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We consider regular variation for marked point processes with in-
dependent heavy-tailed marks and prove a single large point heuristic:
the limit measure is concentrated on the cone of point measures with
one single point. We then investigate successive hidden regular vari-
ation removing the cone of point measures with at most k points,
k ≥ 1, and prove a multiple large point phenomenon: the limit mea-
sure is concentrated on the cone of point measures with k+1 points.
We show how these results imply hidden regular variation in Sko-
rokhod space of the associated risk process, in connection with the
single/multiple large point heuristic from Rhee et al. (2019). Finally,
we provide an application to risk theory in a reinsurance model where
the k largest claims are covered and we study the asymptotic behavior
of the residual risk.

1. Introduction. Regular variation is a fundamental concept in the analysis of rare event
probabilities for heavy-tailed models that was widely popularized by Resnick (2007, 2008) and
finds natural applications in risk theory (Embrechts et al., 1997; Asmussen and Albrecher,
2010; Mikosch, 2010; Hult and Lindskog, 2011).

Regular variation was first considered on the finite-dimensional space Rd and formulated
in terms of vague convergence on the compactified space E = [−∞,+∞]d. In such a context,
a random element X ∈ Rd is said to be regularly varying if there exists a positive sequence
an →∞ such that

nP(a−1
n X ∈ ·) v−→ µ(·), as n→∞,

where v−→ stands for vague convergence on E \ {0}. If the limit measure µ concentrates only
on the axes F = ∪di=1

(
{0}i−1×R×{0}d−i

)
, we say that X is asymptotically independent. One

can then wonder if some dependence among the components appears in a different regime.
The concept of hidden regular variation was introduced for this purpose in Resnick (2002) and
formulated in terms of vague convergence on the space E\F of the form nP(ã−1

n X ∈ ·) v−→ µ̃(·).
We refer to Heffernan and Resnick (2005), Maulik and Resnick (2004), Mitra and Resnick
(2011) for further developments on finite-dimensional hidden regular variation.
∗The research of Clément Dombry is partially supported by the Bourgogne Franche-Comté region (grant

OPE-2017-0068).
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2 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

To go beyond finite-dimensional spaces, M0-convergence on a general metric space was in-
troduced by Hult and Lindskog (2006). This notion avoids the compactification procedure
and replaces the compactly supported continuous test functions from vague convergence by
bounded continuous functions with support bounded away from the origin. This results in an
elegant theory that provides a convenient framework for regular variation in infinite dimen-
sional spaces. Infinite dimensional regular variation theory includes the analysis of heavy-tailed
stochastic processes (Hult and Lindskog, 2005, 2007; Hult et al., 2005) or times series (Basrak
and Segers, 2009; Dombry et al., 2018).

In order to consider hidden regular variation in a function space, the theory ofM -convergence
was further extended in Lindskog et al. (2014) removing cones larger than the origin. The main
example provided there is the infinite dimensional space R∞+ with application to hidden regular
variation of Lévy processes in Skorokhod space D([0, 1],R). Rhee et al. (2019) provide further
insight into the hidden regular variation for regularly varying Lévy processes and random
walks in connection with sample path large deviations. They propose a single/multiple large
jump heuristic where the limit measure in (hidden) regular variation is supported by the cone
of functions with one single (multiple) large jumps.

In this paper, we provide the first detailed analysis of (hidden) regular variation properties
for point processes. Point processes are an important tool in applied probability and stochastic
modelling and are widely used in risk theory. The Lévy processes mentioned above can be seen
as functionals of Poisson point processes, so that one can expect to deduce the regular variation
of the former from those of the latter via a continuous mapping theorem. For these reasons,
we believe regular variation at the level of point process is an important and fundamental
conceptual tool. A first result stating the regular variation of Poisson point processes with
regularly varying intensity measure appears in Dombry et al. (2018) with a single large point
heuristic. We propose here an analysis beyond the Poisson case and consider independently
marked point processes (with heavy-tailed mark distribution) and successive hidden regular
variation with different orders. We derive a general criterion for (hidden) regular variation in
terms of pointwise Laplace functional and apply it to several models of increasing complexity:
marked Poisson point processes, independently marked point processes and triangular arrays of
independently marked point processes. For all these models, a similar structure for successive
hidden regular variation is discovered and a single/multiple jump heuristic is proved.

The structure of the paper is the following. In Section 2, we set the necessary background
on measure spaces and regular variation following the lines of Lindskog et al. (2014). We
also settle the point process framework and provide in Theorem 2.5 a characterization of
hidden regular variation of point processes in terms of convergence of their Laplace functionals.
Section 3 states the main results of this paper on the successive hidden regular variation for
independently marked point processes. In Section 4, we use the continuous mapping theorem
to derive the hidden regular variation properties in Skorokhod space of the risk processes
associated to a marked point process. An application to a reinsurance problem is also discussed
with the asymptotic analysis of the residual risk after reinsurance of the largest claims. All
the proofs are gathered in Sections 5, 6 and 7.

Notations and shortcuts: In the following, [a] denotes the integer part of a, (a)+ =
max(a, 0) the positive part of a and a ∧ b the minimum between a and b, for a, b ∈ R. The
indicator function of the set A is denoted by 1A. For a set A, intA, clA and ∂A are respectively
the interior, closure and boundary of A. The equivalence of two real sequences un ∼ vn means
that un/vn → 1 as n → ∞; the notations un = o(vn) and un = O(vn) mean respectively
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HIDDEN REGULAR VARIATION FOR POINT PROCESSES 3

that un/vn → 0 and that un/vn remains bounded as n → ∞. We denote by εx(·) the Dirac
measure at x and by ⊗ the tensor product of measures.

2. Background on measure spaces, regular variation and point processes. We
set up in this section the mathematical background necessary for this paper. We start by
defining the framework and notations for measure spaces and then turn to regular variation
and hidden regular variation, following the lines of Lindskog et al. (2014), Sections 2 and 3.
We finally present some background on point processes.

2.1. Background on measure spaces. We denote by (E, dE) a complete separable metric
space endowed with its Borel σ-algebra B(E) generated by the open balls BE

x,r = {x′ ∈ E :
dE(x, x′) < r}, x ∈ E, r > 0. When there is no confusion, we omit the superscript E and
write simply Bx,r. The r-neighborhood of a subset A ⊂ E is the open set Ar of points that
are at distance less than r from A, that is Ar = ∪x∈ABx,r. We say that a subset B is bounded
away from A if B ∩Ar = ∅ for some r > 0.

The space of bounded continuous real-valued functions on E is denoted by Cb(E). The set
of finite Borel measures on E is denoted by Mb(E). A sequence of measures (µn)n≥1 is said to

converge weakly to µ in Mb(E), noted µn
Mb(E)−→ µ, if

∫
fdµn →

∫
fdµ for all f ∈ Cb(E). The

Prohorov distance on Mb(E) defined by

dMb(E)(µ1, µ2) = inf
ε>0
{µ1(A) ≤ µ2(Aε) + ε for all A ∈ B(E)}

metrizes weak convergence and, equipped with this metric, Mb(E) is a complete separable
metric space; see Kallenberg (2017).

For F ⊂ E a closed subset, we denote by M(E \ F ) the set of Borel measures µ on E \ F
that assign finite mass on sets bounded away from F , that is, such that µ(E \ F r) < ∞ for
all r > 0. In the following proposition, corresponding to Lindskog et al. (2014, Theorem 2.2),
we provide equivalent characterizations of convergence in M(E \ F ).

Proposition 2.1 (Convergence in M(E \ F )). Let µn, µ ∈ M(E \ F ). The convergence

µn → µ in M(E \ F ), noted µn
M(E\F )−→ µ, is defined by the following equivalent properties:

i) for all f ∈ Cb(E) with support bounded away from F ,∫
E
fdµn →

∫
E
fdµ as n→∞;

ii) for all A ∈ B(E) bounded away from F ,

µ(intA) ≤ liminf
n→∞

µn(A) ≤ limsup
n→∞

µn(A) ≤ µ(clA);

iii) there exists a sequence ri ↓ 0 such that µrin −→ µri in Mb(E \ F ri) as n → ∞, for each
i ≥ 1, where µrin (resp. µri) denotes the restriction of µn (resp. µ) to E \ F ri .

This notion of convergence is metrized by the distance

ρ(µ1, µ2) =

∫ ∞
0
{ρr (µr1, µ

r
2) ∧ 1} e−rdr(2.1)

where µr denotes the restriction of µ to E \ F r and ρr the Prohorov metric on Mb(E \ F r).
Furthermore, M(E \ F ) endowed with the distance ρ is a complete separable metric space
(Lindskog et al., 2014, Theorem 2.3).
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4 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

2.2. Background on regular variation. Regular variation intrinsically involves the notion
of scaling and cones. A scaling on a complete and separable metric space is a multiplication
by positive reals, that is a continuous mapping (0,∞)× E → E satisfying

1x = x,

u1(u2x) = (u1u2)x, for all u1, u2 > 0.

Equivalently, a scaling is a continuous group action of (0,∞) on E.
A cone is a Borel set F ⊂ E that is stable under the group action, that is x ∈ F implies

ux ∈ F for all u > 0. In the following, we assume that F is a closed cone such that

d(x, F ) < d(ux, F ), for all u > 1, x ∈ E \ F,

where d(x, F ) = inf{d(x, y) : y ∈ F} denotes the distance to the cone F .

Definition 2.2 (Regular variation).

• A measure ν ∈M(E\F ) is said to be regularly varying if there exists a positive sequence
an →∞ and a non-null measure µ ∈M(E \ F ) such that

nν(an·) −→ µ(·) in M(E \ F ).

When such a convergence holds, we write ν ∈ RV(E \ F, {an}, µ).
• An E-valued random element X defined on a probability space (Ω,A,P) is said to be

regularly varying on E \ F if there exists a positive sequence an → ∞ and a non-null
measure µ ∈M(E \ F ) such that

nP(a−1
n X ∈ ·) −→ µ(·) in M(E \ F ).

When such a convergence holds, we write X ∈ RV(E \ F, {an}, µ).

Here, by abuse of notation, nP(a−1
n X ∈ ·) is seen as the restriction to E \F of the rescaled

distribution of X; similarly we say that a measure ν ∈Mb(E) is regularly varying on E \ F if
its restriction to E \ F is regularly varying.

There are many equivalent formulations of regular variation, another important one being
the convergence of

bnν(n·) −→ µ(·) or bnP(n−1X ∈ ·) −→ µ(·) in M(E \ F )

for some other positive sequence bn, related to an by a[bn] ∼ b[an] ∼ n. Also the convergence
along integers n → ∞ can be reinforced into convergence along a real variable x → ∞. We
refer to Lindskog et al. (2014), Definition 3.2 and Theorem 3.1 for exhaustive statements.

An important consequence of regular variation is the existence of a regular variation index
α > 0 such that µ is homogeneous of order −α < 0, that is

µ(u ·) = u−αµ(·) for all u > 0.

Then, (an) and (bn) are regularly varying sequences at infinity with index 1/α and α respec-
tively, that is

lim
n→∞

a[nu]

an
= u1/α and lim

n→∞

b[nu]

bn
= uα, for all u > 0.
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HIDDEN REGULAR VARIATION FOR POINT PROCESSES 5

Importantly, regular variation not only gives a rate of convergence for rare events probabil-
ities of the type P(X ∈ xA) for large x > 0 but also provides the typical behavior of X given
the rare event X ∈ xA. This is formulated in terms of a conditional limit theorem, as in the
following proposition.

Proposition 2.3. Let X ∈ RV(E \ F, {an}, µ) and A ∈ B(E) be bounded away from F
such that µ(A) > 0 and µ(∂A) = 0. Then, as x→∞,

P(x−1X ∈ · | X ∈ xA) −→ µA(·) :=
µ(A ∩ ·)
µ(A)

in Mb(E).

The next proposition will be crucial in our proof of Theorems 4.1 and 4.3 and is of indepen-
dent interest. It states a regular variation criterion similar to the well known second converging
together theorem for weak convergence (see Billingsley (1968) Theorem 4.2 or Resnick (2007)
Theorem 3.5) and is especially useful when combined with truncation arguments.

Proposition 2.4. Let E be a complete separable metric space and consider E-valued
random variables X and Xn,m, n,m ≥ 1. Let F ⊂ E be a closed cone. Assume that there is a
positive sequence (an) and k ≥ 1 such that:

i) for each m ≥ 1, nkP(a−1
n Xn,m ∈ ·) −→ µm(·) in M(E \ F ) as n→∞;

ii) µm −→ µ in M(E \ F ) as m→∞;
iii) for all ε > 0, r > 0

lim
m→∞

lim sup
n→∞

nkP(d(a−1
n Xn,m, a

−1
n X) > ε, d(a−1

n Xn,m, F ) > r) = 0

lim
m→∞

lim sup
n→∞

nkP(d(a−1
n Xn,m, a

−1
n X) > ε, d(a−1

n X,F ) > r) = 0.

Then, nkP(a−1
n Xn ∈ ·) −→ µ(·) in M(E \ F ) as n→∞.

We finally provide some intuition on successive hidden regular variation. Most often, regular
variation is used when F = F0 = {0} is reduced to a single point 0, called the origin of E and
satisfying u0 = 0 for all u > 0. Then, for an E-valued random variable X, X/n converges in
distribution to 0 as n → ∞. This limit theorem is quite uninformative since it simply states
that P(X/n ∈ A)→ 0 for all Borel sets A bounded away from 0. It is hence sensible to rescale
these probabilities and consider the convergence bnP(X/n ∈ ·) → µ0(·) in M(E \ F0). This
implies roughly P(X/n ∈ A) ∼ µ0(A)/bn and is much more informative, provided µ0(A) > 0.
When µ0(A) = 0, it is natural to look for a higher order scaling b(1)

n such that b(1)
n /bn → ∞.

The support of the homogeneous measure µ0 is a closed cone F1 such that µ0(A) = 0 for all
A bounded away from F1. This leads us to consider the convergence b(1)

n P(X/n ∈ ·) → µ1(·)
in M(E \ F1). This procedure can be repeated and we may obtain successive hidden regular
variation of the form

(2.2) b(k)
n P(n−1X ∈ ·)→ µk(·) in M(E \ Fk), k ≥ 0,

where (Fk)k≥1 are increasing cones, µk ∈M(E \ Fk) are measures with disjoint supports and
b
(k)
n > 0 are rate functions such that limn→∞ b

(k)
n /b

(k−1)
n =∞.
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6 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

These successive regular variation results can also be formulated in terms of large deviations
as in Rhee et al. (2019), Theorem 3.2. For a Borel set A ⊂ E \ {0}, define

K(A) = max{k ≥ 0 : A ∩ Fk = ∅} and I(A) = µK(A)(A).

The successive regular variation from Equation (2.2) is equivalent to the large deviations

I(intA) ≤ lim inf
n→∞

b(K(A))
n P(n−1X ∈ A) ≤ lim sup

n→∞
b(K(A))
n P(n−1X ∈ A) ≤ I(clA),

for all Borel set A ⊂ E \ {0} such that K(A) is finite with A bounded away from FK(A). In
the following, we use mostly the terminology of regular variation instead of large deviations.

