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Abstract

This article is a continuation of our first work [CdRF18]. We here establish some new quantitative estimates
for propagation of chaos of non-linear stochastic differential equations in the sense of McKean-Vlasov. We
obtain explicit error estimates, at the level of the trajectories, at the level of the semi-group and at the level
of the densities, for the mean-field approximation by systems of interacting particles under mild regularity
assumptions on the coefficients. A first order expansion for the difference between the densities of one particle
and its mean-field limit is also established. Our analysis relies on the well-posedness of classical solutions
to the backward Kolmogorov partial differential equations defined on the strip [0, 7] x RY x Py(R%), Pa(R9)
being the Wasserstein space, that is, the space of probability measures on R¢ with a finite second-order
moment and also on the existence and uniqueness of a fundamental solution for the related parabolic linear
operator here stated on [0, 7] x P2 (R9).
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Résumé

Cet article est la suite de notre premier travail [CdRF18]. Nous établissons ici de nouvelles estimations
quantitatives pour la propagation du chaos des équations différentielles stochastiques non-linéaires au sens
de McKean-Vlasov. Nous obtenons des estimations d’erreurs explicites, au niveau des trajectoires, au niveau
du semi-groupe et au niveau des densités de transition, pour 'approximation champ moyen par des systémes
de particules en interaction sous de faibles hypothéses de régularité sur les coefficients. Un développement a
Pordre un pour la différence entre les densités d’une particule et celle de sa limite champ moyen est également
établi. Notre analyse repose sur le caractere bien posé de solutions classiques aux équations aux dérivées
partielles de Kolmogorov rétrogrades définies sur la bande [0,7] x R? x Py(R9), Py(R?) étant I'espace de
Wasserstein, c’est-a-dire I’espace des mesures de probabilités sur R? de moment d’ordre deux fini et aussi
sur l'existence et 'unicité d’une solution fondamentale pour 'opérateur parabolique linéaire associé énoncé

ici sur [0, 7] x Pa2(R9).

1. Introduction

In this work, we are interested in some non-linear stochastic differential equations (SDEs for short) in
the sense of McKean-Vlasov with dynamics:

Xf=¢t / b, X5, [XE])ds + / (s, XE X)W, 6] = € PRY), (1.1)
0 0
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1 INTRODUCTION

where ¢ is an R%valued random variable which is independent of the ¢-dimensional Brownian motion W =
(W1 ... W7 and with coefficients b : Ry x R? x P(R?) — R? and o : Ry x R x P(R?) — R4 [¢]
denoting the law of the random variable § and its approximation by the associated system of N particles
{(Xf)te[o,:r}, 1<i< N} interacting through its empirical measure

t t N
. . ) ) . 1
X;:gwr/ b(s,X;,ugV)der/ o(s, X!, pNydwi,  uN ::NZ(SX?’ i=1,---, N, (1.2)
0 0 i=1

where { (&, (W})epo,r)),1 <@ < N} are i.i.d. copies of (£, W). The connection between the two above sys-
tems of SDEs comes from fact that the dynamics (II)) describes the limiting behaviour of an individual
particle in (2] when the size of the population N grows to infinity as stated by the so-called propagation
of chaos phenomenon, originally studied by McKean [McK67] and then investigated by Sznitman [Szn91].
Roughly speaking, it is expected that the dynamics of k particles among N, say (X',---,X¥), k being a
fixed positive integer, consists of k independent copies (X', ---, X*) of a process following the law of the
unique solution to the limiting equation (ILT]) as N goes to infinity. Since the original works of Kac [Kac50]
in kinetic theory and of McKean [McK66] in non-linear parabolic partial differential equations (PDEs for
short), theoretical and numerical aspects of McKean-Vlasov SDEs have been an active research area in several
directions during the last decades such as the well-posedness of the related martingale problem, the prop-
agation of chaos and other limit theorems, probabilistic representations to non-linear parabolic PDEs and
their numerical approximation schemes. We refer to Tanaka [Tan7&], Funaki [Fun84], Oelschlidger [Oel84],
Gértner |Gar8g], |[Szn91], Mishura and Veretenikov [MV2(0], Chaudru de Raynal [Cha2(], Lacker [Lacl8] for
a small sample among others.

As a continuation of our first work |[CdRF18], our main objective here consists in revisiting and rigor-
ously justify the mean-field approximation of (LII) by its system of particles (L2) under mild assumptions
on the coefficients. In particular, both the drift and diffusion coefficients are assumed to be uniformly Hoélder
continuous with respect to the space variable and less than Lipschitz continuous with respect to the first
order Wasserstein distance with respect to the measure argument. We refer the reader to Subsections B.1]
and for the precise statement of our regularity assumptions on the coefficients. To do so, our analysis
strongly relies on the smoothing properties of the McKean-Vlasov SDE under the assumption that a = co* is
uniformly elliptic. We achieve this goal by bringing to light some new quantitative estimates of propagation
of chaos for the system of particles (L2)) at three different levels. Namely, we prove the L?(P)-convergence
of the trajectories of (Xf)te[o,T] to its McKean-Vlasov limit dynamics. We also establish an explicit error
estimate and a first order expansion for the difference between the transition densities of one particle and
its limit. Eventually, we provide some convergence rate for the difference between the flow of empirical mea-
sures (ufY )telo, 1) of the system of particles and its limit given by the flow of probability measures (u)¢cjo,1]
associated to the dynamics (II)) when they both act on some irregular map defined on P2(R?).

