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High temperature annealing of thick (40–100 nm) Ge layers deposited on Si(100) at �400 �C leads

to the formation of continuous films prior to their transformation into porous-like films due to

dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by

dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL)

spectroscopies. The Raman data reveal that the transformation from the continuous to porous film

proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and

changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si sub-

strate occupying interstitial sites and providing thereby the compensation of the lattice mismatch.

Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL

peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since

annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can

tentatively associate the observed PL peak to the well-known dislocation-related D1 band.

Published by AIP Publishing. https://doi.org/10.1063/1.5009720

I. INTRODUCTION

Solid-state dewetting is a process that can drastically

modify the properties of surface layers. It is widely used for

the formation of various metal layer surface morpholo-

gies.1–3 The dewetting of SiGe layers was observed recently

on both Si(111)4 and Si(100)5,6 substrates. A detailed investi-

gation of the dewetting process would be thus highly desir-

able both from the scientific and applied viewpoints. SiGe

heterostructures are usually grown far from equilibrium,

thereby producing strained structures due to the Si-Ge lattice

mismatch. The main processes that release the strain under

post-growth annealing are Si-Ge interdiffusion and disloca-

tion nucleation.7,8 In the case of dewetting, strain energy

minimization additionally occurs through the formation of Si

substrate areas that are not covered with SiGe films, thus

reducing the size of interface areas between the deposited

film and the substrate.9

The dewetting in a Si-Ge system can induce the forma-

tion of submicron- and micron-sized SiGe particles on Si

substrates,6 which can serve as dielectric particles with a

refractive index n> 3. The light scattering on such particles

leads to the generation of electrical and magnetic resonances,

according to Mie theory, when the relation d� k/n between

the particle size (d) and the wavelength of light (k) is satis-

fied.10,11 This leads to an essential redistribution of the

electromagnetic field around the particles. In addition, the

particles can work as lenses for far-field light focusing.12

Due to their properties, the introduction of Si or Ge Mie-

resonance particle arrays can improve the performance of

photodetectors, light sources, solar cells, and sensors.13 The

other result of dewetting is the formation of surface morphol-

ogies more complicated than particles, such as nets of ridges,

which can substantially enhance the light absorption.

Although the dewetting in the Si-Ge system leads to a spon-

taneous change in the surface morphology, being caused

only by the total energy minimization, it can, nevertheless,

be controlled. This can occur through the introduction of

nucleation centers to form a new surface morphology using

patterned substrates.14 The dewetting control can ensure the

quasi-random photonic nanostructure formation, for exam-

ple, similar to those obtained in multistep technological pro-

cesses using wrinkle lithography.15

The dewetting of a Ge layer deposited on Si substrates

occurs at temperatures above 750 �C. It can be realized in

two approaches. In one of them, Ge is deposited on Si surfa-

ces straight at the high temperatures. It leads to the formation

of different surface morphologies depending on the surface

crystallographic orientation. The appearance of structures

such as the net of ridges was observed on Si(111),4 whereas

compact individual islands were formed on Si(100).16 In the

other approach, about 30–100 nm thick Ge layers, initially

deposited on Si(100) or Si(111) surfaces at relatively low tem-

peratures (�400 �C), were subsequently annealed at higher

temperatures. On Si(111), it leads to the formation of ridge-

like structures, and it occurs suddenly on the whole surface.4

On Si(100), a continuous film formation is observed at the ini-

tial stage of high temperature annealing, and then, it slowly

transforms into a porous film. The transformation occurs

through a slow movement of the boundary between the con-

tinuous and porous film areas.5 As a result, both continuous

and porous film areas can exist simultaneously on a same sam-

ple. In this work, we study the changes in the film properties

along a line crossing the boundary between continuous and

porous regions, using both Raman and photoluminescence
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(PL) spectroscopies. We further discuss the reason for the

compressive stress appearance in the Si substrate and the ori-

gin of the photoluminescence band formation in Si/Ge hetero-

structures after high-temperature annealing.