2.3. Background on point processes. We refer to Daley and Vere-Jones (2003, 2008) and
Snyder and Miller (1991) for a complete review of point process theory.

Given a complete separable metric space E and a closed subset F ⊂ E, we have seen that
the measure space M(E \ F ) endowed with the metric ρ is a complete and separable metric
space. The subset N (E \F ) of N-valued measures is the subset of point measures of the form
π =

∑
i∈I εxi , where the xi’s are in E \ F and I is a countable index set. The condition that

π is finite on subsets that are bounded away from F implies that the family (xi)i∈I is at most
countable and any accumulation point must belong to F . The mapping x 7→ εx defines an
isometric embedding E \ F → N (E \ F ).

Kallenberg (2017) shows that N (E \F ) is a closed subset of M(E \F ) and hence a complete
separable metric space. A point process in E \F is a random variable with values in N (E \F ),
that is a measurable application from some probability space (Ω,F ,P) into N (E \F ) endowed
with its σ-algebra. When E is equipped with a scaling function, a natural scaling induced on
N (E \ F ) is

uπ =
∑
i∈I

εuxi , u > 0, π =
∑
i∈I

εxi ∈ N (E \ F ).

That is, the multiplication acts on each point of the point measure. Using this structure, one
can define regularly varying point processes. Dombry et al. (2018) prove that if Π is a Poisson
point process on E \ {0} with regularly varying intensity measure ν ∈ RV(E \ {0}, {an}, µ),
then Π is regularly varying in N (E \ {0}) with sequence (an) and limit measure µ∗ defined as
the image of µ under x 7→ εx, that is

µ∗(B) =

∫
E
1{εx∈B}µ(dx), B ∈ B(N (E \ {0})).

In this paper, we extend this result in several ways: we obtain successive hidden regular
variation not only for Poisson point processes with F = {0}, but for general independently
marked point process with regularly varying mark distribution.

Our results are based on a criterion for regular variation in N (E \ F ) extending Theorem
A.1 in Dombry et al. (2018). For brevity, we note here N = N (E \F ). For k ≥ 0, we consider
the closed cone Nk ⊂ N of point measures with at most k points that is

Nk :=

{
π =

p∑
i=1

εxi ; 0 ≤ p ≤ k; x1, . . . , xp ∈ E \ F

}
.

When k = 0, N0 = {0} is reduced to the null measure. For µ∗ a Borel measure on N , we
denote by Bµ∗ the class of Borel sets A ∈ B(E) that are bounded away from F and such that
µ∗(π(∂A) > 0) = 0. The following theorem provides a criterion for convergence in M(N \Nk)
in terms of finite-dimensional distributions and Laplace functional.
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HIDDEN REGULAR VARIATION FOR POINT PROCESSES 7

Theorem 2.5 (Convergence in M(N \Nk)).
Let k ≥ 0 and µ∗, µ∗1, µ

∗
2, . . . ∈ M(N \ Nk). The following statements are equivalent, where

convergences are meant as n→∞:

(i) µ∗n −→ µ∗ in M(N \Nk);
(ii) for all p ≥ 1, A1, . . . , Ap ∈ Bµ∗ and (m1, . . . ,mp) ∈ Np such that

∑p
i=1mi ≥ k + 1,

µ∗n (π(Ai) = mi, 1 ≤ i ≤ p)→ µ∗ (π(Ai) = mi, 1 ≤ i ≤ p) ;

(iii) there exists a decreasing sequence ri ↓ 0 such that∫
N

e−π(f)1{π(E\F ri )≥k+1}µ
∗
n(dπ) −→

∫
N

e−π(f)1{π(E\F ri )≥k+1}µ
∗(dπ),

for all bounded Lipschitz functions f : E → [0,∞) vanishing on F ri and where π(f) =∫
E f(x)π(dx).

As a consequence of a standard approximation argument, when (iii) holds for bounded
Lipschitz test functions f : E → [0,∞) vanishing on F ri , it holds also for all f ∈ Cb(E)
vanishing on F ri . Furthermore, when k = 0, we retrieve exactly Theorem A.1 in Dombry
et al. (2018) since (iii) is then equivalent to∫

N

(
1− e−π(f)

)
µ∗n(dπ) −→

∫
N

(
1− e−π(f)

)
µ∗(dπ),(2.3)

because the contribution of the event {π(E \ F ri) = 0} in the integral vanishes since f is
supported by E \ F ri .

3. Regular variation for marked point processes. The simplest example from risk
theory we want to consider is the Poisson point process Π on E = [0, T ] × [0,∞) with fixed
T > 0 and intensity λ(dt)ν(dx), where λ is a finite measure on [0, T ] and ν a probability
measure on (0,∞). Then Π has finitely many points almost surely and can be represented as

Π =

N∑
i=1

ε(Ti,Xi).

Each point (Ti, Xi) represents a claim occuring at time Ti with size Xi > 0. The random
variable N denotes the total number of claims up to time T which is here Poisson distributed
with mean λ([0, T ]). The arrival times T1 ≤ · · · ≤ TN form a Poisson point process with
intensity λ on [0, T ]. The claim sizes X1, . . . , XN distributed as ν are independent of the claim
number and arrival times. We consider regular variation of the Poisson point process Π when
the claim size distribution ν is regularly varying.

For the purpose of generality, we consider the more abstract and general framework where
E = T ×X is the cartesian product of two complete and separable metric spaces (T , dT ) and
(X , dX ). We think of T as the time component and X as the space component. We equip E
with the distance

dE(z, z′) = dT (t, t′) + dX (x, x′)

for z = (t, x), z′ = (t′, x′) ∈ E = T ×X . The induced scaling on E is defined by u·(t, x) = (t, ux)
for u > 0, t ∈ T , x ∈ X . That is the scaling operates on the space component only. We also
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8 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

assume that X possesses an origin noted 0X , or simply 0 when no confusion is possible. The
subset F = T × {0} ⊂ E is a cone representing the time axis. Note that the r-neighborhood
of F is simply F r = T ×BX0,r.

We develop a regular variation theory in N = N (E \ F ) for independently marked point
processes of the form

Π =
N∑
i=1

ε(Ti,Xi)(3.1)

where

(3.2) Ψ =
N∑
i=1

εTi

is a finite point process on T representing the claim arrivals and, independently, X1, X2, . . .
are i.i.d. random variables on X \{0} with regularly varying distribution ν. We consider three
particular situations, namely, marked Poisson point processes, independently marked point
processes, and triangular arrays of independently marked point processes.

3.1. Regular variation for marked Poisson point processes. We first focus on the simple
situation of a marked Poisson point process, that is the base point process Ψ in Equation (3.2)
is a Poisson point process on T with finite intensity measure λ ∈Mb(T ). Then Π is a Poisson
point process with product intensity measure λ ⊗ ν. Recall the notations E = T × X , F =
T × {0} and N = N (E \ F ) the space of N -valued point measures on E \ F . For k ≥ 0,
Nk ⊂ N denotes the closed cone of point measures with at most k points.

Theorem 3.1 (RV for marked Poisson point processes).
Assume λ ∈ Mb(T ), ν ∈ RV (X \ {0}, (an), µ) and consider Π a Poisson point process on
E \ F with intensity λ(dt)ν(dx). Then, for k ≥ 0,

nk+1P(a−1
n Π ∈ ·) −→ µ∗k+1(·) in M(N \Nk),(3.3)

where the limit measure µ∗k+1 is non-null and given by

µ∗k+1(B) =
1

(k + 1)!

∫
Ek+1

1{
∑k+1
i=1 ε(ti,xi)∈B}

⊗k+1
i=1 λ(dti)µ(dxi), B ∈ B(N \Nk).(3.4)

Equivalently, Equation (3.3) can be rephrased in terms of regular variation as

Π ∈ RV(N \Nk, {a[n1/(k+1)]}, µ
∗
k+1)

or
bk+1
n P(n−1Π ∈ ·) −→ µ∗k+1(·) in M(N \Nk)

where bn is such that bnν(n·)→ µ(·) in M(X \ {0}). If α denotes the regular variation index
of ν, then Π is regularly varying in N \ Nk with index (k + 1)α. The limit measure µ∗k+1 is
the image of (λ⊗ µ)k+1 under the mapping

(z1, . . . , zk+1) ∈ Ek+1 7−→
k+1∑
i=1

εzi ∈ N
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HIDDEN REGULAR VARIATION FOR POINT PROCESSES 9

and is concentrated on the cone of point measures with exactly k + 1 points.

Theorem 3.1 provides successive hidden regular variation as discussed in Section 2.2 and
can be interpreted as a single/multiple large point heuristic, see Rhee et al. (2019). For k = 0,
the regular variation writes bnP(Π/n ∈ ·) −→ µ∗1(·) in M(N \{0}). This is a single large jump
heuristic since the limit measure is supported by the cone N1 of point measures with at most
one point. Removing this cone, we obtain hidden regular variation with index 2α in M(N \N1)
and the convergence b2nP(Π/n ∈ ·) −→ µ∗2(·). This is a multiple large jump heuristic with two
large points and µ∗2 is supported by the cone N2. Removing the cone N2, we obtain hidden
regular variation with index 3α in M(N \N2) and so forth.

3.2. Independently marked point processes. The results on regular variation for marked
Poisson point processes are extended to general independently marked point processes as
defined in Equation (3.1). For k ≥ 1, the k-th factorial moment measure of the base point
process Ψ =

∑N
i=1 εTi is defined by

Mk(A) = E
[
Ψ(k)(A)

]
, A ∈ B(X k),

where
Ψ(k) =

∑
1≤i1 6=···6=ik≤N

ε(Ti1 ,...,Tik )

is the k-th factorial power of Ψ. The k-th factorial moment measure Mk is finite if and only
if N has a finite moment of order k, see Daley and Vere-Jones (2003) Chapter 5.2 for more
details on these notions.

Theorem 3.2 (RV for independently marked point processes).
Consider the independently marked point process Π defined by Equation (3.1). Assume that
ν ∈ RV (X \{0}, (an), µ) and that, for k ≥ 0, the base point process Ψ has a finite and non-null
(k + 1)-th factorial moment measure Mk+1. Then,

nk+1P(a−1
n Π ∈ ·) −→ µ∗k+1(·) in M(N \Nk),(3.5)

with non-null limit measure defined, for B ∈ B(N \Nk), by

µ∗k+1(B) =
1

(k + 1)!

∫
Ek+1

1{∑k+1
i=1 ε(ti,xi)∈B}

Mk+1(dt1, . . . ,dtk+1)⊗k+1
i=1 µ(dxi).(3.6)

Theorem 3.2 is indeed a generalization of Theorem 3.1: for a Poisson point process Ψ with
finite intensity measure λ, the k-th factorial moment measure is finite for all k ≥ 1 and equal
to Mk = λ⊗k, so that Equations (3.4) and (3.6) agree.

3.3. Marked point processes based on triangular arrays. This section is motivated by the
following simple situation. When E = [0, T ] × [0,∞), consider i.i.d. claim sizes Xi and a
finite deterministic number of claims m arising at discrete times Ti = Ti/m, i = 1, . . . ,m.
We are interested in the asymptotic regime when m = mn → ∞ and the regular varia-
tions in this regime. A singular feature of the arrival times is that the empirical distribution
m−1
n

∑mn
i=1 εiT/mn converges weakly as n→∞ to the uniform distribution on [0, T ].
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The general abstract setting is the following: on E = T × X , we consider a sequence of
independently marked point processes

Πn =

mn∑
i=1

ε(Tni ,Xi)
, n ≥ 1,(3.7)

where the number of points mn → ∞ is deterministic, the arrival times are given by a tri-
angular array of T -valued random variables {Tni , n ≥ 1, 1 ≤ i ≤ mn} and, independently,
the marks Xi are i.i.d. with distribution ν on X \ {0}. We assume no independence in the
triangular array, but we suppose the convergence in probability of the empirical distribution
to a probability measure λ, that is

(3.8) m−1
n Ψn := m−1

n

mn∑
i=1

εTni
Mb(T )−→ λ in probability as n→∞.

The main difference from the previous Sections 3.1 and 3.2 is that the number of points mn

tends to infinity as n→∞, whereas it was previously of fixed (random) size N . We prove in
the following theorem that similar regular variation results still hold, but with different rates.

Theorem 3.3 (RV for sequences of marked point processes based on triangular arrays).
Consider the sequence of independently marked point processes Πn, n ≥ 1, defined by Equation
(3.7). Assume ν ∈ RV (X \ {0}, (an), µ) and Equation (3.8) holds. Then, for k ≥ 0,

nk+1P(a−1
nmnΠn ∈ ·) −→ µ∗k+1(·) in M(N \Nk),(3.9)

with non-null limit measure µ∗k+1 as in Theorem 3.1 Equation (3.4).

In the following examples, we apply Theorem 3.9 interchanging the roles of the sequences
(mn) and (n) in order to compare the result with classical large deviation principles.

Example 3.4. Consider a probability measure λ ∈Mb(T ) and the binomial point process

Πn =

n∑
i=1

ε(Ti,Xi)

with the (Ti, Xi), 1 ≤ i ≤ n iid with distribution λ ⊗ ν. By the law of large numbers,
Equation (3.8) holds interchanging the roles of the sequences (mn) and (n) and with Tni = Ti.
If ν ∈ RV (X \ {0}, (an), µ), Theorem 3.3 provides the convergence

(3.10) mk+1
n P(a−1

nmnΠn ∈ ·) −→ µ∗k+1(·) in M(N \Nk) , k ≥ 0 ,

for any sequence mn →∞ as n→∞, with µ∗k+1 as in Equation (3.4).

Example 3.5. A typical situation where Theorem 3.3 applies is when T = [0, T ] and
Tni = iT/n, 1 ≤ i ≤ mn = n. Then Equation (3.8) holds with λ the uniform distribution
on [0, T ]. If ν ∈ RV (X \ {0}, (an), µ), it is well-known that Πn =

∑n
i=1 ε(iT/n,Xi) suitably

rescaled converges in distribution to a Poisson point process (Resnick, 2007, Theorem 6.3).
More precisely, a−1

n Πn
d−→ Π in N , with Π a Poisson point process with intensity λ ⊗ µ.

Theorem 3.3 considers the large deviation regime and states the regular variation properties
of Πn as in Equation (3.10).
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HIDDEN REGULAR VARIATION FOR POINT PROCESSES 11

Example 3.6. A slightly more complex situation is based on a renewal sequence (Ti)i≥1

on T = [0,∞). We assume the inter-arrival times Ti − Ti−1 to be independent and identically
distributed with finite mean τ > 0. By the renewal Theorem (see, e.g., Mikosch (2010),
Theorem 2.2.4), the number of arrivals up to time t, noted N(t), satisfies N(t)/t → 1/τ
almost surely as t → ∞. Consider Tni = Ti/n, 1 ≤ i ≤ mn. It would be natural to consider
mn = N(nT ) for some T > 0 but Theorem 3.3 does not cover the case of a random number
mn. Instead, we considermn = nT/τ ∼ E[N(nT )]. Interchanging again the roles (mn) and (n),
we define Πn =

∑nT/τ
i=1 ε(Ti/n,Xi) and the renewal theorem implies that

∑nT/τ
i=1 εTi/n converges

to the uniform distribution on [0, T ]. If ν ∈ RV(X \ {0}, {an}, µ), Theorem 3.3 provides the
convergence

(mn)k+1P(a−1
nT/τmn

Πn ∈ ·) −→ µ∗k+1(·) in M(N \Nk) ,

for any sequence mn →∞ as n→∞.

