LATIN error estimator 6.10−2

Iter 12 - LATIN error estimator 10−4

Fig. 8: Evolution of ε−σ curve during convergence loops

An iteration of the LATIN frame gives an approxi-

mate but complete space-time solution field (Fig. 4b).

The first argument in favour of the LATIN-PGD frame-

work is that the calculation could be stopped before

convergence if the approximation is sufficient to be con-

sidered as a low-fidelity observation. For example, the

maximum of the equivalent Von Mises stress calculated

at iteration #6 and convergence are close. Thus, non-

converging fields can give a good approximation of QoI

values.

2.5 Multi-parametric strategy to accelerate

computation

For surrogate modelling, the computation of a quantity

of interest Yi is done sequentially on certain points xi
in the design space D. A major feature of the LATIN

framework is its multi-parametric strategy which allows

to start a new calculation with fields created from previ-

ous calculations. Its objective is to provide very quickly

the solution of a nonlinear evolution problem for sev-

eral parameter values of the model and reduce the num-

ber of iterations to reach the required error estimator

level. This strategy is presented on Algorithm 3 and a

schematic representation is shown on figure 9.

The figure 10 shows an application of this strategy

on the one-side clamped elasto-viscoplastic beam. The

result obtained on figure 8 is used to start resolution of

a similar problem, but with a softer material.

The exploration path of the design space which min-

imizes time computation is not trivial, and this question

has already been addressed in [3,15]. An approach sim-
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Algorithm 3 Multi-parametric Latin-PGD algorithm

Require: Model informations
1: Elastic resolution - Generate CA modes ∈ V
2: Load mode database - Load old CA0 modes (λ,Λ)
3: while ηLATIN > ηLATIN,tol do
4: Local stage: s −→ ŝ ∈ Γ
5: Preliminary stage: Update all time modes
6: if ‖∆λ‖ ≤ ν ‖λ‖ then
7: Global stage: Compute new CA0 mode (λ,Λ)
8: end if

9: end while
10: return Solution at ηLATIN,tol: s

ilar to the RB method to select the most relevant sets

of parameters have been made to compute the enrich-

ment.

E�

s j

s0
sM0

sM j

s0

Ad

� j

�0

E+

E�

sM0

sM j

Fig. 9: Schematic representation of the multi-

parametric strategy [37]

-5E-4 5E-4

−45

45

εxx

σxx (MPa)

Elastic initialisation + Old modes

Iter 4 - LATIN error estimator 10−4

Fig. 10: ε− σ curve obtained from a LATIN-PGD res-

olution started from another solution

3 Impact of the elasto-viscoplasticity

LATIN-PGD framework on time computation

3.1 Implementation

A 3D solver implementation was developed for the test

using MATLAB. To reach fast and multithreading com-

putation, LATIN operators are organized as nd-arrays

and a parallel implementation of Einstein summation

[29] exploits variable broadcasting to deal with time-

and spatial-dependent operators.

3.2 Test case 1: Plate with an elliptic inclusion

Two academic examples are tested. The first one is an

eighth part of 3D plate with an elliptic inclusion pre-

sented on figure 11. The typical dimensions in (x,y,z)

are 10 × 1 × 20 mm. Material behaviors are described

by the Chaboche constitutive law (see Section 2.2) and

Table 2 for the material coefficients.

The plate is subjected to symmetry boundary con-

ditions on x=0, y=0, z=0 planes and to a prescribed

displacement U = Ud at the upper side z = 20mm.

Ud evolution can be seen on figure 7 with Umax =

0.03mm. Structure came with 316 Steel parameters at

600◦K. Structure and inclusion have the same parame-

ters except for the inclusion Young modulus αE316 and

the structure power coefficient of Norton-Hoff law.

The aim here is to obtain an approximation of the

maximum of the Rankine stress during one loading cy-

cle on the 2D design space D = [0.1, 10] × [3, 7] as de-

scribed on Table 1.