II. EXPERIMENTAL DETAILS

The growth experiments were carried out in an

ultrahigh-vacuum chamber with a base pressure of about

1� 10�10 Torr. A 10� 2� 0.3 mm3 sample was cut from an

n-type Si(100) wafer with a miscut angle of <100 and a resis-

tivity of 5–20 X cm. Clean Si surfaces were prepared by

flash direct-current heating at 1250–1270 �C. A Knudsen cell

with a BN crucible was used for the Ge deposition at a rate

up to 1.0 nm/min. The Ge growth on Si(100) surfaces was

carried out at 400 �C. The post-growth sample annealing was

performed in situ at 850 �C. The sample temperature was

measured using an IMPAC IGA 12 pyrometer. After the

removal of samples from the growth chamber, their morphol-

ogy was analyzed by scanning electron microscopy (SEM)

using a Pioneer microscope manufactured by Raith. The

chemical composition of the surface layers was measured

using the energy-dispersive X-ray spectroscopy (EDX) of

SEM SU8220 made by Hitachi. To obtain a better spatial

resolution in EDX measurements of chemical compositions

along a certain line along a sample cleavage, the incident e-

beam energy was reduced to 4 keV. The use of samples with

sharp Si/Ge interfaces showed that this gives 95% changes in

the chemical composition within the 50 nm length across the

interface.

The Raman spectra were measured at room temperature

in the backscattering geometry using a T64000 Horiba Jobin

Yvon spectrometer with the excitation by an Arþ laser with

the wavelength of 514.5 nm.17 The PL was excited by a laser

diode emitting at 488 nm and detected by a multichannel

InGaAs based detector, which can detect light up to 2100 nm

(i.e., 0.6 eV). The laser beam, focused on the sample surface,

was about 1.3 mm in diameter, and its power varied between

0.5 and 50 mW. A cryostat with a temperature stability

60.5 K was used for the low-temperature PL study. PL

measurements were performed for sample temperatures in

the range from 10 to 150 K. A detailed description of the

experimental setup is given elsewhere.18

III. SURFACE MORPHOLOGY AND Si-Ge
COMPOSITION

The surface morphology of the Ge layers grown on

Si(100) at 400 �C strongly depends on the deposited Ge

amount. For Ge thicknesses larger than 30 nm, the morphol-

ogy is composed of continuous ridges that are formed as a

result of the coalescence of large dome-like islands.5 After

60 nm Ge deposition, the surface morphology still exhibits

uncovered Si(100) areas. Such surface morphologies are

thermally unstable due to the lattice strain between the areas

with deposited Ge and the underlying Si(100) substrate.

Annealing of 60 nm thick Ge films at temperatures as high as

850 �C leads to the formation of two areas with different sur-

face morphologies, the sizes of which depend on the anneal-

ing time and the temperature. During the first few minutes,

the annealing causes a reduction of the surface roughness

leading to an almost continuous film, as shown in Fig. 1(a).

A further annealing initiates the transformation of the contin-

uous film into a porous-like film [Fig. 1(b)]. The transforma-

tion occurs slowly starting preferentially at surface defects

and sample edges. As a result, two different surface mor-

phologies (flat and porous) can coexist on the sample sur-

face.5 Moreover, the cross-sectional SEM images [see the

insets of Figs. 1(a) and 1(b)] show that the interface between

the Ge film and the Si substrate remains sharp for both sur-

face morphologies. In the inset to Fig. 1(b), one can recog-

nize that the pores are extending into the Si substrate, well

below the interface between the Ge film and the Si(001)

substrate.

We then perform the cross-sectional measurements of the

Si-Ge composition using EDX. The composition profiles

were measured along a line crossing the interface between the

substrate and the grown films. The obtained results are pre-

sented in Figs. 2(a) and 2(b) for the continuous film and in

Figs. 2(c) and 2(d) for the porous film. For the continuous

film [Figs. 2(a) and 2(b)], the Si-Ge composition does not

vary abruptly across the interface. Instead, the interface is

strongly interdiffused having a width of about 10–30 nm. Our

measurements further show that the continuous film is alloyed

with an average Si content of about 50%. After the continuous

film transformation into the porous one [Figs. 2(c) and 2(d)],

the compositional changes are less pronounced across the

FIG. 1. SEM images of the sample surfaces after 60 nm Ge deposition on

Si(100) at 400 �C followed by a subsequent annealing at 850 �C for 60 min.

The top view (and cross-sectional view in the insets) of the continuous SiGe

film area (a) and of the porous SiGe film area (b). The white arrows in the

insets show the position of the interface.
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interface, the Ge content reaches only 20%. It should be noted

that the latter value was measured for an area located far from

the boundary between the continuous and porous films, con-

trary to that used for the Raman spectroscopy measurement

described below.

