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In this paper, the optical properties and the growth mechanism of Au/SiO2 metal-insulator films

(MIFs) are investigated by combining ellipsometry and transmission electron microscopy. The

ellipsometric measurements, analyzed by using effective medium theories, show that the growth

mechanism involves a Volmer-Weber growth mode while the morphology and the optical proper-

ties of Au/SiO2 MIFs are directly related to the percolation of the Au nanostructures. Indeed, below

the percolation threshold of Au, the MIFs consist of ellipsoidal Au inclusions embedded in a SiO2

matrix. These insulating films present anisotropic plasmonic properties, attributed to the asymmet-

ric interactions between nanaoparticles (NPs), which can be modeled according to the interacted

shape distributed nanoparticle effective medium theory. At the percolation threshold of Au, an

insulator-to-metal transition is observed. The MIFs simultaneously exhibit plasmonic and metallic

optical properties, which can be described by the Bruggeman theory. The density of free electrons

increases and the MIFs become more and more conductive as the Au volume fraction increases.

We also demonstrate that for a high Au volume fraction, Bruggeman and Maxwell Garnett theories

converge toward the same results, suggesting that the film is composed of isolated SiO2 inclusion

embedded in a gold matrix. Published by AIP Publishing. https://doi.org/10.1063/1.5003302

I. INTRODUCTION

Thin films, composed of a metal-insulator mixture, exhibit

unique optical and electrical properties that deviate from those

of the bulk metals.1 Indeed, depending on their composition,

these metal-insulator films (MIFs) can have metallic or insulat-

ing behavior.2–6 Moreover, as reported by several authors,

MIFs can exhibit strong plasmonic effects7–10 and local elec-

tric field enhancement.11–13 Therefore, they can be considered

as a building block for nonlinear materials,14,15 new metamate-

rial devices,16 plasmonic sensors,17–19 or transparent screens.20

Usually, MIFs are characterized by electrical conductiv-

ity or transmission spectroscopy measurements. However,

conductivity measurements cannot be made for MIFs

integrated into devices such as a metallic film sandwiched

between two insulating layers. In addition, due to their low

transmission coefficient, transmission spectroscopy fails to

characterize MIFs when their thickness and their volume

fraction are too high.

Spectroscopic ellipsometry is a non-destructive indirect

optical characterization tool, which is highly sensitive to the

optical properties of thin films. Ellipsometry was recently

exploited to monitor the nucleation of silver or gold NPs on

a surface,21,22 the gradient of volume fraction of silver nano-

particles (NPs) in a silica film,23 and the percolation of gold

or silver thin films.2,24 As ellipsometry is an indirect charac-

terization, a physical model, which takes into account the

optical properties of the film, must be established to exploit

the ellipsometric data. H€ovel et al.25 have demonstrated that

close to the percolation threshold, the dielectric function of

gold films is a sum of Drude- and Lorentz-terms, which

describe the contribution of free electrons and the plasmon

band, respectively. However, as pointed out by Lončarić

et al.,26 this dielectric function requires the determination of

a large number of free parameters. This leads to erroneous

and unphysical solutions, which come from the correlations

between the film thickness and dielectric function. To

address this issue, effective medium theories1 can be used to

describe the optical properties of MIFs with a limited num-

ber of free parameters. However, several effective medium

theories have been developed depending on the morphology

of the film. The Bergman effective medium theory is based

on the determination of the spectral representation function

(SRF) which depends on a large number of parameters such

as the interactions between NPs or the NP size and shape dis-

tributions.27 However, this multivariate dependence makes

unclear the interpretation of the SRF. The Maxwell Garnett

theory (MG),28 which is based on the Lorentz local field, is

often used to predict the plasmon band of monodispersed

spherical NPs embedded in a homogeneous matrix.

However, this theory fails to model the optical properties of

real materials composed of NPs distributed in size and shape.

Several attempts have been made to date to introduce the

effects of nanoparticle size29 and shape distributions in the

effective medium theory.30–34 These theories only consider

well-defined NPs and fail to describe the optical properties

of the percolated and interconnected metallic network. The

Bruggeman theory [Bruggeman effective medium approxi-

mation (BEMA)]1 avoids this problem by treating the con-

stituents symmetrically. The BEMA was previously used

to simulate the optical properties of the nanoporous gold

network.35 However, according to Yagil et al.,36 the BEMA

does not accurately described the optical properties of MIFs
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close to their percolation threshold. Thus, the choice of the

effective medium theory does not reach a consensus yet.

