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Abstract—We investigated the geometric representations underlying the perception of 2-D contour

curvature. 88 arcs representing lower and upper halves of concentric circles, or halves of ellipses

derived mathematically through planar projection by affinity with the circles, a special case of

Newton’s transform, were generated to produce curved line segments with negative and positive

curvature and varying sagitta (sag) and/or aspect ratio. Aspect ratio is defined here as the ratio

between the sagitta and the chord-length of a given arc. The geometric properties of the arcs suggest

a regrouping into four structural models. The 88 stimuli were presented in random order to 16

observers eight of whom were experienced in the mathematical and visual analysis of 2-D curvature

(‘expert observers’), and eight of whom were not (‘non-expert observers’). Observers had to give

a number, on a psychophysical scale from 0 to 10, that was to reflect the magnitude of curvature

they perceived in a given arc. The results show that the subjective magnitude of curvature increases

exponentially with the aspect ratio and linearly with the sagitta of the arcs for both experts and non-

experts. Statistical analysis of the correlation coefficients of linear fits to individual data represented on

a logarithmic scale reveals significantly higher correlation coefficients for aspect ratio than for sagitta.

The difference is not significant when curves with the longest chords only (7◦–10◦) are considered.

The geometric model that produces the best psychometric functions is described by a combination

of arcs of vertically and horizontally oriented ellipses, indicating that perceptual sensations of 2-D

contour curvature are based on geometric representations that suggest properties of 3-D structures.

A ‘buckled bar model’ is shown to optimally account for the perceptual data of all observers with

the exception of one expert. His perceptual data can be linked to a more analytical, less ‘naturalistic’

representation originating from a specific perceptual experience, which is discussed. It is concluded

that the structural properties of ‘real’ objects are likely to determine even the most basic geometric

representations underlying the perception of curvature in 2-D images. A specific perceptual learning

experience may engender changes in such representations.

Keywords: 2-D contour curvature; geometric cues; psychometric function; laws of sensation; shape

perception; perceptual learning.
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 INTRODUCTION

Recent studies on the possible link between 2-D shape perception and the known

properties of 3-D objects in the ‘real’ world have led to suggest that the perception

of 2-D shape properties is largely determined by statistical relationships between

geometrical characteristics of image representations and their physical sources in

‘natural’ visual environments (Howe and Purves, 2005). As discussed earlier by

others (e.g. Attneave, 1954; Ogilvie and Daicar, 1967; Wilson and Richards,

1989; Morgan, 2005), the visual perception of 2-D curvature plays an important

role in form perception and object recognition. Curvature may be particularly

useful to the processes that allow the human perceptual system to generate 3-D

representations of complex objects and scenes on the basis of simple 2-D contour

images. Also, 2-D curvature has been shown to contribute to the apparent non-

rigidity of objects and parts (e.g. Cavanagh and von Grünau, 1989), thereby

providing ecologically significant cues for the perception of facial expressions

(Lyon et al., 2000). 3-D shape representation may be enabled by local shape

biases favouring symmetry or other structural regularities in the 2-D image, or

by combinations of pictorial image cues (e.g. Biederman, 1987; Koenderink

and van Doorn, 2003). Visual experience and learned knowledge about object

properties, i.e. learned associations between specific two-dimensional projections

and their correlated three-dimensional structures, may be another important factor

(e.g. Biederman, 1987; Sinha and Poggio, 1996; Howe and Purves, 2005).

The 2-D geometry of curves is abundantly exploited by design engineers and

architects in the conceptual design of complex spatial structures (see Fig. 1)

such as spherical domes or modern free-form-design structures, so-called ‘blob

designs’, in general. The use of curvilinear spaces in architecture dates back

to the dawn of building shelter. Vernacular architecture is, by the nature of the

materials and construction techniques used, based on curved shapes even though

descriptive 2-D geometry was not necessarily referred to then for the planning and

execution of building projects. It has been suggested that evolution may have

produced specialized brain mechanisms that efficiently exploit the geometry of

visual perceptual space (Heeley and Buchanan-Smith, 1996; Foley et al., 2004).

However, neither the brain processes through which 2-D curve geometry would

enable 3-D shape representation, nor which of the geometrical cues available in a

simple 2-D curve would best account for its perceived quality in terms of a shape,

have been hitherto identified.

The early visual processing of curved line segments has been amply investigated

in psychophysical studies using two-alternative forced-choice (2 AFC) procedures

for measuring visual discrimination thresholds. In such experiments, observers have

to compare briefly presented curve segments and make a rapid decision regarding

local differences in curvature, or curve orientation.
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Figure 1. In the ‘real’ world, geometric 2-D representations of spatial structures provide design

models widely exploited by visual 3-D rendering techniques in modern architecture. Some of the

geometric models commonly used for visual rendering inspired the 2-D geometric models tested in

our experiment here. Certain structural properties of our models bear a relationship with structural

properties of curved objects occurring in the visual world that surrounds us. Such structural properties

may have primed man’s visual perceptual experience of 3-D curved space since the dawn of building

shelter and may help us gain insight into the perceptual processes through which shape representations

are generated on the basis of 2-D geometric regularities or cues.

Local visual processing of 2-D curvature

The ability of human observers to detect curvature in 2-D line stimuli is highly

developed and falls within the domain of so-called ‘visual hyperacuity’. This is

reflected by the fact that the spatial precision with which man can distinguish a

curve from a straight line represents only one fifth of the physical spacing between

two neighbouring visual receptors (cones), and one tenth of the smallest receptive

field centre of ganglion cells found in the primate retina (Watt and Andrews, 1982;

Watt et al., 1987). This precision with which we are capable of telling a curve

from a perfectly straight line seems to rely on geometric cues two of which have

been identified in psychophysical experiments using methods of relative perceptual

judgement (e.g. Foster et al., 1993; Whitaker and McGraw, 1998). One such cue

is the distance between the line or chord that joins the two ends of a curve and

the parallel line tangent to that curve. In terms of geometry, this cue is referred

to as the sagitta, or sag (Foster et al., 1993), of the arc formed by a curved line.

The other one is the sagitta divided by the length of the chord joining the two ends

of a curve, i.e. the ratio between sagitta and chordlength of the arc formed by a

curved line. This geometric cue has been referred to previously as aspect ratio by

others (Whitaker and McGraw, 1998). Its effect on visual performance in curve

discrimination tasks was found to be scale-invariant since images of curves with

identical aspect ratios but of different sizes produced identical detection thresholds.
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Scale-invariance of visual processing represents a certain functional or ecological

advantage (e.g. Whitaker and McGraw, 1998) and, among the different geometric

cues available in an image, the visual system may prefer cues providing such an

advantage. While sagitta gives a strictly local cue of relative height in the visual

field, or position of the point of maximum curvature in respect to other points of

the curve, aspect ratio conveys more global information about the area covered by

the curve. The efficient use of either cue by the visual system might depend on

stimulus attributes such as the length or presentation duration of curve segments.