A natural question to be addressed before investigating the convergence problem for the system of particles
(L2) is the well-posedness in the weak or strong sense of its mean-field limit ((IT)). This problem has been
intensively investigated under various settings by many authors. We refer e.g. to |Gar88], [Szn91], Jourdain
[Jou91], and more recently, Li and Min [LM16], [MV20] and Hammersley et al. [HSS21)] for a short sample.

In our recent contribution [CdRF18], we revisited the problem of the unique solvability by tackling the
corresponding formulation of the martingale problem under mild regularity assumptions on the coefficients.
Namely, if a = oo™ is uniformly elliptic, b is bounded, measurable and Lipschitz continuous in its measure
variable with respect to the total variation metric, a is bounded, continuous, n-Holder continuous in space
uniformly with respect to the time and measure variables and admits a bounded and n-Hoélder continuous
linear functional derivative then the martingale problem associated to (L)) is well-posed. Under an addi-
tional regularity assumption, namely, if RY x P(R%) > (z,m) ~ b(t,z,m), a(t,z,m) are uniformly Holder
continuous with respect to the space variable z and admit two bounded and uniformly Hélder continuous
linear functional derivatives, it then turns out that the transition density p(p, s, t, z) of the SDE (I.1l) at time
t starting from the initial distribution p at time s exists and is smooth with respect to the variables s and p,
the derivatives in the measure argument being understood for a stronger notion of differentiation, namely in
the sense of Lions. More precisely, the map (s, 1) — p(u, s,t,2) € CH2([0,1) x P2(R?)) (see Section 21l for a
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precise definition of this space). The previous regularity properties of the density finally allows to establish
the existence and uniqueness of classical solutions for a class of linear parabolic PDEs on the Wasserstein
space, namely

{<at +L)U(ta,p) = ft,a,pn)  for (ta,p) € 0,T) x R x Pa(RY), (1.3)

U(T,z,p) = h(z, 1) for (x, 1) € R? x Po(RY),

where the source term f : Ry x R? x Py(R?) — R and the terminal condition & : R? x Py(R?) — R are some
given functions and the operator £; acts on sufficiently smooth test functions g : R? x Py(R?) — R and is
defined by

d d
1
Laglap) = Y itz )0e 9w, 1)+ 5 D a2, w0, g(x, )
i=1 i,j=1

d

d
+ ~/]Rd Zbi(tvvvﬂ)[aug(xaﬂ)]i(v) + % Z ai,j(tvzvﬂ)avj [aug(xaﬂ)]i(v) p,(dU) (1'4)

i=1 i,j=1

where we recall that a(t,z, u) = (00*)(t, 2, ). The aforementioned well-posedness and smoothing property
results for the dynamics (ILI)) and the PDE (3] allow us to investigate in turn the convergence problem of
the particle system (L2) at the three levels mentioned above within the same framework.

The former convergence problem of the trajectories has been thoroughly investigated under the standard
framework of Lipschitz continuous coefficients b and o over R? x P, (R%), P, (R%) being the space of probability
measures with finite moment of order p equipped with the Wasserstein distance W, by using the very
effective and now well-known coupling argument between the solution of the system of particles (I2]) and
N independent copies of the unique strong solution of the nonlinear SDE (LI)) taken with the same input
(€, W)1<;<n. We refer to [Szn91], Léonard [L8G], Méléard [M96] for a presentation of this argument and
also to Jourdain and Méléard |[IM9&] and Malrieu [Mal03] for some extensions to non-linear SDEs with
coefficients depending locally on its density and to granular media equations respectively.

It actually turns out to be a challenging question to go beyond the aforementioned framework by weak-
ening the Lipschitz regularity assumption on the coeflicients. Let us however mention the recent work of
Holding [Hol16] in which some quantitative propagation of chaos estimates are established for systems of
interacting particles with a constant diffusion coefficient and a drift coefficient with an Hélder continuous
interacting kernel of first order type, that is, b(t,z,m) = [p. K(z,y) m(dy) with K € C®*(R? x R%;R?) or
K(z,y) = W(z —y) with W € W*9(R% R?) for s and ¢ such that (2+d)/q < s <1 and ¢ > 2. Therein, an
error bound for the Wasserstein distance of order 1 between the empirical measure (ui" )teo, 1) of the system
of particles and its mean-field limit is obtained with a convergence rate depending on the Holder exponent
a of the interacting kernel.

Our first contribution is a general rate of convergence for the L2 (IP)-error on the trajectories of the solution
of the system of particles (I.Z) and N independent copies of its mean-field dynamics (IT]) as well as for the
Wasserstein distance of order 2 between pl¥ and its corresponding limit. The main novelty here compared to
the aforementioned references is that we make the approach as systematic as possible by connecting the above
convergence problem to the well-posedness and the regularity properties of the solution U of the backward
Kolmogorov PDE (L3 with source term f(¢,,u) = b(t,z, 1) and terminal condition U(T,z,u) = h = 0.
This strategy is reminiscent of Zvonkin’s method for solving SDEs driven by a bounded and measurable drift
|ZvoT74]. Indeed, testing the solution U on the dynamics of the system of particles notably allows to remove
the drift from the convergence analysis and to achieve the expected convergence rate of the framework of
Lipschitz coefficients but with weaker conditions on the drift coefficient, namely the drift is assumed to
be bounded, Holder continuous in space and with two bounded and Hélder continuous linear functional
derivatives.