4. Applications.

4.1. Regular variation of risk processes in Skorokhod space. We focus on risk processes
that are based on marked point processes on T ×X = [0, T ]× [0,∞). Recall that the marked
point process

Π =
N∑
i=1

ε(Ti,Xi)

represents the situation where N claims arise on [0, T ] at times 0 ≤ T1 ≤ · · · ≤ TN ≤ T and
with sizes X1, . . . , XN > 0. We focus here on the associated risk process defined as

(4.1) R(t) =
N∑
i=1

Xi1{Ti≤t}, t ∈ [0, T ].

For an insurance company, it models the evolution over time of the total claim amount. When
the claim arrival times T1 ≤ · · · ≤ TN form an homogeneous Poisson point process and the
claim sizes are i.i.d., (R(t))0≤t≤T is a compound Poisson process. More generally, we consider
the case when Π is an independently marked point process as in Section 3.2. The risk process
R is a pure jump process and can be seen as a random element of the Skorokhod space
D = D([0, T ],R) of càd-làg functions. Recall that endowed with the Skorokhod metric, D is
a complete separable metric space, see Billingsley (1968, Chapter 3). We define Dk ⊂ D the
closed cone of càd-làg functions with at most k discontinuity points (or jumps) on [0, T ].

In the next theorem, we derive the (hidden) regular variation properties of the risk process
R on D from the regular variation properties of Π on N . The statement is very similar to
Theorem 3.2 and is in fact derived from it using a continuous mapping theorem together with
technical truncation arguments relying on Proposition 2.4.

Theorem 4.1. Let T ×X = [0, T ]×[0,∞) and Π be an independently marked point process
on T × X as defined in (3.1). Assume ν ∈ RV([0,∞) \ {0}, {an}, µ) with µ(dx) = αx−α−1dx
for some α > 0. Let k ≥ 0 and assume Ψ has a finite and non-null (k+1)-th factorial moment
measure noted Mk+1. Then

(4.2) nk+1P(a−1
n R ∈ ·) −→ µ#

k+1(·) in M(D \ Dk),
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12 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

with non-null limit measure defined, for B ∈ B(D \ Dk), by

(4.3) µ#
k+1(B) =

∫
Ek+1

1{
(
∑k+1
i=1 xi1{ti≤u})0≤u≤T∈B

}Mk+1(dt1, . . . ,dtk+1)⊗k+1
i=1 µ(dxi).

The limit measure µ#
k+1 is the image measure of µ∗k+1 defined in Equation (3.6) under the

mapping

π =
∑
i∈I

ε(ti,xi) ∈ N 7→

(∑
i∈I

xi1{ti≤u}

)
0≤u≤T

∈ D

with I a countable index set. In the case k = 0, D0 is the space of continuous functions on
[0, T ] and Theorem 4.1 provides hidden regular variation in D \ D0 with a single large jump
heuristic: in this regime, the rescaled distribution of the risk process R converges in M(D\D0)

to µ#
1 which is concentrated on the cone of càd-làg functions with exactly one jump. For k ≥ 1,

we obtain successive hidden regular variation and multiple large jump heuristics: removing the
cone Dk, we obtain a limit measure µ#

k+1 concentrated on the cone of càd-làg functions with
k + 1 jumps. This is closely related to the results by Rhee et al. (2019).

Remark 4.2. The cone Dk is in fact larger than the exact support of µ#
k . Indeed, in view

of Equation (4.3), the support of µ#
k is the cone of pure jump process with exactly k jumps.

Let us denote by Jk, k ≥ 0, the cone consisting of pure jump functions with at most k jumps.
In comparison, Dk is the cone of càd-làg functions with at most k jumps and is strictly larger
than Jk. When considering successive hidden regular variations as discussed in the end of
Section 2.2, we should rather consider the increasing sequence of cones Jk, k ≥ 0, instead of
the sequence Dk, k ≥ 0. Such results are stronger but harder to establish. In Corollary 4.8
below, we cover the triangular array case in connection with an application to reinsurance.

The next theorem considers risk processes build on triangular arrays. Let Πn, n ≥ 1, be
the sequence of marked point processes defined by Equation (3.7). When α > 1, it is as usual
necessary to center the risk process and we consider

R̃n(t) =

mn∑
i=1

(Xi − c)1{Tni ≤t}, t ∈ [0, T ], n ≥ 1,

where c = E[X] if X has a finite expectation and c = 0 otherwise.

Theorem 4.3. Let T × X = [0, T ] × [0,∞) and Πn, n ≥ 1, be the sequence of marked
point processes defined by Equation (3.7). Assume Ψn satisfies assumption (3.8) and the regular
variation condition ν ∈ RV([0,∞) \ {0}, {an}, µ) with µ(dx) = αx−α−1dx for some α > 0.
Depending on the value of α > 0, we assume furthermore:

- E[X1] <∞ if α = 1;
- E[X2

1 ] <∞ if α = 2;
- a2

nmn/mn →∞ as n→∞ if α ≥ 2.

Then, for k ≥ 0,

nk+1P(a−1
nmnR̃n ∈ ·) −→ µ#

k+1(·) in M(D \ Dk),(4.4)

with µ#
k+1 given by Equation (4.3).
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HIDDEN REGULAR VARIATION FOR POINT PROCESSES 13

Example 4.4. We consider the setting of Rhee et al. (2019). Let (Xn(t))0≤t≤1 be a Lévy
process with Lévy measure ν and jump part

Jn(t) =

∫
x>1

xN([0, nt]× dx)

where N is the Poisson random measure with measure Leb ⊗ ν on [0, n] × (0,∞) and Leb
denotes the Lebesgue measure. Then Jn(t) is a compound Poisson process and its centered
version J̃n is tail equivalent to the centered version of the Lévy process Xn; see Proposition 6.1
of Rhee et al. (2019). The process J̃n is close to R̃n when approximating the number of jumps
N([0, n] × [1,∞)) by its expectation n, interchanging the roles of mn and n and considering
Tni as in Example 3.6 for T = τ = 1. Theorem 4.3 yields

mk+1
n P(a−1

nmnR̃n ∈ ·) −→ µ#
k+1(·) in M(D \ Dk) .

This is the one-sided large deviation principles for centered Lévy processes of Rhee et al.
(2019) considering (mn) so that anmn ∼ n, i.e. mn ∼ (nν(n,∞))−1 →∞ as n→∞. It shows
that Xn, J̃n and R̃n satisfies the same one-sided large deviation principles.

Remark 4.5. The integrability conditions for α = 1 or α = 2 could be dropped thanks
to extra classical but technical arguments. For the sake of simplicity, we focus on the inte-
grable case only. Because the sequence (an) is regularly varying with index 1/α, the condition
a2
nmn/mn → ∞ is satisfied as soon as α > 2 and mn = o(np) for some p < 2/(α − 2). This

ensures that the growth mn →∞ is not too fast.

Remark 4.6. When α ≥ 1, the centering is not necessary under the extra assumption
anmn/mn →∞. That is the risk process Rn(t) =

∑mn
i=1Xi1{Tni ≤t} satisfies

nk+1P(a−1
nmnRn ∈ ·) −→ µ#

k+1(·) in M(D \ Dk).

This is immediately derived from Equation (4.4) because the magnitude of the centering term
is bounded by mn/anmn → 0. Note that the condition anmn/mn →∞ holds as soon as α > 1
and mn = o(np) for some p < 1/(α− 1).

4.2. Reinsurance of the largest claims. We provide in this section an application of the
preceding results to risk theory with the study of a reinsurance model. The reader may found
an exhaustive review of risk theory and the mathematical issues that it raises in Asmussen and
Albrecher (2010) and Mikosch (2010). We focus on a reinsurance treaty of extreme value type
called the largest claims reinsurance. Assume that at the time the contract is underwritten,
say t = 0, the reinsurance company guarantees that it will cover the k largest claims over the
period [0, T ]. For a risk process of the form (4.1), the contract covers the risk

R+
k =

k∑
i=1

XN+1−i:N ,

where X1:N ≤ · · · ≤ XN :N denote the order statistics of X1, . . . , XN . The value R+
k is known

only at time T and, during the contract life, the covered risk evolves as

R+
k (t) =

k∑
i=1

XN(t)+1−i:N(t), t ∈ [0, T ],
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14 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

where N(t) =
∑N

i=1 1{Ti≤t} is the number of claims up to time t and X1:N(t) ≤ · · · ≤ XN(t):N(t)

the order statistics ofX1, . . . , XN(t). We use here the conventionXN(t)+1−i:N(t) = 0 if i > N(t).
The subscriber of the contract needs to assess its residual risk

R−k =
N−k∑
i=1

Xi:N

that is not covered by the reinsurance treaty and its evolution over time is

R−k (t) =

N(t)−k∑
i=1

Xi:N(t), t ∈ [0, T ].

Our results state the regular variation properties of the residual risk R−k . The following
proposition is crucial in our approach. When k = 0, it states that the sum of independent
heavy-tailed random variables has the same tail behavior as their maximum. For non-ordered
random variables, the result has been shown in Tillier and Wintenberger (2018) Proposition
7 under similar moment conditions. To our best knowledge, the more general statement with
random number of terms N and arbitrary order statistic k ≥ 0 is new.

Proposition 4.7. Let (Xi)i≥1 be i.i.d. non-negative random variables with cumulative
distribution function F , assumed heavy-tailed with index α > 0. Independently, let N be ran-
dom variable with values in N. Assume E[Nk+1] <∞, and, if α ≥ 1, assume furthermore that
E[Np] <∞ for some p > (k + 1)α. Then,

P

(
N−k∑
i=1

Xi:N > x

)
∼ P (XN−k:N > x) ∼ E[N [k+1]]

(k + 1)!
(1− F (x))k+1, as x→∞,

with E[N [k+1]] = E[N !/(N − k − 1)!] the (k + 1)-th factorial moment of N .

Interestingly, we have the relationships

(4.5) XN−k:N = 2d(R,Dk) and
N−k∑
i=1

Xi:N = d(R, Jk),

where d is the Skorokhod metric, Dk is the cone of càd-làg functions with at most k jumps
(see Lemma 6.1 below) and Jk is the cone of piecewise constant càd-làg functions with at
most k jumps. Proposition 4.7 states that, for large x, the events {d(R,Dk) ≥ x/2} and
{d(R,Dk) ≥ x/2} are asymptotically equivalent (note that one inclusion always holds). As a
consequence, we obtain the following corollary.

Corollary 4.8. Assume that the assumptions of Theorem 4.1 are satisfied. When α ≥
1, assume furthermore that E[Np] < ∞ for some p > (k + 1)α. Then, the conclusion of
Theorem 4.1 holds with D \ Dk replaced by D \ Jk.

In terms of successive hidden regular variations, it is sensible to work with Jk instead of
Dk because the support of µ#

k is exactly Jk. From a technical point of view, the results are
stronger and more difficult to establish in D \ Jk because the distance d(R, Jk) involves a sum
of order statistics so that extra integrability conditions are required to control the sum.

Going back to our original problem of largest claims in reinsurance, we deduce from Corol-
lary 4.8 the following results.
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Proposition 4.9. Assume that the assumptions of Theorem 4.1 are satisfied. When α ≥ 1,
assume furthermore that E[Np] <∞ for some p > (k + 1)α. Then:

i) (regular variation) The residual risk satisfies

P
(
R−k > x

)
∼ E[N [k+1]]

(k + 1)!
(1− F (x))k+1, as x→∞.

ii) (conditional limit theorem) The typical behavior of the risk process given a large residual
risk is given by

P
(
x−1R ∈ · | R−k > x

) d−→ P

(k+1∑
i=1

Zi1{Si≤t}

)
t∈[0,T ]

∈ ·

 , as x→∞,

where d−→ stands for weak convergence in Skorokhod space D, Z1, . . . , Zk+1 are i.i.d.
with standard α-Pareto distribution and, independently, (S1, . . . , Sk+1) has distribution
Mk+1(ds1, . . . ,dsk+1)/Mk+1([0, T ]k+1).

iii) (residual risk monitoring) Assume that Mk+2 is finite and non-null and that both Mk+1

and Mk+2 are continuous measures. If α ≥ 1, assume furthermore that E[Np] < ∞ for
some p > (k + 2)α. Then, for all 0 < t0 < t1 < T and u > 1,

lim
ε→0

lim
x→∞

(1− F (x))−1P
(
R−k (t1) > ux | x < R−k (t0) < (1 + ε)x

)
=
Mk+2

(
[0, t0]k+1 × (t0, t1]

)
Mk+1 ([0, t0]k+1)

(
(u− 1)−(k+1)α +

(
(u− 1)−α − 1

)
+

)
.(4.6)

The third item allows to monitor the residual risk during the contract lifetime and assesses
the risk of a larger loss at time t1 > t0 given that the loss is approximately x at time t0. The
regular variation of the conditional probability with respect to the null event R−k (t0) = x does
not follow from Corollary 4.8 explaining why we introduce the approximate conditioning with
ε→ 0.

Example 4.10. In the simple case of a compound Poisson process when the claims form
an homogeneous Poisson point process with intensity λ > 0, the results from Proposition 4.9
simplify as follows. The residual risk is regularly varying such that

P
(
R−k > x

)
∼ λk+1

(k + 1)!
(1− F (x))k+1 as x→∞.

The limiting conditional risk process in item ii) corresponds to k+1 independent claim arrivals
with occurence times S1, . . . , Sk+1 uniform on [0, T ] and independent magnitudes Z1, . . . , Zk+1

with standard α-Pareto distribution. Finally, the limit in Equation (4.6) equals

λ(t1 − t0)
(

(u− 1)−(k+1)α +
(
(u− 1)−α − 1

)
+

)
.

5. Proofs related to Section 3.
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5.1. Proof of Theorem 3.1. For the proof of Theorem 3.1, we need the following lemma
that characterizes the convergence of the tensor product of measures in M(E \ F ). We recall
that E = T × X and F = T × {0}.

Lemma 5.1. Assume νn → µ in M(X \ {0}) and λ ∈Mb(T ). Then for k ≥ 1, we have

(λ⊗ νn)⊗k → (λ⊗ µ)⊗k in M(Ek \ ∪ki=1(Ei−1 × F × Ek−i)).

Proof of Lemma 5.1 . Let f : E → R be a continuous bounded function vanishing on
F r = T × B0,r for some r > 0. Possibly replacing r > 0 by a smaller value, we can assume
νn(Bc

0,r) → µ(Bc
0,r) (see Theorem 2.2 (i) in Hult and Lindskog (2006) that asserts that this

convergence holds for all but countably many r > 0). By Fubini-Tonelli theorem,∫
E\F

f(t, x)λ(dt)νn(dx) =

∫
T

(∫
X\{0}

f(t, x)νn(dx)

)
λ(dt).

For all t ∈ T , the function x 7→ f(t, x) is bounded continuous and vanishes on B0,r so that
the convergence νn → µ in M(X \ {0}) implies from Proposition 2.1 that∫

X\{0}
f(t, x)νn(dx)→

∫
X\{0}

f(t, x)µ(dx) as n→∞.

