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First passage in an interval for fractional Brownian motion

Kay Jörg Wiese
CNRS-Laboratoire de Physique Théorique de l’Ecole Normale Supérieure,

24 rue Lhomond, 75005 Paris, France, PSL University, Sorbonne Université.

Be Xt a random process starting at x ∈ [0, 1] with absorbing boundary conditions at both ends of the
interval. Denote P1(x) the probability to first exit at the upper boundary. For Brownian motion, P1(x) = x,
equivalent to P ′1(x) = 1. For fractional Brownian motion with Hurst exponent H , we establish that P ′1(x) =

N [x(1−x)]
1
H
−2eεF(x)+O(ε2), where ε = H− 1

2
. The function F(x) is analytic, and well approximated by its

Taylor expansion, F(x) ' 16(C − 1)(x− 1/2)2 +O(x− 1/2)4, where C = 0.915... is the Catalan-constant.
A similar result holds for moments of the exit time starting at x. We then consider the span of Xt, i.e. the
size of the (compact) domain visited up to time t. For Brownian motion, we derive an analytic expression for
the probability that the span reaches 1 for the first time, then generalized to fBm. Using large-scale numerical
simulations with system sizes up toN = 224 and a broad range ofH , we confirm our analytic results. There are
important finite-discretization corrections which we quantify. They are most severe for small H , necessitating
to go to the large systems mentioned above.

I. INTRODUCTION

A key problem in stochastic processes are the first-passage
properties [1, 2] in a finite domain, say the unit interval [0, 1].
For Brownian motion, the probability to exit at the upper
boundary x = 1, starting at x is

P 0
1 (x) = x . (1)

Another key observable is the exit time, starting at x, which
behaves as 〈Texit(x)〉0 ∼ x(1−x). Many physical situations,
however, cannot be described by Brownian motion. An exam-
ple is a polymer translocating through a nano-pore. While the
motion of the polymer as a whole is a Markov process, the ef-
fective process for its position in the pore is non-Markovian
[3–8]. The questions posed above become much more in-
volved for the latter. The simplest generalization is frac-
tional Brownian motion (fBm): It is the unique process that
retains from Brownian motion Gaussianity, scale and trans-
lational invariance both in space and time, and that is drift-
free. FBm was introduced in its final form by Mandelbrot and
Van Ness [12]. It is indexed by the Hurst exponent H , with

FIG. 1. Realizations of a fBm for H = 0.25 (red, roughest curve),
H = 0.375 (orange), H = 1/2, Brownian (black), H = 0.625
(green), H = 0.75 (cyan), H = 0.875 (bright blue) to H = 1 (dark
blue, straight line), using the algorithm of Davies and Harte [9–11].

0 < H ≤ 1 (see Fig. 1). As Gaussian process, it is specified
by its second moment,

〈X(t1)X(t2)〉 = t2H1 + t2H2 − |t1 − t2|2H . (2)

FBm is important as it successfully models a variety of natu-
ral processes [13, 14]: a tagged particle in single-file diffusion
(H = 0.25) [15, 16], the integrated current in diffusive trans-
port (H = 0.25) [17], polymer translocation through a narrow
pore (H ' 0.4) [8, 18, 19], anomalous diffusion [20], values
of the log return of a stock (H ' 0.6 to 0.8) [21, 22], hydrol-
ogy (H ' 0.72 to 0.87) [23], a tagged monomer in a polymer
(H = 0.25) [24], solar flare activity (H ' 0.57 to 0.86) [25],
the price of electricity in a liberated market (H ' 0.41) [26],
telecommunication networks (H ' 0.78 to 0.86) [27], telom-
eres inside the nucleus of human cells (H ' 0.18 to 0.35)
[28], or diffusion inside crowded fluids (H ' 0.4) [29].

There are yet no analytical methods to treat the questions
posed above for H other than 1/2 (Brownian motion) and
H = 1 (a straight line with a random slope). To remedy
this, we developed tools [30–35] which allow us to answer this
question analytically, in a Taylor expansion around H = 1/2,
i.e. in

ε = H − 1

2
. (3)

These methods have proven feasible and precise up to second
order in ε [36], where they allowed us to distinguish the three
classical arcsine laws. In this article, we generalize the exit
probability and distribution of exit times to fractional Brow-
nian motion (Fig. 1). It had earlier been argued [37] that the
exit probability at the upper boundary scales for small x as

P1(x) ∼ xφ , φ =
θ

H
, (4)

and where θ is the persistence exponent. For fBm [30, 38]

θ = 1−H . (5)

This led the authors of Ref. [37] to conjecture that P ′1(x) ∼
[x(1 − x)]

1
H−2, for all x. This however is too simple an ap-

proximation [37]. Here we show analytically that P ′1(x) can

ar
X

iv
:1

80
7.

08
80

7v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

9 
Fe

b 
20

19



2

0.2 0.4 0.6 0.8 1.0
x

-0.2

-0.1

0.1

(x)

FIG. 2. The scaling function F(x) defined in Eq. (72) (solid,
red), normalized s.t. that

∫ 1

0
F(x) dx = 0. The dashed line is the

quadratic term given in Eq. (8).

be written in the form

P ′1(x) = N [x(1− x)]
1
H−2eεF(x)+O(ε2) , (6)

where F(x) is an analytic function,

F(x) = 4

[
12ζ ′(−1) +

ln(2)

3
+ ln

(
x(1− x)

)
+ ln

(
Γ
(1

2
− x

2

))
− ln

(
Γ
(

1− x

2

))
+ ln

(
Γ
(x

2

))
− ln

(
Γ
(x+ 1

2

))]
. (7)

Absorbing the constant into the normalization N , its Taylor-
expansion reads

F(x) = 4− 20
3 ln(2) + 8

[
ln
(
Γ( 1

4 )
)
− ln

(
Γ( 3

4 )
)

+ 6ζ ′(−1)
]

+16(C − 1)(x− 1
2 )2

+ 1
48 (x− 1

2 )4
[
ψ(3)( 1

4 )− ψ(3)( 3
4 )− 1536

]
+O(x− 1

2 )6

= 0.116736− 1.34455(x− 1
2 )2 − 0.353774(x− 1

2 )4

+O(x− 1
2 )6 . (8)

The number C is the Catalan constant

C =

∞∑
n=0

(−1)n

(2n+ 1)2
≈ 0.915965594... (9)

and ψ(3)(x) = ∂4
x ln(Γ(x)) the polygamma function of order

3. As can be seen on Fig. 2, the functionF(x) is well approxi-
mated by its second Taylor-coefficient. Incorporating the forth
order term, analytic result and Taylor expansion are indistin-
guishable on this plot. As a consequence, the most relevant
information is captured by the curvature of F(x) at x = 1/2,

γ :=
1

2
F ′′(x)

∣∣∣
x=1/2

= 16(C − 1) . (10)

We believe that higher-order terms in ε entering into the ex-
ponential of Eq. (6) are also analytic, and well approximated

by their low-order (in x) Taylor coefficients. We can therefore
ask how the effective curvature γ, defined by the first equal-
ity in Eq. (10), changes with H . The answer can be read off
from Fig. 3: Consider the top (blue) data on the left plot, ob-
tained for the largest systems. One sees that γ depends on H ,
and that for H → 1

2 it extrapolates to γ = −1.34 ± 0.02, in
agreement with the analytical result (8).

This article is organized as follows: We first derive key re-
sults for Brownian motion, see section II. Most of them are
known [1, 2], except for the span-observables. After a short
review of the ε-expansion in section III, we derive in section
IV the leading-order corrections for fBm for a number of key
observables. All our results are checked via extensive numer-
ical simulations in section V. We conclude in section VI.