Our second contribution is an error bound together with a first order expansion for the difference between
the densities of the one-dimensional marginal of the system of particles and its corresponding limit. Here
again, the technique of proof is based on the well-posedness of the backward Kolmogorov PDE here stated
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on the strip [0,7] x P2(R?) for which we introduce and study a notion of fundamental solution. The
natural candidate for being the unique classical solution is the transition density of the McKean-Vlasov
SDE (LI with initial distribution g at time s, namely the map [0,¢) x P2(RY) > (s,u) = p(u,s,t, 2),
(t,z) € (0,7] x R? being fixed. By taking advantage of its regularity properties, the key idea then consists
in testing the fundamental solution along the empirical measure (u2 )sejo,y) of the system of particles. On
the one hand, the proxies {[0,#] 3 s~ p(ul,s,t,2), N > 1} should get closer and closer in average to the
(constant) map s — p(us, s,t,2) = p(u,0,t,2) up to a remainder term that vanishes as N goes to infinity.
On the other hand, as (s, ) — p(u,s,t,2) is the fundamental solution of the backward Kolmogorov PDE
and by symmetry of the dynamics (TZ), s — p(uY, s,t, z) converges weakly to the one-dimensional marginal
density function of the system of particles as s goes to t. Combining these two facts yields our results.

Our third contribution consists in an analysis of a weak form of propagation of chaos. Inspired by Remark
5.110 in [CD18], we quantify the distance between the empirical measure of the particle system and the law
of the solution of the equation both acting on a large class of irregular functions of P(R%). We provide
an explicit error estimate for the difference between the semigroup generated by the mean field system and
its approximation by the system of particles. The key tool to prove such result is very closed to the one
developed to handle the previous estimates on the densities. Namely, it first consists in investigating the
regularity properties of the solution to the Cauchy problem related to the backward Kolmogorov PDE stated
on the strip [0,7] x P2(R?), without source term and with a terminal condition A : P(R?) — R admiting
two bounded and Holder continuous linear functional derivatives and then to test such a solution along the
empirical measure and the limiting law. Although we refrain to go further in that direction, we are convinced
that repeating the previous strategy in order to obtain a first order expansion for the difference between the
densities would lead to a first order expansion for the semigroups.

Taking benefit of the well-posedness of classical solutions to the backward Kolmogorov PDE on the
Wasserstein space to prove the aforementioned quantitative estimates of propagation of chaos for the system
of particles thus plays a central role in our analysis. Let us however mention that the strategy developed
here is clearly reminiscent of the point of view taken by Cardaliaguet & al. |CDLL19], Mischler and Mouhot
IMM13] and by Mischler, Mouhot and Wennberg in their subsequent work [MMW15]. In [CDLLI19], the
authors study the convergence problem, as N 1 oo, of the N-Nash system consisting of a system of N
coupled Hamilton-Jacobi equations. The limit equation is no longer a linear backward Kolmogorov equation
but a non-linear PDE of second order type also stated on the space of probability measures, the so-called
master equation of mean-field games. The strategy developed by the authors to establish their estimates of
the rate of convergence consists exactly in testing the solution of the master equation as an approximate
solution to the N-Nash system. Obviously, the very nature of our approach is the same, except that, in
our case we work with a linear PDE and its fundamental solution under mild regularity conditions while
in [CDLL19], the PDE is non-linear but has smooth coefficients. The point of view expressed to establish
propagation of chaos estimates for systems of particles undergoing collisions in [MM13] and for mean-field
systems undergoing jumps and/or diffusions in the subsequent work [MMW15] is also very close to ours. One
of the main difference being that in [MM13] the quantitative estimates are uniform in time while ours are
established on a finite time horizon. Moreover, in [MMW15], the authors directly compares the semigroup
generated by the system of particles and the lifted one, that is, the one generated by the mean-field limit
both acting on symmetric functions on (R?)" while in our case we work at the level of the densities. An
error bound of order N~1/2 for the total variation distance between k particles and k independent copies of
the mean-field limit for non-linear SDEs with a constant diffusion coefficient and a drift with general and
singular interacting kernel of first order type has been established in Jabin and Wang |[JW1&]. We also refer
to the book of Kolokolstov [Koll(] and to the work by Kolokoltsov, Troeva and Yang [KTY14] for a point
of view based on measure-valued Markov processes and some quantitative estimates for mean-field games
approximation. Let us finally mention the recent work of Chassagneux, Szpruch and Tse [CST19] where an
expansion for the difference E[h(ulY)] — h(u:), t € [0,T], is established by exploiting the well-posedness and
the regularity properties of the backward Kolmogorov PDE (3] (with f = 0) stated on [0, 7] x P2(R%) in
the spirit of Buckdhan & al. |[BLPR17], under the assumptions that h, b and o are smooth functions of the
space and measure variables.