Furthermore, since f is bounded, say byM > 0, and since νn(Bc
0,r)→ µ(Bc

0,r) is also bounded,
say by L > 0, we have∣∣∣∣∣

∫
X\{0}

f(t, x)νn(dx)

∣∣∣∣∣ ≤Mνn(Bc
0,r) ≤ML, t ∈ T .

Lebesgue convergence theorem finally entails∫
E\F

f(t, x)λ(dt)νn(dx)→
∫
E\F

f(t, x)λ(dt)µ(dx),

proving the convergence λ⊗νn → λ⊗µ in M(E \F ). A direct application of Rhee et al. (2019,
Lemma 2.2) ensures that, for k ≥ 1,

(λ⊗ νn)⊗k −→ (λ⊗ µ)⊗k in M
(
Ek \ ∪ki=1(Ei−1 × F × Ek−I

)
.(5.1)

We are now ready to prove Theorem 3.1. For the sake of clarity, we begin with the proof
of regular variation in the case k = 0, before considering hidden regular variation in the case
k ≥ 1.

Proof of Theorem 3.1, case k = 0. The proof uses similar arguments than in Theorem
3.3 in Dombry et al. (2018). We have to show that

nP(a−1
n Π ∈ ·) −→ µ∗1(·) in M(N \ {0}).
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According to Theorem 2.5 Equation (2.3), the convergence holds if and only if

lim
n→∞

nE
[
1− e−(a−1

n Π)(f)
]

=

∫
N

(
1− e−π(f)

)
µ∗1(dπ)(5.2)

for all f : E → [0,∞) bounded continuous with support bounded away from F . By definition
of µ∗1, ∫

N

(
1− e−π(f)

)
µ∗1(dπ) =

∫
T ×X

(
1− e−f(t,x)

)
λ(dt)µ(dx).

Besides, since Π is a Poisson point process,

nE
[
1− e−(a−1

n Π)(f)
]

= n
(

1− E
[
e−

∫
E f(a−1

n z)Π(dz)
])

= n

(
1− exp

[∫
T ×X

(
e−f(t,a−1

n x) − 1
)
λ(dt)ν(dx)

])
= n

(
1− exp

[
− 1

n

∫
T ×X

(
1− e−f(t,y)

)
λ(dt)νn(dy)

])
with νn = nν(an·). As the function 1−e−f is bounded continuous with support bounded away
from F and as λ⊗ νn → λ⊗ µ in M(E \ F ) as n→∞ (see Lemma 5.1), we have∫

T ×X

(
1− e−f(t,y)

)
λ(dt)νn(dy) −→

∫
T ×X

(
1− e−f(t,y)

)
λ(dt)µ(dy), as n→∞,

and hence

nE
[
1− e

−
∫
E\F f(a−1

n z)Π(dz)
]

= n

(
1− exp

[
− 1

n

∫
T ×X

(
1− e−f(t,y)

)
λ(dt)νn(dy)

])
−→

∫
T ×X

(
1− e−f(t,x)

)
λ(dt)µ(dx).

This proves Equation (5.2) and concludes the proof of Theorem 3.1, case k = 0.

Proof of Theorem 3.1, case k ≥ 1. Let r > 0 be fixed such that µ(∂Bc
0,r) = 0 and let

f : T ×X 7→ [0,∞) be a bounded continuous function vanishing on F r = T ×B0,r. For k ≥ 1,
we will prove that

nk+1E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)≥k+1}

]
−→ 1

(k + 1)!

∫
Ek+1

e−
∑k+1
i=1 f(ti,xi) ⊗k+1

i=1 1{xi∈Bc0,r}λ(dti)µ(dxi)

=

∫
N
e−π(f)1{π(Bc0,r)≥k+1}µ

∗
k+1(dπ) .(5.3)

In view of Theorem 2.5 (iii), this implies the convergence (3.3).
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18 C. DOMBRY, C. TILLIER AND O. WINTENBERGER

Since
∑N

i=1 εXi is a Poisson random measure with intensity λ(T )ν(dx), we have

nk+1P
( N∑
i=1

εa−1
n Xi

(Bc
0,r) ≥ k + 1

)
= nk+1e−λ(T )ν(anBc0,r)

∞∑
j=k+1

(λ(T )ν(anB
c
0,r))

j

j!

=
(nλ(T )ν(anB

c
0,r))

k+1

(k + 1)!
e−λ(T )ν(anBc0,r)

∞∑
j=0

(k + 1)!

(k + 1 + j)!
(λ(T )ν(anB

c
0,r))

j(5.4)

and

nk+1P
( N∑
i=1

εa−1
n Xi

(Bc
0,r) = k + 1

)
=

(nλ(T )ν(anB
c
0,r))

k+1

(k + 1)!
e−λ(T )ν(anBc0,r) .(5.5)

Regular variation ν ∈ RV(X \ {0}, {an}, µ) implies nν(anB
c
0,r) → µ(Bc

0,r) > 0 as n → ∞.
Then, combining with Equations (5.4) and (5.5), we deduce

nk+1P
( N∑
i=1

εa−1
n Xi

(Bc
0,r) ≥ k + 1

)
∼ nk+1P

( N∑
i=1

εa−1
n Xi

(Bc
0,r) = k + 1

)
→ ck+1

(k + 1)!

with c = λ(T )µ(Bc
0,r). As a consequence, the left-hand side of Equation (5.3) satisfies

nk+1E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)≥k+1}

]

∼ ck+1

(k + 1)!

E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)≥k+1}

]
P
(∑N

i=1 εa−1
n Xi

(Bc
0,r) ≥ k + 1

)
∼ ck+1

(k + 1)!
E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi) |

N∑
i=1

εa−1
n Xi

(Bc
0,r) = k + 1

]
.(5.6)

Because f vanishes on T × B0,r, the sum
∑N

i=1 f(ti, a
−1
n Xi) depends only on the points of Π

in T × anBc
0,r. The independence property of Poisson point processes ensures that, given Π

has k + 1 points in T × anBc
0,r, those points are independent and uniformly distributed with

distribution c−1
n 1{x∈anBc0,r}λ(dt)ν(dx) for cn = λ(T )ν(anB

c
0,r) (see Kingman (1993), Chapter

2.4). We deduce

E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi) |

N∑
i=1

εa−1
n Xi

(Bc
0,r) = k + 1

]
=

∫
Ek+1

e−
∑k+1
i=1 f(ti,a

−1
n xi) ⊗k+1

i=1 c
−1
n 1{xi∈anBc0,r}λ(dti)ν(dxi).
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Introduce νn(·) = nν(an·). Since, cn ∼ cn−1, from Lemma 5.1, we deduce

E
[
e−

∑N
i=1 f(ti,a

−1
n Xi) |

N∑
i=1

εa−1
n Xi

(Bc
0,r) = k + 1

]
=

1

nk+1ck+1
n

∫
Ek+1

e−
∑k+1
i=1 f(ti,xi) ⊗k+1

i=1 1{xi∈Bc0,r}λ(dti)νn(dxi)

→ 1

ck+1

∫
Ek+1

e−
∑k+1
i=1 f(ti,xi) ⊗k+1

i=1 1{xi∈Bc0,r}λ(dti)µ(dxi).

This together with Equation (5.6) implies Equation (5.3), completing the proof of Theorem 3.1
in the case k ≥ 1.

5.2. Proof of Theorem 3.2. We begin with three preliminary lemmas that will be useful
for the proof of Theorem 3.2.

Lemma 5.2. For n ≥ 1 and p ≥ 0, let S be a random variable with binomial distribution
with parameter (n, p). Then, for k = 1, . . . , n,

P(S ≥ k) ≤
(
n

k

)
pk.

Proof. LetX1, . . . , Xn be independent Bernoulli random variables with parameter p. Then
S =

∑n
i=1Xi has a binomial distribution with parameter (n, p). Furthermore, S ≥ k if and

only if there is a subset I ⊂ {1, . . . , n} with cardinality k such that Xi = 1 whenever i ∈ I.
The union bound implies

P(S ≥ k) ≤
∑
i∈I

P(Xi = 1, i ∈ I).

The lemma follows because there are
(
n
k

)
terms all equal to pk.

Lemma 5.3. Assume ν ∈ RV(X \ {0}, {an}, µ) and let f : T × X → [0,∞) be a bounded
continuous function with support bounded away from the axis T × {0}. Then, as n→∞,

(5.7) (Lnf)(t) := nE[1− e−f(t,Xi/an)]→
∫
X

(
1− e−f(t,x)

)
µ(dx) =: (Lf)(t) for all t ∈ T

and furthermore the functions Lnf , n ≥ 1, are uniformly bounded on T .

Proof. For all fixed t ∈ T , the function x ∈ X 7→ 1− e−f(t,x) is bounded continuous and
vanishes on a neighborhood of 0 so that the convergence nν(an·)→ µ(·) in M(X \{0}) implies
Equation (5.7). Furthermore, since f is nonnegative bounded and with support bounded away
from T × {0}, we have

0 ≤ f(t, x) ≤M1{dX (0,x)≥r} for some M ≥ 0 and r > 0,

whence
(Lnf)(t) ≤ (1− e−M )nν(anB

c
0,r)→ (1− e−M )µ(Bc

0,r)

is uniformly bounded on T .
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Lemma 5.4. Assume Ψ =
∑N

i=1 εTi has a finite intensity measure λ ∈ Mb(T ) and define
its Laplace functional as

LΨ(g) = E[e−Ψ(g)] = E

[
N∏
i=1

e−g(Ti)

]
, for g : T → [0,∞) measurable.

Let (gn)n≥1 and g be nonnegative bounded functions on T such that

lim
n→∞

gn(t) = g(t), for all t ∈ T ,

and assume (gn)n≥1 is uniformly bounded on T . Then, as n→∞,

n
[
1− LΨ(n−1gn)

]
−→

∫
T
g(t)λ(dt).

Proof. By definition of the Laplace functional LΨ, we have

n
[
1− LΨ(n−1gn)

]
= E

[
n
(

1− e−n−1Ψ(gn)
)]

where
n
(

1− e−n−1Ψ(gn)
)
−→ Ψ(g), almost surely as n→∞.

Furthermore, the inequality 1− e−x ≤ x, x ≥ 0, together with the uniform bound gn(t) ≤M ,
n ≥ 1, imply the domination condition

n
(

1− e−n−1Ψ(gn)
)
≤ Ψ(gn) ≤MΨ(1),

where Ψ(1) = N satisfies E[N ] = λ(T ) < ∞. We deduce, thanks to Lebesgue convergence
Theorem,

n
[
1− LΨ(n−1gn)

]
−→ E[Ψ(g)].

Campbell’s Theorem states the equality E[Ψ(g)] =
∫
T g(t)λ(dt) which concludes the proof.

Proof of Theorem 3.2, case k = 0. Similarly as in the proof of Theorem 3.1, we need
to prove that

(5.8) nE
[
1− e−

∫
E f(a−1

n z)Π(dz)
]
→
∫
E

(
1− e−f(t,x)

)
λ(dt)µ(dx), as n→∞,

for all bounded continuous functions f : E → [0,∞) with support bounded away from F .
Conditioning with respect to the base point process Ψ, the left-hand side of Equation (5.8) is
rewritten as

nE
[
1− exp

(
−
∫
E
f(a−1

n z)Π(dz)

)]
= nE

[
E

[
1− exp

(
−

N∑
i=1

f(Ti, Xi)

)∣∣∣Ψ]]

= n

{
1− E

[
E

[
N∏
i=1

e−f(Ti,Xi)
∣∣∣Ψ]]}

= n

{
1− E

[
N∏
i=1

(
1− 1

n
(Lnf)(Ti)

)]}
.
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In the last equality, we use the conditional independence of the Xi given Ψ and the definition
of Lnf in Equation (5.7). The Laplace functional of the base point process Ψ defined in
Lemma 5.4 satisfies, for h : T → (0, 1] measurable,

E

[
N∏
i=1

h(Ti)

]
= E

[
exp

(
−

N∑
i=1

− lnh(Ti)

)]
= LΨ(− lnh).

This gives

nE
[
1− exp

(
−
∫
E
f(a−1

n z)Π(dz)

)]
= n

[
1− LΨ

(
− ln

(
1− 1

n
Lnf

))]
.

We define
gn(t) = −n ln

(
1− 1

n
(Lnf)(t)

)
and g(t) = (Lf)(t).

Lemma 5.3 implies that gn(t)→ g(t), as n→∞, and is uniformly bounded on T . Lemma 5.4
then entails

nE
[
1− exp

(
−
∫
E
f(a−1

n z)Π(dz)

)]
= n

[
1− LΨ(n−1gn)

]
−→

∫
T
g(t)λ(dt) =

∫
E

(
1− e−f(t,x)

)
λ(dt)µ(dx).

This proves Equation (5.8) and Theorem 3.2 in the case k = 0.

Proof of Theorem 3.2, case k ≥ 1. The proof is an adaptation of the proof of Theo-
rem 3.1, case k ≥ 1. We fix r > 0. Conditioning upon the events {N = j}, j ≥ 1, and using
the independence of the marks, we have

nk+1P
( N∑
i=1

εa−1
n Xi

(Bc
0,r) ≥ k + 1

)
= nk+1

∞∑
j=k+1

P(N = j)P
( j∑
i=1

εa−1
n Xi

(Bc
0,r) ≥ k + 1

)
=

∞∑
j=k+1

P(N = j)nk+1P(Sj,n ≥ k + 1)(5.9)

with Sj,n a random variable with binomial distribution with parameter (j, ν(anB
c
0,r)). Reg-

ular variation implies ν(anB
c
0,r) ∼ n−1µ(Bc

0,r), as n → ∞, so that the binomial probability
distribution has asymptotic

(5.10) nk+1P(Sj,n ≥ k + 1) ∼ nk+1P(Sj,n = k + 1) ∼
(

j

k + 1

)
µ(Bc

0,r)
k+1.

In order to apply dominated convergence and plug-in the equivalent (5.10) in Equation (5.9),
we use the upper bound from Lemma 5.2 yielding

nk+1P(Sj,n ≥ k + 1) ≤
(

j

k + 1

)
nk+1ν(anB

c
0,r)

k+1.

The convergence nν(anB
c
0,r)→ µ(Bc

0,r) implies the bound nν(anB
c
0,r) ≤ M for some M > 0.

We deduce the uniform bound

nk+1P(Sj,n ≥ k + 1) ≤Mk+1

(
j

k + 1

)
≤ Mk+1

(k + 1)!
jk+1.
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Since Ψ has a finite factorial moment measure of order k+ 1, N has a finite moment of order
k + 1 and

∞∑
j=k+1

P(N = j)
Mk+1

(k + 1)!
jk+1 ≤ Mk+1

(k + 1)!
E[Nk+1] <∞.

Equations (5.9) and (5.10) together with dominated convergence imply

nk+1P
( N∑
i=1

εa−1
n Xi

(Bc
0,r) ≥ k + 1

)
∼ nk+1P

( N∑
i=1

εa−1
n Xi

(Bc
0,r) = k + 1

)
→ c := µ(Bc

0,r)
k+1

∑
j≥k+1

(
j

k + 1

)
P(N = j).