II. BASIC FORMULAS FOR BROWNIAN MOTION WITH
TWO ABSORBING BOUNDARIES

A. Solving the Fokker-Planck equation

Brownian motion from x to y in time t satisfies the forward
Fokker-Planck equation [1, 2]

∂tP+(x, y, t) = ∂2
yP+(x, y, t) (11)

The plus refers to surviving paths. Its general solution with
absorbing walls at x = 0 and x = 1 can be written as

P+(x, y, t)

=
1√
4πt

∞∑
n=−∞

(
e−(x−y+2n)2/4t − e−(x+y+2n)2/4t

)
=

1

2
ϑ3

(π
2

(x− y), e−π
2t
)
− 1

2
ϑ3

(π
2

(x+ y), e−π
2t
)
. (12)

ϑ is the elliptic ϑ-function. To prove this statement it is
enough to remark that the first line satisfies the Fokker-Planck
equation (11), vanishes at y = 0 and y = 1, and reduces for
t→ 0 to a δ-function

lim
t→0

P+(x, y, t) = δ(x− y) . (13)

Let us introduce the notation

P(z, t) :=
1√
4πt

∞∑
n=−∞

e−(z+2n)2/4t =
1

2
ϑ3

(π
2
z, e−π

2t
)
.

(14)
In terms of this function, Eq. (12) can be written as

P+(x, y, t) = P(x− y, t)− P(x+ y, t) . (15)

Using the Poisson summation formula, an alternative form for
P(z, t) is

P(z, t) =
1

2
+

∞∑
m=1

e−m
2π2t cos(mπz) . (16)
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FIG. 3. The effective measured curvature γ, as function of H , and system size. The grey dashed line is γ as given by Eq. (118); the black solid
line at −1.39 is a fit to the curvature of F(x) in the range 0.15 to 0.85. The color code is (from bottom to top on the left plot) N = 213 (dark
green), 214 (green), 216 (olive), 218 (orange), 220 (red), 222 (dark magenta), 224 (blue). The 1-σ errors are indicated with bars on the left, and
are explicitly shown on the right. There the solid lines are the measured errors obtained as follows: γ is estimated by fitting a parabola to each
of the data sets presented on Fig. 13, and measuring the variance of the data minus the fit, which allows to estimate the error of the fit, after
calibration on white noise. The dashed lines are proportional to the square root of the number of samples, divided by |ε|, and calibrated against
the estimated data to have a second independent estimate. The grey lines are a guide to the eye, at the location of the H-values considered,
H = 0.33, 0.4, 0.45, 0.475, 0.525, 0.55, 0.6, 0.67, 0.75.

It is useful to consider its Laplace-transformed version. We
define the Laplace transform of a function F (t), with t ≥ 0,
and marked with a tilde as

F̃ (s) :=

∫ ∞
0

dt e−stF (t) . (17)

This yields

P̃+(x, y, s) =
e−
√
s|x−y| − e−

√
s(x+y)

2
√
s

− [coth(
√
s)− 1] sinh(

√
sx) sinh(

√
sy)√

s
. (18)

According to Eq. (15) a form which only depends on x−y and
x+y also exists. We use the form (18), since the factorization
of the second term facilitates its integration.

B. Boundary currents and conservation of probability

Conservation of probability reads (the variable x is the ini-
tial condition, here a dummy variable)

∂tP+(x, y, t) + ∂yJ(x, y, t) = 0 . (19)

J is the current, which from Eq. (19) can be identified as

J(x, y, t) = −∂yP+(x, y, t) . (20)

Due to the Dirichlet conditions at y = 0 and y = 1, we have∫ 1

0

dy ∂tP+(x, y, t) = J(x, 0, t)− J(x, 1, t) . (21)

We find

J(x, y, t) =
π

4
ϑ′3

(π
2

(x− y), e−π
2t
)

+
π

4
ϑ′3

(π
2

(x+ y), e−π
2t
)
. (22)

The derivatives of the elliptic ϑ functions are w.r.t. its first
argument. The probability to exit at time t, when starting at x
for time 0 reads

Pexit(x, t) = −Jtot(x, t) = J(x, 1, t)− J(x, 0, t)

=
π

2

[
ϑ′3

(π
2

(x− 1), e−π
2t
)
− ϑ′3

(πx
2
, e−π

2t
)]
.

(23)

Going to Laplace variables, we find

− 1 + s

∫ 1

0

dy P̃ (x, y, s) = J̃(x, 0, s)− J̃(x, 1, s) . (24)

The outgoing currents of the Laplace transform are

−J̃(x, 0, s) =
sinh

(√
s(1− x)

)
sinh(

√
s)

, (25)

J̃(x, 1, s) =
sinh(

√
s x)

sinh(
√
s)

. (26)

C. Absorption probabilities at x = 0 and x = 1

The absorption probabilities at x = 0 and x = 1 are

P0(x) :=

∫ ∞
0

dt [−J(x, 0, t)]

= lim
s→0

[
−J̃(x, 0, s)

]
= 1− x ,

P1(x) :=

∫ ∞
0

dt J(x, 1, t) = lim
s→0

J̃(x, 1, s) = x . (27)
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FIG. 4. The probability that the span reaches 1 for the first time. Grey: RW simulation with δt = 10−5, and 106 samples. Green: the analytic
result (39). Orange dashed the small-times asymptote (41); blue dashed the large-time asymptote (42). Note a small systematic deviation due
to the relatively large time step δt = 10−5.

D. Moments of the absorption time, starting at x

Moments of the absorption time are extracted from the
Laplace-transformed currents as

〈Texit(x)〉0 = −∂s
[
J̃(x, 1, s)− J̃(x, 0, s)

] ∣∣∣
s=0

=
1

2
x(1− x) (28)∫ 1

0

dx 〈Texit(x)〉0 =
1

12
. (29)〈

Texit(x)2
〉

0
= ∂2

s

[
J̃(x, 1, s)− J̃(x, 0, s)

] ∣∣∣
s=0

=
1

12
x(1− x)(1 + x− x2) (30)∫ 1

0

dx
〈
Texit(x)2

〉
0

=
1

60
. (31)

E. Probabilities for the span

The numerical simulations we will perform later can be
stopped when the width or span of the process reaches 1. The
span is a classical problem treated e.g. in [39–42], but the ob-
servable in question seems not to have been considered. Here,
we give an analytical result, and validate it numerically. The
two series expansions we obtain provide simple approximate
solutions for both small and large times.

To properly define the problem, we note the positive and
negative records (a.k.a. the running max and min) as

M+(t) := max
t′≤t

Xt′ , (32)

M−(t) := min
t′≤t

Xt′ . (33)

The span s(t) is their difference, i.e. the size of the (compact)
domain visited up to time t,

s(t) := M+(t)−M−(t) . (34)

We want to know the probability that s(t) becomes 1 for the
first time. We note this time by T1, and its probability distri-
bution by PT1(t). It can be obtained as follows: The outgoing
current at the lower boundary positioned atm1, with the upper
boundary at m2, and starting at x is

J(x,m1,m2, t)

=
1

(m1 −m2)2
J

(
x−m1

m2 −m1
, 0,

t

(m2 −m1)2

)
. (35)

(The scale factor can be understood from the observation
that the current is a density in the starting point times a
spatial derivative of a probability.) The probability that
the walk reached m2 before being absorbed at m1 is
∂m2

J(x,m1,m2, t). Finally, the probability to have span 1
at time t is this expression, integrated over x between the two
boundaries, times a factor of 2. The latter accounts for the
term where the two boundaries are exchanged. Setting w.l.o.g.
m1 = 0 and m2 = m, this is written as

PT1
(t) = −2∂m

1

m2

∫ m

0

dxJ

(
x

m
, 0,

t

m2

) ∣∣∣∣
m=1

= −2∂m
1

m

∫ 1

0

dxJ

(
x, 0,

t

m2

) ∣∣∣∣
m=1

= 2(1 + 2t∂t)

∫ 1

0

dxJ(x, 0, t) . (36)

Using Eqs. (20) and (15) allows us to rewrite the integral as

1∫
0

dxJ(x, 0, t) =

1∫
0

dx ∂y [P(x− y, t)− P(x+ y, t)]

∣∣∣∣
y=0

= −2

1∫
0

dx ∂xP(x, t) = 2 [P(1, t)− P(0, t)] . (37)

Thus

PT1
(t) = 4(1 + 2t∂t) [P(1, t)− P(0, t)] . (38)
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FIG. 5. Left: The density of the span at time t = 1. Grey: RW simulation with δt = 10−4, and 106 samples. Green: the analytic result (47).
Orange dashed the small-s asymptotics (48); blue dashed the large-s asymptotics (49). Right: ibid. on a log-scale.