The article is organized as follows. The basic notions of differentiation on the Wasserstein space with



2 PRELIMINARIES: DIFFERENTIATION ON THE WASSERSTEIN SPACE AND SMOOTHING
PROPERTIES

an emphasis on the smoothing properties of McKean-Vlasov SDEs that will play a key role in our analysis
are presented in Section @l The general set-up together with the assumptions and the main results are
described in Section Bl The proof of the existence and uniqueness of the fundamental solution of the
backward Kolmogorov PDE on the Wasserstein space together with some additional regularity properties of
the transition density associated to (II]) are addressed in Section[dl The propagation of chaos estimates are
established in Section Bl The proof of some useful but auxiliary technical results are given in Appendix.

Notations:

In the following we will denote by C' and K some generic positive constants that may depend on the
coefficients b and o. We reserve the notation ¢ for constants depending on |o|, A (see assumption (HE)
in Section B]) and possibly on N in which case we write ¢(N) but not on the time horizon T'. Moreover, the
value of both C, K or ¢ may change from line to line.

We will denote by P(R?) the space of probability measures on R? and by P2(R%) C P(R?) the space of
probability measures with finite second moment. For y € P(R?) and ¢ > 0, we set M (p) := ([gu |2|?p(dz))/ e
if [pal|2z|%u(dz) < 400 and My(p) = 400 otherwise.

For a positive variance-covariance matrix ¥, the function y — g(%, y) stands for the d-dimensional Gaus-
sian kernel with 3 as covariance matrix ¢(3,z) = (27)" 2 (det X) "2 exp(—3 (X7 'z, z)). We also define the
first and second order Hermite polynomials: Hi(¥,z) := —(X~'z); and Hy' (3, ) == (7 2) (X '), —
(27145, 1 <i,j < d which are related to the previous Gaussian density as follows 9,,¢(2, z) = H{ (2, )g(%, x),

%i@jg(E,x) = H;J (3,2)g(3, x). Also, when ¥ = cl, for some positive constant ¢, the latter notation is
simplified to g(c,x) := (1/(2mc))¥? exp(—|z|?/(2¢)).

One of the key inequality that will be used intensively in this work is the following: for any p,q > 0 and
any z € R, |:1:|pe"1””2 < (p/(2qe))P/?. As a direct consequence, we obtain the space-time inequality, for any
p, ¢, t > 0 and any ¢’ > ¢ there exists C' > 0 such that

lz[Pg(ct,z) < CtP/2g(c't, x) (1.5)

which in turn gives the standard Gaussian estimates for the following derivatives of Gaussian density

| Q

|Hi(ct,x)lg(ct,x) < —g(c't ), |H§’j(0t,x)lg(ct,w)ﬁ%Q(C't,x)- (1.6)

~
=

Since we will employ it quite frequently, we will often omit to mention it explicitly at some places. We
finally define the Mittag-LefHler function E, 5(2) := )", +,2"/I'(an+ ), z € R, a, 8> 0.

2. Preliminaries: Differentiation on the Wasserstein space and smoothing properties

2.1. Differentiation on the Wasserstein space

In this section, we briefly present the regularity notions we will use when working with mappings defined
on P2(R%). We refer the reader to Lions’ seminal lectures [Liol4], to Cardaliaguet’s lectures notes [Carl3],
to the recent work Cardaliaguet et al. |[CDLL19] or to Chapter 5 of Carmona and Delarue’s monograph
[CD18§] for a more complete and detailed exposition. Unless otherwise specified, we equip the space P(R%)
with the topology induced by the total variation metric drvy defined by

drvlur) = sw | (= v)(do)
AcB(R?) J A

The space P2(R9) is equipped with the 2-Wasserstein metric

1
2
W)= it ([ e yPatana)
R4 xRd

mE€P(p,v)

where, for given u,v € P2(R?), P(u,v) denotes the set of measures on R? x R? with marginals y and v.
Following our recent work [CdRF1§], we will employ two notions of differentiation of a continuous map
U defined on P(R?). The first one, called the linear functional derivative and denoted by [6U/dm], will play
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an important role in our linearization procedure to strengthen the regularity properties of the transition
densities of the McKean-Vlasov SDE ([LT]) and its corresponding decoupling field.

Linear functional derivative.

Definition 2.1. The continuous map U : P(R?) — R is said to have a linear functional derivative if there
exists a real-valued bounded measurable function
PR xR > (m,z) » —(m)(x) € R,
om
such that for all z in RY, the map P(R?) > m ~ [6U/dm](m)(z) is continuous and such that for all m and
m’ in P(R?), it holds

lim
el0 IS

U((l=eym+em')—U(m) oU
= [ St do = m) o). (21)

Rd 0N
The map y — [6U/ém](m)(y) being defined up to an additive constant, we will follow the usual normalization
convention [,,[6U/dm](m)(y) dm(y) = 0. Observe from the above definition that for all m and m’ in P(R?)

1
U(m') —U(m) = /0 /Rd 2_7[7]1((1 —Nm + xm')(y) d(m’ —m)(y) dX. (2.2)

Note that the boundedness assumption of the map x +— [6U/dm](m)(x), uniformly in m guarantees the
well-posedness of the integral appearing in the right-hand side of ([Z.2)).

Remark 2.2. If a map U admits a flat derivative in the above sense then one directly deduces that for all m
and m’ in P(R?)
oU
[U(m) =Um)[ < sup [ (m")(.)|oc drv(m,m). (2.3)
m”EP(Rd) 5m
Therefore, if the map U admits a linear functional derivative in the sense of Definition 2] then it is
Lipschitz continuous with respect to the total variation metric.

We will also work with higher order derivatives. This is naturally defined by induction as follows.