Curvature discrimination was, for example, found to be optimal for stimuli with a

length of at least 30 min of visual arc (e.g. Watt, 1984; Kramer and Fahle, 1995).

Also, certain characteristics of the discrimination performance were reported to

change with stimulus duration (Ferraro and Foster, 1986; Watt, 1987). Such changes

may be reflected by an increase in visual sensitivity to curvature for durations

up to two seconds, and by a change from discrete to continuous performance

for increasing stimulus durations, between 100 milliseconds and longer. Rapid

curvature detection with curved line targets presented for 100 milliseconds within

arrays of multiple curves (so-called ‘distractors’) was found to produce variations

in visual performance as a function of the sagitta and number of ‘distractors’,

interpreted in terms of a discrete processing model based on parallel category coding

of small and briefly presented curve segments (Foster and Savage, 2002). The

temporal properties and length tuning of rapid curvature discrimination in 2 AFC

tasks suggest that the local visual processing of curvature information may rely on

orientation selective detectors (Koenderink and Richards, 1988; Zetzsche and Barth,

1990) optimally sensitive to a narrow window of variations in size and time course

of the stimuli. Some evidence that orientation selective cortical neurons with so-

called end-stopped receptive field properties (e.g. Hubel and Wiesel, 1959) may

serve this purpose has been made available through single-cell recordings from the

visual brains of mammals (e.g. Dobbins et al., 1987; see also Dobbins et al., 1989).

Visual curvature discrimination measured in 2 AFC tasks may provide an account

for the brain mechanisms through which the visual system extracts strictly local in-

formation of 2-D curvature. How these mechanisms are used in perception to gen-

erate the global 2-D shape interpretation of a curve in terms of its principal object

property ‘curvature’ remains unanswered at the level of rapid visual discrimination.

Measuring sensation to reveal the structural laws of 2-D contour curvature

In classical psychophysics, visual sensations are considered to reflect the expression

of brain mechanisms involved in the processing of spatial or temporal structural

information carried by stimuli. Thurstone (1927) and subsequently Stevens (1956,

1975) introduced psychophysical scales, so-called sensation scales, as measures for

variations in the response of the perceptual system to variations in a given property

such as loudness, brightness, or heat for a given class of stimuli such as sounds,

lights or temperatures. The psychometric functions which describe the scaled
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responses of the perceptual system to critical dimensions of a given stimulation

are referred to as psychophysical laws, or laws of sensation.

In this study, we employ a psychophysical scale to measure variations in the

response of the visual perceptual system to variations in cues for 2-D contour

curvature provided by curve segments. While threshold-based approaches to the

rapid visual discrimination of curves have permitted determination of individual just

noticeable differences between two briefly presented curves, our psychophysical

approach measures the sensation of curvature that is elicited by a given curved

stimulus. Such a procedure probes a higher level of shape processing compared

with the threshold-based approach.

Curves were generated using descriptive geometry for the production of four

distinct structural models, which will be described later herein. It has been

pointed out earlier that the curvature of 2-D line segments is a potent cue to

shape (e.g. Attneave, 1954; Morgan, 2005). If it is true that the perception

of 2-D shape properties is largely determined by statistical relationships between

geometrical or structural characteristics of 2-D stimuli and their physical sources

in ‘natural’ visual environments, then the potential of 2-D curves for activating

shape representations should be optimal with stimuli that can be related to such

physical sources. The capacity of the visual brain to rely on parts for the generation

of representations of wholes (e.g. Biederman, 1987), and on segments for the

perceptual completion of object contours, describes one of the most striking

abilities visual perception has evolved (see Pessoa et al., 1998, for a review).

Statistically likely structural relationships between 2-D geometry and ‘natural’

environments may involve internal representations, or sensation scales, which

exploit this perceptual ability.

Do expert brains optimally use the geometry of visual space for perception?

To optimize form and design, engineers and architects use descriptive geometry

through computerized tools that exploit shape grammars such as Formian for the

2-D visualization of 3-D shapes. This creative process is referred to as ‘digital

rendering’ by experts in the field. Digital rendering puts into practice the repeated

visual and mental manipulation of 2-D curves, which are progressively transformed

into increasingly complex 2-D shapes to create images representing a 3-D ‘natural’

world. Does such a repeated visual and mental manipulation of curve geometry

generate a learning process that will optimize, or change the use of geometric cues

for perception? In other words, when engineers or architects learn to optimize

the use of the 2-D geometric properties of curves in the design process, do they

implicitly learn to optimally exploit these properties for the processing of statistical

relationships between geometrical or structural characteristics of 2-D shapes and

their physical sources in ‘natural’ visual environments?

5



Acc
ep

te
d 

M
an

us
cr

ip
t

The spatial geometry of 2-D curvature

Contour curvature of ‘natural’ physical objects reveals a wide range of round or

oblong shapes that relate to two geometric 2-D shape descriptions: circles and

ellipses. In terms of pure geometry, curves or arcs derived from circles and

ellipses share certain properties, the circle being a particular case of the ellipse.

Ellipses may be described as hyberbolic images of points falling on straight lines

or circles. The Cartesian description of circles and ellipses provides the two

principal geometric models for the possible generation of 2-D contour curvature

by the human perceptual system. From these two principal geometric models, four

major structural models for 2-D contour curvature, with comparable mathematical

properties, can be obtained. Each of these structural models is mathematically

derived from the general model represented by that of concentric circles. This

allows the generation of a wide range of possible curves with variable aspect ratio,

variable sagitta, or both. Here, we define aspect ratio as the ratio between sagitta

and chord-length of the arc formed by a curve, as in Whitaker and McGraw (1998).

Arcs of concentric circles. The Cartesian description of a circle with centre 0 is

R2
(1) = x2

+ y2,

where R is the radius of the circle, and x and y the two-dimensional spatial

coordinates of the points falling on its perimeter. Concentric circles share the same

centre (here 0). A second concentric circle may be obtained from a first one by

R2
(2) = (R(1) ± δR)2.

The halves of several concentric circles can be defined as arcs or curves with

varying sagitta and constant aspect ratio (see Fig. 2). The sagitta of the arc or curve

describing one half of a circle is identical to the radius (R) of the full circle, the

length of the chord of the arc is twice the radius (R × 2) of the full circle. Such a

combination of curves, or arcs, does not suggest a 3-D structure (see again Fig. 2).

This structural model will be, as of now, referred to as model 1.