Inserting the definition (14) of P, we get

PT1(t) = 4
(
1 + 2t∂t

) ∞∑
n=−∞

e−
(2n+1)2

4t − e−n
2

t

√
4πt

=
1√
πt3/2

∞∑
n=−∞

(2n+ 1)2e−
(2n+1)2

4t − 4n2e−
n2

t

= 4

√
t

π
∂t

[
ϑ2

(
0, e−1/t

)
− ϑ3

(
0, e−1/t

)]
. (39)

With the help of the Poisson-formula transformed Eq. (16),
this can compactly be written as

PT1
(t) = 8

∞∑
n=0

e−π
2(2n+1)2t

[
2π2(2n+ 1)2t− 1

]
. (40)

This result is compared to a numerical simulation on Fig. 4.
Our expansions allow us to give simple formulas for the small
and large-t asymptotics,

PT1
(t) ' 2e−

1
4t

√
πt3/2

+O(e−
1
t ) , (41)

PT1
(t) ' e−π

2t
[
16π2t− 8 +O(e−8π2t)

]
. (42)

These expansions work in a rather large, and overlapping do-
main, as can be seen on Fig. 4.

Its Laplace transform is

P̃T1(s) = 2(1 + 2s∂s)

∞∑
n=−∞

∫ ∞
0

dt
e−

n2

t − e−
(2n+1)2

4t

√
πt

e−st

=
1

cosh(
√
s/2)2

. (43)

Extracting the moments from the Laplace transform yields

〈T1〉 =
1

4
,
〈
T 2

1

〉
=

1

12
,
〈
T 3

1

〉
=

17

480
, ... (44)

Finally, let us connect to the classical work on the span [39–
42]. We will show how to reproduce formulas (3.7)-(3.8) in

[40]. The latter give the density ρt(s) for the span s at time t.
In our formalism, it can be obtained as

ρt(m2 −m1) = −∂m1
∂m2

m2∫
m1

dx

m2∫
m1

dyP(x, y,m1,m2, t) ,

(45)
where P(x, y,m1,m2, t) is the probability to go from x to
y in time t, without being absorbed by the lower boundary
positioned at m1, or the upper boundary positioned at m2. In
terms of the propagator P+(x, y, t), this can be written as

ρt(s) = ∂2
s

s 1∫
0

dx

1∫
0

dy P+(x, y, t/s2)

 . (46)

Using Eq. (15), and the series expansions (14) and (16) yields
after integration and simplifications two different representa-
tions,

ρt(s) =
4√
πt

∞∑
n=1

(−1)n+1n2e−
n2s2

4t

=
16t

s5

∞∑
n=0

e−
π2(2n+1)2t

s2

[
2π2(2n+ 1)2t− s2

]
. (47)

This is equivalent to Eqs. (3.7)-(3.8) in [40], if one there re-
places t → 2t. (Our covariance (2) at H = 1/2 is 2t instead
of t as in [40].) The small and large-s asymptotics are

ρt(s) '
4√
πt

[
e−

s2

4t − 4e−
s2

t +O
(
e−

9s2

4t

)]
, (48)

ρt(s) '
16t

s5
e−

π2t
s2

[
2π2t− s2

]
+O

(
e−

9π2t
s2

)
. (49)

Note that in Eq. (48) we have also retained the subleading
term for small s, which considerably improves the numerical
accuracy. A test is presented on Fig. 5.

III. CORRECTIONS TO THE ACTION FOR FBM

Here we briefly review the derivation of the effective action
for fBm [30, 31, 34, 36]. The exact action for a Gaussian
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process with correlations C(t1, t2) is by definition

S[X] =

∫
0<t1<t2<T

Ẋt1C−1(t1, t2)Ẋt2 . (50)

Here

C(t1, t2) =
〈
Ẋt1Ẋt2

〉
= 2δ(t1 − t2)2H|t2 − t1|2H−1

+2H(2H − 1)|t1 − t2|2(H−1)

= 2Dε

[
δ(t1 − t2) +

ε

|t1 − t2|
+O(ε2)

]
. (51)

The diffusion constant, which depends on the small-time cut-
off τ implicit in the above construction, reads

Dε ≡ 2Hτ2H−1 = (1 + 2ε)τ2ε . (52)

This scale can be understood as follows: Our procedure yields
a random process Xt, which is a Brownian process at times
smaller than τ , and an fBm at larger times.

The functional inverse of Eq. (51) which enters into the ef-
fective action (50) reads

C−1(t1, t2) =
1

2Dε

[
δ(t1 − t2)− ε

|t1 − t2|
+O(ε2)

]
.

(53)
This allows us to write the action (50) as the action of Brow-
nian motion, plus a non-local term

S[X] = S0 + εS1 +O(ε2) , (54)

with

S0 :=
1

4Dε

∫
t

Ẋ2
t (55)

S1 :=

∫
t1<t2

δC−1(t1, t2)Ẋt1Ẋt2 . (56)

Here δC−1(t1, t2) is the non-local part (t1 6= t2) of
C−1(t1, t2) defined in Eq. (53).

We will use the trick to represent the propagator as |t|−1 =∫
y>0

e−y|t|, which allows us to treat a small-time cutoff τ for
a momentum cutoff Λ. The relation between these two cutoffs
can be inferred from∫ T

0

dt

∫ Λ

0

e−ytdy = ln(TΛ) + γE +O(e−TΛ)

!
= ln(T/τ) =

∫ T

τ

dt

t
. (57)

This implies that up to exponentially small terms

Λ =
e−γE

τ
. (58)

IV. THE ABSORPTION CURRENT AT 1-LOOP ORDER

A. General formulas

We want to calculate the current at the upper boundary at
time t, when starting at x at time 0. We denote this by cal-
ligraphic J (x, 1, t), to distinguish it from the Brownian re-
sult J(x, 1, t). We follow the procedure outlined in Ref. [34],
which works on the Laplace-transformed version. The outgo-
ing current at order ε reads

J̃ (x, 1, s) = J̃
(
x, 1,

s

Dε

)
+ 2εÃ(x, s) +O(ε2)

= J̃(x, 1, s) + 2ε
[
Ã(x, s)− (1 + ln τ)s∂sJ̃(x, 1, s)

]
+O(ε2) . (59)

(The relation for the currents in time has an additional factor
of 1/Dε.) The first-order correction for the current at y = 1 is

Ã(x, s) =

∫ Λ

0

dy

∫ 1

0

dx1

∫ 1

0

dx2 P̃+(x, x1, s) (60)

×∂x1
P̃+(x1, x2, s+ y) ∂x2

J̃(x2, 1, s) .

The resulting expression after integration over x1 and x2 is
rather lengthy, but can be simplified to

Ã(x, s) =

∫ Λ

0

dy

√
s

2y2 sinh(
√
s+ y)sinh(

√
s)
×

×
[

sinh(
√
sx)

sinh(
√
s)

(√
s+ y

(
3− 4 cosh(

√
s) cosh(

√
s+ y) + cosh(2

√
s)
)

+ y cosh
(√
s
)

sinh
(√
s+ y

))
− cosh(

√
sx)

(
xy sinh

(√
s+ y

)
+ 2
√
s+ y

(
cosh(

√
s)− cosh(

√
s+ y)

))
− 2
√
s+ y cosh

(
(1− x)

√
s+ y

)
+ 2
√
s+ y cosh

(√
s
)

cosh
(
x
√
s+ y

) ]
. (61)

As the integrand vanishes at x = 0 and x = 1,

Ã(0, s) = Ã(1, s) = 0 . (62)

The integral (61) is difficult to integrate analytically – or numerically. We will therefore study moments of s, which allow us to
access the exit probability, and the first moments of the exit times. We start with the lowest moment, the exit probability.
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B. Absorption probability at the upper boundary

The limit of s → 0 in the integral (61) yields the correction to the probability to exit at the upper boundary, starting at x.
Simplifying Eq. (61), we find

Ã(x, 0) =

∫ ∞
0

dy
e−x
√
y
(
−2xex

√
y+
√
y + 2xex

√
y + ex

√
y+
√
y − ex

√
y + e2x

√
y − e

√
y
)(

e
√
y + 1

)
y3/2

. (63)

We set the cutoff Λ → ∞, as the integral is convergent. The
current at the lower boundary is by symmetry

Ã(x, 0) = −Ã(1− x, 0) . (64)

To simplify this expression, we perform two variable transfor-
mations. The first sets y = z2. The second z = − ln(r). This
yields

Ã(x, 0) = −2

∫ 1

0

dr
−r1−x + rx − 2rx+ r + 2x− 1

r(r + 1) ln2(r)
.