Definition 2.3. Let p > 1. The continuous map U : P(R?) — R is said to have a continuous linear functional
derivative at order p if there exists a real valued bounded measurable map [§?U/dm?] : P(R?) x (R4)P~1 x
R? — R such that for all (y,—1,7p) € (RY)P~ x RY the map P(RY) 3 m > [0PU/dmP)(m)(yp-1,Yp) is
continuous and such that for any m,m’ € P(R?) and for any y,_; € (R%)P~1

g 0P , sp—t orU ,
e (5 UL = 2ot e yya) = 5o Um)3po0)) = [ 5o m)(y)don’ = m)(o)
provided the (p—1)th order derivative is well-defined, with the notation y, := (yp—1, yp) and the convention
[6°/6mP)U(m) = U(m). We again follow the usual normalization convention which ensures uniqueness

/R U ) (1, ) d(p) = 0

a Omp
for any y,_1 € (R%)P~1L.
Again, for more details on the above notion of derivative, we refer to Chapter 5 of |[CD18§].

We now briefly present the second notion of derivatives as originally introduced by Lions |Liol4]. The
basic strategy consists in considering the canonical lift of the real-valued function U : Po(R%) > p > U(u)
into a function U : Ly 5 Z — U(Z) = U([Z]) € R, (Q, F,P) standing for an atomless probability space,
with € a Polish space, F its Borel o-algebra, Ly := Lo(Q, F,P,RY) standing for the space of R%valued
random variables defined on 2 with finite second moment and Z being a random variable with law . The
function U is then said to be differentiable at u € Po(R?) if its canonical lift I is Fréchet differentiable
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at some point Z such that [Z] = u. We denote by DU its gradient. The Riesz representation theorem
then allows to identify DU as an element of L?. It turns out that DU is a random variable which is o(Z)-
measurable and given by a function DU (11)(.) from R? to R¢, which depends on the law y of Z and satisfying
DU (u)(.) € L2(R%, B(RY), ; RY). As in |[CARF18], we adopt the notation 9,U(x)(.) in order to emphasize
that we are taking the derivative of the map U with respect to its measure argument. The L-derivative of
U at p is the map 9,U(p)(.) : RY 3 v — 9,U (1) (v) € RY, satisfying DU = 0,U (u)(2).

It is important to note that this representation holds irrespectively of the choice of the original probability
space (£2, F,P). We will restrict our considerations to functions which are C!, that is, functions for which the
associated canonical lift is C! on L2 and for which there exists a continuous version of the mapping P2(R%) x
RY > (p,v) = 8,U(u)(v) € RY. Tt then appears that this version is unique. We straightforwardly extend
the above discussion to R%valued or R4*?-valued maps U defined on P2(R%), component by component.

In order to establish the existence and uniqueness of a fundamental solution of the Kolmogorov PDE
on the Wasserstein space as well as our quantitative estimates for the mean-field approximation by systems
of particles, we will employ at several places a chain rule formula for (U(t,Y:, [X4]))t>0, where (X;)¢>0 and
(Y2)1>0 are two Ito processes defined for sake of simplicity on the same probability space (2, F,F,P) assumed
to be equipped with a right-continuous and complete filtration F = (F;);>0. Their dynamics are given by

t t
Xt:X0+/ bsds+/ oy dWs, Xo € Lo, (2.4)
0 0

t t
Yi=Yy+ / ns ds + / ~vs AW (2.5)
0 0

where W = (W;)i>0 is an F-adapted d-dimensional Brownian, (b¢)i>0, (7t)t>0, (0¢)i>0 and (y¢)i>0 are
F-progressively measurable processes, with values in R? R% R%*¢ and R?*? respectively, satisfying the
following conditions

T

T
vT > 0, IE{/ (|be|*> + |o¢|) dt| <oco and P (/ (|me| + |ye|*) dt < —i—oo) =1. (2.6)
0 0

We now introduce two spaces of smooth functions we will work with throughout the paper.

Definition 2.4. (The spaces CP>2([0,T] x R% x Py(R%)) and C§’2’2([0, T] x R% x Py(R%)), for p =0, 1) Let
T >0and pe {0,1}.

The continuous function U : [0, T]x R%x Py(R?) is in CP22([0, T] x RY x Py(R?)) if the following conditions
hold:

(i) For any p € P2(R%), the mapping [0,7] x R? 3 (t,x) — U(t,x,p) is in CP2([0,T] x RY) and the
functions [0, 7] x RY x Po(RY) > (¢, 2, ) = OPU (¢, z, 1), 0.U(t, z, 1), O2U(t, z, i) are continuous.

(ii) For any (t,x) € [0,T] x R?, the mapping P2(R?) 5 u +— U(t,z, u) is continuously L-differentiable and
for any p € P2(R?), we can find a version of the mapping R? > v +— 9,U(t,z, u)(v) such that the
mapping [0, 7] x R x Po(RY) x RY > (¢, z, pu,v) = 0,U(t, , 1) (v) is locally bounded and is continuous
at any (¢, x, 4, v) such that v € Supp(u).

(iii) For the version of §,U mentioned above and for any (¢,z,u) in [0,7] x R? x Py(R?), the mapping
RY 3 v+ 9,U(t,z,p)(v) is continuously differentiable and its derivative 9,[0,U (¢, z, p)](v) € R¥*4 is
jointly continuous in (¢, z, u,v) at any point (¢, 2, u, v) such that v € Supp(u).