In this paper, the optical properties and the growth

mechanism of SiO2/Au films are investigated by combining

ellipsometry and transmission electron microscopy (TEM).

The growth of these MIFs is interpreted according to a

Volmer-Weber growth mechanism followed by a Frank-Van

der Merwe growth mode. The ellipsometric spectra are ana-

lyzed by using three effective medium theories: the inter-

acted shape distributed nanoparticle effective medium theory

(ISDEMT), the MG theory, and the BEMA theory. We dem-

onstrate that the choice of the effective medium theory

depends on the volume fraction of Au. This behavior is inter-

preted in terms of percolation of the discontinuous metallic

network. Indeed, beyond the percolation threshold, the opti-

cal properties of MIFs are well reproduced by the ISDEMT

theory. These MIFs exhibit anisotropic plasmonic properties,

which are mainly influenced by the NP shape distribution

and the anisotropic interaction between NPs. At the percola-

tion, threshold, which occurs for the Au volume fraction esti-

mated at 36%, an insulator-to-metal transition is observed.

The MIFs simultaneously exhibit plasmonic and metallic

optical properties, which can be described by the BEMA the-

ory. However, for a higher concentration than the percolation

threshold of SiO2, the BEMA and the MG theories converge

toward the same results. Indeed, these MIFs can be view as a

SiO2 inclusion in the Au matrix.

II. EXPERIMENTAL SECTION

MIF films were prepared by successive evaporation of

fused silica performed by an electron-beam gun and thermal

evaporation of Au from a tungsten thermal cell. With an

acceleration voltage equal to 10 kV and an electronic current

equal to 15 mA, the power of the electron beam gun was

150 W to evaporate the SiO2 powder. The intensity of the

current through the tungsten boat was 140 A to evaporate the

Au grains. The pressure is lower than 10�6 Torr during the

evaporation process, the ultimate vacuum of the evaporation

chamber being 10�8 Torr. The deposition rate is controlled

by a quartz microbalance system and is equal to 0.1 nm s�1

for SiO2 and 0.05 nm s�1 for Au. The (100) silicon substrates

were maintained at 100 �C.

The multilayer structure was studied by transmission

electron microscopy (TEM), with a Philips CM200 micro-

scope. The acceleration voltage was 200 kV and bright field

imaging was used to get the images. By using a microcleav-

age technique, we collected some fragments on an electron

microscope grid. The observation of the sample in the cross

section visually confirms the modulation.

Standard ellipsometric measurements are performed in

air at room temperature using a phase-modulated ellipsome-

ter (UVISEL Horiba). The measurements are recorded in the

0.6–4.7 eV spectral range at four angles of incidence: 60�,
65�, 70�, and 75�. Ellipsometry measures the changes in the

polarization state between the incident and reflected light on

the samples. The measured ellipsometric angles (w, D) are

related to the ratio of the Fresnel reflection coefficients of

the sample, rp and rs, of p-polarized and s-polarized light,

respectively,

rp

rs
¼ tan W eiD: (1)

Phase-modulated ellipsometer measures two parameters,

Is and Ic, which are related to the ellipsometric angles W and

D by the following equations:

Is ¼ sin 2W sin D; (2)

Ic ¼ sin 2W cos D: (3)

III. THEORY

A. Maxwell Garnett effective medium theory

The Maxwell Garnett effective medium theory (MG)28

describes the optical properties of an isotropic and homoge-

neous composite material, which consists of spherical mono-

dispersed nanoparticles embedded in a matrix. This material

is modeled as a homogeneous medium characterized by an

effective dielectric function eeff given by

eeff � em

eeff þ 2em
¼ f

enp � em

enp þ 2em
; (4)

where em and enp are the dielectric functions of the matrix

and the nanoparticles respectively, while f is the volume

fraction of NPs. The NP size must be smaller than the wave-

length to satisfy the dipolar approximation. In addition, the

interparticle distance must be sufficiently high to neglect the

interaction between nanoparticles.