(65)
This expression is still difficult to integrate, due to the loga-
rithms in the denominator. Taking two derivatives simplifies
this to

∂2
x Ã(x, 0) = 2

∫ 1

0

dr
r−x − rx−1

r + 1

= − 2

x
− ψ

(
1

2
− x

2

)
+ ψ

(
1− x

2

)
− ψ

(
x

2
+

1

2

)
+ψ
(x

2
+ 1
)
. (66)

We now have to integrate twice w.r.t. x, which gives the result
plus terms of the form a + bx. The latter can be fixed by
Eq. (62). The result is

Ã(x, 0) =
1

3
(2x− 1)

[
ln(2)− 3 + 36ζ ′(−1)

]
−4ψ(−2)

(
1

2
− x

2

)
+ 4ψ(−2)

(
1− x

2

)
+4ψ(−2)

(x
2

)
− 4ψ(−2)

(
x+ 1

2

)
. (67)

FIG. 6. Graphical representation of the path-integral for the order-ε
contribution Ã(x, s) given in Eq. (60).

For P ′1(x), we also need its first derivative

∂xÃ(x, 0) = 2

[
12ζ ′(−1) +

ln(2)

3
+ ln

(
Γ
(1

2
− x

2

))
− ln

(
Γ
(

1− x

2

))
+ ln

(
Γ
(x

2

))
− ln

(
Γ
(x+ 1

2

))]
. (68)

The Taylor expansion of Ã(x, 0) is

Ã(x, 0) = x

[
−2 ln(x) +

8

3

(
9ζ ′(−1) + ln(2)

)]
+x2 ln(4) +

x4ζ(3)

4
+
x6ζ(5)

8
+

9x8ζ(7)

128

+
17x10ζ(9)

384
+O(x12) . (69)

Note the logarithmic term, which can be interpreted as a cor-
rection to the power law for x → 0 in P ′1(x). Indeed, scaling
suggests [30, 34, 37]

P ′1,scaling(x) = [x(1− x)]
1
H−2 Γ

(
2
H − 2

)
Γ
(

1
H − 1

)2 . (70)

The correction to Eq. (70) at order ε can be written as

P ′1(x) = N [x(1− x)]
1
H−2eεF(x) , (71)

F(x) = 2∂xÃ(x, 0) + 4 ln(x) + 4 ln(1− x) + 8

= 4

[
12ζ ′(−1) +

ln(2)

3
+ ln

(
x(1− x)

)
+ ln

(
Γ
(1

2
− x

2

))
− ln

(
Γ
(

1− x

2

))
+ ln

(
Γ
(x

2

))
− ln

(
Γ
(x+ 1

2

))]
. (72)

We have chosen conventions s.t.
∫ 1

0
dxF(x) = 0, moving

the constant term into the normalization N . The latter has to
be chosen such that

∫ 1

0
dxP ′1(x) = 1. The function F(x) is

plotted on Fig. 2. It has a regular Taylor expansion around
x = 0,

F(x) =
4

3
[36ζ ′(−1) + 3 + 4 ln(2)] + x(ln(256)− 4)− 2x2

+
2

3
x3(3ζ(3)− 2)− x4 +

1

10
x5(15ζ(5)− 8)

+O(x6) . (73)
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(a) 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5
F
T
(x
)

x (b) 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

ℱ
T
2(x)

FIG. 7. (a) The function FT (x), defined in Eq. (85). (b) The function FT2(x), defined in Eq. (89). The dots are the numerically obtained
points, the line the fit of Eq. (90).

For numerical purposes, a Taylor expansion around x = 1/2
is appropriate (with error < 0.002)

F(x) = 48ζ ′(−1)− 8lnΓ( 3
4 ) + 8lnΓ( 1

4 ) + 4− 20
3 ln(2)

+16(C − 1)(x− 1
2 )2

+ 1
48 (x− 1

2 )4
[
ψ(3)( 1

4 )− ψ(3)( 3
4 )− 1536

]
+O(x− 1

2 )6

= 0.116736− 1.34455(x− 1
2 )2 − 0.353774(x− 1

2 )4

+O(x− 1
2 )6 . (74)

Validation of this function via a numerical simulation is given
on Figs. 13 and 14.

C. Remark on resummation

In Eq. (71), we had written the scaling function F(x) in the
exponential. Since our calculation is performed at first order
in ε, other forms are possible,

P ′1(x) = N [x(1− x)]
1
H−2eεF(x) +O(ε2) (75)

= N [x(1− x)]
1
H−2

[
1 + εF(x)

]
+O(ε2) (76)

= N [x(1− x)]
1
H−2 1

1− εF(x)
+O(ε2) (77)

= ...

The question arises which one to choose. There are many
good reasons to choose the form (75):

1. adding drift µ to Browian motion, the latter appears as
an additive term in the exponential

Pµ+(x, y, t) = e
µ(y−x)

2 −µ
2t
4 P+(x, y, t) . (78)

2. the first-order correction (68) contains logarithmic
terms, visible in Eq. (69). Having them in the expo-
nential, they are resummed into power laws, according
to

eε ln(x) = xε. (79)

This is how in Eq. (71) the scaling function of the Brow-
nian, x(1 − x), was changed into [x(1 − x)]

1
H−1. At

the same time, the scaling function F(x), defined in
Eq. (72), becomes regular for x→ 0, as can be seen on
Eq. (73).

3. in field theory, perturbative corrections are in general,
and most efficiently, calculated for the effective action,
i.e. the log of the partition function. In a thermody-
namic setting as the one here, the effective action can
be interpreted as the free energy.

4. Finally, as the exponential function is always positive
for real arguments, the form (75) remains positive even
when εF(x) becomes large. This is a necessary condi-
tion for a probability density.

For all these reasons, using the exponentiated version is the
most natural choice, and the one chosen throughout this arti-
cle. When corrections are large, which is especially important
for universal amplitudes, we will compare this choice with the
linear extrapolation (76).

D. Expectation of exit time

The non-trivial 1-loop correction to 〈Texit(x)〉 given in
Eq. (28) is 2ε times

B(x) := −∂s
[
Ã(x, s) + Ã(1− x, s)

] ∣∣∣
s=0

. (80)

Note that this combination is much simpler than the unsym-
metrized one, which will allow us to integrate it analytically.
We find with the same variable transformations as above

B(x) =

1∫
e−
√

Λ

dr

 1

r
(

1
rx−1−1 + 1

1−rx

)
ln2(r)

+
(1− x)x

r ln(r)

 .
(81)

Both terms can be integrated, the first after taking two deriva-
tives w.r.t. x. Integrating twice w.r.t. x, and fixing the lost
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terms of the form a+bx by demanding, according to Eq. (62),
that B(0) = B(1) = 0 yields1

B(x) = [γE(x− 1) + 1]x− x ln(x) +
1

2
(x− 1)x ln(Λ)

+ψ(−2)(1− x) + ψ(−2)(x+ 1)− ln(2π) . (82)

Taylor-expanding for small x(1− x), we find

2εB(x)

〈Texit(x)〉0
= −4ε

[
γE − 1 + ln

(
x(1− x)

√
Λ
)]

+O
(
x(1− x)

)
. (83)

This is consistent with

〈Texit(x)〉 =
1

Dε
〈Texit(x)〉0 + 2εB(x) +O(ε2)

∼ [x(1− x)]
1
H−1 +O(ε2) . (84)

Let us define

FT (x) :=
2B(x)

〈Texit(x)〉0
+ 4

[
ln
(√

Λ(1− x)x
)

+ γE − 1
]

=
4

x(1− x)

[
x2 + x

(
(1− x) ln(1− x)− x ln(x)

)
+ ψ(−2)(1− x) + ψ(−2)(x+ 1)− ln(2π)

]
. (85)

This function is plotted on Fig. 7 (left), and numerically vali-
dated in Fig. 8, and more precisely in Fig. 12.