IV. RAMAN SPECTROSCOPY CHARACTERIZATION

The Raman spectra of a 60 nm thick Ge film deposited

onto Si(001) at 400 �C prior to (spectrum 1) and after the

annealing at 850 �C for 1 h are shown in Fig. 3. Spectrum 2

was measured on a continuous film area, while spectrum 3

was measured on a porous film area. Spectrum 1 is character-

ized by two main peaks at 301.6 and 520.6 cm�1, which can

be associated with the Raman peaks of bulk crystalline Ge

and Si, respectively (Fig. 3). The growth temperature of

400 �C is too low to initiate the Si-Ge intermixing, i.e., the

possible Raman peak shifts can be produced by the strain

due to the Si-Ge lattice mismatch rather than by the Si-Ge

intermixing. The weak peak at 390 cm�1, which is associated

with the Si-Ge vibration mode, probably, originates from the

Si/Ge interface.19,20 However, the Si-Si-related vibration

band being observed at 520.5–520.6 cm�1 indicates that the

Si in the open areas of the Si substrate, which are located

between the ridges of the deposited Ge films, is unstrained,

since this band position is typical of unstrained Si. As for the

peak from the Ge-Ge vibration band, its intensity and spectral

position are predominantly determined by the top part of the

deposited Ge layer, since the penetration depth is about 19 nm

for the laser beam with the 514.5 nm wavelength. The Ge-Ge

vibration band is observed at 301.6 cm�1, which is close to its

known position for unstrained Ge (�301.3 cm�1).21,22

Significant changes in the Raman spectra were observed

after the sample annealing at 850 �C. In particular, the inten-

sity of the Ge-Si vibration mode located between 350 cm�1

and 450 cm�1 strongly increases for both the continuous and

the porous film areas (spectra 2 and 3 in Fig. 3). This indicates

that a strong Si-Ge intermixing takes place during the anneal-

ing and, thus, it confirms the EDX results shown in Fig. 2(b).

To highlight the changes in the continuous film during its

transformation into the porous film, a set of the Raman spectra

were measured at 11 points along a line crossing the boundary

between the continuous and the porous film areas [Fig. 4(a)].

The Ge-Ge and Ge-Si mode intensity significantly decreased,

while the Si-Si mode intensity increased as a function of the

distance across the boundary [Fig. 4(b)]. This behavior is

expected, since the pores are protruding into the Si substrate

[Fig. 1(b)], leading to Si areas which are not covered with

SiGe layers. It should be noted that, despite the very short

penetration depth of the laser beam for Ge, it is about 760 nm

for Si. The continuous SiGe film obtained after annealing at

850 �C has a Ge content of �0.55 [Fig. 2(b)]. This clarifies

the possibility of the Si substrate-related peak observation in

the Raman spectra for the continuous layers.

The dependencies presented in Fig. 4 show that the

main changes in the surface layer composition occur within

a width of about 100 lm. After the formation of the porous

film area, slower changes continue to occur under annealing.

In particular, the decrease in the intensity of the Si-Si mode,

related to the substrate, is observed [Fig. 4(b)]. This indicates

that the annealing causes a slow reduction of the pore sizes

and that the surface morphology gradually becomes smooth.

Smoothing is accompanied by the Si-Ge intermixing as

FIG. 2. EDX data for the continuous and porous films of the same sample

shown in Fig. 1. The atomic composition was obtained along the lines A and

B shown on the SEM images (a) and (c) for the continuous (b) and porous

(d) films, respectively.

FIG. 3. Raman spectra for the 60 nm thick Ge film deposited on a Si(100)

substrate at 400 �C (spectrum 1), and the similar prepared sample after the

annealing at 850 �C for 30 min. Spectra 2 and 3 are measured from continu-

ous and porous SiGe film areas, respectively.
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shown by the evolution of the Ge-Ge Raman peak position

[Fig. 4(c)].

The Raman data allow us to obtain the Si-Ge composition

and strain evolution caused by the continuous film transforma-

tion into the porous one. We will use linear approximations

between the Raman peak shifts from one side and Ge content

x and strain e from the other side. Our analysis showed that

reasonable results can be obtained using the following param-

eters in the linear approximation:21,23

xSS ¼ 520:6� 70x� 830e; (1a)

xSG ¼ 400:5þ 12x� 575e; (1b)

xGG ¼ 282:2þ 19:4x� 385e; (1c)

where xSS, xSG, and xGG are the Raman peak positions of

the Si-Si, Si-Ge, and Ge-Ge vibration modes. The parameters

in Eq. (1) are similar to those derived in Refs. 19, 21, and

23–25 with the corrected positions of the Si-Si and Ge-Ge

peaks of bulk Si and Ge measured using our equipment.