Objective function Y (x) = maxI×Ω σRankine
Parameters x = (α,n) ∈ D = [0.1, 10]× [3, 7]

Space element type Linear triangular (1379 DOFs)

Loading cycles One cycle (10s — 41 time steps)

Boundary conditions Symmetry conditions

on bottom and two side faces

U = Ud(t)ez at the top

Table 1: Inclusion test case parameters

part E σy n K

Structure 137.6 GPa 8 MPa n 150 MPa.s1/n

Inclusion α× 137.6 GPa 8 MPa 5 150 MPa.s1/n

Table 2: Elastic-viscoplastic constitutive coefficients for

inclusion test case parts (Bold symbols are design pa-

rameters)
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x

z

Fig. 11: Inclusion test case with symmetry conditions

on purple parts and the prescribed displacement on the

upper part. An symmetry condition is also prescribed

on the back side (not visible on the figure)

3.3 Test case 2: Turbine blade

This second test-case is freely inspired from a blade of

the Vulcain engine of the Ariane 5 launcher [30]. The

typical dimensions in (x,y,z) are 45× 70× 50 mm.

The mechanical part is clamped on the upper, left

and right sides (Blue parts on figure 12). The turbine

nose is visible on the bottom left of the figure 12. This

one is loaded on the front and rear sides (on green

and red on the figure). The two loading pressures have

the same intensity P (t) described by figure 14 with

Pmax =80 MPa, but their direction are different. Each

loading direction is driven by two angles (θ, φ) which

could go between [0◦, 90◦]. The description of the angle-

driven loading conditions is shown on figure 13. The

material is also a 316 Steel at 600◦K.

The aim here is to obtain an approximation of the

maximum of the Von Mises stress for every possible load

directions during one loading cycle. All loading options

describe a 4D design space D = [0◦, 90◦]4.

Objective function Y (x) = maxI×Ω σV onMises

Parameters x = (θ1, φ1, θ2, φ2) ∈ D = [0◦, 90◦]4

Space element type Linear triangular (30k DOFs)

Loading cycles One cycle (10s — 41 time steps)

Boundary conditions Clamped on blue side faces

P1(t) = P (t) e1 on green

P2(t) = P (t) e2 on red

Table 3: Second test case characteristics

x

z

Fig. 12: Turbine blade test case

The blue part is clamped as the hidden upper and back

part of the support, the green part is loaded as shown

on figure 13, and the hidden part of the nose is also

loaded

−x

−y

z

e2

φ2

θ2

x

y

z

e1

φ1

θ1

Fig. 13: Angle-driven loading directions on the green

and red parts of the figure 12

2 4 6 8 10

-Pmax

Pmax

Time (s)

P(t)

Fig. 14: Pressure evolution P(t)
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3.4 Multi-parametric impact

Multi-parametric impact is tested with the first test

case (figure 11). A 1D-design space D is defined by

α = [1, 10] and the sequential sampling is chosen as k

equally spaced points between the bounds of the design

space. In this test, computations from scratch and com-

putations started with modes already computed from

other computations are tested. Results are summarized

in Table 4. In comparison with a Newton solver with

restarts from scratch, the LATIN-PGD one reuses infor-

mation from the closest design point. So finer is the dis-

cretisation, better is the speedup. The used sampling is

k sequential test cases 10 20 50 100

From scratch 119s 372s 1468s 4059s

On-the-fly database 16s 37s 117s 245s

Speedup 7.4 10.1 12.6 16.5

Table 4: Sequential sampling: computation time

an easy one because it minimizes distances between two

consecutive design points [3]. The use of adaptive sam-

pling will increase the distances between the already

calculated points and the next one. The acceleration

obtained will therefore be lower than these results.

3.5 Link between solver and quantity of interest error

estimators

For each computation, at each solver iteration, full spa-

tio-temporal mechanical fields are computed. So, quan-

tities of interest maxI×Ω σV onMises, maxI
∫
Ω
p and the

LATIN error estimator (Equation (22)) can be com-

puted at each solver iteration. So the correlation be-

tween QoI error estimator and the LATIN one can be

done easily and a low-fidelity stopping criterion can be

defined by finding interactions between QoI error esti-

mator f−fexact

fexact
and LATIN error estimator. A study is

made on the first test case (figure 11) with computa-

tions selected on a LHS design space sampling 15× 15.