E. Expectation of exit time squared,
〈
Texit(x)

2
〉

The first-order correction to
〈
Texit(x)2

〉
given in Eq. (28)

is 2ε times

C(x) := ∂2
s

[
Ã(x, s) + Ã(1− x, s)

] ∣∣∣
s=0

. (86)

Again, this combination is much simpler than the unsym-
metrized one. We find with the same variable transformations
as above

C(x) =

∫ 1

e−
√

Λ

dr

[
1

r
(

r
r−rx + 1

rx−1

)
ln4(r)

+
xr1−x + xrx−1 − xr−x + r−x − xrx + rx − 2

(r − 1)2 ln3(r)

+
r1−x + rx + (r + 1)(6(x− 1)x− 1)

6(r − 1)r ln2(r)

+
x4 − 2x3 + x

3r ln(r)

]
. (87)

1 Note that there are corrections in the boundary region of the form
e−
√

Λx/x. These might be interpreted as the finite-discretization correc-
tions seen in the simulations of section V. We did not try to make this
statement quantitative.

Anticipating that a good approximation is given by〈
T 2(x)

〉
∼
[〈
T 2

exit(x)
〉

0

] 1
H−1

, we set with normalization N

〈
T 2

exit(x)
〉

= N
[〈
T 2

exit(x)
〉

0

] 1
H−1

eεFT2 (x)+O(ε2) . (88)

This implies that up to a constant, which will notably depend
on the UV-cutoff Λ,

FT 2(x) = 2 C(X) + 4 ln
( 〈
T 2

exit(x)
〉

0

)
+ const

= 2 C(X) + 4 ln
(
x(1− x)(1 + x− x2)

)
+ const . (89)

We did not succeed to integrate Eq. (87) analytically. A nu-
merical integration can be done without difficulty, and yields
the points on Fig. 7 (right). A fit with a symmetric polynomial
of degree 8 (with a total systematic plus numerical deviation
smaller than 10−3) reads

FT 2(x) ≈ 1.26033− 3.73328
(
x− 1

2

)2 − 4.16628
(
x− 1

2

)4
+5.24129

(
x− 1

2

)6 − 38.0198
(
x− 1

2

)8
. (90)

Validation via a numerical simulation is presented on Fig. 12.

F. Estimation of time scales: The mean exit time

Up to now, we considered universal functions, without ex-
plicit evaluation of the proper time scales. This is motivated
by the observation that time scales are often more sensitive to
details of the implementation than amplitude ratios, as those
encoded in the functions F(x), FT (x), and FT 2(x). Nev-
ertheless, our formalism is able to compute universal ampli-
tudes, a task we turn to now.

We start by the simplest such observable, the mean exit time
in the strip. By mean we understand an average over the start-
ing position x, and the realization of the process. According
to Eqs. (28), (59) and (80)∫ 1

0

〈Texit(x)〉dx

= −∂s
∣∣∣
s=0

∫ 1

0

dx

[
J̃
(
x, 1,

s

Dε

)
− J̃

(
x, 0,

s

Dε

)]
+ 2ε

[
Ã(x, s)− Ã(1− x, s)

]
=

∫ 1

0

x(1− x)

2Dε
+ 2εB(x) dx . (91)

Recalling the definition of FT (x) in Eq. (85), this can be writ-
ten as∫ 1

0

〈Texit(x)〉dx

=
1

12Dε
+
ε

2

∫ 1

0

dxFT (x)x(1− x)

−2ε

∫ 1

0

x(1− x)
[
ln(
√

Λx(1− x)) + γE − 1
]

dx . (92)
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The terms in question are

1

2

∫ 1

0

FT (x)x(1− x) dx = −5

9
− 4ζ ′(−1) = 0.106129...

(93)

−2

∫ 1

0

x(1− x)
[
ln(
√

Λx(1− x)) + γE − 1
]

dx

= − ln(Λ)

6
− γE

3
+

8

9
= 0.696484...− ln(Λ)

6
. (94)

This yields

∫ 1

0

〈Texit(x)〉dx

=
1

12

[
1 + 2ε

(
1− γE − 24ζ ′(−1)

)
+O(ε2)

]
=

1

12

[
1 + 8.78578ε+O(ε2)

]
=

1

12
exp(8.78578ε) +O(ε2) . (95)

Note that all cutoff dependence has canceled, as expected.
In the last two lines we gave two alternative resummations:
The linear, order-ε term, and an exponential resummation,
which was beneficial in resumming logarithms into a change
in power-law. We will see later (Fig. 17) that the numerically
obtained result lies between the two expressions.

G. Exit times in the limit of x→ 0

Another interesting limit is x → 0, also considered analyt-
ically in Ref. [43]. Let us define the ratio

R(x) :=
〈Texit(x)〉

[x(1− x)]
1
H−1

. (96)

As in the preceding section, we derive for x→ 0

R(0) := lim
x→0

R(x) =
1

2
+ ε(1− γE) +O(ε2) . (97)

A test is given on Fig. 8. This limit agrees2 with the equivalent
object calculated in Ref. [43].

2 Using in the supplementary material of [43] ψ(t) = 2Dt2H yields
ψ0(t) = 2Dt, and ψ1(t) = 4Dt ln(t). Eq. (G48) (generalized to arbi-
traryD) becomes Tps(0) = x0

2D
+εx0

D
(1−γE−2 ln(x0)+4 ln(D))+

O(ε2). SettingD = 1, we get limx→0 Tps(0)/x
1
H
−1 = 1

2
+ε(1−γE),

which agrees with R(0) in Eq. 97. The order-ε correction extracted from
the simulation data of Ref. [43] is consistent with this value.

H=0.55

H=0.45

0.2 0.4 0.6 0.8 1.0
x

0.44

0.46

0.48

0.52

0.54

0.56

R(x)

FIG. 8. The ratio R(x) defined in Eq. (96). In grey are the analytical
(parameter free) predictions, in red or blue the data points of numeri-
cal simulations, presented in section V. The red data points have been
used to extract via a polynomial fit of order 40 (dashed green line)
R(0), with the result Rnum

H=0.45(0) = 0.478, Rnum
H=0.55(0) = 0.522.

Analytically Eq. (97) yields Rana
H=0.45(0) = 0.479, Rana

H=0.55(0) =
0.521. The deviation in the middle of the domain is of order
7 × 10−3, consistent with an O(ε2) correction to R(x) of ampli-
tude 3. More robust tests of our formulas, focusing on the shape of
R(x), and the spatially averaged exit times, are presented in section
V C.

H. Time scales: The second moment of the exit time

Analogously to the derivation of Eq. (91), we have∫ 1

0

〈
Texit(x)2

〉
dx

= ∂2
s

∣∣∣
s=0

∫ 1

0

dx

[
J̃
(
x, 1,

s

Dε

)
− J̃

(
x, 0,

s

Dε

)]
+ 2ε

[
Ã(x, s)− Ã(1− x, s)

]
=

∫ 1

0

x(1− x)(1 + x− x2)

12D2
ε

+ 2ε C(x) dx . (98)

The first integral is∫ 1

0

x(1− x)(1 + x− x2)

12D2
ε

dx =
1

60D2
ε

. (99)

The x-integral over C(x) defined in Eq. (87) can be done ana-
lytically. The remaining non-trivial integral reads

1∫
0

C(x) dx=

1∫
e−
√

Λ

dr

[
r + 1

3r(1− r) ln2(r)
+

r + 1

(r − 1)r ln4(r)

+

1
3r −

2
(r−1)2

ln3(r)
+

1

15r ln(r)

]
. (100)

This integral is hard to evaluate analytically. A precise numer-
ical estimation can be obtained as follows: Taylor-expand the
integral at small r, and integrate, to show that

1∫
0

C(x) dx ' const+
1

3Λ3/2
− 1

3
√

Λ
+

1

6Λ
− ln(Λ)

30
. (101)
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The integral (100) can then be integrated numerically. To this
aim, one splits it into two pieces: The region close to r = 1,
for which one Taylor-expands the integrand around r = 1 and
then integrates symbolically. And the remaining region, with
cutoff Λ. Subtracting the terms in Eq. (101) from the numeri-
cally evaluated integral allows us to obtain the latter precisely
already for relatively small Λ. The result of this procedure is

1∫
0

C(x) dx = 0.152119 − ln(Λ)

30
+O

(
1√
Λ

)
. (102)

This yields for the second moment of the exit time∫ 1

0

〈
Texit(x)2

〉
dx =

1

60

[
1 + 16.5632ε+O(ε2)

]
=

1

60
exp

(
16.5632ε+O(ε2)

)
. (103)

Note that all cutoff dependence has canceled, as it should.
The result is confronted to numerical simulations on Fig. 17
(right).

