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Generalized arcsine laws for fractional Brownian motion
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CNRS; PSL Research University; UPMC Univ. Paris 6, Sorbonne Universités.

The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a
Brownian B; starting from the origin, and evolving during time 7", one considers the following three
observables: (i) the duration ¢4 the process is positive, (ii) the time tias¢ the process last visits the
origin, and (iii) the time tmax when it achieves its maximum (or minimum). All three observables
have the same cumulative probability distribution expressed as an arcsine function, thus the name of
arcsine laws. We show how these laws change for fractional Brownian motion X;, a non-Markovian
Gaussian process indexed by the Hurst exponent H. It generalizes standard Brownian motion (i.e.
H = 1). We obtain the three probabilities using a perturbative expansion in ¢ = H — % While all

2

three probabilities are different, this distinction can only be made at second order in . Our results
are confirmed to high precision by extensive numerical simulations.

PACS numbers: 05.40.Jc, 02.50.Cw, 87.10.Mn

The three arcsine laws for Brownian motion or more
generally for discrete random processes [IH4] are cele-
brated properties of stochastic processes. For a Brownian
B; starting from the origin, and evolving during time 7',
one considers the following three observables (see Fig. [1]):
(i) the total duration ¢4 when the process is positive, (ii)
the last time t),5t the process visits the origin, and (iii)
the time tynax it achieves its maximum (or minimum).
Remarkably, all three observables have the same proba-
bility distribution as a function of ¢ :=t/T,

1
p(v) = m : (1)

As the cumulative distribution contains an arcsine func-
tion, these laws are commonly referred to as the first,
second and third arcsine law. These laws apply quite gen-
erally to Markov processes, i.e. processes where the incre-
ments are uncorrelated [2]. Their counter-intuitive form
with a divergence at ¥ = 0 and ¥ = 1 has sparked a lot of
interest, and they are considered among the most impor-
tant properties of stochastic processes. Recent studies led
to many extensions, in constrained Brownian motion [5-
[7], for general stochastic processes [S8HI3], even in higher
dimensions [I14HI6]. The laws are realized in a plethora of
real-world examples, from finance [I7, [18] to competitive
team sports [19].

In this letter, we ask how these laws change for frac-
tional Brownian motion (fBm) which is a generalization
of standard Brownian motion preserving scale invariance
as well as translation invariance, both in time and space.
FBm was introduced in its final form by Mandelbrot and
Van Ness [20] to describe time-series data in natural pro-
cesses. It is defined as a Gaussian process Xy, starting at
zero, Xo = 0, with mean (X;) = 0 and covariance

(X, X,) = t2H 4 2H _ |t — s2H 2)
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. L
0 A/ _
A%
1t |
0.0 0.2 0.4 0.6 7, 087, 1o

FIG. 1. The three observables t, tiast, and tmax considered
in this letter.

The parameter H € (0,1) is the Hurst exponent. Stan-
dard Brownian motion corresponds to H = % where
the covariance reduces to (X;Xs) = 2min(s,t). Unless
H = %, the process is non-Markovian, i.e. its increments
are not independent. For H > 3 they are positively
correlated, while for H < % they are anti-correlated.
This non-Markovian nature makes a theoretical analysis

of fBm difficult, and only few exact results are available

in the literature [2TH23].

FBm is important as it successfully models a vari-
ety of natural processes [24]: a tagged particle in the
single-file (H =0.25) [25] 26], the integrated current in
diffusive transport (H =0.25) [27], polymer transloca-
tion through a narrow pore (H ~0.4) [28H30], anoma-
lous diffusion [31], values of the log return of a stock
(H=~0.6 to 0.8) [32H35], hydrology (H ~0.72 to 0.87)
[36], a tagged monomer in a polymer (H =0.25) [37],
solar flare activity (H ~0.57 to 0.86) [38], the price of
electricity in a liberated market (H ~0.41) [39], telecom-
munication networks (H ~0.78 to 0.86) [40], telomeres
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FIG. 2. Numerical simulation results for the probability of the
three observables tast, t+, and tmax for a fBm with H = 0.33.
The inset shows the probabilities for H = 0.66. Note that the
distributions of ¢4 and tmax are almost indistinguishable.

inside the nucleus of human cells (H ~0.18 to 0.35) [41],
or diffusion inside crowded fluids (H ~0.4) [42]. Gener-
alizing the three arcsine laws to fBm thus has fun-
damental importance, as well as a multitude of potential
applications.