B. Interacted shape distributed nanoparticle effective
medium theory (ISDEMT)

We consider a material composed of ellipsoidal nano-

particles distributed in shape and embedded in a matrix. The

optical properties of this composite material are described by

an effective dielectric tensor eeff½ �. The macroscopic polari-

zation P of the composite material is related to the macro-

scopic electric fields E

P ¼ e0 eeff½ � � emð ÞE; (5)

where e0 is the vacuum permittivity. By assuming that the

interparticle distance is large enough to use point dipole

approximation, the macroscopic polarization is also defined

as the total dipolar momentum pk of nanoparticles per unit

volume V

P ¼ 1

V

X
k

pk: (6)

The dipolar momentum pk of the NP k is calculated from the

polarizability tensor (ak) and the local electric field Eloc,k

applied on the NP k

pk ¼ e0emVk ak½ �Eloc;k; (7)
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where Vk is the volume of the NP k. In the following, we

assume an in-plane orientation of NPs. The polarizability

tensor of the nanoparticle k is given by

ak½ � ¼
cos hk � sin hk 0

sin hk cos hk 0

0 0 1

0
B@

1
CA

ak;1 0 0

0 ak;2 0

0 0 ak;3

0
B@

1
CA

�
cos hk sin hk 0

� sin hk cos hk 0

0 0 1

0
B@

1
CA; (8)

where hk is the angle which defines the in-plane orientation

of the ellipsoidal NP. The NP polarizability along the NP

axis l¼ 1, 2, 3 is given by

ak;l ¼
enp � em

em þ Lk;l enp � emð Þ
; (9)

where enp is the dielectric function of NPs. Lk;l is the depolar-

ization factor along the NP axis l. This parameter only

depends on the NP shape

Lk;l ¼
ak;1ak;2ak;3

2

�
ð1

0

dq

qþ ak;l
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ ak;1

2
� �

qþ ak;2
2

� �
qþ ak;3

2
� �q ;

(10)

where ak,l is the half length of the principal axes of the NP k.

The local electric field is the sum of the macroscopic electric

field E and the field produced by the other NPs Ei,k

Eloc;k ¼ Eþ
X

i
i 6¼ k

Ei;k: (11)

The second term of Eq. (11), which describes the dipolar

interactions between NPs, is given by

Ei;k ¼
1

e0em
Ai;kpi; (12)

with

Aik ¼
1

4prik
3

3x2
ik � 1 3xikyik 3xikzik

3xikyik 3y2
ik � 1 3yikzik

3xikzik 3yikzik 3z2
ik � 1

0
B@

1
CA; (13)

rik ¼ ri � rk is the vector, which links the NP i and the NP

k. rik is the norm of this vector while xik, yik, and zik are the

coordinates of the rik=rik unit vector.

We assume that NPs have a homogeneous in-plane orga-

nization. In other words, the NPs are exposed to the same

local field (Eloc ¼ Eloc;k), whose expression is deduced from

Eqs. (7), (11), and (12)

Eloc ¼ 1�
X

i
i 6¼ k

ViAi;k ai½ �
0
@

1
A
�1

E; (14)

where 1 is the 3� 3 identity matrix. The effective dielectric

tensor of the composite is obtained by combining Eqs. (5)

and (14)

eeff½ � ¼ em 1þ
X

k

Vk

V
ak½ � 1�

X
i

i 6¼ k

ViAi;k ai½ �
0
@

1
A
�1

0
B@

1
CA: (15)

This effective dielectric tensor takes into account the organi-

zation and the shape distribution of ellipsoidal NPs as well

as the dipolar interaction between them. In the case of isotro-

pic 3D materials composed of highly diluted monodisperse

spherical NPs, this equation is equivalent to the Maxwell

Garnett Equation (4).

C. Bruggeman theory

The Bruggeman effective medium approximation

(BEMA)1 describes the optical properties of the composite

medium, where inclusions and the host material share the

same roles. This model is often used when both media have

a similar volume fraction. The BEMA effective dielectric

function is determined by considering that the total dipole

moment of the effective medium equals to 0. The total dipole

moment is calculated in the framework of non-interacting

dipoles. The BEMA is based on the following equation:

0 ¼ fa
ea � eeff

fsea þ 1� fsð Þeeff
þ fb

eb � eeff

fseb þ 1� fsð Þeeff
; (16)

where ea and eb are the dielectric functions of the constitu-

ents while fa and fb are their volume fractions. fs is the

volume fraction corresponding to the percolation threshold

of materials. This equation is symmetric so, the role of the

matrix and the nanoparticles can be inverted.

IV. RESULTS AND DISCUSSION

Four MIFs denoted F1, F2, F3, and F4 are investigated.