I. Corrections to 〈T1〉

In Eq. (36), we had established that for Brownian motion

PT1
(t) = 2(1 + 2t∂t)

∫ 1

0

dxJ(x, 0, t)

= (1 + 2t∂t)

∫ 1

0

dx [J(x, 0, t)− J(x, 1, t)] . (104)

The generalization to fBm at order ε is obtained as in the pre-
ceding sections as

PT1
(t) =

(
1 +

t

H
∂t

)∫ 1

0

dx [J (x, 0, t)− J (x, 1, t)] .

(105)
The factor of 1/H comes from the fact that the derivative in
Eq. (36) was w.r.t. m, and the scaling variable now is m/tH .
We conjecture that this result remains valid to all orders in ε,
s.t.

PT1(t) =

(
1 +

t

H
∂t

)∫ 1

0

dxPexit(x, t) . (106)

As a consequence,

〈Tn1 〉 =
(

1 +
n

H

)∫ 1

0

dx 〈Tnexit(x)〉 . (107)

For the first two moments, this yields

〈T1〉 =
1

4
+ ε

[
1

6
− 12ζ ′(−1)− γE

2

]
+O(ε2)

=
1

4

[
1 + 7.45245ε+O(ε2)

]
=

1

4
exp
(

7.45245ε+O(ε2)
)
. (108)〈

T 2
1

〉
=

1

12

[
1 + 14.9632ε+O(ε2)

]
=

1

12
exp
(

14.9632ε+O(ε2)
)
. (109)

0.4 0.5 0.6 0.7
H

24

25

26

27

28

29

log2(samples)

FIG. 9. Number of samples for each system size and value ofH . The
color code is as in Fig. 10. Since the measured signal is proportional
to ε, the error scales like the square root of the number of samples
devided by |ε|. Thus more samples are needed for H close to 1/2,
and only small systems can be simulated for H = 0.475 and H =
0.525.

As usual, we have given two possible resummations. This will
be tested later, see Fig. 19.

V. NUMERICAL VALIDATION

A. Algorithm

A numerical estimation of the calculated observables is ob-
tained using the discrete-time algorithm by Davies and Harte
[9], as described in [10, 11]. It generates for fBm of a given
H sample trajectories over a discretized time window [0, 1];
the trajectories are drawn from a Gaussian probability with
covariance (2). Time and space are then rescaled in respect of
Eq. (2) s.t. not more than 10−4 of all samples fail to exit for a
given H . (The time-scales in question are the upper times in
the plots on Fig. 15.) While this induces a small systematic er-
ror, we can take advantage of the lin× log performance of the
Davies-Harte algorithm [9–11], whereas the execution time
for a sequential generation of the sequence grows quadrati-
cally in time. Given the necessary system size, this would be
very inefficient.

B. Exit probability

In order to measure P1(x) one could start the process Xt

at x and measure whether Xt is first absorbed at x = 0 or
x = 1. This is very inefficient, as for each x one has to run
a simulation, and repeat the latter until the statistics is good
enough. A slightly better strategy is to start with X0 = 0,
generate Xt, shift it by x, and check for each x, whether it is
first absorbed at x = 0 or x = 1. There is, however, a much
more clever procedure, which we explain now, and which is
illustrated on figure 11. Define for a random process Xt the



12

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

P1
' (x)

FIG. 10. The measured probability P ′1(x) forH = 0.33. The system
sizes are (from bottom to top at x = 0.5): N = 213 (dark green),
214 (green), 216 (olive), 218 (orange), 220 (red), 222 (dark magenta),
224 (blue). The dashed line is the scaling ansatz (70) (i.e. almost a
parabola). Note the slow convergence for x → 0 and x → 1. Also
note that the measured result for the largest system size at x = 1/2
is larger than the scaling ansatz (70). This is equivalent to a positive
curvature of the function F(x) defined in Eqs. (71) and (72), and
given in the first (top left) plot of Fig. 13.

running max and min,

M+(t) := max
0<t′<t

Xt′ , (110)

M−(t) := min
0<t′<t

Xt′ . (111)

The total width or span s(t) := M+(t)−M−(t) grows mono-
tonically. We are interested in the time T1 when it attains 1.
Define

T1 := min
t

(
M+(t)−M−(t) ≥ 1

)
, (112)

x0 := XT1
≡ XT1

M+(T1)−M−(T1)
. (113)

If the process starts for x > x0, it will first be absorbed by the
upper boundary (at x = 1), whereas if it starts for x < x0, it
will first be absorbed by the lower one (at x = 0). Denote the
probability distribution of x0 by Px0

(x). It satisfies

Px0(x) = −P ′0(x) = P ′1(x) . (114)

An example of the measurement of P ′1(x) for H = 0.33 is
shown on figure 10. The most remarkable feature of this
plot is the very slow convergence in system size towards
the asymptotic curve, which via scaling is very close to a
parabola, see Eqs. (70)–(71). This slow convergence can also
be seen on the distribution PT1(t) of the times T1 defined in
Eq. (112). This is plotted on Fig. 15.

The slow convergence of P ′1(x) can better be seen via the
functionF(x): An estimate of the latter can be extracted from
the simulations, by inverting Eq. (71),

Fεnum(x) :=
1

ε
ln
(
P ′(x)[x(1− x)]2−

1
H

)
+ const . (115)

The constant is chosen s.t. Fεnum(1/2) = F(1/2). According
to our theory,

Fεnum(x) = F(x) +O(ε) . (116)

Examples are given on Fig. 13 (we suppressed all indices on
F). The case H = 0.33 (upper left) corresponds to the plot
on Fig. 10, with the same colors. One clearly sees that conver-
gence in system size is slow for all H , but especially for the
smaller ones. It becomes better for larger values of H .

We stopped our simulations after a total estimated 28 CPU
years. It seems clear that measuring more than the curvature
is illusory. We therefore defined

γ :=
1

2
∂2
xFεnum(x)

∣∣∣
x=1/2

, (117)

and in practice measured it by fitting a polynomial of degree
two in an x-range from x = 0.25 to x = 0.75 for the smaller
systems, to x = 0.15 to x = 0.85 for the largest systems.

Analytically, we obtained in Eq. (74) with the Catalan con-
stant C,

γ = 16(C − 1) = 16

∞∑
n=1

(−1)n

(2n+ 1)2
≈ −1.34455 . (118)

Our direct numerical estimate for γ is shown on Fig. 3. One
sees that extrapolation to H = 1

2 is good only for large sys-
tems. An alternative and more precise way to extract γ is to
define

Fεnum(x) :=
1

2

[
Fεnum(x) + F−εnum(x)

]
. (119)

This combination cancels the first subleading contribution in
ε; the result is plotted on Fig. 14. Again one sees that F(x) is
well approximated for large system sizes. Our best estimate is

γnum = −1.34± 0.02 . (120)

C. Expectation of exit times and their squares

Let us now turn to the exit times as a function of x. Mea-
surements of the scaling functions FT (x) and FT 2(x) given
in Eqs. (85) and (89)–(90) are presented on Fig. 12, for
H = 0.45 and H = 0.55. Their mean (in red) is a good
approximation of the analytic curves (in black dashed). Sim-
ulations were performed for the largest system size at our dis-
posal N = 224, and H = 0.45 as well as H = 0.55. Having
generated an fBm, we put its starting position at x, and then
searched for the first instance when it was absorbed at either
the upper or lower boundary. This procedure turned out to be
rather time-consuming, and we only evaluated this function
about 2× 106 times.