Figures 15, 16 allow us to estimate the LATIN stop-

ping criterion needed to have numerous computations

(50%, 95% or all design points) under the quantity of

interest error estimator. For example, for having all de-

sign points under 10% of QoI error estimator, compu-

tations should be stopped when LATIN error estimator

is under 10−2.

The results suggest that ηLATIN ≈ 10−2 could be

a good stopping criterion for the low-fidelity computa-

tion with about 1% error on the first QoI (Maximum

Von Mises). This result is also visible in the following

Section when multi-fidelity kriging and model reduction

are coupled.

Also, some computations need a lower number of

LATIN iterations to achieve a defined QoI error. Having

different low-fidelity stop criteria on design space could

be a good idea to minimize time computation.

0.1% 1% 10% 100%
10−3

10−2

10−1

100

Quantity of interest error estimator (%)

1-(σVM/σVM,exact)

L
A
T
IN

E
st
im

a
to
r

50% of all test cases under QoI error

95% of all test cases under QoI error

100% of all test cases under QoI error

Fig. 15: Comparison between LATIN error estimator

and QoI error estimator - QoI: maximum Von Mises

stress

0.1% 1% 10% 100%
10−3

10−2

10−1

100

Quantity of interest error estimator (%)

1-(
∫

Ωp/
∫

Ωpexact)

L
A
T
IN

E
st
im

a
to
r

50% of all test cases under QoI error

95% of all test cases under QoI error

100% of all test cases under QoI error

Fig. 16: Comparison between LATIN error estimator

and QoI error estimator - QoI: maximum plastic strain

rate
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4 Accelerate virtual charts generation with

Kriging-ROM algorithm

First Section gives the right regressor with multi-fidelity

kriging. We can use this method with multiple solvers,

or with one multi-quality solver which improve accuracy

of QoI at every convergence iteration.

Algorithms 2 will be used with solver 3. Some ques-

tions remain about kriging parameters on algorithm 2.

How many points are needed to start metamodel gener-

ation? And which low-fidelity and high-fidelity quality

are the best choice to reduce the time computation?

4.1 Sampling and quality levels

The aim is to determine best kriging parameters to

minimize the generation time of a good metamodel.

Metamodel quality is determined by considering a vari-

ation of Bravais-Paerson r coefficient, the constant con-

ditional correlation rccc (the higher the better, 1 is the

exact correlation):

rccc =
2σ2

ex,app

σ2
ex + σ2

app + (mapp −mex)2
(24)

Considering a fine regular grid on design space, σ2 is

the standard deviation of values on this and m the as-

sociated mean.

A reference metamodel is generated with a fine grid

on the design space and converged data. Metamodel

generation is accepted when rccc > 0.95. Ten solver

stop criteria for low-fidelity data ηLF were tested in

the range [10−3, 10−1]. For each, the parameter ndim
governing the number of initial points calculated only

in low-fidelity was tested by varying it between 4 and 13

points per dimension. To avoid the influence of initial

random sampling on the choice of parameters, 20 sam-

ples are tested by modifying the random seed generator

for each couple (ηLF ,ndim).

4.2 Results from test cases

We reconsider the first test case explained in Section

3.1. To see impact of the LATIN indicator on objective

function, two surrogate models of maximum of Rank-

ine stress are created: one at convergence ηLATIN =

10−4 (figure 18), the other before at ηLATIN = 10−2

(Figure 17).

This example shows that approximated fields al-

ready give information about the evolution of the objec-

tive function. Kriging configurations have been tested

and give results presented on Table 5. Both multi-fidelity

Fig. 17: QoI metamodel of the first test case obtained

by considering ηLATIN = 10−2

(Mean: 33s per computation)

Fig. 18: QoI metamodel of the first test case obtained

by considering ηLATIN = 10−4

(Mean: 143s per computation)

and multi-parametric accelerate computations and gives

good speedup: 5.2× from multi-fidelity and 1.5× from

multi-parametric (411s in the case of LF error estima-

tor ηLATIN 10−2 and 12 LF points per dimension) so

a 7.8× projected speedup. Impact of multi-parametric

will be more important as spatial degrees of freedom

increased.