These MIFs are composed of three layers deposited on a sili-

con substrate: a SiO2 top layer (L1), a SiO2/Au layer (L2),

and a SiO2 bottom layer (L3). The nominal thicknesses of

the Au layer of F1, F2, F3, and F4, determined by a quartz

microbalance system with the hypothesis of a density of

material equal to the density of the bulk material, were

estimated to be 2.8, 5.6, 11.2, and 22.4 nm, respectively,

whereas the SiO2 barrier thickness was maintained constant

and equal to 50 nm. The details of the F1 and F2 morphology

are obtained from transmission electron microscopy (TEM)

observations of the film surface [(e1, e2) plane] and cross sec-

tion [(e1, e3) plane] (Fig. 1). F1 is composed of a monolayer

of nonspherical Au inclusions sandwiched between two SiO2

layers. The thickness of the nanoparticle layer (L2) is esti-

mated at 12 nm 6 2 nm, while the thicknesses of the top (L1)

and the bottom (L2) SiO2 layers are 56 nm 6 2 nm and

52 nm 6 2 nm, respectively. The surface density of NPs is

about 50%. By assuming that this layer is composed of ellip-

soidal Au inclusions, which have the same size along the e3

axis, their volume fraction can be estimated at 33%.

Contrary to F1, the middle layer of F2 is composed of
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percolated Au nanostructures, which have a pseudodendritic

shape. The surface density of the nanostructure and the

thickness of this layer are estimated at 75% and 16 nm,

respectively. The fractal dimensions of F1 and F2, deter-

mined from the relationship between the perimeter and the

area of NPs,37 are estimated at 1.2 and 1.6, respectively. This

result suggests that F2 is composed of fractal nanostructures.

The distribution of the minimum and maximum appar-

ent Feret diameters of F1 NPs, defined as the smallest and

the longest dimensions of NPs in the (e1, e2) plane, are

shown in Fig. 2(a). These distributions are obtained from a

statistical analysis of 580 NPs. In the first approximation, the

distribution of the Feret diameters of NPs follows Gaussian

distributions centered at 9 nm and 14 nm, respectively. This

size is large enough to neglect the confinement effect, which

comes from the limitation of the mean free path of free

electrons by the NP surface. In addition, the nanoparticle

size is sufficiently small to model their optical properties by

using the quasistatic approximation. The apparent aspect

ratio distribution of F1 NPs in the (e1, e2) plane, shown in

Fig. 2(b), enables a quantitative estimation of the NP shape

distribution. In the following, the NP aspect ratio is defined

as the ratio between the minimum and maximum apparent

Feret diameters in the (e1, e2) plane. F1 NPs have a broad in-

plane aspect ratio distribution centered at 0.65 with a 0.2

standard deviation. As shown in Fig. 2(c), the distribution of

the angle h between e1 and the apparent major axis of the

NPs in the (e1, e2) plane confirms that nanoparticles are ran-

domly oriented in the (e1, e2) plane. To investigate the orga-

nization of NPs, we also calculate the two-dimensional pair

correlation function of NPs by using the following equation:

g rð Þ ¼ 1

2prr dr

1

Nnp � 1

XNnp

m¼1

nm rð Þ; (17)

where r is the surface density of NPs, while Nnp is the num-

ber of NPs in the system. nmðrÞ is the number of NPs con-

tained in the ring of radius r and thickness dr, centered on

the NP m. The two-dimensional pair correlation function of

NPs, shown in Fig. 2(d), can be assimilated to a step-like

function, suggesting that nanoparticles are homogeneously

distributed in the (e1, e2) plane. The interparticle distance is

estimated from the g(r) function at 14 nm. Indeed, a broad

peak is observed for this distance. The absence of a second

peak in the two-dimensional pair correlation function con-

firms that NPs are not organized in the (e1, e2) plane.

Spectroscopic ellipsometric measurements performed

on F1, F2, F3, and F4 are shown in Figs. 3 and 4. The ellip-

sometric spectra are sample dependent, confirming that

ellipsometry is sufficiently sensitive to detect the variations

of the nanostructure morphology and the composition of the

FIG. 1. (a) and (b) Top view and (c) and (d) cross section TEM images of

(a)–(c) F1 and (b)–(d) F2.