The limit c is positive as soon as P(N ≥ k + 1) > 0 which is ensured by the condition Mk+1

non-null. We deduce

nk+1E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)≥k+1}

]
∼ nk+1E

[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)=k+1}

]
.

Next, we condition on {N = j} and introduce the symmetric probability πj on T j giving the
position of the points of Ψ conditionally on {N = j}, see (Daley and Vere-Jones, 2003, Section
5.3). Noting pj = P(N = j), we get

E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)=k+1}

]
=
∑
j≥k+1

∫
Ej

e−
∑j
i=1 f(ti,a

−1
n xi)1{

∑j
i=1 εxi (anB

c
0,r)=k+1}pjπj(dt1, . . . ,dtj)ν(dx1) . . . ν(dxj).

Consider the j-th term for fixed j ≥ k + 1. The event
∑j

i=1 εxi(anB
c
0,r) = k + 1 can be

decomposed into a disjoint union of
(
j

k+1

)
disjoint events indexed by a subset I ⊂ {1, . . . , j}

of size k+ 1 such that xi ∈ anBc
0,r if i ∈ I and xi ∈ anB0,r if i /∈ I. By symmetry, each events

yields an equal contribution and we consider I = {1, . . . , k + 1}. Then f(ti, a
−1
n xi) = 0 for

i > k + 1 and we can integrate out the corresponding xi’s, yielding the contribution

ν(anB0,r)
j−k−1

∫
T j×(anBc0,r)

k+1

e−
∑k+1
i=1 f(ti,a

−1
n xi)pjπj(dt1, . . . ,dtj)ν(dx1) . . . ν(dxk+1).

We then multiply by
(
j

k+1

)
, introduce the jth Janossi measure Jj = j!pjπj of Ψ (see Daley

and Vere-Jones (2003) Chapter 5.3) and sum over j ≥ k + 1 to get

E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)=k+1}

]
=
∑
j≥k+1

ν(anB0,r)
j−k−1

(k + 1)!(j − k − 1)!
· · ·

· · ·
∫
T j×(anBc0,r)

k+1

e−
∑k+1
i=1 f(ti,a

−1
n xi)Jj(dt1, . . . ,dtj)ν(dx1) . . . ν(dxk+1).
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Note that ν(anB0,r) → 1 and nν(an·) → µ(·) as n → ∞. Then, multiplying by nk+1, from
Lemma 5.1, we have

nk+1E
[
e−

∑N
i=1 f(Ti,a

−1
n Xi)1{

∑N
i=1 εa−1

n Xi
(Bc0,r)=k+1}

]
∼ 1

(k + 1)!

∑
j≥k+1

∫
T j×(Bc0,r)

k+1

e−
∑k+1
i=1 f(ti,xi)

Jj(dt1, . . . ,dtj)

(j − k − 1)!
µ(dx1) . . . µ(dxk+1)

=
1

(k + 1)!

∫
T j×(Bc0,r)

k+1

e−
∑k+1
i=1 f(ti,xi)Mk+1(dt1, . . . ,dtj)µ(dx1) . . . µ(dxk+1)

=

∫
N

e−π(f)1{π(F cr )≥k+1}µ
∗
k+1(dπ).

In view of Theorem 2.5, the convergence (3.5) in M(N \ Nk) follows. Note that in the third
line above, we use Fubini-Tonelli Theorem to exchange summation and integration as well as
the following identity linking Janossy measures and factorial moment measures (Daley and
Vere-Jones (2003) Theorem 5.4.II)

Mk+1(B) =
∑
m≥0

Jk+1+m(B × T m)

m!
, B ∈ B(T k+1).

This concludes the proof.

5.3. Proof of Theorem 3.3. The next lemma is a variant of Lemma 5.3 that will be useful
for the proof of Theorem 3.3.

Lemma 5.5. Under the same notations and assumptions as in Lemma 5.3, assume fur-
thermore that f : T × X → [0,∞) is Lipschitz continuous and T is locally compact. Then the
convergence Lnf → Lf in Equation (5.7) is uniform on T .

Proof. Lemma 5.3 states the pointwise convergence (Lnf)(t) → (Lf)(t) for all t ∈ T .
Under the assumption that f is K-Lipschitz, the family of functions {Lnf, n ≥ 1} is equicon-
tinuous, since for t, t′ ∈ T , we have

|(Lnf)(t)− (Lnf)(t′)| ≤ n
∫
Bc0,r

|e−f(t,x/an) − e−f(t′,x/an)|ν(dx)

≤ nν(anB
c
0,r)MKdT (t, t′),

where f is bounded by M with support included in T × Bc
0,r and nν(anB

c
0,r) → µ(Bc

0,r)
is bounded. Pointwise convergence together with equicontinuity implies uniform convergence
thanks to Arzela-Ascoli theorem applied on T locally compact.

Proof of Theorem 3.3, case k = 0. The proof uses arguments and notations from the
proof of Theorem 3.2. We need to prove that

(5.11) nE
[
1− e−

∫
E f(a−1

nmnz)Π(dz)
]
→
∫
T ×X

(
1− e−f(t,x)

)
λ(dt)µ(dx), as n→∞.
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On the first hand, we have

nE
[
1− e−

∫
E f(a−1

nmnz)π(dz)
]

= n

[
1− E

[
mn∏
i=1

(
1− 1

nmn
(Lnmnf)(Tni )

)]]

= n

[
1− E

[
exp

(
1

mn

mn∑
i=1

mn log

(
1− 1

nmn
(Lnmnf)(Tni )

))]]

= n

[
1− E

[
exp

(
− 1

nmn

mn∑
i=1

(Lnmnf)(Tni ) + o

(
1

n

))]]
.(5.12)

In the last equality, we use the fact that Lnmnf(t) is uniformly bounded on T (see Lemma
5.3) so that the o(1/n) terms in the Taylor expansions of the logarithm are uniform. We have
also (Lnmnf)(t)→ Lf(t) uniformly on T from Lemma 5.5 that ensures∣∣∣∣∣ 1

mn

mn∑
i=1

((Lnmnf)(Tni )− Lf(Tni ))

∣∣∣∣∣ ≤ sup
t∈T
|(Lnmnf)(t)− Lf(t)| → 0 .

Using (3.8) we apply Portmanteau theorem on Lf bounded continuous in order to obtain

1

mn

mn∑
i=1

(Lf)(Tni ) =

∫
(Lf)(t)m−1

n Ψn(dt)→
∫

(Lf)λ(dt)

in probability. Combining the two results we obtain the convergence in probability

1

mn

mn∑
i=1

(Lnmnf)(Tni ) −→
∫

(Lf)(t)λ(dt) , t→∞ .

Going back to Equation (5.12),

n

[
1− E

[
exp

(
− 1

nmn

mn∑
i=1

(Lnmnf)(Tni ) + o

(
1

n

))]]

= n

[
1− E

[
1− 1

nmn

mn∑
i=1

(Lnmnf)(Tni ) + o

(
1

n

)]]

= E

[
1

mn

mn∑
i=1

(Lnmnf)(Tni ) + o(1)

]

−→
∫
Lf(t)λ(dt),

where the last step follows from the fact that the term is bracket converges in probability
and is uniformly bounded. Since

∫
Lf(t)λ(dt) =

∫
T ×X

(
1− e−f(t,x)

)
λ(dt)µ(dx), this shows

Equation (5.11) and concludes the proof.

The next two lemmas are used in the proof of Theorem 3.3, case k ≥ 1
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Lemma 5.6. Assume T locally compact and let k ≥ 0. For f : T × X → [0,∞) Lipschitz
continuous vanishing on T ×B0,r, the sequence of functions Lk+1,nf defined on T k+1 by

(Lk+1,nf)(t1, . . . , tk+1) =

∫
(Bc0,r)

k+1

e−
∑

1≤i≤k+1 f(ti,xi)νn(dx1) · · · νn(dxk+1), n ≥ 1 ,

converges uniformly to Lk+1f defined by

(Lk+1f)(t1, . . . , tk+1) =

∫
(Bc0,r)

k+1

e−
∑

1≤i≤k+1 f(ti,xi)µ(dx1) · · ·µ(dxk+1) .

Furthermore the sequence Lk+1,nf is uniformly bounded.

Proof. When k = 0, Lemma 5.6 reduces to Lemma 5.5. The proof of the case k ≥ 1
follows the same lines and is omitted for the sake of brevity.

Lemma 5.7. Under condition (3.8), the normalized factorial moment measure of order
k + 1 of Ψn satisfies

(5.13) m−(k+1)
n MΨn

k+1 −→ λ⊗(k+1) in Mb(T k+1) as n→∞.

Proof. Condition (3.8) implies the convergence in probability, as n→∞,

m−1
n Ψn(f) = m−1

n

mn∑
i=1

f(Tni ) −→ λ(f) =

∫
T
fdλ

for all bounded continuous f : T → R. Considering the tensor product f = f1 ⊗ · · · ⊗ fk+1

with bounded continuous functions fi : T → R, i = 1, . . . , k + 1, this implies the convergence
in probability

m−(k+1)
n Ψ⊗(k+1)

n (f) =

k+1∏
`=1

m−1
n

mn∑
i=1

f`(T
n
i ) −→

k+1∏
`=1

∫
T
f`dλ =

∫
T k+1

fdλk+1.

Since f is bounded, the convergence in probability implies the convergence of expectations

(5.14) E
(
m−(k+1)
n Ψ⊗(k+1)

n (f)
)
−→

∫
T k+1

fdλk+1.

On the other hand, the left-hand side of (5.14) can be rewritten as

E
[
m−(k+1)
n Ψ⊗(k+1)

n (f)
]

= m−(k+1)
n E

[ ∑
1≤i1,...,ik+1≤mn

f(Tni1 , . . . , T
n
ik+1

)
]

= m−(k+1)
n

E
[ ∑

1≤i1 6=... 6=ik+1≤mn

f(Tni1 , . . . , T
n
ik+1

)
]

+ remainder


= m−(k+1)

n MΨn
k+1(f) +O(m−1

n ).(5.15)

On the second line, the remainder collects all the terms with multi-index (i1, . . . , ik+1) having
at least two equal components. The number of such terms is asymptotically equivalent to
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k+1

2

)
mk
n and each term is bounded so that the remainder is O(mk

n), yielding Equation (5.15).
Together with Equation (5.14), this implies

m−(k+1)
n MΨn

k+1(f) −→
∫
T k+1

fdλ⊗(k+1) as n→∞.

This holds for all test functions f = f1 ⊗ · · · ⊗ fk+1, which is enough to prove the announced
convergence (5.13).

Proof of Theorem 3.3, case k ≥ 1. We fix r > 0 such that µ(∂Bc
0,r) = 0 and a bounded

continuous function f : T × X 7→ [0,∞) vanishing on F r = T × B0,r. For k ≥ 1, we need to
prove that

nk+1E
[
e−

∑mn
i=1 f(ti,a

−1
nmnXi)1{

∑mn
i=1 εa−1

nmnXi
(Bc0,r)≥k+1}

]
−→ 1

(k + 1)!

∫
Ek+1

e−
∑k+1
i=1 f(ti,xi) ⊗k+1

i=1 1{xi∈Bc0,r}λ(dti)µ(dxi)

=

∫
N
e−π(f)1{π(Bc0,r)≥k+1}µ

∗
k+1(dπ) .(5.16)

The proof follows the proof of Theorem 3.2. Due to independent marking, we have

nk+1P

(
mn∑
i=1

εa−1
nmnXi

(Bc
0,r) ≥ k + 1

)
= nk+1P (Smn ≥ k + 1)

where Smn is a random variable with binomial distribution (mn, ν(anmnB
c
0,r))). Regular vari-

ation implies ν(anmnB
c
0,r) ∼ (nmn)−1µ(Bc

0,r), as n → ∞, so that the binomial probability
distribution satisfies

nk+1P(Smn ≥ k + 1) ∼ nk+1P(Smn = k + 1)

∼ nk+1

(
mn

k + 1

)
(nmn)k+1µ(Bc

0,r)
k+1

∼
µ(Bc

0,r)
k+1

(k + 1)!
, n→∞ .(5.17)

We deduce, as n→∞,

nk+1E
[
e−

∑mn
i=1 f(Tni ,a

−1
n Xi)1{

∑mn
i=1 εa−1

nmnXi
(Bc0,r)≥k+1}

]
∼ nk+1E

[
e−

∑mn
i=1 f(Tni ,a

−1
nmnXi)1{

∑mn
i=1 εa−1

nmnXi
(Bc0,r)=k+1}

]
.

The event
{∑mn

i=1 εa−1
nmnXi

(Bc
0,r) = k + 1

}
can be decomposed into an union of

(
mn
k+1

)
disjoints

events indexed by a subset I ⊂ {1, . . . ,mn} of size k + 1 such that xi ∈ anmnBc
0,r if i ∈ I and

xi ∈ anmnB0,r if i /∈ I. We obtain

nk+1E
[
e−

∑mn
i=1 f(Tni ,a

−1
nmnXi)1{

∑mn
i=1 εa−1

nmnXi
(Bc0,r)≥k+1}

]
=nk+1ν(anmnB0,r)

mn−k−1
∑

I⊂{1,...,mn}

E
[
e−

∑
i∈I f(Tni ,a

−1
nmnXi)1{Xi∈anmnBc0,r, i∈I}

]
.
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Conditionally on (Tni )1≤i≤mn , we have

(nmn)k+1E
[
e−

∑
i∈I f(Tni ,a

−1
nmnXi)1{Xi∈anmnBc0,r, i∈I} | (T

n
i )1≤i≤mn

]
= (nmn)k+1

∫
(anmnB

c
0,r)

k+1

e−
∑
i∈I f(Tni ,a

−1
nmnxi)ν(dxi1) · · · ν(dxik+1

)

=

∫
(Bc0,r)

k+1

e−
∑
i∈I f(Tni ,xi)νnmn(dxi1) · · · νnmn(dxik+1

) .

As n→∞ we obtain the equivalence

nk+1E
[
e−

∑mn
i=1 f(Tni ,a

−1
nmnXi)1{

∑mn
i=1 εa−1

nmnXi
(Bc0,r)≥k+1}

]
∼ 1

mk+1
n

1

(k + 1)!

∑
1≤i1 6=... 6=ik+1≤mn

E[(Lnmn,k+1f)(Tni1 , . . . , T
n
ik+1

)]

∼ 1

(k + 1)!

∫
(Lnmn,k+1f)(t)m−(k+1)

n MΨn
k+1(dt) .

By Lemma 5.7, m−(k+1)
n MΨn

k+1 → λ⊗(k+1) in Mb(T k+1). The desired result follows thanks to
dominated convergence.

6. Proofs related to Section 4.

6.1. Proofs related to Section 4.1. The following lemma gives an explicit expression for the
distance in the Skorokhod space D = D([0, T ],R) to the cone Dk of functions with at most
k discontinuity points. We first introduce some notations. A càd-làg function x ∈ D has at
most countably many discontinuity points (ti)i∈I with size |x(ti)−x(t−i )| and for every ε > 0,
the number of jumps with size larger than ε is finite - for a discontinuity point ti, i ∈ I,
the notation x(t−i ) stands for the left limit of x at ti. Reordering the sequence of jump sizes
|x(ti)− x(t−i )|, i ∈ I, we define the non-negative sequence

∆1(x) ≥ ∆2(x) ≥ ∆3(x) ≥ · · ·

That is ∆1(x) is the largest jump (in absolute value), ∆2(x) the second largest jump, etc. If
x has finitely many jumps, say k ≥ 0, we set ∆m(x) = 0 for m ≥ k+ 1. It follows that x ∈ Dk
if and only if ∆k+1(x) = 0.