The continuous function U : [0, 7] x R? x Py(R9) is in C§’2’2([O,T] x R x Po(RY)) if U € CP22([0,T] x
R? x Py(R?)) in the above sense and the following additional condition holds:

iv) For each v € R?, the version Po(R%) 3 p — 9,U(t, z, 11)(v) discussed in (ii) is L-differentiable (com-
o
ponent by component) with a derivative given by (u,v,v") = 92U (t,z, u)(v)(v') € R™? such that
for any p € Po(R?) and X € Ly with [X] = p, the R**%-valued random variable 02U (¢, z, u)(v)(X)
gives the Fréchet derivative of the map Lo > X' — 92U(t,x,[X’])(v) for every v € R?. Denoting
G2U(t, 2, 1)(0) (/) by GRU(t, 2, 1)(v,0'), the map [0,T] x R x Po(RY) x (R 3 (t,,1,v,0')
aﬁU(t, x, 1) (v,v") is also assumed to be continuous for the product topology.



2 PRELIMINARIES: DIFFERENTIATION ON THE WASSERSTEIN SPACE AND SMOOTHING
2.1 Differentiation on the Wasserstein space PROPERTIES

Remark 2.5. We will also consider the spaces C1([0, T] x Pa(R%)) for p = 1, 2 and C}’2([O, T]x P2(R%)), where
we adequately remove the space variable in the Definition 24l We will say that U € C11([0, T] x P2(R%)) if U
is continuous, t — U(t, u) € C1([0,T]) for any u € Pa(RY), (¢, 1) — AU (¢, i) being continuous and if for any
t €[0,T], p— U(t,p) is continuously L-differentiable such that we can find a version of v — 9,U(t, it)(v)
satisfying: (¢, u,v) — 9,U(t, pn)(v) is locally bounded and continuous at any (¢, u, v) satisfying v € Supp(p).
We will say that U € Cp2([0,T] x P2(RY)) if U € CH2([0,T] x P2(R?)) and for the version of 9,U
previously considered, for any (¢,v) € [0, 7] x R%, the mapping Po(R?) 3 p + 9,U (¢, u)(v) is L-differentiable
with a derivative given by (¢, u,v,v") = 0,U(t, u)(v,v’) € R*? such that for any p € P2(R?) and X € Lo
with [X] = p, 0,U(t, u)(v, X) gives the Fréchet derivative of the map Ly > X' — 9,U (¢, [X'])(v) for every
(t,v) € [0,T] x R Moreover, the map [0,T] x Pa(R?) x (R")? 3 (t, p,v,v) = 02U (t, u)(v,v’") is assumed
to be continuous for the product topology.
Notations: We will use the following notations throughout the paper. For a smooth map U : P(R?) — R
and for pu € Po(RY), v,0" € R4

[0, U (1) ()] = (Ou; [0,U (1)]i (v))1<i,5<d
2U (1) (v,0") = ([0u[0,U ()i (0)]; (') 14 j<a-

With the above definitions and notations, we can now provide the chain rule formula on the Wasserstein
space that will be play a central role in our analysis.

Proposition 2.1 (|[CD18], Proposition 5.102). Let X and Y be two It6 processes, with respective dynamics
24) and (Z.3)), satisfying ([2.6). Assume that U € C122([0,T] x R? x P2(R%)) in the sense of Definition 241
such that for any compact set K C R? x Po(R?),

s { [ U@ i+ [ 00000 )} <. @)
(t,z,pn)€[0,TIxXK R4 Rd

Then, P-a.s., Vt € [0,T], one has

Ut Y X)) = U (0.5, [Xa)) + [ 0,05, Vo [X.]) A dIV,

t

+ 0sU (s, Yy, [Xs]) + 0.U (s, Yy, [ Xs])-ms + %trace(@iU(s, Ys, [Xs])"ysfy:)} ds (2.8)

S— S—

+ [ B0y XDE)E) + B lrace(@,0,0(. V. X)) 5.52) f s

| {
where the Itd process ()?t,'z;t, 0t)o<t<T 18 a copy of the original process (X¢, by, 01)o<i<7 defined on a copy

((NZ, ]?, ]IND) of the original probability space (2, F,P).

We conclude this subsection by enlightening the connection between the L-derivative of a map U :
P(R?) — R and the standard partial derivatives of its empirical projection UY : (R?)Y — R, N being a
positive integer, defined by

N
UM RYY 3 (24, ,xN)HU(%Z(SIi). (2.9)

We refer to Propositions 5.35 and 5.91 of [CD18§] for a proof of the following result.

Proposition 2.2 (Connection between L-derivatives and empirical projection). If U is a real-valued function
that belongs to C7(P2 (R9)) (fully C?) then its empirical projection UY is two times differentiable on (R¢)Y

and, for all z1,--- ,oy € (RO, for all (4,7) € {1,--- ,N}2

1 1
0, UN (@1, 2n) = 10,0 ( > de) (i)

N
N
(=1
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and

N N
1 1 1 1
ami,ijN(Il, cee L aN) = N&,@LU(N Zéwz)(xi)(SiJ + m&iU(ﬁ Z 512)(Ii,$]‘)
=1 =1

with the notation §; ; =1 if ¢ = j and 9; ; = 0 otherwise.