FIG. 2. (a) Distributions of the appar-

ent Feret diameters and (b) aspect ratio

of F1 NPs in the (e1, e2) plane mea-

sured by TEM. (c) Distribution of the

angle h between e1 and the apparent

major axis of F1 NPs in the (e1, e2)

plane. (d) Two-dimensional pair corre-

lation function of F1 NPs in the (e1, e2)

plane.
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SiO2/Au layer. To extract the optical properties of nanocom-

posite layers from ellipsometric data, an optical model must

be introduced. The sample is represented as a stack of three

sublayers: a pure silica top sublayer (L1), an intermediate

sublayer (L2) made of a mixture of silica and Au nanostruc-

tures, and finally, a pure silica bottom sublayer (L3) on the

silicon substrate. The dielectric functions of silica and gold

are given by Palik.38 The optical properties of L2 are

described by an effective dielectric function calculated from

the MG and the BEMA theories or an effective dielectric

tensor calculated from the ISDEMT theory. To exploit each

ellipsometric spectra from the MG theory, 4 free parameters

are determined by using the Levenberg-Maquardt algorithm:

the volume fraction f of Au nanostructures in L2, and the

thicknesses of the sublayers. The modeling with the BEMA

theory is performed in two steps: first, we determine the per-

colation threshold of nanostructures by fitting simultaneously

the ellipsometric spectra of all samples. Indeed, we assume

that the percolation threshold fs remains constant for all sam-

ples. The volume fraction at the percolation threshold fs is

estimated at 36%. In the second step, the ellipsometric spec-

tra of each sample are analyzed separately by fitting 4 free

parameters: the volume fraction f of Au nanostructures in

L2, and the thicknesses of the sublayers. Note that the perco-

lation threshold is set to the value obtained in step 1. In the

case of F1, we also consider that the optical properties of L2

can be described by an effective dielectric tensor calculated

from the ISDEMT without free parameters. Indeed, the

FIG. 3. Comparison between the mea-

sured (symbol) and calculated (solid

lines) Is ellipsometric parameters of

(a) F1, (b) F2, (c) F3, and (d) F4. The

measurements are performed at 4

angles of incidence: 60�, 65�, 70�, and

75�.

FIG. 4. Comparison between the mea-

sured (symbol) and calculated (solid

lines) Ic ellipsometric parameters of

(a) F1, (b) F2, (c) F3, and (d) F4. The

measurements are performed at 4

angles of incidence: 60�, 65�, 70�, and

75�.
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position, the orientation, and the size of Au nanoparticles, as

well as the sublayer thicknesses are set to the values deduced

from TEM images (Fig. 1). The thicknesses of L1, L2, and

L3 sublayers of F1 are 56 nm, 12 nm, and 52 nm, respec-

tively. Note that the NP size along the e3 axis is assimilated

to the thickness of L2. The ellipsometric parameters, Is and

Ic, are then calculated by using the Berreman transfer matrix

formalism.39

To find the best way to model ellipsometric spectra, the

root mean square errors (rmse) between the measured and

calculated ellipsometric spectra are reported in Fig. 5. The

rmse is evaluated by using the following equation:

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8N

X4

i¼1

XN

j¼1

Is kj; hi

� �
� Is1 kj; hi

� �� �2 þ Ic kj; hi

� �
� Ic1 kj; hi

� �� �2

vuut ; (18)

where kj are the wavelengths used for measurements. hi are

the angles of incidence while (Is1, Ic1) and (Is, Ic) are the cal-

culated and measured ellipsometric parameters, respectively.