Lemma 6.1. For all k ≥ 0 and x ∈ D, d(x,Dk) = 1
2∆k+1(x).

Proof. We first consider the case k = 0 when D0 is the space of continuous functions. For
x ∈ D and y ∈ D0, we prove that d(x, y) ≥ 1

2∆1(x). Indeed, since y is continuous, d(x, y) is
equal to the uniform distance ‖x− y‖∞, with ‖ · ‖∞ the uniform norm for bounded functions
on [0, T ]. Considering t1 ∈ [0, T ] such that ∆1(x) = |x(t1)− x(t−1 )|, we get

d(x, y) = ‖x− y‖∞ ≥ max(|x(t1)− y(t1)|, |x(t−1 )− y(t−1 )|) ≥ 1

2
∆1(x).

Since y ∈ D0 is arbitrary, we deduce d(x,D0) ≥ 1
2∆1(x).
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For the reverse inequality, it is enough to exhibit a sequence of continuous functions yn such
that

(6.1) d(x, yn) = ‖x− yn‖∞ →
1

2
∆1(x).

A simple construction is via convolution: define yn = x∗fn where ∗ is the convolution operator
and fn is the density of the uniform distribution on [−1/n, 1/n] (one should more precisely
first extend the definition of x by letting x(t) = x(0) for t ≤ 0 and x(t) = x(T ) for t ≥ T ).
Then, Equation (6.1) is satisfied, proving d(x,D0) ≤ 1

2∆1(x).
We next consider the case k ≥ 1. Any function y ∈ Dk can be decomposed as y = j + c

where j is a pure jump function with at most k jumps and c is a continuous function. It follows

d(x, y) = d(x, j + c) = d(x− j, c) =
1

2
∆1(x− j),

where the last equality relies on the case k = 0. Since j has at most k jumps, the functions
x and x − j share the same discontinuity points except at most k of them. This implies
∆1(x− j) ≥ ∆k+1(x) with equality if j kills the k largest jumps of x. Hence

d(x, y) =
1

2
∆1(x− j) ≥ 1

2
∆k+1(x)

and, taking the infimum for y ∈ Dk, d(x,Dk) ≥ 1
2∆k+1(x). The reverse inequality is proven

taking y = c+ j with j killing exactly the k largest jumps of x so that

d(x,Dk) ≤ d(x, y) =
1

2
∆1(x− j) =

1

2
∆k+1(x).

Proof of Theorem 4.1. Consider the rescaled risk process

R0
n(t) =

N∑
i=1

a−1
n Xi1{Ti≤t}, t ∈ [0, T ],

and, for δ > 0, the truncated rescaled risk process

Rδn(t) =
N∑
i=1

a−1
n Xi1{a−1

n Xi>δ}1{Ti≤t}, t ∈ [0, T ].(6.2)

The proof involves the following three steps, corresponding to conditions i)− iii) of Proposi-
tion 2.4:

1) Using the continuous mapping theorem (Lindskog et al., 2014, Theorem 2.3), we show
that nk+1P(Rδn ∈ ·) −→ µ̂δk+1(·) in M(D \ Dk), with limit measure

µ#δ
k+1(B) =

∫
Ek+1

1{∑k+1
i=1 z(ti,xi)∈B}

Mk+1(dt1, . . . ,dtk+1)⊗k+1
i=1 1{xi>δ}µ(dxi),

where z(t,x) = (x1{t≤u})0≤u≤T ∈ D.
2) We prove that µ#δ

k+1 −→ µ#
k+1 in M(D \ Dk) as δ → 0.
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3) We prove that Rδn and R0
n satisfy, for any ε, r > 0,

(6.3) lim
δ→0

lim sup
n→∞

nk+1P(d(R0
n, R

δ
n) > ε, d(R0

n,Dk) > r) = 0

where d denotes the Skorokhod metric on D.

Both conditions iii) of Proposition 2.4 hold under the only condition(6.3) because d(Rδn,Dk) ≤
d(R0

n,Dk). Then the result nk+1P(a−1
n R ∈ ·) −→ µ#

k+1(·) in M(D \ Dk) follows from Proposi-
tion 2.4 with E = D, F = Dk, X = R = anR

0
n, Xn,m = anR

δ
n and m = [1/δ].

Step 1. For δ > 0, we have Rδn = Tδ(a
−1
n Π) with Tδ : N −→ D the measurable mapping

defined by

Tδ : π =
N∑
i=1

ε(ti,xi) 7−→
N∑
i=1

1{xi>δ}z(ti,xi).

Theorem 3.2 together with the continuous mapping theorem (Lindskog et al., 2014, Theorem
2.3) imply

nk+1P(Rδn ∈ ·) = nk+1P(Tδ(a
−1
n Π) ∈ ·) M(D\Dk)−→ µ∗k+1 ◦ T−1

δ (·) = µ#δ
k+1(·).

It remains to check that the conditions for the continuous mapping theorem are satisfied.
First, note that T−1

δ (Dk) ⊂ Nk and that T−1
δ (B) is bounded away from Nk for all B ∈ B(D)

bounded away from Dk. Besides, Tδ is continuous at every point π such that π([0, T ]×{δ}) = 0,
which can be proved with similar arguments as in the proof of Lemma 3.2 in Eyi-Minko and
Dombry (2016). It is easily seen that µ∗k+1 has no mass on {π([0, T ] × {δ}) 6= 0} so that the
discontinuity set of Tδ has vanishing µ∗k+1-measure.

Step 2. It is a straightforward application of the monotone convergence Theorem since the
indicator function 1{xi>δ} converges monotonically to 1{xi>0} as δ ↓ 0.

Step 3. The Skorokhod distance between the risk process R0
n and its truncated version Rδn

is upper bounded by

d(Rδn, R
0
n) ≤ ‖R0

n −Rδn‖∞ =
N∑
i=1

a−1
n Xi1{a−1

n Xi≤δ} ≤ δN.

On the other hand, Lemma 6.1 implies

{d(R0
n,Dk) > r} = {∆k+1(R0

n) > 2r} = {(a−1
n Π)([0, T ]× (2r,∞)) ≥ k + 1} .

We deduce

P
(
d(Rδn, R

0
n) > ε, d(R0

n,Dk) > r
)
≤ P

(
δN > ε, (a−1

n Π)([0, T ]× (2r,∞)) ≥ k + 1
)
.

Denote Sj,n a random variable with binomial distribution with parameter (j, ν(2anr,∞)).
Conditioning on N = j and applying Lemma 5.2, we get the upper bound, for δ > 0 small
enough so that ε/δ > k + 1,

∞∑
j=ε/δ

P(Sj,n ≥ k + 1)P(N = j) ≤
∞∑

j=ε/δ

(
j

k + 1

)
ν(2anr,∞)k+1P(N = j).
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The convergence νn(2r,∞) → µ(2r,∞) implies the bound νn(2r,∞) ≤ M for some M > 0,
whence the uniform bound

nk+1P
(
d(Rδn, R

0
n) > ε, d(R0

n,Dk) > r
)
≤

∞∑
j=ε/δ

(
j

k + 1

)
jk+1νn(2r,∞)k+1P(N = j)

≤
∞∑

j=ε/δ

P(N = j)
Mk+1

(k + 1)!
jk+1

≤ Mk+1

(k + 1)!
E[Nk+11{N≥ε/δ}].

The assumption that Ψ has a finite factorial measure Mk+1 implies E[Nk+1] <∞ so that the
right-hand side converges to 0 as δ → 0, proving Equation (6.3).

Proof of Theorem 4.3. The proof is very similar to the proof of Theorem 4.1 with R0
n

and Rδn replaced respectively by

R̃0
n(t) =

mn∑
i=1

a−1
nmn(Xi − c)1{Tni ≤t}, t ∈ [0, T ],

and

Rδn(t) =

mn∑
i=1

a−1
nmnXi1{a−1

nmnXi>δ}
1{Tni ≤t}, t ∈ [0, T ].

Steps 1) and 2) are proved exactly in the same way but the proof of Step 3) is more involved
in the case of a triangular array. We now prove

(6.4) lim
δ→0

lim sup
n→∞

nk+1P(d(R̃0
n, R

δ
n) > ε, d(R̃0

n,Dk) > r) = 0.

Recall that d(R̃0
n,Dk) = 1

2∆k+1(R̃0
n) and note that ∆k+1(R̃0

n) ≤ ∆k+1(R0
n) ∨ (a−1

nmnc). More-
over, the Skorokhod distance between the risk process R̃0

n and Rδn is upper bounded by

d(Rδn, R̃
0
n) ≤ ‖Rδn − R̃0

n‖∞ = max
1≤t≤mn

∣∣∣ t∑
i=1

a−1
nmn(Xi1{a−1

nmnXi≤δ}
− c)

∣∣∣ .
We deduce

nk+1P
(
d(Rδn, R̃

0
n) > ε, d(R̃0

n,Dk) > r
)

≤ nk+1P
(

max
1≤t≤mn

∣∣∣ t∑
i=1

a−1
nmn(Xi1{a−1

nmnXi≤δ}
− c)

∣∣∣ > ε,∆k+1(R0
n) ∨ (a−1

nmnc) > 2r
)

= nk+1P
(

max
1≤t≤mn

∣∣∣ t∑
i=1

a−1
nmn(Xi1{a−1

nmnXi≤δ}
− c)

∣∣∣ > ε,∆k+1(R0
n) > 2r

)
.

where the last equality holds for n large enough so that a−1
nmnc ≤ 2r. Hence, Equation (6.4) is

equivalent to

(6.5) lim
δ→0

lim sup
n→∞

nk+1pδn = 0
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with

pδn = P
(

max
1≤t≤mn

∣∣∣ t∑
i=1

a−1
nmn(Xi1{a−1

nmnXi≤δ}
− c)

∣∣∣ > ε,∆k+1(R0
n) > 2r

)
.

Note that ∆k+1(R0
n) = a−1

nmnXmn−k:mn . Introduce independent random variables U1, . . . , Umn
with uniform distribution on [0, 1] and their order statistics U1:mn ≤ . . . ≤ Umn:mn and denote
F← the quantile function. By the inversion method, (X1, . . . , Xmn) has the same distribution
as (F←(U1), . . . , F←(Umn)) . Possibly changing the underlying probability space, we assume
without loss of generality that Xi = F←(Ui) and similarly Xi:mn = F←(Ui:mn), 1 ≤ i ≤ mn.
The conditioning event ∆k+1(R0

n) > 2r is then equal to Umn−k,mn > F (2ranmn) and we have

pδn = P
(

max
1≤t≤mn

∣∣∣ t∑
i=1

a−1
nmn(F←(Ui)1{F←(Ui)≤anmnδ} − c)

∣∣∣ > ε,Umn−k:mn > F (2ranmn)
)

For δ ≤ 2r, F←(Umn−k:mn) > 2ranmn implies F←(Umn+1−i:mn) > anmnδ for i = 1, . . . , k + 1
and the terms corresponding to the k + 1 largest order statistics are equal to ca−1

nmn . Since
there are at most k+ 1 of them, their contribution is at most (k+ 1)ca−1

nmn → 0 and is smaller
than ε/2 for large n so that the contributions of the terms corresponding to the mn − k − 1
smallest order statistics must be larger than ε/2. Denote by σ(i) the rank of observation i,
i.e. Uσ(i):mn = Ui, 1 ≤ i ≤ mn. There is a unique permutation σ′ of {1, . . . ,mn − k − 1}
such that the mn − k − 1 smallest order statistics appear in the same order in the sequences
(Ui)1≤i≤mn = (Uσ(i):mn)1≤i≤mn and (Uσ′(i):mn)1≤i≤mn−k−1. We obtain that pδn is bounded from
above by

P
(

max
1≤t≤mn−k−1

∣∣∣ t∑
i=1

a−1
nmn(F←(Uσ′(i):mn)1{F←(Uσ′(i):mn )≤anmnδ} − c)

∣∣∣ > ε/2, Umn−k:mn > un

)
with un = F (2ranmn). Conditionally on Umn−k:mn = u, the vector (Ui:mn)1≤i≤mn−k−1 has
the same distribution as the order statistic on an independent uniform sample on [0, u] with
size mn − k − 1. By exchangeability of (U1, . . . , Umn), the distribution of σ is independent
of the order statistics (Ui:mn)1≤i≤mn and uniform on the set of permutations of {1, . . . ,mn}.
It follows that the permutation σ′ over {1, . . . ,mn − k − 1} is uniform and independent of
(Ui:mn)1≤i≤mn−k−1 and hence that (Vi)1≤i≤mn−k−1 = (Uσ′(i):mn−k−1/u)1≤i≤mn−k−1 has inde-
pendent components uniform on [0, 1]. We deduce

P
(

max
1≤t≤mn−k−1

∣∣∣ t∑
i=1

a−1
nmn(F←(Uσ′(i):mn)1{F←(Uσ′(i):mn )≤anmnδ} − c)

∣∣∣ > ε/2
∣∣∣Umn−k:mn = u

)
= P

(
max

1≤t≤mn−k−1

∣∣∣ t∑
i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ} − c)

∣∣∣ > ε/2
)

≤ 3 max
1≤t≤mn−k

P
(∣∣∣ t∑

i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ} − c)

∣∣∣ > ε/6
)

where the last line follows from Etemadi’s inequality (Etemadi, 1985). Integrating with respect
to Umn−k:mn > F (2ranmn), we obtain the upper bound

pδn ≤ 3E
[
πδn
(
Umn−k:mn

)
1{Umn−k:mn>F (2ranmn )}

]
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with

πδn(u) = max
1≤t≤mn−k

P
(∣∣∣ t∑

i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ} − c)

∣∣∣ > ε/6
)
.

In the following, we provide upper bounds for πδn(u) and prove that

(6.6) lim
δ→0

lim sup
n→∞

nk+1E
[
πδn
(
Umn−k:mn

)
1{Umn−k:mn>F (2ranmn )}

]
= 0

which implies Equation (6.5). We classically have to distinguish four different cases. In each
case, we will use the following Lemma.

Lemma 6.2. Let X be a non-negative regularly varying random variable with index α > 0
and survival function F̄ = 1− F . Then, for any p > α, we have

E
[(X

x

)p
1{X≤x}

]
∼ α

p− α
F̄ (x) , x→∞ .

Proof. The proof follows from Karamata’s theorem; see for instance (Bingham et al., 1989,
Theorem 1.6.4), Equation (1.6.3).

Proof of Equation (6.6) in the case α < 1.
Using Markov inequality, we provide an upper bound for πδn(u) as follows: for any 1 ≤ t ≤
mn − k and ε > 0, we have

P
( ∣∣∣∣∣

t∑
i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ} − c)

∣∣∣∣∣ > ε/6
)

≤ 6ε−1
t∑
i=1

E
[
a−1
nmnF

←(uVi)1{F←(uVi)≤anmnδ}

]
≤ 6ε−1mnE

[
a−1
nmnF

←(uV1)1{F←(uV1)≤anmnδ}

]
.