Figure 2. Arcs defined by the halves of several concentric circles (left) produce curves with ‘positive’

(middle) or ‘negative’ curvature (right) and identical aspect ratios. Aspect ratio is here defined as the

ratio between the sagitta of a given arc and the length of its chord. The sagitta of an arc described by

one half of a circle is identical to the radius (R) of the full circle; the chord-length of an arc is identical

to twice the radius (R × 2) of the full circle.
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Arcs of vertical ellipses derived from concentric circles. For straightforward

comparison, in terms of pure geometry, between the four structural models referred

to here, we derived ellipses directly from the model based on the concentric

circles. In Cartesian space, an ellipse can be defined as the projected image of

two concentric circles. The image (x, y) = (bx, ay) of a principal circle C(0,a)

and the image (x, y) = ((a/b)x, y) of a secondary circle C(0,b) describe what is

referred to as the planar projection of ellipses by affinity with circles (see Fig. 2), or

sometimes also as a particular case of Newton’s transform (e.g. Lockwood, 1967;

Yates, 1974). Planar projections by affinity are widely used in digital rendering to

create 3-D effects in images.

The halves of vertical ellipses thus obtained from several concentric circles can be

defined as arcs or curves with constant sagitta and varying chord-length and aspect

ratio (see Fig. 2). The sagitta of each such arc is identical to the radius (R) of the

principal circle C(0,a) the full ellipse is derived from. The chord-length of a given arc

is identical to twice the radius (R × 2) of the secondary circle C(0,b) the full ellipse

is derived from. The combination of curves in this model suggests 3-D properties

of a dome-like spatial structure that may occur in the ‘natural world’ (see Fig. 3).

This structure will be, as of now, referred to as model 2.

Arcs of horizontal ellipses derived from concentric circles. Planar projection of

ellipses by affinity with the concentric circles of model 1 also permits the generation

of horizontal ellipses. The halves of these horizontal ellipses are defined as arcs or

curves with varying sagitta, constant chord-length, and varying aspect ratio (see

Fig. 4). The sagitta of each of these arcs is identical to the radius (R) of the

secondary circle C(0,b) the full ellipse is derived from. The chord-length of the arcs

is identical to twice the radius (R × 2) of the principal circle C(0,b) from which the

full ellipses are derived. Again, such a combination of elliptic arcs suggests a dome-

like spatial structure with apparent 3-D properties that may represent a ‘natural’

structure. This structure will be, as of now, referred to as structural model 3.

Combining arcs of vertical and horizontal ellipses. Combinations of vertical

and horizontal ellipses derived from one and the same set of concentric circles

permits the generation of arcs with varying sagitta, chord-length and aspect ratio.

These geometric parameters can be straightforwardly derived from the radii of the

concentric circles, as already described above with regard to Figs 3 and 4. The

combination of curves in this model suggests a spatial structure consisting of a mesh

of nodes and lines with apparent 3-D properties (see Fig. 5). This structure will be,

as of now, referred to as structural model 4.

In the ‘real’ world, such mesh-like structures, with nodes and connecting ele-

ments, provide design models widely used in modern free-form architecture (see

again Fig. 1). As illustrated in Figs 2–5, using one and the same 2-D model of

concentric circles and then deriving vertical and horizontal ellipses through planar

projection by affinity permits the generation of four spatial models for 2-D contour

7



Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 3. Arcs derived from vertical ellipses (middle-left) were obtained from concentric circles

through planar projection by affinity, a special case of Newton’s transform. This produces another set

of curves with ‘positive’ (middle-right) or ‘negative’ curvature (right). The sagittae of these curves

are identical while their aspect ratios vary. The sagitta of an arc described by one half of a given

ellipse is identical to the radius (R) of the principal circle from which the full ellipse is derived; the

chord-length of an arc is identical to twice the radius (R × 2) of the secondary circle from which the

full ellipse is derived.

Figure 4. Arcs derived from horizontal ellipses (middle-left) obtained by the same kind of transform

(left) lead to a third model of curves with ‘positive’ (middle-right) or ‘negative’ curvature (right). The

chord-lengths of these curves are identical, their sagittae and aspect ratios vary.

Figure 5. Combinations of arcs from vertical and horizontal ellipses (left and middle-left) produce

curves (middle-right and right) with varying sagittae, chord-lengths and aspect ratios. This fourth

curve model generates a curved, mesh-like spatial structure with apparent 3-D properties.

curvature each of which consists of a specific combination of circular or elliptic

curves producing some kind of spatial structure. As can be seen in the examples,

only the 2-D structures obtained from ellipses (models 2, 3 and 4) reveal apparent

properties of 3-D shape. In architecture and design, such digital effects are gen-
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erated through specific shape grammars with the aim to produce 2-D images that

faithfully represent 3-D properties of ‘natural’ objects.

EXPERIMENTAL

Which of the four geometric models considered herein provides the best account

for the perception of the curvature of contour segments? Model 1 is based on

a combination of concentric circles which does not seem to produce a structure

suggesting 3-D properties, whereas models 2, 3 and 4 show structural models

derived from ellipses the combination of which suggests spatial structures with

apparent 3-D properties, such as dome-like structures (see again Figs 2 and 3) or

a bulging mesh surface that looks like that of a tent (see again Fig. 5). Considering

that the perception of 2-D shape properties is predicted to depend upon some

statistical relationship between structural properties of a 2-D image representation

and the properties of a ‘natural’ object (Howe and Purves, 2005), geometric models

suggesting properties of ‘natural’ objects should generate stronger shape percepts.

If this is so, then curved contour segments derived from planar projection of ellipses

(structural models 2, 3 and 4) would be expected to produce stronger sensations of

curvature than segments of concentric circles.

In addition, perceptual learning may be important for shape perception in 2-D im-

ages (e.g. Sinha and Poggio, 1996). The four structural models tested here may

therefore produce different shape sensations when comparing perceptual judge-

ments of laypeople to perceptual judgements of experts, such as design engineers or

architects. If experts use the geometric cues contained in the stimuli more optimally,

or differently, for shape representation compared with non-experts, then significant

differences in sensation would be expected between the two groups.

Subjects

Sixteen psychophysically untrained observers with normal or corrected-to-normal

vision participated in the experiments. Eight (four women and four men) were

students or professionals in biology or psychology and considered non-experts in the

domain of geometry and spatial structures. The other eight observers (three women

and five men) were students or professionals in architecture or civil engineering and

all experienced users of spatial design tools such as AUTOCAD or CATIA. These

observers were considered experts in the domain of descriptive geometry and spatial

structures.