Unlike for Brownian motion, the probabilities of the
three observables ¢, t1,s and ty.x are different. Using

an expansion in € = H — %, we derive them in the form:
Ny eF T (9)+e2FF (9)+0(e%)
p+(9) = W —oF et 2 3)
Prast () = ﬂH(lMa:;)lH oI (AT (O (4)
Nmax ]_-max 9 2Fmax 9 @) 3
Pana(§) = I (T WHETIT0)40E) (5
[ —9)]*

The pre-factors of the exponential are predicted using
scaling arguments for ¥ — 0 and ¥ — 1. The terms in
the exponential are non-trivial, and finite over the full
range of ¥. We use the convention that the integral over
each F-function vanishes, which adjusts the normaliza-
tion constants A/. To leading order we find

Fi(9) = F(9) (6)
B 1—-9  2(29 — 1)acos(v?) B 12
F(0) =0 (7)

The expression of F{**(¢}) was reported earlier [43H46].
The equality of F;" and F"®* and their difference from
the vanishing F1# is qualitatively seen in Fig. We
have no intuitive understanding of this coincidence.

A numerical estimation of the three probabilities is ob-
tained using a discrete-time algorithm [47] for {Bm of a
given H, which generates sample trajectories drawn from
a Gaussian probability with covariance . The proba-
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FIG. 3. Comparison of the formulas — with their corre-
sponding numerical simulation result of a fBm with H = 0.33.
The dashed lines are the theoretical result. pmax(¥) is shown
in the inset as it is almost indistinguishable from p (19).

bilities in figures [2] and [3] are obtained by averaging over
5 x 10° sample trajectories, each with 2™ time steps.

Figure [2| shows that pas () behaves markedly differ-
ently from the other two distributions; especially, it is
asymmetric under the exchange 4 — 1 — ). This can
be seen in the scaling part of Eq. , where the expo-
nent H comes from the return probability to the starting
point, while the survival exponent § = 1 — H governs the
divergence for ¥ — 1. This asymmetry in exponents is
reversed around H = %, as seen in the inset of figure

The analytical expressions for Fs in Egs. f are
cumbersome; we will sketch the derivation for the sim-
plest one, Fitst(19), below, while the remaining ones will
be reported elsewhere [48].

Confirmation of our theoretical results comes from
comparison with numerical simulations of the probabili-
ties presented in Fig.[3] For a finer comparison we plot
our theoretical results of F5(¥) in Fig. [4] alongside their
extraction from numerical simulations. To illustrate our
procedure, we use Eq. to define

#£0) = 1 [n(pe0)M ) - )

(8)
Then, F5_(9) = F5 (9) + O(e) which contains all terms
in the exponential in Eq. except F; (). One can
improve this estimation by using that the sub-leading
term in ]—';6(19) is odd in ¢, to define

Fi0) = 3[R+ F0)] = Fr@)+0E) - 9)

A comparison of 7;8(19) extracted from numerical sim-
ulations of p, (9) with the theoretical result of JF,"(¢9)
is plotted in Fig. 4| for ¢ = :i:%. The figure also con-
tains the comparison for Fiast(¢9) and F3a*(d9). As one
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FIG. 4. A comparison for the three F»(1%) obtained analytically (black dashed lines) and their measurement using formula @D
with € = 1. From left to right: (a) positive time, (b) time of the last visit to the origin, and (c) time for the maximum. The

scattered dots are the raw data from trajectories of N = 2! time steps, averaged over 5 x 10° samples, which are coarse grained
by a factor of 100 to give the green curve. Approximations of our analytical results are given in the supplementary material.
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FIG. 5. The difference 6F2(9) = F3"**(9) — F,f (9), using
the same conventions as in Fig. @] This plot quantifies the
difference between the first and third arcsine law.