2.2. Regularization properties by smooth flow of probability measures

In order to establish quantitative estimates for propagation of chaos for the mean field approximation of
the dynamics (LI) by its system of particles (L2), an additional study of the regularity properties of the
transition density of the McKean-Vlasov SDE is required. We build on our previous work |[CdRF18&] which
highlights the key feature to investigate the smoothing properties of the transition density in the uniformly
elliptic framework. Namely, our analysis is mainly based on how a continuous map defined on P(R9)
admitting only flat derivatives in the sense of Definition [Z1] can be regularized in the intrinsic sense by a
smooth flow of probability measures. Assuming that the coefficients b and a are uniformly Hoélder continuous
in the space variable and admit bounded, uniformly Hélder continuous linear functional derivatives at order
2, it turns out that the density taken at time ¢ > 0 of the unique weak solution of the McKean-Vlasov
SDE with dynamics (1)) achieves better regularity with respect to its measure argument and is partially
C2. Clearly, this phenomenon has to be understood as a smoothing property of McKean-Vlasov SDEs in a
uniformly elliptic setting. We refer to Section 2.2 in [CdRF18§] for a detailed introduction and discussion of
this regularization property.

We here want to go one step further by analyzing the full C? regularity of the density. The following
result will play central role in our analysis.

Proposition 2.3. Let h : P(R?) — R be a continuous map that admits two bounded linear functional
derivatives. For some prescribed T > 0 and z € R?, consider a map (¢, z, u) — p(u,t,T,z, 2) € C}’2’2([0, T) x
R? x Py(RY)), z +— p(u,t,T,x,2) being a density function, such that the probability measure given by
(p(p,t, T, ., 2)tu)dz belongs to Pa2(R9), locally uniformly with respect to (¢, 1) € [0,T) x P2(R?), i.e. uni-
formly in (¢,1) in bounded subsets of [0,7) x P2(RY). Assume that for all (u,t,z,2,v) € P2(R?) x
[0,7) x (R?)? the maps R? > o — 9,p(u,t,T,z,2)(v) and Po(RY) > pu + 9yp(u,t,T,x,2) are continu-
ously differentiable, with derivatives 0,0,p(u,t, T, x, z)(v), 0,0-p(i,t, T, x, z)(v) being continuous in p, , v,
and of at most linear growth in v, uniformly in (p,z) in bounded subsets of Pa(R?) x R and that the
mappings R? 5 2 — fRd |8ﬁp(u, t,T,x,2)(v,0")| dz, f]Rd |00 0up(p, t, T, z, 2)] (V)] dz, fRd |Owp (i, t, T, x, 2)| dz,
Jra 10200 (1, t, T, 2, 2)(v)| dz, n € {0, 1}, are at most of quadratic growth, uniformly in (¢, 1, v,v") in bounded
subsets of [0,7) x P2(R4) x (R%)? and such that for any bounded subset K’ C [0,T) x Po(R?) x (R9)3, for
any n € {0,1}

/ sup {07 p(u,t, T, 2)| + | 04 "p(p,t, T, 2)]
R (t,p,z,0,0")EKX!

+|83[8ﬂp(uvta T,.’,E, Z)](’U)| + |8x8#p(,u7ta T,.I, Z)(U)| + |8ﬁp(/‘[’5 tha €T, Z)(’U,’U/)|} dz < 00(210)

Consider the map © : [0,T) x P2(R%) — P2(R?) defined by
O(t, pw)(dz) = (p(, t, T, ., 2)8u)(dz) = /Rd p(p, t, T, x, z)u(de) dz.
Then, the following statements hold:
o the map h(O(.,.)) belongs to C}’2([0, T) x P2(RY)),

2In this case, by Clairaut’s theorem it holds 9z0up(u,t, T, x,2)(v) = (8u0xp(p,t, T, x,2)(v))* for all (u,z,v) € Pa(RY) x
(R4)2.
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o the Lions and time derivatives satisfy for n € {0,1}:

0010, [h(O(t, w)]](v) = Iy [a,, [ /( oy %(@(t,u))(z)p(u,t,:r,x,z) dz I/(d:v)} ‘V:J (v)
— [ [500t 1)) ~ 30 @) 0k sl t. T, v, 2) d: (211)
R4 m m

om

[ O m)(E) — 5Ot ) @) 0yl 1. T, 2)](0) d (),
(R4)2 m

Sh
O [h(O(t, )] = Os [/(Rd)2 5, O W) (=) plp, s, Tz, 2) dzu(d:c)} ot
:/ {g_h(@(t,u))(z)_ g—h((a(t,u))(:v)} Oip(u,t, T, x, 2) dz p(dx) (2.12)
(Ra)z L0 "

and

IOt )0 v) = 0] [ SO0 )() Dl 70, 2) ] )

o {/(de (01, 1))(2) D, . 7,2, 2)(v) d () ()

= [ 2t T2 20,5 (Ol )()] () d
Rd m

+ [ 5@l )) = SOl )] 8,000t T, 0,200 d:

+ / Buplps 1,7, 2)(0) © 0 [ 2 (6(t, 1)) (2)] () = () (2.13)
(R4)>2 om

bSO R)(E) — 5 (O ) ()]0 1. T, )0, ') d )
(R4)2 om om

[ 2O~ @0 )0ttt Tl )0
R 0T m

with the notations 0,0,p(u,t,T,v',2)(v) = (Oz;[0up(p,t, T, v, 2)]i(v"))1<ij<a and 0,0:p(p,t, T, v, 2)(v") =
(002, p(ps t, Ty 0, 2)]5(v"))1<i j<d-