For the second test case, kriging configurations have

also been tested and give results presented on Table 6.

Multi-fidelity and multi-parametric also gives speedup:

5.5× from multi-fidelity and 3.2× from multi-paramet-
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ric (3146s in the case of LF error estimator ηLATIN =

10−2 and 12 LF points per dimension) so a 17.6× pro-

jected speedup.

The analysis of these two test cases show that the

use of multi-fidelity data and the multi-parametric strat-

egy allow significant computational gains. An optimal

parameters pair emerges for the generation strategy

with ηLATIN = 10−2 as the low-fidelity stop criterion

and 12 initial points per dimension calculated only in

low-fidelity.

Number

of LF points

LF Latin

Error
10−3 10−2 10−1

4/dim 1623s 1457s 2094s

8/dim 921s 537s 2782s

12/dim 755s 272s 2685s

Table 5: Mean of time computation to generate meta-

model for bi-material test case (Only HF data: 1440s)

Number

of LF points

LF Latin

Error
10−3 10−2 10−1

4/dim 11840s 10510s 8946s

8/dim 6350s 5709s 7583s

12/dim 4496s 2072s 2162s

Table 6: Mean of time computation to generate meta-

model for blade test case (Only HF data : 11420s)

Conclusion

In this work, a new strategy has been proposed for the

generation of virtual charts by sequentially sampling

the design space and using a two-level of fidelity surro-

gate model. The solver presented reuses all previous in-

formation on physical fields to accelerate computation.

With this, multi-fidelity kriging is coupled with data

from the multi-parametric, multi-quality solver LATIN-

PGD. The effectiveness of the proposed approach is

demonstrated on two test cases.

The complexity of these test cases is related to the

use of nonlinear elasto-viscoplastic models. The multi-

parameter strategy speeds up the calculation according

to the distance between data points. In addition, the

coupling strategy outperforms classical one by given

estimated speedups 7.8× on bi-material test case and

17.6× on the blade one when considering 12 low-fidelity

points per dimension, and a low-fidelity stop criterion

ηLATIN < 10−2.

Only the generation of a complete metamodel for

virtual charts is presented in this article. In the case of

optimisation, EGO strategy [17] allows to quickly find

the global optimum by performing adaptive sampling

only on a predicted optimal zone. The use of multi-

fidelity coupling with model reduction could also give

good results with potentially coarser low-fidelity fields.
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13. Han, Z.H., Görtz, S.: A hierarchical kriging model for
variable-fidelity surrogate modeling of aerodynamic func-
tions. AIAA Journal 50(9), 1885–1896 (2012) 3

14. Han, Z.H., Zimmermann, R., Görtz, S.: A New Cok-
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30. Néron, D., Boucard, P.A., Relun, N.: Time-space PGD
for the rapid solution of 3D nonlinear parametrized prob-
lems in the many-query context. International Journal
for Numerical Methods in Engineering 103(4), 275–292
(2015) 6, 9

31. Nouy, A.: A priori model reduction through Proper Gen-
eralized Decomposition for solving time-dependent par-
tial differential equations. Computer Methods in Ap-
plied Mechanics and Engineering 199(23-24), 1603–1626
(2010). DOI 10.1016/j.cma.2010.01.009 7

32. Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R.T.,
Kim, N.H.: Adaptive Designs of Experiments for Accu-
rate Approximation of Target Regions. Journal of Me-
chanical Design 132(7), 1–9 (2010) 4

33. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis
Methods for Partial Differential Equations, UNITEXT,
vol. 92. Springer International Publishing, Cham (2016)
1

34. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes
for Machine Learning. Adaptive computation and ma-
chine learning. MIT Press, Cambridge, Mass (2006).
OCLC: ocm61285753 2, 3
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