sees, the agreement between theory and numerical sim-
ulations is quite striking: remind that these are sub-sub
leading corrections, almost indiscernable in Fig. We
note the much larger amplitude of Fiast(9). The latter
also has the largest deviations from the theory, especially
for & — 0. These deviations indicate the presence of sub-
leading terms of order %, or higher.

In Fig. [2[ the probabilities p4 (¢) and pmax(¥) are hard
to distinguish from each other. Their difference can ana-
lytically be seen only at second order in . To underline
that these are distinct distributions, we show the differ-
ence 6F,(0) = Fax(9) — F5 () in Fig.

In the rest of this letter we sketch the derivation of
formulas f. We begin with the action which char-
acterizes the probability of a fBm trajectory,

T T
S[X] :/0 dtl/t dty X;,C7Y(t1,t2) Xy, . (10)

Here C(ty,t3) is the co-variance given in Eq. . We use
an expansion [44], 49] of the action around H = 3 to take
advantage of the Markov property of Brownian motion.
One writes
C(tla t2)

€ 2e2In | itz
+ | T | + 0(53)

|ty — t2 |ty — t2]

(11)

= 2D, l&(tl —ty)

which leads to an expansion of the action [50]

I3

1T T
X = — dt dto X¢, X, |0(t1 — ¢ _
S[X] 2D€/0 1/751 2 X¢, tz[(l 2)+|t1—t2|

ta 62 3
+ ds ——— + O(e 12
/tl Itl —S||t2—8| ( )j| ( )

where D, ~ (1+2¢)72¢ and all expressions are regularized
by an ultraviolet cutoff 7 in time.

Our calculation for the probabilities is done in Laplace
variables. One reason for this choice is that the space
integrals appearing in perturbation theory are easier. A
further advantage is that temporal convolutions become
mere products in the conjugate Laplace-variables. The
action is written in Laplace variables [44] using

A
@(|t1 — t2| > T) ~ / dye—y|t17t2‘ (13)
t1 — to] 0 7

where ©(x) is the Heaviside function, and the UV cutoff
A is related to 7 by In(7) = —In(A) — yg with g the
Euler constant. As an explicit example, let us consider
the calculation of Pt (¢,T) and its Laplace transform

o T
Piast(A, 8) = / dTr / dte ™= TP(t,T) . (14)
0 0



FIG. 6. The diagrams (a) and (b) contributing to the order-
€ term in piast (V), as well as (¢) and (d) contributing to the
order-¢” term F5***(¢) in (@). Solid lines denote the Brownian
propagators, with absorbing boundary conditions indicated
by a bold line after time ¢. The curly lines represent the
order-¢ interaction in Eq. .

The quantity of interest is plast(%) = %Plast (t,T) which
yields

D 1 ! plast('l?) A
-Plast(/\ys)—;/o dﬁl+l€19 5 H—;. (15)

Defining past (k) = slglast()\,s), one obtains the proba-
bility piass(9) by taking the inverse transformation

N DY ;
plast(ﬂ) = (;IESF E%plast(ﬁ = 6“15/19) ) (16)
where & denotes the imaginary part. This is proven from
Eq. via analytical continuation.

The calculation is simplest at order zero in ¢, i.e, for a
Brownian. Using Eqgs. and one writes

]Slast% A, 8) = lim z/da:Z(mo,xo,S—|—/\)Z+(aso,sr3,s).
0 (7)
Here Z(z,y,s) = (2¢/5) texp(—v/slz — y|) is the
Laplace transform of the Brownian propagator, while
Zt(z,y,8) = Z(z,y,s) — Z(x,—y, s) is the propagator in
presence of an absorbing wall at the origin. This yields

_H=1

2 SH=3
Prast (KJ) =S P)last (5’%’ S) =

1
ik (18)
Using the transform one obtains the arcsine law .