Equations (1a) and (1c) provide good approximations for a

wide range of x values, whereas the linear approximation for

xSG is generally used for 0< x< 0.5. From Eqs. (1a) and

(1b), and from Eqs. (1b) and (1c), the following expressions

for x can be derived:

xSSSG ¼
1:44� ðxSG � 400:5Þ � ðxSS � 520:6Þ

87:3
; (2a)

xSGGG ¼
1:49� ðxGG � 282:2Þ � ðxSG � 400:5Þ

16:9
; (2b)

respectively. The values of x, calculated from the experimen-

tal data using Eqs. (2a) and (2b), as a function of the distance

across the boundary between the continuous and porous films

are shown in Fig. 5(a). Assuming that the EDX spectroscopy

data are correct, Eq. (2a) better describes the x values for

x> 0.5. In the range x< 0.5, both Eqs. (2a) and (2b) give

similar results. The obtained x value for the porous film area

decreases during the porous film formation and its annealing.

It eventually reaches 0.2 after a longer annealing, which is

consistent with the Ge content determined in the porous area

far from the boundary using EDX spectroscopy.

The e values can be obtained using the calculated x val-

ues and Eq. (1a) written in the form

e ¼ 520:6� xSS � 70xSSSG

830
: (3)

According to Eq. (3), the obtained strain is positive (corre-

sponding to a compressive stress) in the continuous film

area. However, the strain becomes negative (corresponding

to a tensile stress) in the porous film area [Fig. 5(b)]. The Ge

films grown on Si substrates at temperatures close to 500 �C
normally undergo the compressive stress due to the lattice

mismatch between Si and Ge. Our results show that the con-

tinuous film remains compressive even after the annealing at

FIG. 4. Raman spectroscopy data

obtained at 11 points along the line

crossing the boundary between the

continuous film [left side of the photo-

graph (a)] and the porous SiGe film

(on the right side). The sample was

prepared by the annealing at 850 �C for

30 min of the 60 nm thick Ge film

deposited at 400 �C on a Si(100) sub-

strate. (a) The photograph of the

boundary on the surface with the prob-

ing laser beam in the center corre-

sponds to point 6. (b) The intensity of

the Raman peaks marked in the spectra

shown in Fig. 3, and (c) the Raman

shifts of Ge-Ge, Si-Ge, and Si-Si (of

the film) vibration bands as a function

of the distance across the boundary.

The continuous and porous film areas

are indicated in (b).
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850 �C. At such high temperatures, both Si-Ge intermixing

and dislocation nucleation at the interface reduce the strain

to a minimum value. The following film cooling to room

temperature can lead to the appearance of a tensile strain,

since Ge has a bigger thermal expansion coefficient than

Si.26,27 This can happen when the effect of thermal expan-

sion is greater than the remaining compressive stress caused

by the lattice mismatch. This can occur in the case of the

porous film formation leading to the appearance of the ten-

sile stress. A similar effect was observed by Zhao et al. after

annealing at 680 �C for 10 min of an initially weakly strained

Ge film on Si.27

The Si-Si vibration band related to the substrate down-

shifts by about Dx � 0.2 cm�1 when the probing area moves

along the continuous film to the boundary with the porous

film (Fig. 6). This shift may be caused by the lattice strain.

Using the relation

eS ¼
�ðxSS � 520:6Þ

830
(4)

derived from Eq. (1a) with x¼ 0, we obtain a compressive

stress in the Si substrate below the continuous film. This is

quite unusual, since the continuous film is also compressive.

The Si-Si Raman peak position is up-shifted when the mea-

surement is performed in the porous film area. This leads to

the appearance of a tensile stress in the upper part of the Si

substrate.28,29 In the case of the porous film, the main contri-

bution in the Raman peak originates from the bare Si areas

located in the pores, since the probing laser beam penetration

depth is limited. This means that the Si-Si peak, related to the

substrate, characterizes the status of Si located only in pores.

The Si in pores can be tensely strained when lying under a

compressive SiGe film. Indeed, calculations have shown that

if Si, lying under a Ge island, is tensely strained, then Si, lying

behind the island edge, is compressively strained.30 Thus, for

both continuous and porous films, the Si substrate areas are

probably compressively strained when located under the SiGe

film areas, as schematically illustrated in Fig. 7.