Stimuli

The stimuli for the experiments were generated by a computer graphic design

software tool (AUTOCAD) on an IBM computer (Pentium III) equipped with a

standard colour screen with a display resolution of 1024 × 768 pixels. All arcs,
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or stimuli, were derived, as explained in detail in the introduction, from eleven

concentric circles the diameter of which varied between 1.2 and 10 degrees of visual

angle. Lower and upper halves of these concentric circles and all the vertical and

horizontal ellipses derived from them produced a total of 88 arcs with ‘positive’

(upward) and ‘negative’ (downward) curvature in the two-dimensional plane. 22 of

these arcs were circular in shape, 66 were elliptic. In a given experimental session,

these arcs were presented in random order on the computer screen to individual

observers placed at a distance of approximately one meter from the screen. The 2-D

geometry of these arcs, and how they generate four structural models to be tested

in our experiment, are given in the Introduction and illustrated by Figs 2–5. The

two individual geometric parameters of each arc that were put to the test, sagitta

(1) and aspect ratio (2), are defined as (1) the distance between the chord of a

given arc and the parallel line tangent to it, and as (2) the ratio between sagitta and

chord-length. Arcs with ‘positive’ and ‘negative’ curvature derived from concentric

circles (structural model 1) all had constant aspect ratio (0.5), their sagitta varied

between 0.6 and 5 degrees of visual angle and their chord-lengths between 1.2

and 10 degrees. Arcs derived from the ellipses of structural model 2 had constant

sagitta (5 degrees of visual angle), their aspect ratios varied between 0.5 and 4.2

and their chord-lengths between 1.2 and 9 degrees of visual angle. The sagitta of

arcs of ellipses of structural model 3 varied between 0.6 and 4.5 degrees of visual

angle with a constant chord-length of 10 degrees. Aspect ratio varied between

0.06 and 0.5. The sagitta of arcs of structural model 4 varied between 0.6 and 5

degrees of visual angle, the chord-lengths between 1.2 and 10 degrees and the aspect

ratio between 0.06 and 4.2. All arcs were defined by a contour of the width of

a single pixel. Their luminance (held constant at 40 cd/m2) was determined by

means of a photometer (Minolta LS 110) used for calibrating grey levels (R–G–B

combinations) of a square of 1 degree of visual angle, switched on in the centre of

the dark screen. The luminance of the dark background of the screen on which the

arcs were presented was held constant at 2 cd/m2.

Procedure

Observers were seated comfortably in a semi-dark room in front of the computer

screen. They were told that they were going to view a series of arcs, one at a

time, and were asked to produce a number between 0 and 10 that was to reflect

the magnitude of the curvature they spontaneously perceived when a given arc

came up on the screen. A straight line was shown at the beginning of the trials

to make sure that each of the observers spontaneously replied 0 to rate its curvature,

indicating that they had understood the principle of the psychophysical scaling

procedure, although none of the 16 observers knew what a psychophysical scale

actually was. No modulus for a curvature to be associated with the upper limit of the

psychophysical scale (here 10) was given to avoid influencing the subjects’ internal

scales in favour of any one of the structural models tested. The 88 stimulus arcs

and 12 straight lines of varying length were presented in random order. For each
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observer, a different random sequence of stimuli was generated. The duration of

presentation was not limited, but observers were encouraged to make their decisions

as rapidly as possible. Typing the ‘enter’ key triggered the presentation of the next

arc. Each of the 88 arcs was shown only once to a given observer within a single

series of random presentations.

RESULTS

In previous, threshold-based studies investigating the rapid visual processing of

curvature (see the Introduction), population statistics based on comparisons between

means were applied to determine which of the independent variables tested would

account best for the variance in curve discrimination thresholds (e.g. Foster et al.,

1993; Foster and Savage, 2002). Here, regression analysis was used to determine the

strength of the relationship between physical magnitudes of sagitta and subjective

magnitudes of curvature, and between physical magnitudes of aspect ratio and

subjective magnitudes of curvature for each of the four structural models tested.

Such an analysis allows us to determine the predictive power of a given independent

variable, associated with a given structural model, based on the regression model

that provides the best statistical fit for individual and/or average data of perception.

Separate analyses for data of non-experts and experts were performed. All data

were analyzed individually before proceeding to analyses of average data. For each

group of observers, the average magnitude of curvature was first analyzed as a

function of the aspect ratio and the sagitta of the 88 arcs irrespective of the structural

geometric model the arcs were derived from. Subsequently, separate analyses were

conducted for each of the four structural geometric models.

Non-expert observers

The data of the eight non-experts are shown in Figs 6 and 7. There were no

noticeable differences between individuals of this group and, therefore, only average

data are shown here.

Subjective magnitude of curvature as a function of aspect ratio and sagitta.

Subjective magnitudes of curvature were analyzed as a function of the sagitta and

the aspect ratio of the 88 arcs presented in the experiment. These data are shown in

Fig. 6. Regression analyses of the average data plotted on a logarithmic scale were

performed. These analyses reveal a good linear relationship between subjective

magnitude of curvature and aspect ratio (Fig. 6(a)), and a somewhat poorer linear

relationship between subjective magnitude of curvature and sagitta (Fig. 6(b)). The

average linear function relating subjective magnitude to aspect ratio produced a

noticeably higher correlation coefficient than the average function obtained for

sagitta. The correlation coefficients of linear fits to the individual data (not shown
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(a)

Figure 6. This figure shows average data of non-expert observers. Subjective magnitudes of curvature

are plotted as a function of the sagitta (Figs 6(b), (d) and (f)) and the aspect ratio (Figs. 6(a)

and (e)) of the arcs presented, with different symbols for the different ranges of chord-lengths.

Regression analysis of the data plotted on a logarithmic scale (Figs 6(a) and (b)) reveals a good

linear relationship between subjective magnitude of curvature and aspect ratio (Fig. 6(a)), and a

somewhat poorer linear relationship between subjective magnitude of curvature and sagitta (Fig. 6(b)).

The linear function relating subjective magnitude to aspect ratio is found to produce a noticeably

higher correlation coefficient than the function obtained for sagitta. Statistical analysis (t-test) of

the correlation coefficients of linear fits to individual data reveals a statistically significant difference

(t (1, 14) = 7.9254, p < 0.001) between correlation coefficients of functions fitted for aspect ratio

and functions fitted for sagitta (Fig. 6(c)), with aspect ratio producing a statistically better linear fit

to individual sensations of curvature than sagitta. The difference in correlation coefficients is no

longer statistically significant when stimuli with the longest chords only are taken into account for

data analysis.

here) revealed a systematic difference in correlation coefficients for observers from

this group.

Statistical analysis (t-test) of the correlation coefficients of linear fits to the

individual data reveals a statistically significant difference (t (1, 14) = 7.9254,

p < 0.001) between correlation coefficients of functions fitted for aspect ratio

and functions fitted for sagitta. Correlation coefficients of linear fits to individual

data as a function of observers’ initials are shown in Fig. 6(c). The statistical

difference between correlation coefficients reveals that aspect ratio produces a

better linear fit to individual sensations of curvature than sagitta. However, if only

arcs with the longest chord-lengths are taken into account for the analysis, the
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(b)

Figure 6. (Continued.)