As shown in Fig. 5(a), the MG effective medium theory fails

to describe the optical properties of F1, especially close to

the plasmon band of NPs [Fig. 5(b)]. Indeed, this theory is

not relevant for non-spherical NPs as those observed in TEM

images. In addition, the MG theory is only valid for three-

dimensional random or cubic organization of NPs. The best

agreement between the F1 experimental and calculated spec-

tra is found by using the ISDEMT theory suggesting that the

optical properties of the medium composed of ellipsoidal

NPs can be directly deduced from local TEM measurements

by using the ISDEMT. This result highlights the importance

of taking into account dipolar interactions, the shape distri-

bution, and the orientation of NPs in the effective medium

theory. Thus, the ISDEMT can be viewed as the relationship

between the microscopic and the macroscopic properties of

MIFs. For F2 and F3, the smallest rmse is obtained by using

the BEMA theory [Figs. 5(a) and 5(c)]. Indeed, as revealed

by TEM images (Fig. 1), F2 MIF consists of a percolated

network of pseudodendritic nanostructures. Contrary to the

ISDEMT, the geometry of the nanostructure is lost in the

BEMA theory. As expected by the BEMA theory, there is no

longer distinction between the matrix and inclusion materi-

als. On the other hand, the rmse calculated from the MG the-

ory and the BEMA theory converges toward the same value

for F4. For this sample, the Au volume fraction of L2 found

by both models is 100% and the dielectric function of L2 is

equal to the dielectric function of Au. Note that in our case,

the NPs are embedded in a homogeneous medium. Several

studies have investigated the optical properties of NPs

supported on a substrate. Two approaches are used to model

the optical properties of NPs supported on a surface: the

Yamaguchi40 model and the Bedeaux and Vlieger model.41

The first one is based on point dipole approximation. It takes

into account the presence of the substrate interface by intro-

ducing some virtual dipole images. The NPs, in the Bedeaux

and Vlieger model, are assimilated as an excess of surface

susceptibility on the substrate. Thus, the presence of the sub-

strate is a strong contribution to the plasmonic properties of

NPs. Since the NPs considered in this paper are embedded in

a homogeneous dielectric medium, no contribution from

image dipoles has been taken into account in our calcula-

tions. In other words, the proposed models must be improved

to introduce the substrate interface effects.

In the following, the F1 ellipsometric spectra is

exploited with the ISDEMT model while the Bruggeman

effective medium theory is used to analyze the F2, F3, and

F4 spectra. As shown in Figs. 3 and 4, a good agreement is

obtained between the experimental spectra and the calculated

ones. Small deviations only observed on the F2 and F3 Is

spectra in the 0.6 eV–1.7 eV spectral range could be due to

multipolar effects,42 which appear for a high volume fraction

of the Au nanostructure.

The evolutions of the L2 film thickness and Au volume

fraction with the nominal MIF thickness (h0) are reported in

Fig. 6. The L2 thickness of F2 determined from ellipsometry

is close to the value deduced from TEM confirming that the

BEMA is suitable for modeling the optical properties of the

L2 layer of F2. As expected, the volume fraction increases

monotonously with the deposition time to until a dense Au

film is formed. However, the variations of the L2 film thick-

ness are more tedious and can be explained by a competition

between the lateral and the vertical growth of gold nanostruc-

tures. Indeed, as pointed out previously,7 at the beginning of

the deposition, Au adatoms migrate on the SiO2 surface until

FIG. 5. (a) Comparison between the rmse obtained from the ISDEMT,

BEMA, and MG models. (b)–(d) Comparison between the measured Ic

parameter and the calculated ones from the ISDEMT, BEMA, and MG mod-

els for (b) F1, (c) F2, and (d) F3 films. The ISDEMT is only applied for the

F1 film.
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they nucleate on other adatoms, resulting in the formation of

Au NPs (Film F1) through a Volmer-Weber growth mode.

This mode occurs when adatoms are more strongly bounded to

each other than with the substrate. This leads to the formation

of NPs instead of a uniform dense layer. Further deposition

fills the empty space between NPs with few modifications of

the film thickness until the NPs begin to agglomerate each

other to form a percolated network (film F2 and F3). As the

F1, F2, and F3 films are composed of a mixture of Au and

SiO2, their nominal thickness determined from gravimetric

measurements is underestimated. Once the SiO2 surface is

completely covered, the film thickness takes the same value as

the nominal one (film F4) and starts to increase linearly with

the deposition time through a Frank-Van der Merwe growth

mode.7 This growth mode occurs when adatoms are strongly

bounded to the substrate. This is the case for long deposition

time in which the thick gold film can be assimilated to the sub-

strate. This leads to a layer-by-layer film growth.

In the framework of this growth mechanism, the nomi-

nal Au thickness h0 is linked to the volume fraction f and the

film thickness h is determined from ellipsometry by the fol-

lowing relationship:

h0 ¼ fh: (19)

Figure 6(c) shows the product of the Au volume fraction and

the L2 thickness determined by ellipsometry as a function of

the nominal Au thickness. The deviation between the product

fh and h0 is also shown in Fig. 6(d) for all films. As expected

by Eq. (19), a linear relationship with a slope close to 1 is

observed between both quantities.

Ellipsometry enables the determination of the optical

properties of the L2 layer. The effective dielectric tensor of

the L2 sublayer of F1 is determined by combining the

ISDEMT model and TEM. As shown in Fig. 7, it has the fol-

lowing symmetry:

FIG. 6. Evolution of (a) the thickness estimated by ellipsometry, (b) the Au

volume fraction, and (c) the product f� h with the nominal thickness h0 of

the L2 layer. The dashed line in (c) is only used as a guideline. (d) Deviation

between the product f� h estimated from ellipsometry and the nominal

thickness h0 for F1, F2, F3, and F4 films.