To estimate the spatially averaged first two moments of the
exit times, we fitted their numerically obtained values, supple-
mented with the analytically known values for H = 1/2, with
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FIG. 11. (a) The random process Xt, with its running max (in red) and min (in blue), see main text. (b) The span, i.e. running max minus
running min.
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FIG. 12. (a) Mean (red) between the measured functions FT (x) for H = 0.45 (dark cyan, bottom line) and H = 0.55 (dark green, top line).
(b) ibid for FT2(x). System size used was N = 224, and the total number of samples is 1.64 × 106 for H = 0.45, and 2.19 × 106 for
H = 0.55.

a polynomial of degree 2 in H . The result, shown on Fig. 17
is

∫ 1

0

dx 〈Texit(x)〉 =
1

12

[
1 + 8.73ε+ 19.1ε2 +O(ε3)

]
,

(121)∫ 1

0

dx
〈
T 2

exit(x)
〉

=
1

60

[
1 + 17.1ε+ 100ε2 +O(ε3)

]
.

(122)

Comparison to Eqs. (95) and (103) yields excellent agreement
for the first moment of the exit time (coefficient 8.758 to be
compared to 8.73), and still very good agreement for the sec-
ond moment (coefficient 16.563 as compared to 17.1). The
latter is difficult to estimate, as higher-order corrections are
seemingly large.

Let us finally mention that for H = 1 the probability that
starting at x the exit time is t, is given by

PH=1
exit (t|x) =

1√
2πt2

[
xe−

x2

2t2 + (1− x)e−
(1−x)2

2t2

]
.

(123)

Averaging over x yields

∫ 1

0

dxPH=1
exit (t|x) =

√
2

π

[
1− e−

1
2t2

]
. (124)

All these distributions at H = 1 are patologic. While they are
normalizable, they have large tails which render already the
first moment undefined. They are thus not a useful limit to
test our formulas.

D. The time the span reaches 1

Our algorithm presented in section V A to determine P ′1(x)
first determines the time the span (running max minus run-
ning min) reaches 1. For Brownian motion, its probability
distribution was given in Eqs. (39) and (40). As we have seen
in section IV I, it gets corrected for H 6= 1/2, in a way we are
currently unable to obtain analytically. The question we ask is
how much does it differ from the result for Brownian motion?
The most important effect is a change in time scale, which we
estimated in Eq. (108). Our numerical estimates, shown on
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FIG. 13. The numerically estimated scaling function F(x) for (from top to bottom) N = 213 (dark green), 214 (green), 216 (olive), 218

(orange), 220 (red), 222 (dark magenta), 224 (blue). The black dashed line is the result of Eq. (72). For ε = ±0.025, i.e. H = 0.475 and
H = 0.525, due to the large statistics needed, we only simulated systems up to size N = 220. For H ≥ 0.6, convergence in system size is
good, and we skipped the largest system N = 224. Note that the scaling ansatzof (70), i.e. P ′1,scaling(x) ∼ [x(1 − x)]

1
H
−2 is equivalent to

F(x) ≡ 0.
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FIG. 14. Dependence of the scaling functionF(x) onN , by taking the mean betweenH = 1/2±ε, forH = 0.33/0.67 (green),H = 0.4/0.6
(red), H = 0.45/0.55 (blue), H = 0.475/0.525 (olive/yellow). For N = 224, we have replaced the estimate for H ≥ 0.6 by those of
N = 222, justified by the much better convergence in system size for these values of H , see figures 13. The last two plots show the extracted
curvature γ with system sizes increasing from bottom to top: N = 213 (green), N = 214 (bright green), N = 216 (olive/yellow), N = 218

(orange), N = 220 (red), N = 222 (violet), N = 224 (blue, single dot with big error bars). For the error estimate see Fig. 3. Note that the
scaling ansatzof (70), i.e. P ′1,scaling(x) ∼ [x(1− x)]

1
H
−2 is equivalent to F(x) ≡ 0.
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FIG. 15. Probability distribution of the numerically estimated time T1 when the width of the process reaches 1, i.e. the process is absorbed
irrespective of its starting position. N = 213 (dark green), 214 (green), 216 (olive), 218 (orange), 220 (red), 222 (dark magenta), 224 (blue).
The characteristic time depends quite strongly on H . The result for H = 1/2 is between the distributions for H = 0.475, and H = 0.525.
The black dotted line is the analytic result forH = 1/2, given in Eqs. (39)–(40), rescaled so that the first moment 〈T1〉 is correctly reproduced.
Small systematic deviations are visible for small and large values of H , especially H = 0.33, and H = 0.75.
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FIG. 16. The same as figure 15, on a logarithmic scale. The little bump at large T corresponds to all realizations which did not exit up to that
time, i.e. it is the integrated tail.
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FIG. 17. (a) The mean, i.e. spatially averaged absorption time
〈Tabs〉 =

∫ 1

0
dx 〈Tabs(x)〉. (b) ibid. for the second moment. The

black dotted line is the direct expansion in ε, which underestimates
the true result. The dashed line is the exponentiation of this correc-
tion; it overestimates the result. The fit to a quadratic polynomial is
given in Eqs. (121) and (122).

Fig. 19 lead to

〈T1〉 =
1

4

[
1 + 7.4ε+ 10.1ε2 − 18ε3 + ...

]
, (125)〈

T 2
1

〉
=

1

12

[
1 + 15ε+ 75ε2 + 110ε3 + ...

]
. (126)

This is in good agreement with Eqs. (108)-(109), where the
order-ε coefficients read 7.45 and 14.96, respectively.

In order to compare the full distributions, we superimposed
on the measured distribution the result for Brownian motion,
rescaled s.t. the first moment 〈T1〉 is correctly reproduced.
The result of this procedure is shown on figures 15 and 16.
One can see deviations for large |ε|, especially H = 0.75,
which on the whole rest surprisingly small.

Finally, it is easy to show analytically that for H = 1,

PH=1
T1

(t) =

√
2

π

e−
1

2t2

t2
. (127)

As the distributions (123) and (124), Eq. (127) has a large tail,
leading to undefined moments.

E. Finite-discretization effects

As we saw on Fig. 10, there are important finite-
discretization corrections. This is even more visible on
Fig. 13, especially for H = 0.33 (upper left corner). To bet-
ter understand where this comes from, consider Fig. 11. In
the given example, the width 1 is reached at T1 ≈ 0.85, with
x0 ≈ 0.58. What is the error made, due to the finite discretiza-
tion in time? Our argument will be made, as in the drawing,
for a particle trajectory “exiting at the upper boundary”, i.e.
at t∗ the running max M+(t) is growing, whereas the run-
ning min M−(t) is constant. The error in estimating the max
is without consequences: while the true running max could be
underestimated, this would only result in a slight underestima-
tion of t∗. The problem in estimating M−(t) is more severe:

20 40 60 80 100 120 140
α
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4
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lnP
 ′

α 

FIG. 18. Top 7 curves: The logarithm of P̃ ′(α) (Laplace transform
of P ′(x), as plotted on Fig. 10), for system sizes N = 213 (top,
green) to N = 224 (blue). The lower solid curve are a scaling col-
lapse of all 7 curves, using Eqs. (132) and (133). The blue dashed
line is the Laplace transform of the scaling ansatz (70), plotted on
Fig. 10.

if we underestimate the true minimum by δ, then x0 is

x0 = M−(t) + δ . (128)

Denote Pmiss
N (δ) the distribution of δ. Close to the lower

boundary, the probability at system size N , P ′N (x), is

P ′N(x) =

∫ ∞
0

dδ Pmiss
N (δ)P ′N=∞(x− δ) . (129)

The function Pmiss
N (δ) should be a function of δ/τH , where

τ = 1/N , thus

Pmiss
N (δ) = Pmiss

(
δNH

)
. (130)

Transforming to Laplace variables, Eq. (129) reads (with the
tilde indicating the Laplace transform)

P̃ ′N (α) = P̃ ′N=∞(α)P̃miss(α/NH) . (131)

Taking a log and rearranging yields

ln
(
P̃ ′N=∞(α)

)
= ln

(
P̃ ′N (α)

)
− ln

(
P̃miss(α/NH)

)
.