(c)

Figure 6. (Continued.)
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(d)

Figure 6. (Continued.)

(e)

Figure 6. (Continued.)
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(f)

Figure 6. (Continued.)

difference in effects of aspect ratio and sagitta is no longer statistically significant.

This is explained by the interdependency between sagitta and chord-length. This

interdependency is revealed by the fact that sagitta is a more reliable predictor of

subjective magnitudes of curvature for stimuli with chord-lengths of 7–10 degrees

of visual angle (Figs 6(d) and 6(f)).

Psychometric functions were also fitted to the average data plotted on a linear

scale. These analyses reveal that an exponential function provides the best fit for

subjective magnitude of curvature as a function of aspect ratio (see Fig. 6(e)).

A linear function was found to provide a reasonably satisfactory fit for subjective

magnitude as a function of sagitta regardless of chord-length (R2 = 0.7433;

p < 0.001, DF(1, 87)), with a noticeably better fit when chord-lengths between

7 and 10 degrees where considered only (Figs 6(d) and 6(f)). Comparing the

global data for sagitta and aspect ratio, however, shows that subjective magnitude

of curvature plotted as a function of sagitta (Fig. 6(b)) presents noticeably more

scatter than subjective magnitude of curvature plotted as a function of aspect ratio

(Fig. 6(a)).
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Curvature representation as a function of the four structural models. The

average data of non-expert observers were analyzed as a function of the four

structural geometric models that served as a basis for generating the 88 arcs

presented as stimuli. These data are shown in Fig. 7. The arcs of the concentric

circles generated for the experiment provided model 1. These arcs have constant

aspect ratio and varying sagitta. Analysis of subjective magnitude of curvature

as a function of sagitta of arcs from this structural model shows that arcs from

concentric circles produce constant subjective magnitude in the middle region of

the psychophysical scale (Fig. 7(a)). Arcs with ‘negative’ and ‘positive’ curvature

produce symmetric curvature.

The arcs of the vertical ellipses providing model 2, derived from the concentric

circles of model 1, have constant sagitta and varying aspect ratio. For this model,

subjective magnitude of curvature increases symmetrically with increasing aspect

ratio of arcs with ‘negative’ and ‘positive’ curvature (see Fig. 7(b)). This increase

covers only the upper half of the psychophysical scale. The function that best

describes the relationship between subjective magnitude of curvature and the aspect

ratio of the arcs, irrespective of the polarity of their curvature, is found to be an

exponential function (see Fig. 7(c)).

The arcs of the horizontal ellipses providing model 3, also derived from the

concentric circles of model 1, have varying sagitta and varying aspect ratio.

(a)

Figure 7. This figure shows average data of non-expert observers as a function of the four geometric

models that served as a basis for generating the 88 arcs presented in the experiments.
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(b)

Figure 7. (Continued.)

(c)

Figure 7. (Continued.)
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(d)

Figure 7. (Continued.)

(e)

Figure 7. (Continued.)
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(f)

Figure 7. (Continued.)

(g)

Figure 7. (Continued.)
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(h)

Figure 7. (Continued.)

(i)

Figure 7. (Continued.)
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(j)

Figure 7. (Continued.)

(k)

Figure 7. (Continued.)
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For model 3, the subjective magnitude of curvature increases symmetrically with

increasing aspect ratio (Fig. 7(d)) or sagitta (Fig. 7(f)) of arcs with ‘negative’ and

‘positive’ curvature. This increase covers only the lower half of the psychophysical

scale. The function that best describes the relationship between the subjective

magnitude of curvature and the aspect ratio of the arcs of model 3, irrespective

of the polarity of their curvature, is found to be an exponential function (Fig. 7(e)).

The function that best describes the relationship between the subjective magnitude

of curvature and the sagitta of the arcs, irrespective of the polarity of their curvature,

is a linear function (Fig. 7(g)).

The combination of arcs of vertical and horizontal ellipses, all derived from the

concentric circles of model 1, provided structural model 4. Arcs of model 4 have

varying sagitta and varying aspect ratio. These variations cover the full range of

values generated for the experiment. For arcs of model 4, subjective magnitude of

curvature increases symmetrically with increasing aspect ratio (Fig. 7(h)) or sagitta

(Fig. 7(j)) of arcs with ‘negative’ and ‘positive’ curvature. This increase covers the

full psychophysical scale. The function that best describes the relationship between

subjective magnitude of curvature and the aspect ratio of the arcs of model 4,

irrespective of the polarity of their curvature, is found to be an exponential function

(Fig. 7(i)). The function that best describes the relationship between subjective

magnitude of curvature and the sagitta of the arcs, irrespective of the polarity of

their curvature, is a linear function (see Fig. 7(k)).

Expert observers

The data of the eight expert observers were analyzed in the same way as the data

of the non-experts. Psychometric functions of individuals were compared and there

were no noticeable differences between seven of the individuals of this group. Their

average data are shown in Figs 8 and 9. The data of the expert observer who

produced results that were noticeably different from those of the others are dealt

with later in a separate section.

Subjective magnitude of curvature as a function of sagitta and aspect ratio. The

subjective magnitude of curvature of seven of the eight experts shows variations

as a function of sagitta and aspect ratio that are in every aspect similar to those

obtained with non-experts. Regression analysis of the experts’ data plotted on a

logarithmic scale reveals a good linear relationship between subjective magnitude

of curvature and aspect ratio (Fig. 8(a)), and a somewhat poorer linear relationship

between subjective magnitude of curvature and sagitta (Fig. 8(b)), as was found

with the non-experts. The linear function relating subjective magnitude to aspect

ratio is found to produce a noticeably higher correlation coefficient than the function

obtained for sagitta, as in the data of non-experts. The statistical analysis (t-

test) of the correlation coefficients of linear fits to the individual data of the seven

experts (Fig. 8(c)) reveals a statistically significant difference (t (1, 12) = 6.0556,

p < 0.001) between correlation coefficients of functions fitted for aspect ratio
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(a)

Figure 8. This figure shows average data of expert observers. Subjective magnitudes of curvature

are plotted as a function of the sagitta (Figs 8(b), (d) and (f)) and the aspect ratio (Figs 8(a) and