FIG. 7. Real (eeffr) and imaginary (eeffi) parts of the effective dielectric tensor of the L2 layer of F1.
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�eff½ � ¼
�o 0 0

0 �o 0

0 0 �e

0
@

1
A; (20)

where eo and ee are the ordinary and extraordinary effective

dielectric function, respectively. Thus, this film can be con-

sidered as a uniaxial medium with an optical axis oriented

along the direction e3, confirming that NPs have a random

in-plane orientation [Fig. 2(c)]. The absence of an in-plane

orientation of NPs is also confirmed by recording ellipsomet-

ric measurements at several azimuths of the plane of inci-

dence (not shown).

The interband transition threshold, located at 2.5 eV, is

clearly observed on the imaginary part of eo and ee. For

energy higher than the interband transition threshold, the

dielectric tensor is roughly dispersionless. In the visible

spectral range, the imaginary parts of the ordinary and

extraordinary effective dielectric functions of F1 are domi-

nated by a strong plasmon band centered at 2.02 eV and

1.66 eV, respectively. This splitting is a consequence of the

in-plane organization of gold NPs and the asymmetric inter-

action between them. Indeed, due to the small interparticle

distance, the electric fields generated by a polarized NP

interact strongly with the adjacent NPs. If the nanoparticles

are excited by an incident field parallel to the (e1, e2) plane,

the electric field induced by the excited dipoles reduces the

restoring force of electrons, resulting in a redshift of the plas-

mon resonance. On the contrary, if the incident electric field

is parallel to the e3 axis, the field generated by the excited

dipoles enhances the restoring force of electrons, resulting in

a blueshift of the plasmon resonance.43–45 Moreover, the

plasmon band of the ordinary effective dielectric function is

broader than the plasmon band of the extraordinary effective

dielectric function. The width of the plasmon band is mainly

related to the inhomogeneous broadening induced by the

shape distribution.31 To explain this broadening, the distribu-

tion of the depolarization parameter (Le1,e2) in the (e1, e2)

plane, determined by combining TEM measurements (Fig. 1)

and Eq. (10), is compared to the distribution of the depolariza-

tion parameter (Le3) along the e3 direction (Fig. 8). Le1,e2

follows a bimodal distribution, while a narrow distribution

centered at 0.33 is obtained for Le3. Indeed, NPs which

are assimilated to ellipsoids, have two of their principal

axes in the (e1, e2) plane. Thus, the effect of the NP shape

distribution is more pronounced for the ordinary effective

dielectric function. In accordance with the Kramers-Kronig

relations, a large variation of the real parts of the eo and ee is

expected close to the plasmon resonance. The effective bire-

fringence Dn and optical dichroism Dk of the film, defined as

the difference between the extraordinary and the ordinary

effective refractive indexes and extinction coefficients,

respectively, are reported in Fig. 9. The effective dichroism

is negative in the whole spectral range. In addition, the effec-

tive dichroism is maximal while the effective birefringence

changes sign at 2.1 eV i.e., close to the plasmon resonance

energy of Au inclusions. Indeed, a negative birefringence is

observed for lower energy than 2.1 eV, while the effective

birefringence becomes positive for higher energy. Thus,

the asymmetric dipolar interactions between NPs, as well as

their in-plane orientation, induce anisotropic plasmonic

properties.

The comparison between the effective dielectric func-

tion of all films is shown in Fig. 10. A broad plasmon band

centered at 1.55 eV is also observed on the imaginary part of

the dielectric function of F2. The width and the position of

this plasmon band can be explained by considering the frac-

tal shape of the Au nanostructure. As each nanostructure

has specific depolarization parameters, the shape distribution

induces an inhomogeneous broadening. In addition, as

reported by several authors,46,47 a complex spatial distribu-

tion of the electric field with the presence of several hot spots

occurs in this percolated Au nanostructure. The real part of

the effective dielectric function is negative for smaller

energy than 2.4 eV, suggesting that the film takes metallic

properties. Thus, this film is a hybrid between a purely

FIG. 8. Distribution of the depolariza-

tion parameters of F1 Au NPs (a) in

the (e1, e2) plane and (b) along the e3

axis.