We use the fact that there are at most mn summands as well as the fact that the Vi’s are iid.
Using the change of variable x = F←(uv), we have

E
[
F←(uV1)1{F←(uV1)≤anmnδ}

]
=

∫ F (anmnδ)/u

0
F←(uv)dv = u−1

∫ anmnδ

0
xF (dx) .

We recognize the expression u−1E[X11X1≤anmnδ] on which we apply Lemma 6.2 with p = 1 >
α. We deduce that

πδn(u) ≤ 6

εu
mnδ E

[ X1

δanmn
1{X1≤anmnδ}

]
∼ 6

εu
mnδ

α

1− α
F̄ (anmnδ) = o(1) ,

as mnF̄ (anmnδ) ∼ δ−α/n→ 0 as n→∞.

Proof of Equation (6.6) in the case E[X1] <∞.
When the variable X1 is integrable, there is a common previous step consisting in centering
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the partial sums in Equation (6.6). Let us denote cn,δ(u) = E[F←(uV1)1{F←(uV1)≤anmnδ}] the
centering term. Using c = E[X1] and u > F (2ranmn), we obtain

cn,δ(u)− c = u−1

∫ F (anmnδ)

0
F←(v)dv −

∫ 1

0
F←(v)dv

= u−1

∫ 1

F (anmnδ)
F←(v)dv + (u−1 − 1)

∫ 1

0
F←(v)dv .

Using that for n large enough we have u−1 < F (2ranmn)−1 ≤ 2 so that

|cn,δ(u)− c| ≤ 2(E[X11X1>anmnδ] + F̄ (anmnδ)E[X0]) = O(anmnF̄ (anmn)) , n→∞ ,

by an application of Karamata’s theorem. Thus mna
−1
nmn |cn,δ − c| = O(n−1) uniformly over

u > F (2ranmn) as n→∞ and Equation (6.5) is implied by

(6.7) lim
δ→0

lim sup
n→∞

nk+1E
[
π̃δn
(
Umn−k:mn

)
1{Umn−k:mn>F (2ranmn )}

]
= 0

with

π̃δn(u) = max
1≤t≤mn−k

P
(∣∣∣ t∑

i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ} − cn,δ(u))

∣∣∣ > ε/7
)
.

Proof of Equation (6.7) in the case 1 ≤ α < 2 with E[X1] <∞.
Applying Markov inequality of order p = 2, we obtain for any 1 ≤ t ≤ mn − k

P

(∣∣∣∣∣
t∑
i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ} − cn,δ(u))

∣∣∣∣∣ > ε/7

)

≤ 49ε−2a−2
nmnE

( t∑
i=1

(F←(uVi)1{F←(uVi)≤anmnδ} − cn,δ(u))

)2


≤ 49ε−2a−2
nmnmnVar

(
F←(uV1)1{F←(uV1)≤anmnδ}

)
.

Using the change of variable x = F←(uv) and Lemma 6.2 with p = 2 > α, we have

Var
(
F←(uV1)1{F←(uV1)≤anmnδ}

)
≤
∫ F (anmnδ)/u

0
F←(uv)2dv = u−1E[X2

11{X1≤anmnδ}]

= O
(
a2
nmnF̄ (anmn)

)
.

We finally get

π̃δn(u) = O
(
mnF̄ (anmn)

)
= O(n−1) = o(1), as n→∞.

Proof of Equation (6.7) in the case α ≥ 2 with Var(X1) <∞.
From the Fuk-Nagaev inequality, see (Petrov, 1995) Equation (2.79) page 78, for any p > α,
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we have

P
( t∑
i=1

a−1
nmn(F←(uVi)1{F←(uVi)≤anmnδ})− c > ε/7

)

≤
(7(p+ 2)

p

)pmnE
[∣∣∣a−1

nmn(F←(uV1)1{F←(uV1)≤anmnδ})
∣∣∣p]

εp

+ exp
(
− 2

ep (p+ 2)2

ε2

49mnVar(a−1
nmnF

←(uV1)1{F←(uV1)≤anmnδ})

)
≤ c1

p ε
−pmna

−p
nmnE

[
F←(uV1)p1{F←(uV1)≤anmnδ}

]
+ exp

(
− c2

p

ε2a2
nmn

mnVar(F←(uV1))

)
= A1 +A2

for some constants c1
p, c

2
p > 0 depending only of the order p. Lemma 6.2 again implies for some

p > α ≥ 2

A1 ∼ c1
p ε
−pδpmn

α

p− α
F̄ (anmnδ) = o(1)

since δpmnF̄ (anmnδ) ∼ δp−α/n → 0 as n → ∞ for p > α. It remains to deal with the second
term A2. Since α ≥ 2, under the condition a2

nmn/mn →∞ then A2 → 0, which ends the proof
of the case α ≥ 2 with Var(X1) < ∞. This proves Equations (6.7) and (6.5) and concludes
the proof of Theorem 4.3.

6.2. Proofs related to Section 4.2.

Proof of Proposition 4.7. The proof involves three steps. We start by proving regular
variation of XN−k:N and then we show that the tail distribution of

∑N−k−1
i=1 Xi:N is negligeable

regarding the tail of XN−k:N . In Step 3, we finally show

P

(
N−k∑
i=1

Xi:N > x

)
∼

x→∞
P (XN−k:N > x) .(6.8)

Recall the notations: F← denotes the quantile function and U1,n ≤ · · · ≤ Un,n the order statis-
tics of a iid sample U1, . . . , Un uniformly distributed on [0, 1].

Step 1. For x > 0, we have

P (XN−k:N > x) =
∞∑
n=0

P (Xn−k:n > x)P(N = n) =
∞∑
n=0

P (Sn,x > k)P(N = n)

where Sn,x ∼ B(n, 1 − F (x)) is a Binomial random variable. Since P(Sn,x ≥ k + 1) ∼
x→∞

P(Sn,x = k + 1) and

P(Sn,x = k + 1)

(1− F (x))k+1
≤
(

n

k + 1

)
=

n[k+1]

(k + 1)!
, x > 0
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Lebesgue’s theorem yields
∞∑
n=0

P (Sn,x > x)

(1− F (x))k+1
P(N = n) −→

x→∞

∞∑
n=0

n[k+1]

(k + 1)!
P(N = n) =

1

(k + 1)!
E[N [k+1]].

Then,

lim
x→∞

P (XN−k:N > x)

(1− F (x))k+1
=

1

(k + 1)!
E[N [k+1]] <∞(6.9)

under the assumption E[Nk+1] < ∞. Since X is regularly varying with index α, Equation
(6.9) proves that XN−k:N is regularly varying with index (k + 1)α.

Step 2. For x > 0, we have

P

(
N−k−1∑
i=1

Xi:N > x

)
=

∞∑
n=k

E

[
P

(
n−k−1∑
i=1

F←(Ui:n) ≥ x |Un−k:n

)]
P(N = n).

By independence and Markov inequality to the order p, we obtain

P

(
n−k−1∑
i=1

F←(Ui:n) ≥ x |Un−k:n = u

)
≤ x−pE

[(
n−k−1∑
i=1

F←(Ui:n)

)p
| Un−k:n = u

]

= x−pE

[(
n−k−1∑
i=1

F←(uUi)

)p]

≤ x−pnp
∫ 1

0
F←(uv)pdv.

We have for u ≥ 0 ∫ 1

0
F←(uv)pdv ≤MF←(u)p(1− u).

Integrating with respect to u, it follows that

P

(
n−k−1∑
i=1

Xi:n > x

)
≤ E

[
P

(
n−k−1∑
i=1

F←(Ui:n) ≥ x |Un−k:n

)]
≤ x−pnpME [F←(Un−k,n)p(1− Un−k:n)]

≤ x−pnpME
[
Xp
n−k:n(1− F (Xn−k:n))

]
as F (F←(u)) ≤ u for all u > 0. From Step 1, Xn−k:n is regularly varying with index (k+ 1)α.
Since X is regularly varying with index α, then E

[
Xp
n−k:n(1− F (Xn−k:n))

]
= c < ∞ for

p < kα. Integrating now with respect to n, for p > (k + 1)α we have

P

(
N−k−1∑
i=1

Xi:N > x

)
≤
∞∑
n=k

x−pnpME
[
Xp
n−k:n(1− F (Xn−k:n))

]
P(N = n)

≤ x−pMc

∞∑
n=k+2

npP(N = n)

= o((1− F (x))k+1)
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under the assumption E[Np] < ∞ for p > (k + 1)α. This proves P
(∑N−k−1

i=1 Xi:n > x
)

=

o (P (XN−k:N > x)) and concludes Step 2.

Step 3. Obviously we have P
(∑N−k

i=1 Xi:N > x
)
≥ P (XN−k:N > x) for x > 0, it remains

to prove that

lim sup
x→∞

P
(∑N−k

i=1 Xi:N > x
)

P (XN−k:N > x)
≤ 1.

For any ε > 0 and x ≥ 0 it holds

P

(
N−k∑
i=1

Xi:N > x

)

= P

(
N−k∑
i=1

Xi:N > x,

N−k−1∑
i=1

Xi:N > εx

)
+ P

(
N−k∑
i=1

Xi:N > x,

N−k−1∑
i=1

Xi:N ≤ εx

)

≤ P

(
N−k−1∑
i=1

Xi:N > εx

)
+ P (XN−k:N > (1− ε)x) .

On the one hand, we have

P
(∑N−k−1

i=1 Xi:N > εx
)

P (XN−k:N > x)
=

P
(∑N−k−1

i=1 Xi:N > εx
)

P (XN−k:N > εx)
· P (XN−k:N > εx)

P (XN−k:N > x)
−→
x→∞

0(6.10)

since P
(∑N−k−1

i=1 Xi:n > x
)

= o (P (XN−k:N > x)) from Step 2 and since XN−k:N is regularly
varying with index (k + 1)α from Step 1. On the other hand , regular variation of XN−k:N

also yields

P (XN−k:N > (1 + ε)x)

P (XN−k:N > εx)
−→ (1 + ε)−(k+1)α.(6.11)

Combining Equations (6.10) and (6.11), we obtain

lim sup
x→∞

P
(∑N−k

i=1 Xi:N > x
)

P (XN−k:N > x)
≤ (1 + ε)−(k+1)α −→

ε→0
1.

This proves Equation (6.8) and concludes the proof of Proposition 4.7.

Proof of Corollary 4.8. Proposition 4.7 together with Equation 4.5 imply that, for all
ε > 0,

nk+1P(d(a−1
n R, Jk) > ε) = nk+1P(a−1

n

N−k+1∑
i=1

Xi:N > ε)

∼ nk+1P(a−1
n XN+1−k:N > ε) = nk+1P(d(a−1

n R,Dk) > ε/2)

→ 1

k!
E[N [k]]ε−αk.
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Since {d(a−1
n R,Dk) > ε/2} ⊂ {d(a−1

n R, Jk) > ε}, we deduce

nk+1P
(
d(a−1

n R, Jk) > ε, d(a−1
n R,Dk) ≤ ε/2

)
= nk+1

(
P
(
d(a−1

n R, Jk) > ε
)
− P

(
d(a−1

n R,Dk) > ε/2
) )
→ 0, as n→∞.(6.12)

We need to prove that, as n→∞,

(6.13) nk+1E
[
f(a−1

n R)
]
−→

∫
D
f(r)µ#

k+1(dr)

for all continuous bounded functions f : D → R with support bounded away from Jk. Let
ε > 0 such that f vanishes on an ε-neighborhood of Jk. We have

nk+1E
[
f(a−1

n R)
]

= nk+1E
[
f(a−1

n R)1{d(a−1
n R,Dk)>ε/2}

]
+ nk+1E

[
f(a−1

n R)1{d(a−1
n R,Jk)>ε,d(a−1

n R,Dk)≤ε/2}

]
= nk+1E

[
f(a−1

n R)1{d(a−1
n R,Dk)>ε/2}

]
+ o(1).

The o(1) term is justified by Equation (6.12) and the boundedness of f . Theorem 4.1 Equa-
tion (4.2) provides the asymptotic

nk+1E
[
f(a−1

n R)1{d(a−1
n R,Dk)>ε/2}

]
−→

∫
D
f(r)1{d(r,Dk)>ε/2}µ

#
k+1(dr)

because the function r ∈ D 7→ f(r)1{d(r,Dk)>ε/2} is bounded and continuous µ#
k+1(dr)-a.e. with

support bounded away from Dk . Note that, by Lemma 6.1, the discontinuity set is included
in {r ∈ D : ∆k+1(r) = ε/2} and that the Lebesgue measure involved in the definition of µ#

k+1

has no atom. Finally, we have∫
D
f(r)1{d(r,Dk)>ε/2}µ

#
k+1(dr) =

∫
D
f(r)µ#

k+1(dr)

because f(r)1{d(r,Dk)≤ε/2} = 0 µk+1(dr)-a.e. This concludes the proof of Equation (6.13) and
Corollary 4.8.

Proof of Proposition 4.9. The regular variation result stated in point i) for R−k =∑N−k
i=1 Xi:N follows from Proposition 4.7.
The conditional limit theorem stated in point ii) is a consequence of Corollary 4.8 together

with Proposition 2.3. Indeed, since R−k = d(R, Jk), we have

P(x−1R ∈ · | R−k > x) = P(x−1R ∈ · | x−1R ∈ A)

with A = {r ∈ D : d(r, Jk) > 1}. Then, Corollary 4.8 together with Proposition 2.3 imply

P(x−1R ∈ · | x−1R ∈ A)
d−→

µ#
k+1(A ∩ ·)
µ#
k+1(A)

because A is bounded away from Jk and such that µ#
k+1(A) = Mk+1([0,∞)k+1) > 0 and

µ#
k+1(∂A) = µ#

k+1({r ∈ D : d(r, Jk) = 1}) = 0. Using the definition (4.3) of µ#
k+1, the
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expression of the limiting distribution µ#
k+1(A ∩ ·)/µ#

k+1(A) is easily deduced as in statement
ii).

Proof of statement iii). The heuristic is that if the residual risk is large at t0, then there are
at least k+ 1 large claims between 0 and t0. If the residual risk is even larger at t1, then some
large claim must have occurred between t0 and t1, leading to a total of at least k + 2 large
claims between 0 and t1. This is formalized as follows. Noting that R−k (t0) = d(Rk(· ∧ t0), Jk)
and similarly R−k (t1) = d(Rk(·∧ t1), Jk), we consider Aε = {r ∈ D : d(r(·∧ t0), Jk) ∈ (1, 1+ε)}
and Bu = {r ∈ D : d(r(· ∧ t1), Jk) > u}. With these notations, for ε > 0 and u > 0, we have

P(R−k (t1) > ux | x < R−k (t0) < (1 + ε)x) =
P(x−1R ∈ Aε ∩Bu)

P(x−1R ∈ Aε)
.

Because Aε and Aε ∩ Bu are bounded away from Jk and Jk+1 respectively and because the
continuity of Mk+1 and Mk+2 ensures that A and B are continuity sets for µ#

k+1 and µ#
k+2

respectively, Corollary 4.8 implies

P(x−1R ∈ Aε) ∼ µ#
k+1(Aε)(1− F (x))k+1

and
P(x−1R ∈ Aε ∩Bu) ∼ µ#

k+2(Aε ∩Bu)(1− F (x))k+2.