(e)) of the arcs presented in the experiment. Regression analysis of the data plotted on a logarithmic

scale (Figs 8(a) and (b)) reveals a good linear relationship between subjective magnitude of curvature

and aspect ratio (Fig. 8(a)), and a somewhat poorer linear relationship between subjective magnitude

of curvature and sagitta (Fig. 8(b)), which becomes better when stimuli with the longest chords

only are considered (Fig. 8(d)). The linear function relating subjective magnitude to aspect ratio is,

as in the data of non-experts, found to produce a noticeably higher correlation coefficient than the

function obtained for sagitta. Statistical analysis (t-test) of the correlation coefficients of linear fits to

individual data reveals, as with the experts, a statistically significant difference (t (1, 12) = 6.0556,

p < 0.001) between correlation coefficients of functions fitted for aspect ratio and functions fitted for

sagitta (Fig. 8(c)), with aspect ratio producing a statistically better linear fit to individual sensations

of curvature than sagitta. Again, the difference in correlation coefficients is not significant when

individual data for stimuli with the longest chords only are fitted.

and functions fitted for sagitta. As with the non-experts, aspect ratio produces

a statistically better linear fit to individual sensations of curvature than sagitta

when all the chord-lengths are taken into account. Again, the difference is no

longer significant when the stimuli with the longest chords only are taken into

account. This is, as in the data for the non-experts, explained by the interdependency

of sagitta and chord-length (Figs 8(d) and 8(f)). Psychometric functions fitted

to average data represented on a linear scale (Figs 8(e) and 8(f)) reveal that an

exponential function provides the best fit for subjective magnitude of curvature as a

function of aspect ratio (Fig. 8(e)), and a linear function a reasonably satisfactory
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(b)

Figure 8. (Continued.)

(c)

Figure 8. (Continued.)
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(d)

Figure 8. (Continued.)

(e)

Figure 8. (Continued.)
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(f)

Figure 8. (Continued.)

fit for subjective magnitude as a function of sagitta regardless of chord-length

(R2 = 0.6149; p < 0.001, DF(1, 87)), with a noticeably better result when stimuli

with the longest chords only are taken into account (Fig. 8(f)). Again, when

comparing the data for aspect ratio (Fig. 8(a)) and sagitta (Fig. 8(b)), we find

more scattered data for sagitta than for aspect ratio.

Curvature representation as a function of the four structural models. The aver-

age data of the expert observers analyzed as a function of the four geometric models

show that the arcs of concentric circles (model 1) produce constant subjective mag-

nitude in the middle region of the psychophysical scale (Fig. 9(a)). The same result

was obtained with the non-experts. Again, arcs with ‘negative’ and ‘positive’ cur-

vature produce symmetric data. For arcs of vertical ellipses (model 2), subjective

magnitude of curvature increases symmetrically with increasing aspect ratio of arcs

with ‘negative’ and ‘positive’ curvature (Fig. 9(b)). This increase concerns the up-

per half of the psychophysical scale only, as already found with the non-experts.
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(a)

Figure 9. This figure shows average data of the expert observers as a function of the four geometric

models.

(b)

Figure 9. (Continued.)
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(c)

Figure 9. (Continued.)

(d)

Figure 9. (Continued.)
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(e)

Figure 9. (Continued.)

(f)

Figure 9. (Continued.)
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(g)

Figure 9. (Continued.)

(h)

Figure 9. (Continued.)
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(i)

Figure 9. (Continued.)

(j)

Figure 9. (Continued.)
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(k)

Figure 9. (Continued.)

The function that best describes the relationship between subjective magnitude of

curvature and the aspect ratio of the arcs is, again, found to be an exponential func-

tion (Fig. 9(c)). For arcs of horizontal ellipses (model 3), subjective magnitude of

curvature increases symmetrically with increasing aspect ratio (Fig. 9(d)) or sagitta

(Fig. 9(f)) of arcs with ‘negative’ and ‘positive’ curvature. Again, this increase

concerns the lower half of the psychophysical scale only. The function that best

describes the relationship between subjective magnitude of curvature and the aspect

ratio of the arcs, irrespective of the polarity of their curvature, is an exponential

function (Fig. 9(e)), as previously shown in the data of the non-experts. The func-

tion that best describes the relationship between subjective magnitude of curvature

and the sagitta of the arcs is, again, a linear function (Fig. 9(g)). For the combi-

nation of arcs of vertical and horizontal ellipses (model 4), subjective magnitude of

curvature increases symmetrically with increasing aspect ratio (Fig. 9(h)) or sagitta

(Fig. 9(j)). As for the non-experts, this increase covers the full psychophysical

scale. The function that best describes the relationship between subjective magni-

tude of curvature and the aspect ratio of the arcs is, again, an exponential function

(Fig. 9(i)). The function that best describes the relationship between subjective

magnitude of curvature and sagitta is, again, a linear function (Fig. 9(k)).
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Expert observer BM: an exceptional case

Expert observer BM, an experienced civil engineer and expert in the theoretical

analysis of form-force coupling in architectural design, produced data that were

different from those of all the other observers. His data are shown in Figs 10 and 11.

BM: subjective magnitude of curvature as a function of sagitta and aspect ratio.

At a first glance, BM’s visual sensations of curvature, reflected by subjective

magnitudes of curvature plotted as a function of the sagitta and the aspect ratio

of the arcs presented in the experiment do not reveal any systematic variation of

sensation as a function of either of the two geometric variables tested. Regression

analysis of BM’s data plotted on a logarithmic scale (Figs 10(a) and 10(b)) reveals

no significant linear relationship between either subjective magnitude of curvature

(a)

Figure 10. This figure shows results of expert observer BM, a particular case whose data required

a separate analysis. Subjective magnitudes of curvature are plotted as a function of the sagitta

(Figs 10(b), (d) and (f)) and the aspect ratio (Figs 10(a), (c) and (e)) of the arcs presented in the

experiment. Regression analysis of the data plotted on a logarithmic scale reveals no significant

linear relationship between either subjective magnitude of curvature and aspect ratio, or subjective

magnitude of curvature and sagitta. No suitable psychometric function could be fitted to BM’s global

average data represented on a linear scale. When stimuli with only the longest chord-lengths were

considered, however, we obtain satisfactory linear fits for both aspect ratio and sagitta plotted on

a logarithmic scale (Figs 10(c) and (d)) or on a linear scale (Figs 10(e) and (f)). BM’s data thus

reveal an unusual interdependency of aspect ratio and chord-length not observed with any other of the

subjects, non-experts or experts.
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(b)

Figure 10. (Continued.)

(c)

Figure 10. (Continued.)
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(d)

Figure 10. (Continued.)