The appearance of a compressive stress after high-

temperature annealing in the Si substrate, when being located

under a SiGe film, is suggested to have the following origin.

The Ge atom diffusion into the Si substrate predominantly

occurs via interstitial lattice sites.31,32 The Ge atom introduc-

tion in the interstitial sites of the Si substrate can produce a

compressive stress among neighboring Si atoms. In this case, a

substantially lower Ge content is required to ensure the lattice

mismatch compensation than in case of the Ge atoms located

at the lattice sites. This is consistent with the formation of

rather sharp Si/SiGe interfaces, which indicates, in particular,

that the interdiffusion predominantly occurs by means of Si dif-

fusion from the substrate into the SiGe film, whereas an essen-

tially smaller amount of Ge atoms penetrates the Si substrate.

V. PL PROPERTIES

The low temperature PL spectra measured on both con-

tinuous and porous film areas are shown in Fig. 8. A rather

FIG. 5. Ge content x and strain e obtained from the Raman data presented in

Fig. 4(c) as a function of the distance across the boundary between the con-

tinuous and porous films. The dotted lines separate the area of the data

obtained for the continuous film, the intermediate area and the porous film.

FIG. 6. Raman shift of the Si-Si vibration band (related to the substrate) on

the left scale and corresponding strain on the right scale as a function of the

distance across the boundary between the continuous and porous films. The

dotted lines separate the area of the data obtained for the continuous film,

the intermediate area, and the porous film.

FIG. 7. Schematic illustration of the strain distribution in thin films with

continuous (a) and porous (b) areas.
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broad PL band is observed ranging from about 0.6 eV to

0.9 eV in both cases. The absence of characteristic no-phonon

(NP) and TO phonon peaks, which are typically observed for

strained SiGe films,33–35 indicates that the films are

relaxed.35,36 This is in agreement with the Raman data that

showed the existence of only a weak strain in both films [Fig.

5(b)]. Therefore, the observed PL may be associated with

deep energy levels created by the crystal defects, such as

threading dislocations, which usually produce the so-called D

bands in Si.37,38 The spectral position of the D bands in the

PL spectra depends on the preparation conditions of the SiGe

films and their composition.33,34

The continuous SiGe film exhibits a broad PL peak cen-

tered at 0.7 eV [Fig. 8(a)]. This peak is distant from �0.973 eV,

which could be expected for the no-phonon PL peak position

in the films with the nominal Si0.4Ge0.6 composition.39 The

PL spectra shown in Fig. 8(a) are similar to those of dislo-

cated Si containing only the D1 line.37,38,40,41 The similarity

suggests that the observed PL peak also corresponds to the

D1 line originating from the SiGe layer.

The PL peak of the porous film area is significantly blue-

shifted with respect to the PL peak of the continuous film

area, and it reaches a maximum at �0.8 eV [Fig. 8(b)]. The

difference of �0.1 eV in the PL peak positions is about the

same as the difference in the bandgaps between Si0.4Ge0.6 and

Si0.8Ge0.2 alloys. The complex PL peak shape of the porous

film area suggests that it can be deconvoluted in two peaks.

The two Lorentzian line-shape fitting gave their location at

0.775 and 0.816 eV. The last value corresponds to the energy

of the dislocation-related D1 band of crystalline Si,37,38 and,

therefore, it can be attributed to the dislocations in the Si sub-

strate, which may propagate from the Si/Si0.8Ge0.2 interface

down to the Si substrate. The PL peak at 0.775 eV can origi-

nate from the dislocation-related D1 band of the porous film,

since its position in SiGe layers depends on the preparation

conditions.33,34 It is worth mentioning that the PL intensity of

the porous film area is about two times smaller than that of

the continuous film area. This can be the result of a more

intense excited carrier recombination on the surface due to a

larger area of porous film surfaces.35

Since the PL intensity from the SiGe layers is rather

weak, the pump power PL dependences were obtained for the

relatively strong pump-power densities (see inset of Fig. 8).

At such excitation conditions, the PL intensities (IPL) demon-

strate sublinear dependences on the excitation power. The PL

intensity is determined by

IPLðWÞ / np; (5)

where W is the pump power, n and p are the concentrations

of the excited electrons and holes. The observed weak PL

intensity indicates that the carrier concentration is governed

by the rate R(n,p) of nonradiative recombination by means of

Auger processes which involve three charge carriers42,43

Rðn; pÞ � C1n2pþ C2np2; (6)

where C1 and C2 are the rate constants of the Auger pro-

cesses. Since R(n,p) / W, and assuming that n and p have

the same dependence on W, from Eq. (6) we obtain n, p
/W1/3, and, hence, IPL(W) / W2/3 according to relation (5).