FIG. 9. Effective birefringence and dichroism of the L2 layer of F1.
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metallic material and a plasmonic material. In accordance

with TEM images, this result supports that this film is com-

posed of a network of percolated gold nanostructure. Indeed,

the volume fraction of Au in this film is higher than the per-

colation threshold estimated by ellipsometry at 36%. The

real part of the effective dielectric functions of F3 and F4 is

also negative. However, no plasmon band is observed in

their effective dielectric function suggesting that no plasmon

mode is coupled with the light. In other words, Au nano-

structures disappear and the effective dielectric function of

L2 tends toward the dielectric function of Au. This behavior

is also confirmed by the blue shift of the plasma edge energy

defined as the energy for which the real part of the effective

dielectric function is equal to 0. Indeed, the plasma edge

energy is sensitive to the average density of free electrons in

the film.

To give more quantitative insights into the electronic

properties of L2 films, we have evaluated their effective den-

sity of free electrons. By assuming that the effective dielec-

tric function of L2 and the dielectric function of Au are both

described by the Drude dispersion in the infrared spectral

range, we can theoretically derive a linear relationship

between the effective density of free electrons n in the L2

layer and the volume fraction f of Au above the percolation

threshold4

n� nAu

nAu
¼ f � 1

1� fs
if f > fs

n ¼ 0 if f � fs;

8<
: (21)

where nAu is the density of free electrons of Au. This value

is estimated at 5.15� 1028 m�3 6 1� 1026 m�3 by fitting

the tabulated dielectric function of Au by a Drude dispersion

law.38 The evolution of the density of electron with the vol-

ume fraction of gold is reported in Fig. 11. For an Au volume

fraction smaller than the percolation threshold (f< fs), the

film, which is composed of isolated Au nanoparticles, can be

considered as an insulator. Indeed, as reported by H€ovel

et al.,25 the MIF, which can be modeled as metallic islands

which interact capacitively, has a zero dc-conductivity.

Therefore, the real part of the effective dielectric tensor is

positive and the effective density of free electrons is equal to

0. At the percolation threshold of Au (f¼ fs), an insulator-

metal transition occurs. Above the percolation threshold

(f> fs), the effective density of free electrons increases with

the Au volume fraction according to Eq. (21) until it reaches

the bulk value. In other words, the film becomes more and

more conductive as the volume fraction increases. Therefore,

the volume fraction of Au is a significant factor controlling

the electronic properties of films. By considering the symme-

try of the BEMA equation, the percolation threshold of SiO2

is equal to 1–fs, suggesting that for a higher volume fraction

of Au, the film can be assimilated as isolated SiO2 nanostruc-

tures in the Au matrix. This behavior is in agreement with

the decrease of rmse calculated from the MG model for the

F3 film. In other words, the F3 film, which has a Au volume

fraction higher than 1–fs, can be viewed as a 3-dimensionnal

material with spherical SiO2 inclusions embedded in a gold

matrix.

V. CONCLUSIONS

In summary, we have investigated the growth mecha-

nism of Au films sandwiched between two SiO2 layers by

combining TEM and spectroscopic ellipsometry. We demon-

strate that the growth mechanism involves a Volmer-Weber

growth mode. In addition, the optical properties of Au/SiO2

films are correlated to their nanostructures by analyzing the

ellipsometric spectra with three effective medium theories.

The choice of the effective medium theory depends on the

morphology of Au nanostructures. For an Au volume frac-

tion smaller than the percolation threshold, the film is com-

posed of a two-dimensional array of ellipsoidal NPs and its

optical properties can be modeled by the ISDEMT. This film

FIG. 10. (a) Real part and (b) imagi-

nary part of the effective dielectric

functions of F1, F2, F3, and F4.

FIG. 11. Evolution of the effective density of free electrons in the L2 layer

with the volume fraction of Au.
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exhibits anisotropic plasmonic properties, which come from

asymmetric dipolar interactions between NPs. Close to the

percolation threshold, Au and SiO2 share the same roles and

the optical properties of the film can be described by the

BEMA. The film simultaneously exhibits metallic and plas-

monic properties. However, for a high Au volume fraction,

the BEMA and MG converge toward the same results, sug-

gesting that the film is composed of isolated SiO2 inclusion

embedded in a gold matrix. The strong dependence between

the volume fraction and the morphology of Au MIFs offers

the opportunities to tune both their optical and electronic

properties.
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