(e)

Figure 10. (Continued.)
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(f)

Figure 10. (Continued.)

and aspect ratio (Fig. 10(a)), or subjective magnitude of curvature and sagitta

(Fig. 10(b)). No suitable psychometric function could be fitted to BM’s global data

represented on a linear scale (Figs 10(e) and 10(f)). However, further analyses as a

function of the chord-lengths of the stimuli revealed significant linear relationships

between BM’s subjective magnitude of curvature and the sagitta of arcs with chords

of 7–10 degrees of visual angle (Figs 10(d) and 10(f)) and between curvature and the

aspect ratio of arcs with chords of at least 7 degrees (Figs 10(c) and 10(e)). Thus,

BM’s data reveal a dependency between sagitta and chord-length similar to that

described for the other experts. In contrast, BM’s results exhibit such a dependency

also between aspect ratio and chord-length, which is a very unusual observation

given that aspect ratio proves to be a solidly scale-invariant predictor for all the

other observers, experts or not.

BM: curvature as a function of the four structural models tested. As with all

other observers, BM’s data revealed symmetric sensations for arcs with ‘negative’

and ‘positive’ curvature and only average subjective magnitudes for the two

polarities of curvature are therefore shown here. Arcs of concentric circles (model 1)
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(a)

Figure 11. This figure shows BM’s results as a function of the four geometric models. Like with all

other observers, BM’s data revealed symmetric sensations for arcs with negative and positive curvature

and, therefore, average subjective magnitudes for the two polarities of curvature are shown here only.

(b)

Figure 11. (Continued.)
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(c)

Figure 11. (Continued.)

(d)

Figure 11. (Continued.)
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(e)

Figure 11. (Continued.)

(f)

Figure 11. (Continued.)
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produce, like with all other observers, constant subjective magnitude as a function

of variations in sagitta, with the major difference that BM’s sensation levels out in

the upper end of the psychophysical scale (Fig. 11(a)), whereas the other observers

showed constant magnitudes of sensation in the middle region of the scale. For arcs

of vertical ellipses (model 2), BM’s subjective magnitude of curvature decreases

with increasing aspect ratio of arcs with negative or positive curvature (Fig. 11(b)).

The individual data of all other observers had shown exponential increases in

sensation here. For arcs of horizontal ellipses (model 3), subjective magnitude of

curvature increases with increasing aspect ratio (Fig. 11(c)) or sagitta (Fig. 11(d)).

This increase covers the full psychophysical scale for observer BM. For all the

others, the increase in sensation was found to cover only the lower half of the

psychophysical scale. However, the function that best describes the relationship

between BM’s subjective magnitude of curvature and the aspect ratio of the arcs

of model 3 is, as with all the other observers, found to be an exponential function

(Fig. 11(c)). The function that best describes the relationship between subjective

magnitude of curvature and the sagitta of the arcs of model 3, is found to be a linear

function (Fig. 11(d)), as with the other observers. For BM, the combination of

arcs of vertical and horizontal ellipses (model 4) generates subjective magnitudes of

curvature which produce a U-shaped function for increasing aspect ratio (Fig. 11(e))

or sagitta (Fig. 11(f)). This result is very different from that obtained with any of

the other observers for this geometric model (model 4). The function that best

describes the relationship between BM’s subjective magnitude of curvature and the

aspect ratio of the arcs of model 4 is found to be a three-parameter log-normal fit

(Fig. 11(e)). The function that best describes the relationship between BM’s

subjective magnitude of curvature and the sagitta of the arcs of model 4 is a two-

parameter log-normal fit (Fig. 11(f)). In the light of these data it appears quite

clearly that the ‘best’ curve in terms of perceived curvature is, for observer BM, one

that has the shape of half a circle, regardless of its sagitta or chord-length. For all

the other observers, the ‘best’ curve corresponds to the shape of a narrow, vertical

ellipse.

DISCUSSION

The results of this study provide new insights into the perceptual processes that

generate shape representations on the basis of structural properties of 2-D curvature.

First, they clarify the relative importance of local geometric cues in the perceptual

representation of global shape attributes such as perceived curvature. From the

simple 2-D view of a single curve, the important role of local geometric cues in

shape perception may not be too obvious. However, when two parallel curves with

multiple double curvature are combined, it becomes quite clear, as in Fig. 12(a),

which illustrates how the strength of the global shape percept, or shape sensation,

increases with the local sagittae or aspect ratios.
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(a)

(b)

Figure 12. (a) To produce visible 3-D effects through 2-D curvature, at least two parallel curves

are required. The strength of the resulting shape percept, or shape sensation, then increases with

increasing local sagitta or aspect ratio, also sometimes referred to as the ‘local height-to-width ratio’

(e.g. Stevens, 1981a and 1981b). (b) A ‘buckled bar model’ optimally accounts for variations in

the subjective magnitude of arcs describing halves of ellipses derived from concentric circles (our

structural model 4). When the arcs of structural model 4 are presented as an ordered series, beginning

with the arc that has the smallest aspect ratio and sagitta and ending with the arc that has the highest

aspect ratio and sagitta, we can figure a horizontal bar that is progressively bent, or buckled.

Here in our data, both the aspect ratio and the sagitta of 2-D curves account for

the generation of global shape sensations in terms of curvature. The aspect ratio,

however, is found to provide the more reliable predictor. This can be explained in

the light of earlier data from threshold-based studies, tailored to investigate the rapid

visual discrimination of curves.

Local geometric cues and scale-invariance

The rapid visual analysis of small curve segments, presented for comparatively

short durations, involves a discrete, or coarse, processing mode (Ferraro and Foster,

1986; Watt, 1987) where visual sensitivity increases with exposure duration. Such

a processing mode privileges the use of the most readily available local cue, the
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sagitta. Sagitta provides a strictly local measure of relative height in the visual field

at a precise location of a given curve: the point of maximum height. Thus, under

conditions where stimuli are smaller than 1 degree of visual angle and exposure

durations not longer than a second, sagitta has, indeed, proven to provide a better

account for the variance observed in curvature discrimination thresholds than aspect

ratio (Foster et al., 1993; Foster and Savage, 2002). However, other threshold-

based studies using curves with considerably larger sizes (up to 4.2 degrees of

visual angle) have produced results showing that aspect ratio seemed to provide

the best cue (Whitaker and McGraw, 1998). It appears that larger stimuli and/or

longer exposure durations privilege a finer, more global and continuous perceptual

analysis of curvature (Ferraro and Foster, 1986; Watt, 1987). Such an analysis

may involve processing of shape properties based on a more integrated, presumably

scale-invariant cue, the aspect ratio. Aspect ratio conveys information about the

total area covered by a given curve and therefore seems the ideal predictor for the

perception of global shape properties. The magnitude estimates from our study here,

with comparatively large stimuli and unrestricted exposure duration, point toward

such an interpretation.