Perturbative corrections to the probability are evalu-
ated by following a similar procedure [44]. Contributions
at different orders in e are represented by the diagrams
in Fig. [f] The non-vanishing contributions at order &

4

come from the two diagrams (a) and (b) which like (17))
are expressed in terms of the Brownian propagator. For
example, the amplitude corresponding to diagram (a) is

4e (A > > <o
7/ dy/ d.’ﬂl/ diL'Q/ dz Z(:L'Oaxlasl) (19)
Zo Jo —00 —0o0 0

X aﬂélz(mlﬂx27 81+y)6$22($2,$0, 81)2+($07 x, 8)

where s; = s(1+ ). This leads to the non-trivial power-
law in Eq. and a vanishing F1** in Eq. .

At order €2, there are multiple diagrams which con-
tribute to the probability piast(¢). However, the only
contributions to Fi* come from the two diagrams (c)
and (d) in Fig. [fl After some tedious algebra, the net
amplitude of the two diagrams reads

A
Fyst(k) = — /Ody1 dys {\/K+y1+yz+1 — VEt+y+1

2V1+EVY1+ya+1

Y15

—-v%+y2+1+»¢n+1]x

X (1 — Vil = V1 + \/y1+y2+1>. (20)

Finally, 732*(4) is obtained using

FESE(9) = lim RFP(k =

e'/9) (21)
¢—m

which follows from Egs. and [51]. Integrals in

Eq. converge for A — oo leading to the result shown

in the middle of Fig.

Similar calculations for the other two probabilities
P, (9) and Ppax(¥) are more involved. For example,
in pmax(¥) ten diagrams contribute to the power-law
[(1 —9)] in Eq. ; in addition there are seven dia-
grams which contribute to F3***. All these terms need to
be grouped with the appropriate repeated first-order dia-
grams to yield combinations which converge for A — oo.
These calculations will be reported elsewhere [48].

To summarize: we calculated the probabilities —
generalizing the three arcsine laws to fBm up to order
¢2, improved by incorporating the exact scaling results
for ¥ — 0 and 1. Our numerical simulations confirm
these highly non-trivial predictions accurately.

Most realizations of fBm found in practical applica-
tions fall within the range H ~ %:I:O.?) where our formulas
yield high-precision predictions. Our approach further
offers a systematic framework to obtain other analytical
results for non-Markovian processes, of which very few
are available so far.

We thank J. Klamser, P. Krapivsky, S.N. Majum-
dar and A. Rosso for stimulating discussions, and
PSL for support by grant ANR-10-IDEX-0001-02-PSL.
This research was supported in part by ICTS (Code:
ICTS/Prog-NESP/2015/10).
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Supplementary Material: Result for F

The analytical expressions for Fy are quite complicated, and contain as Eq. numerical integrals to be performed.
In order that the reader can use our results, we give simple approximations to the results obtained after numerical
integration of these integrals, which fit the analytical formulas to a good extent.

Fif (9) =~ —0.842235 + 1.76479 [9(1 — 9)]? + 3.70810 [0(1 — 9)] — 9.71973 [9(1 — 9)]? + 7.40511 [9(1 — 0)]?

(S1)

FRst(9) ~ —17.92401 + 13.30207v/9 — 2.16604v/T — ¥ +8.300599 + 11.595209% + 13.23121(1 — ) ? — 10.742749° (S2)

FIax(9) ~ —0.431001 + 1.69259 [9(1 — 9)]% — 1.93367 [9(1 — )] + 1.3572 [9(1 — )]

vl

—0.33995[9(1 — )] (S3)

Note that F; () and F3®*(99) are symmetric under the exchange of ¥ — 1 — o while Fi*s*(¥9) is not.
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