As a consequence, the quotient satisfies

(6.14) lim
x→∞

P(R−k (t1) > ux | x < R−k (t0) < (1 + ε)x)

1− F (x)
=
µ#
k+2(Aε ∩Bu)

µ#
k+1(Aε)

.

The quantity µ#
k+1(Aε) is computed considering k+ 1 claims ((si, zi))1≤i≤k+1 with occurrence

times si ≤ t0 and magnitudes zi satisfying 1 < min1≤i≤k+1 zi < 1 + ε, yielding the integral
form

µ#
k+1(Aε) =

1

(k + 1)!

∫
Ek+1

1{1<min1≤i≤k+1 zi<1+ε,si≤t0,1≤i≤k+1}Mk+1(ds)µ⊗(k+1)(dz)

=
1

(k + 1)!
Mk+1

(
[0, t0]k+1

)∫
(1,∞)k+1

1{1<min1≤i≤k+1 zi<1+ε}µ
⊗(k+1)(dz).

In the integral, the domain can be restricted to (1,∞)k+1 because the minimum is larger than
1 in the indicator function. Since 1z>1µ(dz) is the α-Pareto distribution, the integral is equal
to

P
(

min
1≤i≤k+1

Zi < 1 + ε

)
= 1− (1 + ε)−(k+1)α ∼ (k + 1)αε as ε→ 0,

where (Zi)1≤i≤k+1 are independent random variables with standard α-Pareto distribution. We
deduce

(6.15) µ#
k+1(Aε) ∼

1

k!
Mk+1

(
[0, t0]k+1

)
αε.

The quantity µ#
k+2(Aε ∩Bu) is computed considering k+ 2 claims ((si, zi))1≤i≤k+2 with k+ 1

of those occurring before t0 and one between t0 and t1. The si are not ordered and there are
k + 2 cases according to which event occurs last. By symmetry, we consider only the case
when the last event corresponds to the index i = k + 2. The magnitudes must then satisfy
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1 < mini≤i≤k+1 zi < 1+ε so that Aε is satisfied and z1:k+2 +z2:k+2 > u so that Bu is satisfied.
This yields,

(6.16) µ#
k+2(Aε ∩Bu) =

(k + 2)

(k + 2)!
Mk+2

(
[0, t0]k+1 × (t0, t1]

)
I(ε)

with
I(ε) =

∫
(0,∞)k+2

1{1<mini≤i≤k+1 zi<1+ε,z1:k+2+z2:k+2>u}µ
⊗(k+2)(dz).

We claim that, as ε→ 0,

(6.17) I(ε) ∼
(

(u− 1)−(k+1)α +
(
(u− 1)−α − 1

)
+

)
(k + 1)αε.

Then, Equation (4.6) follows from Equations (6.14-6.17).
It only remains to prove Equation (6.17). The integral I(ε) can be decomposed into two

integrals I1(ε) + I2(ε), corresponding to zk+2 > 1 and zk+2 < 1 respectively. In the case
zk+2 > 1, the zi’s are larger than 1 and

I1(ε) = P
(

1 < min
i≤i≤k+1

Zi < 1 + ε, Z1:k+2 + Z2:k+2 > u

)
.

We decompose I1(ε) as a sum of two terms according to Zk+2 < mini≤i≤k+1 Zi or Zk+2 >
mini≤i≤k+1 Zi. The first contribution is upper bounded by

P
(

1 < Zk+2 < min
i≤i≤k+1

Zi < 1 + ε

)
= o(ε2)

and is negligible. The second contribution corresponds to

P
(

1 < min
i≤i≤k+1

Zi < 1 + ε, Z1:k+2 + Z2:k+2 > u,Zk+2 > min
i≤i≤k+1

Zi

)
= P (1 < Z1:k+2 < 1 + ε, Z1:k+2 + Z2:k+2 > u,Rk+2 6= 1)

where Rk+2 denotes the rank of Zk+2 among Z1, . . . , Zk+2 and (Zi:k+2)1≤i≤k+2 the order
statistics. Since Rk+2 is uniform on {1, . . . , k + 2} and independent of the order statistics, we
obtain

I1(ε) = P(1 < Z1:k+2 < 1 + ε, Z1:k+2 + Z2:k+2 > u,Rn+2 6= 1) + o(ε2)

=
k + 1

k + 2
P(1 < Z1:k+2 < 1 + ε, Z1:k+2 + Z2:k+2 > u) + o(ε2).

The joint density of (Z1:k+2, Z2:k+2) is given by (see for instance Ahsanullah et al. (2013),
Chapter 2)

(k + 1)(k + 2)α2z−α−1
1 z

−(k+1)α−1
2 1{1<z1<z2},

so that, for u > 1,

P(1 < Z1:k+2 < 1 + ε, Z1:k+2 + Z2:k+2 > u)

=

∫ 1+ε

z1=1

∫ ∞
z2=(u−z1)∨z1

(k + 1)(k + 2)α2z−α−1
1 z

−(k+1)α−1
2 dz1dz2

=

∫ 1+ε

z1=1
(k + 2)αz−α−1

1 ((u− z1) ∨ z1)−(k+1)αdz1

= (k + 2)α(u− 1)−(k+1)αε+ o(ε).
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Gathering the previous estimates, we obtain

I1(ε) ∼ (u− 1)−(k+1)α(k + 1)αε.

We now consider the contribution I2(ε) that corresponds to the case zk+2 < 1. Then, z1:k+2 =
zk+2 and z2:k+2 = min1≤i≤k+1 zi so that

I2(ε) =

∫
(1,∞)k+1

∫ 1

zk+2=0
1{1<mini≤i≤k+1 zi<1+ε,zk+2>u−mini≤i≤k+1 zi}µ

⊗(k+2)(dz)

= E
[(

(u− min
1≤i≤k+1

Zi)
−α − 1

)
+

1{1<mini≤i≤k+1 Zi<1+ε}

]
=
(
(u− 1)−α − 1

)
+

(k + 1)αε+ o(ε).

Note that the main term vanishes when u ≥ 2 wich reflect the fact the residual loss cannot dou-
ble if zk+2 < min1≤i≤k+1 zi. The asymptotic results for I1(ε) and I2(ε) imply Equation (6.17)
and the proof is complete.

7. Proofs related to Section 2.

7.1. Proof of Propositon 2.4.

Proof of Propositon 2.4. We proceed as in the proof of Theorem 4.2 in Billingsley
(1968). Consider r > 0 and a µ-continuity set B ∈ B(E \ F r). Possibly replacing r by a
smaller value, we can assume that E \ F r is a µ-continuity set (Theorem 2.2 (i) in Hult and
Lindskog (2006) ensures that all but countably many r > 0 have this property). We have

nkP(a−1
n X ∈ B) ≤ nkP(a−1

n Xn,m ∈ Bε) + nkP(d(a−1
n Xn,m, a

−1
n X) > ε, a−1

n X ∈ B) .

For ε < r/2, Bε ∈ B(E \ F r/2) and Assumption i) implies

lim sup
n→∞

nkP(a−1
n Xn,m ∈ Bε) ≤ µm(clBε),

so that

lim sup
n→∞

P(a−1
n X ∈ B) ≤ µm(clBε) + lim sup

n→∞
nkP(d(a−1

n Xn,m, a
−1
n X) > ε, a−1

n X ∈ B) .

Letting m→∞ in the right-hand side and using assumptions ii) and iii), we deduce,

lim sup
n→∞

nkP(a−1
n X ∈ B) ≤ µ(clBε) .

Since B is a µ-continuity set, letting ε ↓ 0, we obtain by monotone convergence

lim sup
n→∞

nkP(a−1
n X ∈ B) ≤ µ(clB) = µ(B) .

In order to obtain a lower bound, we use completion and write

nkP(a−1
n X ∈ B) = nkP(a−1

n X ∈ E \ F r)− nkP(a−1
n X ∈ E \ F r ∩Bc) .
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Thanks to the previous bound on the limsup,

lim inf
n→∞

nkP(a−1
n X ∈ B) ≥ lim inf

n→∞
nkP(a−1

n X ∈ E \ F r)− lim sup
n→∞

nkP(a−1
n X ∈ E \ F r ∩Bc)

≥ lim inf
n→∞

nkP(a−1
n X ∈ E \ F r)− µ(E \ F r ∩Bc).

Moreover,

P(a−1
n Xn,m ∈ E \ F r+ε)

= P(a−1
n X ∈ F r, a−1

n Xn,m ∈ E \ F r+ε) + P(a−1
n X ∈ E \ F r, a−1

n Xn,m ∈ E \ F r+ε)
≤ P(d(a−1

n Xn,m, a
−1
n X) > ε, a−1

n Xn,m ∈ E \ F r+ε) + P(a−1
n X ∈ E \ F r),

whence

P(a−1
n X ∈ E\F r) ≥ P(a−1

n Xn,m ∈ E\F r+ε)−P(d(a−1
n Xn,m, a

−1
n X) > ε, a−1

n Xn,m ∈ E\F r+ε) .

Using assumptions i), ii) and iii) with the same reasoning as above, we get

lim inf
n→∞

nkP (a−1
n X ∈ E \ F r) ≥ µ(intE \ F r+ε) .

Letting ε ↓ 0, monotone convergence entails

lim inf
n→∞

nkP (a−1
n X ∈ E \ F r) ≥ µ(intE \ F r) = µ(E \ F r)

as E \ F r is a µ-continuity set. Finally, we have obtained

µ(B) ≤ lim inf
n→∞

nkP (a−1
n X ∈ B) ≤ lim sup

n→∞
nkP (a−1

n X ∈ B) = µ(B) ,

proving the desired convergence nkP (a−1
n X ∈ ·) −→ µ(·) in M(E \ F ).

7.2. Proof of Theorem 2.5. The proof of Theorem 2.5 requires a good understanding of
the distance to the cone Nk in N . The following lemma generalizes inequalities (3.3) and
(3.4) in Dombry et al. (2018). It characterizes the distance of a point measure π ∈ N to
the cone Nk. For π =

∑
i≥1 ε(ti,xi), we define ‖π‖k+1 the (k + 1)-th largest distance within

{dX (0, xi), i ≥ 1}, with the convention ‖π‖k+1 = 0 if π has less than k points.

Lemma 7.1. Let ρ be the distance defined in (2.1) and let π ∈ N . Then, for all k ≥ 0,

1

2
(‖π‖k+1 ∧ 1) ≤ ρ(π,Nk) ≤ ‖π‖k+1.

Proof of Lemma 7.1. For π ∈ N , let r0 = ‖π‖k+1 and denote π0 the restriction of π to
{(t, x) ∈ E : dX (0, x) > r0}. By definition of r0, π0 has at most k points, that is π ∈ Nk. For
all r > r0, the restrictions πr and πr0 coincide so that ρr(πr, πr0) = 0 and

ρ(π, π0) =

∫ ∞
0
{ρr(πr, πr0) ∧ 1} e−rdr ≤

∫ r0

0
e−rdr ≤ r0 = ‖π‖k+1.

Since π0 ∈ Nk, ρ(π,Nk) ≤ ‖π‖k+1, proving the right-hand side of the inequality.
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On the other hand, for r < r0, the restriction πr has at least k + 1 points. If ψ ∈ Nk, that
is ψ is a point measure on E \ F with at most k points, then the restrictions πr and ψ(r) do
not have the same number of points. Then, a straightforward application of Lemma B.1 in
Dombry et al., 2018 leads to

ρr(π
r, ψr) ≥ |π(E \ F r)− ψ(E \ F r)| ≥ 1.

We deduce
ρ(π, ψ) ≥

∫ r0

0
e−rdr = 1− e−‖π‖k+1 ≥ 1

2
(‖π‖k+1 ∧ 1)

and, ψ ∈ Nk being arbitrary,

ρ(π,Nk) ≥
1

2
(‖π‖k+1 ∧ 1) .

This proves the left-hand side of the inequality and concludes the proof.

Proof of Theorem 2.5. The proof of Theorem 2.5 is very similar to the proof of Theo-
rem A.1 in Dombry et al. (2018), except that Equations (3.3) and (3.4) are replaced here by
Lemma 7.1. This implies, in the same way as Equation (A1) in Dombry et al. (2018, Theorem
A.1),

(7.1) (N \N r
k ) ⊂ {π ∈ N : ‖π‖k+1 > r} ⊂ (N \N r/2

k ), r ≤ 1.

We note also that

{π ∈ N : ‖π‖k+1 > r} = {π ∈ N : π(E \ F r) ≥ k + 1}.

According to the Portmanteau Theorem for M-convergence (Lindskog et al., 2014, Theorem
2.1), the convergence µ∗n → µ∗ in M(N \Nk) is equivalent to the convergence of the restrictions
µ∗rin → µ∗ri in Mb(N \ N ri

k ) for each i, for some sequence ri ↓ 0. Using Equation (7.1), it is
more convenient to consider restrictions µ̃∗rin , µ̃∗ri to the subsets {π(E \ F ri) ≥ k + 1} rather
than restrictions µ∗rin , µ∗ri to the subsets N \N ri

k . The convergence µ∗n → µ∗ in M(N \Nk) is
hence equivalent to the weak convergence of µ̃∗rin → µ∗ri for each i, for some sequence ri ↓ 0.
We then appeal to the characterization of weak convergence in terms of finite-dimensional
distributions or Laplace functional (Zhao, 2016, Theorem 3.10 and Corollary 3.11).

In the remainder of the proof, we simply point out some differences with respect to the
proof of Theorem A.1 in Dombry et al. (2018).
Proof of (i)⇒ (ii): For p ≥ 1, let A1, . . . , Ap ∈ B∗µ and m1, . . . ,mp ∈ N such that

∑p
i=1mi ≥

k+1. Define the event A := {π(Ai) = mi, 1 ≤ i ≤ p}. For r small enough, A1, . . . , Ap ∈ E \F r
and we have

A ⊂ {π : π(E \ F r) ≥ k + 1} ⊂ N \ N r
k ,

whence µ∗rn (A) = µ∗n(A) and µ∗r(A) = µ∗(A). The convergence µ∗n → µ∗ in M(N \ Nk)
implies the weak convergence µ∗rn → µ∗r for small r, which implies according to Zhao (2016)
the finite-dimensional convergence

µ∗n(A) = µ∗rn (A) −→ µ∗r(A) = µ∗(A).
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This proves (ii).
Proof of (ii)⇒ (iii): By Lemma 7.1, (ii) implies the finite-dimensional convergence µ̃∗rn

fidi−→ µ̃∗r

for all r > 0 such that {π ∈ N : π(E \ F r) ≥ k + 1} ∈ Bµ∗ . Let ri → 0 be a sequence of
such continuity points. From Zhao (2016), convergence of the finite-dimensional distribution
is equivalent to convergence of the Laplace functional∫

N
e−π(f)µ̃∗rin (dπ) −→

∫
N

e−π(f)µ̃∗ri(dπ).

This proves (iii).
Proof of (iii) ⇒ (i): Similar to Dombry et al. (2018) where the approximating functions can
be taken bounded Lipschitz.
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