While aspect ratio is shown to provide a highly reliable, scale-invariant predictor

for perceptual representations of curvature, the predictive power of sagitta is,

in contrast, found to depend on the chord-length of the curves. For chord-

lengths between 1 and 6 degrees of visual angle, sagitta does not produce reliable

predictions, whereas for chord-lengths between 7 and 10 degrees, it becomes as

good a predictor as aspect ratio. This could be so because the perceptual system

has an inbuilt prototype representation of the ‘ideal curve’ with the ‘ideal size’.

Thus, for curved shapes closely matching this ‘ideal’ representation, the perceptual

system may effectively combine the use of sagitta and aspect ratio, whereas with

shapes smaller than the ‘ideal curve’, it may be constrained to privilege either of the

two cues. A bias in favour of sagitta for the smallest, briefly exposed shapes (Foster

et al., 1993), and a bias in favour of aspect ratio for shapes of intermediate sizes

(Whitaker and McGraw, 1998, our present study) would then, again, make perfect

sense.

The magnitude estimates from this study reveal an important functional aspect

of the perceptual processes involved in the generation of shape representations

such as curvature: scale invariance. For example, although the circular arcs of

our structural model 1 have different sizes and varying sagitta, they all produce

identical perceptual magnitudes of curvature. Moreover, the predictive power of

aspect ratio is found to be independent of the chord-lengths of the curves, except

in the case of observer BM. The perceptual system of experts as well as of that of

most non-experts may have a general tendency to privilege the use of scale invariant

representations, and such a preference may already be present at early levels of

visual processing, as threshold measurements from certain curve discrimination

experiments would, indeed, suggest (Whitaker and McGraw, 1998).
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Which structural model accounts best for the perceived curvature of 2-D shape

contours?

While our structural model 1, which produces no variations in curvature for any

of the observers tested here, does not suggest any 3-D shape properties, the

three other structural models (referred to as models 2, 3 and 4) do suggest shape

properties that may be found in ‘real’ 3-D objects. Only these models are found

to produce variations in subjective magnitude of curvature, consistent with an

optimal use of aspect ratio by all observers, experts or non-experts, except BM.

Arcs from structural model 2, which were all halves of vertical ellipses derived

from the concentric circles of model 1, produce increasing subjective magnitudes of

curvature with increasing aspect ratio. This increase covers only the upper half of

the psychophysical scale only, which is consistent with increases in the aspect ratio

of the arcs of this model, covering only values in the upper range of those used.

Arcs from structural model 3, which were all halves of horizontal ellipses derived

from the concentric circles of model 1, produce increasing subjective magnitudes

of curvature only in the lower half of the psychophysical scale, which is consistent

with the increase in aspect ratios, covering only values in the lower range of those

used. The ‘best’ psychometric functions, with variations in sensation covering the

whole psychophysical scale used, are obtained with our structural model 4. The

elliptic arcs of model 4, when represented all together on a Cartesian plan, form a

mesh-like spatial structure which strongly suggests properties of ‘real’ 3-D objects

(see again Figs 1 and 5). We believe it likely that the perceptual representations

of 2-D shape, reflected here through measures of sensations of curvature, originate

from a statistical relationship between the structural properties of the 2-D images of

the arcs of model 4 and their 3-D counterparts in ‘real’ objects.

A ‘buckled bar model’ for internal representations of curved objects?

How a ‘natural’ model in terms of a statistical relationship between geometrical

2-D characteristics of our stimuli and a possible physical source in the ‘real’ 3-D

world (e.g. Howe and Purves, 2005) could explain our psychophysical data may be

illustrated by linking the internal curvature representations revealed by the data of

our experiment to an external physical source in terms of a learned action on a real

object: the buckling of a bar. In our experiment, the data obtained with the curves of

our structural model 4 produce the best psychometric functions. Now, when the arcs

of structural model 4 are presented as an ordered series (Fig. 12(b)), beginning with

the one that has the smallest aspect ratio and sagitta and ending with the one that

has the highest aspect ratio and sagitta, we can immediately figure a horizontal bar

that is progressively bent, or buckled. Although observers never saw this sequence

in the experiment, the internal representations it refers to have been learnt and re-

activated over and over again in multiple active or passive situations since we were

children. It may therefore not be too surprising that this ‘natural’ model of 2-D

curvature appears to provide a suitable model for the structural or morphological
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representations at the origin of the sensations of 15 out of the 16 observers tested

here. The straight line at the beginning of the series shown in Fig. 12 produces no

sensation of curvature, while the last arc of the series shown produces a maximal

subjective magnitude of curvature in most observers.

2-D shape attributes and perceptual experience. While 15 out of the 16 ob-

servers tested here seem to straightforwardly use an internal representation that

bears certain structural and statistical relationships with the active transformation

of a straight object into a curved one, an operation we spontaneously learn to exe-

cute playfully when we are children, expert observer BM’s shape sensations seem

to originate from a rather different kind of structural representation. In his data, we

find, for example, that model 3 produces an increase in subjective magnitude with

increasing aspect ratio and sagitta covering the full psychophysical scale. This in-

crease in sensation with increasing aspect ratio is predicted by an exponential func-

tion, increasing sensation with increasing sagitta is predicted by a linear function.

When considering observer BM’s global data, however, neither the aspect ratio, nor

the sagitta of the curves seem to prove a valid cue to perception, given the fact that

no suitable psychometric function can be fitted where all other observers produced

perfectly satisfactory predictive models.

However, when analyses are performed as a function of the chord-length of

the curves, we discover that aspect ratio as well as sagitta reliably predict BM’s

perceptual data when curves with the longest chords only are considered. Thus

his results reveal a dependency between sagitta and chord-length similar to that

described for the other experts but, in addition, exhibit such a dependency also

between aspect ratio and chord-length. This is a very unusual observation given

that aspect ratio proves to be a solidly scale-invariant predictor for all the other

observers, be they experts or not. Clearly, BM uses a structural model of curve

representation that is radically different from the model used by all the others. In

the light of the data it becomes clear that the ‘best’ curve, in terms of perceived

curvature is, for BM, one that has the shape of half a circle, regardless of the

sagitta or chord-length. For all the other observers, the ‘best’ curve corresponds

to the shape of a narrow, vertical ellipse and perception of curvature decreases

when the sagitta or the aspect ratio of that ellipse decreases, as in our structural

models 2 and 4. In contrast, BM’s sensations of curvature tend to diminish as

the curves approach the shape of the narrowest, vertical ellipse (models 2 and 4).

These findings suggest that a specific perceptual expertise, or learning process,

can transform ‘natural’ structural representations of curved shapes into specific

representations that exploit the geometry of 2-D space in a different, possibly more

‘analytical’ way. Sinha and Poggio (1996) have shown that the adult human visual

system is capable of learning new associations between two-dimensional pictures

and projectionally coherent 3-D structures. The data produced by BM, one out of

eight experts tested here, may possibly be explained by such a kind of specific,

associative learning.
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