(132)
We currently have no theory for P̃miss(α), but we find that a
decent approximation for H = 0.33 is given by

ln
(
P̃miss(α)

)
≈ 0.38 ln

(
P̃bridge(1.7α)

)
. (133)

The function Pbridge(m) is the maximum of a fBm bridge for
duration T = 1, as given in Eq. (90) of Ref. [33]. Note that
the numerical values of 0.38 and 1.7 are not significant. (In-
creasing one will decrease the other). As stated above, this
formula is a guess, based on the following observations and
hypothesis: Suppose that we measured a maximum m at time
t, that the true maximum is between times t and t+ 1/N , and
that at time t+ 1/N the process again achieves its maximum
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FIG. 19. Left: The expectation 〈T1〉. The data-points with interpolation follow the color code of Fig. 15. The black dotted line from Eq. (108)
is the direct expansion in ε, which underestimates the numerical result, while its exponentiation given by the dashed line overestimates it.
Right: ibid. for

〈
T 2

1

〉
, with the analytical result given in Eq. (109).

(it should be smaller than the maximum), then for Brownian
motion the probability for the true maximum will be given
by (133) with the numerical values put to 1. For a fBm, we
again use the bridge process with the appropriate H . As for
H 6= 1/2 the process is correlated, our ansatz induces a new
error as it neglects correlations with the positions of the other
points. The numbers induced above seem to compensate for
the approximations made.

These arguments are illustrated on Fig. 18. The top seven
curves show ln

(
P̃ ′N (α)

)
for system sizes N = 213 (green,

top), to N = 224 (blue, second last curve from the bottom).
The remaining lower curve is a scaling collapse estimating
ln
(
P̃ ′N=∞(α)

)
, with Pmiss(α) given in Eq. (133). The dashed

line (cyan) is the Laplace transform of the scaling ansatz (70).
Our analysis shows that (i) discretization corrections are

important, (ii) they come from an underestimation of the ex-
tension of the process on the side at which it does not exit, (iii)
there exists a correcting function one should be able to calcu-
late analytically. The latter task is left for future research.

VI. CONCLUSION

In this article, we considered the two-sided exit problem
from a strip. We gave analytic results for the exit probabilities

and times, in an expansion in H − 1/2. While our numeri-
cal simulations confirm our findings, they also point to a fun-
damental problem: If the observation of the underlying pro-
cess is not done continuously but at a finite number of equally
spaced times, the situation is exactly as in our numerical sim-
ulations. As a consequence, one may not see the predicted
analytic form, and not even the correct scaling laws. It will be
important to quantify these effects to properly interpret exper-
imental data once they appear.

We also considered the probability distribution for the time
the span (running max minus running mean), i.e. the area
the process has visited, reaches 1. We gave analytic expres-
sions of this probability for Brownian motion, seemingly ab-
sent from the literature. For an fBM, evaluating corrections
to its first moment analytically allows us to give a rather good
approximation for this observable, without any adjustable pa-
rameter.

Our results can be extended to include drift, and to one or
two reflecting boundaries.
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[43] T. Guérin, N. Levernier, O. Bénichou and R. Voituriez, Mean
first-passage times of non-Markovian random walkers in con-
finement, Nature 534 (2016) 356–359.

CONTENTS

I. Introduction 1

II. Basic formulas for Brownian Motion with two absorbing
boundaries 2
A. Solving the Fokker-Planck equation 2
B. Boundary currents and conservation of probability 3
C. Absorption probabilities at x = 0 and x = 1 3
D. Moments of the absorption time, starting at x 4
E. Probabilities for the span 4

III. Corrections to the action for fBm 5

IV. The absorption current at 1-loop order 6
A. General formulas 6
B. Absorption probability at the upper boundary 7
C. Remark on resummation 8
D. Expectation of exit time 8
E. Expectation of exit time squared,

〈
Texit(x)

2
〉

9
F. Estimation of time scales: The mean exit time 9
G. Exit times in the limit of x→ 0 10

http://www.columbia.edu/~ad3217/fbm/thesis.pdf
http://www.columbia.edu/~ad3217/fbm/thesis.pdf
http://dx.doi.org/10.1017/S0269964803173081
http://dx.doi.org/10.1017/S0269964803173081
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/1742-5468/2015/09/P09007
http://arxiv.org/abs/arXiv:1505.01287
http://dx.doi.org/10.1088/1742-5468/2015/09/P09008
http://dx.doi.org/10.1088/1742-5468/2015/09/P09008
http://dx.doi.org/10.1088/1742-5468/2016/11/113202
http://dx.doi.org/10.1088/1742-5468/2016/11/113202
http://dx.doi.org/10.1103/PhysRevE.83.011802
http://dx.doi.org/10.1103/PhysRevE.83.011802
http://dx.doi.org/10.1039/C4SM01819B
http://dx.doi.org/10.1039/C4SM01819B
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1007/PL00013536
http://dx.doi.org/10.1007/PL00013536
http://dx.doi.org/10.1029/WR004i005p00909
http://dx.doi.org/10.1103/PhysRevLett.111.210601
http://dx.doi.org/10.1002/2014JA020206
http://dx.doi.org/10.1002/2014JA020206
http://dx.doi.org/10.1002/2014JA020206
http://dx.doi.org/10.1016/S0378-4371(02)01938-6
http://dx.doi.org/10.1109/49.400651
http://dx.doi.org/10.1109/49.400651
http://dx.doi.org/10.1016/j.bpj.2012.09.040
http://dx.doi.org/10.1016/j.bpj.2012.09.040
http://dx.doi.org/10.1039/C2SM25220A
http://dx.doi.org/10.1039/C2SM25220A
http://dx.doi.org/10.1103/PhysRevE.83.061141
http://arxiv.org/abs/arXiv:1011.4807
http://dx.doi.org/10.1103/PhysRevLett.115.210601
http://dx.doi.org/10.1103/PhysRevLett.115.210601
http://arxiv.org/abs/arXiv:1507.06238
http://dx.doi.org/10.1088/1751-8121/aa5c98
http://dx.doi.org/10.1088/1751-8121/aa5c98
http://arxiv.org/abs/arXiv:1609.07909
http://dx.doi.org/10.1103/PhysRevE.94.052105
http://dx.doi.org/10.1103/PhysRevE.94.052105
http://arxiv.org/abs/arXiv:1605.04132
http://dx.doi.org/10.1103/PhysRevE.94.012134
http://dx.doi.org/10.1103/PhysRevE.94.012134
http://arxiv.org/abs/arXiv:1603.00651
http://dx.doi.org/10.1103/PhysRevLett.120.040603
http://dx.doi.org/10.1103/PhysRevLett.120.040603
http://arxiv.org/abs/arXiv:1706.01675
http://dx.doi.org/10.1103/PhysRevLett.104.020602
http://dx.doi.org/10.1103/PhysRevLett.104.020602
http://arxiv.org/abs/cond-mat/9907407
http://dx.doi.org/10.1017/S0305004100021733
http://dx.doi.org/10.1017/S0305004100021733
http://dx.doi.org/10.1214/aoms/1177729589
http://dx.doi.org/10.1214/aoms/1177729589
http://dx.doi.org/10.1007/BF01030198
http://dx.doi.org/10.1103/PhysRevA.40.4685
http://dx.doi.org/10.1038/nature18272


21

H. Time scales: The second moment of the exit time 10
I. Corrections to 〈T1〉 11

V. Numerical validation 11
A. Algorithm 11
B. Exit probability 11

C. Expectation of exit times and their squares 12
D. The time the span reaches 1 13
E. Finite-discretization effects 18

VI. Conclusion 19

References 19


	First passage in an interval for fractional Brownian motion
	Abstract
	I Introduction
	II Basic formulas for Brownian Motion with two absorbing boundaries
	A Solving the Fokker-Planck equation
	B Boundary currents and conservation of probability
	C Absorption probabilities at x=0 and x=1
	D Moments of the absorption time, starting at x
	E Probabilities for the span

	III Corrections to the action for fBm
	IV The absorption current at 1-loop order
	A General formulas
	B Absorption probability at the upper boundary
	C Remark on resummation
	D Expectation of exit time
	E Expectation of exit time squared, < Texit(x)2 > 
	F Estimation of time scales: The mean exit time
	G Exit times in the limit of x0
	H Time scales: The second moment of the exit time
	I Corrections to < T1> 

	V Numerical validation
	A Algorithm
	B Exit probability
	C Expectation of exit times and their squares
	D The time the span reaches 1
	E Finite-discretization effects

	VI Conclusion
	 References
	 Contents