In the range of high excitation conditions, the multiphoton

absorption becomes essential and leads to the excitation

dependences weaker than n, p / W1/3 and that was observed

for charge carriers in Si.44 This results in IPL(W) weaker than

IPL(W) /W2/3, which is obtained here for the high excitation

conditions of the SiGe layers (Fig. 8).

The porous area formation leads to a decrease of the PL

intensity and to an increase in the power exponent m of the

PL intensity dependence on the pump power (see inset of

Fig. 8). These changes can be associated with an increase in

the surface recombination rate, which causes a decrease in

the free carrier concentration. Consequently, the PL intensity

decreases, as observed in Fig. 8(b), and the exponent m of

the PL intensity dependence on the pump power increases.

The PL intensity of the continuous and porous films was

measured as a function of the sample temperature for the

constant excitation power of 30 mW. The obtained tempera-

ture behavior (not shown here) was similar to that of the

dislocation-related PL from Si caused by thermal quench-

ing.45,46 The PL from the SiGe films almost quenches for

temperatures higher than 150 K.

Dislocated Si exhibits several dislocation-related PL

peaks, (D1-D2, in particular) if the crystal defects are intro-

duced in Si using mechanical treatment37,38 or electron,47,48

FIG. 8. Pump power dependences of the PL spectra of the continuous (a)

and porous (b) film areas measured at about 10 K. The PL peak intensity as a

function of the laser pump power for the continuous and porous film areas is

shown in the inset. The arrows show the spectral position of the no-phonon

peaks for SiGe with compositions Si0.4Ge0.6 and Si0.8Ge0.2 in (a) and (b),

respectively. Arrows 1 and 2 in (b) show the positions of the D1 PL band

(0.816 eV) of Si and of Si0.8Ge0.2 (0.775 eV), respectively, obtained accord-

ing to our two Lorentzian line-shape fitting. The sensitivity limit of the infra-

red detector is about 0.6 eV.
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as well as ion49 beam irradiations. However, if the disloca-

tions appear as a result of thermal treatment of Si/Ge struc-

tures, this leads to the predominant formation of only one PL

peak at about 0.8 eV.40,41 This peak is associated with the D1

dislocation-related band in Si. The PL results obtained here

for the porous SiGe film area also show the formation of the

dislocation-related D1 band, which appears in the Si sub-

strate, as well as in the Si0.8Ge0.2 porous film area. The fact

that only one dislocation-related peak dominates in the PL

spectra of SiGe layers, initiated by high-temperature anneal-

ing, is likely to be a common feature of the Si/Ge hetero-

structures. This suggests that the corresponding deep energy

levels in Si and SiGe can be the result of the presence of Ge

atoms in the interstitial lattice sites near the threading dislo-

cations. This is in agreement with a compressive stress in the

Si substrate, which may be due to the Ge atoms located in

the interstitial lattice sites in Si.

VI. CONCLUSION

We have shown that the annealing of SiGe films at

850 �C leads to a gradual displacement of the boundary

between continuous and porous film areas. The width of the

boundary is about 100 lm. Both EDX and Raman spectros-

copy data showed that the boundary displacement is accom-

panied by a decrease in the Ge content from about 60% to

20% when moving from the continuous to the porous film

area. This is further accompanied by a change in the stress

from a compressive in the continuous film area to a tensile in

the porous film area. For the Si substrate, instead of the ten-

sile stress, which should be expected due to the Si-Ge lattice

mismatch, the annealing at 850 �C results in the appearance

of a compressive stress. It is suggested that this occurs due to

the Ge atom occupancy of the interstitial lattice sites in the

Si substrate. The PL with the photon energies �0.3 eV

smaller than the SiGe bandgap is observed for both continu-

ous and porous film areas. This PL can be associated with

deep energy levels in SiGe caused by the crystal defects,

such as threading dislocations. The PL spectra indicate that

the presence of Ge in Si, as well as in SiGe, after annealing

produces preferably only one type of radiative recombination

centers, such as the D1 dislocation-related PL band. In agree-

ment with the previous suggestion, these centers can be asso-

ciated with the Ge atoms located at interstitial lattice sites

near dislocation cores.
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