Proof. Under the current assumption, from |[CdRF18§], we already know that (¢, u) — h(O(t, u)) € CH2([0,T)x
P2 (R?)) and that (ZIT) as well as [ZI2) are satisfied. It thus remains to prove that for any (¢,v) € [0,T) xR,
the map p — 0,[h(0O(t,n))](v) is C1(P2(R?)) and that for any u € P2(R?), we can find a version of
v' = O2[M(O(t, )] (v,v") satistying (ZI3) and such that the mapping (,u,v,v") = 92h(O(t, pu))(v,v") is
continuous for the product topology.

From (ZTII) with n =0

0,1 1)) = [ [F-(O0010)(2) = SOl Orpliet. T.0,2) s (214)
oh oh
+ /( o L O E) = F (O (@) bl T, 2, 2)(0) d (o)

Observe now that for any (¢,z,z,v) € [0,T) x (R%)3, the maps [§h/dm](O(t,.))(v), up(.,t, T, v, z) and
Oup(.,t,T,x, z)(v) are continuously L-differentiable. Moreover, from the above identity applied to the map
m +— [6h/ém](m)(v) instead of h, for any fixed z € R?, we deduce that (¢, u, v') + 0,[[6h/dm](O(t, 1)) (2)](v")
is continuous and thus locally bounded. Hence, the integrability condition (ZI0) allows to differentiate

10
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under the integral sign. We thus deduce the L-differentiability of pu — 9,[h(©(t, 1))](v) and ZI3)) follows
by differentiating under the integral sign in (2I4]). Finally, we remark that each integrand appearing in
the five integrals of the right-hand side of (ZI3)) are continuous with respect to the variables ¢, u, v,v'. The
integrability condition (2.I0) then allows to deduce the global continuity of each term with respect to the
variables (¢, y1,v,v') € [0,T) x Po(RY) x (R?)2.

O

An explicit expression of 85 [h(O©(t, 1))](v,v") can be derived by plugging the identity (2I4) applied to
the map dh/dm into (ZI3). We thus obtain

aalh(e(t, 1))](v, V")

52h / 52}1/ / / / /
(R)? §m2 IUJ))(Z?Z ) - W(e(tau))(zav )}(%Cp(,u,t,T,v,z)®(9mp(,u,t,T,v x4 )dZdZ

2 2
+~/(]Rd 0 f; t /J‘))( I) - %(9(@#))(2,1’)}awp(/l,,t,T,U,Z)®aup(u,t,T,:E7zl)(’U/) dZdZ/N(dl')
+ [ (B 00010)() — S (Ol 0)(0)} 002,70, 2) (o)
+/Rd 1))(z) — ;—Z(@(f,u))(v')}@mﬁup(u,t,T, V', 2)(v) dz (2.15)
2 2
+ /(Rd)s {%(G(t, 1)(2,2") — %(@(t, w)(z, v’)} Bup(pt, T, 2)(v) @ Bup(p, t, T, 0", 2') dz dz' pu(dax)
+ / {%(9(@ 1))(2,2") = ;—Z(G(t,u))(z,x’)}aup(u,t, T,x,2)(v) @ Oup(p, t, T, 2’ 2")(v') dz dz’ p(dz') p(dx)
(R4)4 m m

oh Sh ) /
+ /(Rd { (O, 1) (=) — %(G(t, u))(:z:)} 0,p(p, t, Tz, 2) (v, ") dz p(d).

om

The three relations (211]), (212) and (ZI3) play a central role for the analysis of the regularity properties
of the transition density related to the dynamics (). Indeed, under the additional assumption that the
maps v +— [0h/dm](m)(v), v' + [62h/6m?](m)(v,v’) are uniformly Holder continuous and if (t,u,z) —
p(p,t, T, x, z) as well as its derivatives satisfy some suitable Gaussian-type bounds, they allow thanks to the
space-time inequality (LH) to match the diagonal regime of the underlying heat kernel and to benefit from
the so-called smoothing property of Gaussian kernels. These key observation will be used repeatedly in the
proofs of Lemma [3.I] and Proposition [3.11

3. Overview, assumptions and main results

3.1. Some remainders from [CARF18]: well-posedness of (L), existence and regularity of its transition
density
Let us give a few practical reminders of our previous work |[CdRF18] concerning the well-posedness of
(I, the existence and regularity properties of its transition density. We first provide some assumptions on
the coefficients made therein.

(HR,) (i) The drift coefficient b : R, x R x P(RY) — R% and the diffusion coefficient a : R x R x P(R%) —
R? @ R?, where a(t,z,m) = (c0*)(t,z,m), are bounded and continuous functions. The maps
R? > x + b(t,,m), a(t,z,m) are uniformly n-Holder continuous for some 1 € (0, 1],

{ [b(t, x,m) — b(t,y, m)] N la(t, z,m) — a(t,y,m)]| } < oo,

|z —y[" |z —y["

sup
t>0, z#y, meP(R?)

(ii) For any (i,j) € {1,---,d}* and any (t,z,y) € Ry x (R%)2, the map m — a,,(t,z,m) has a

bounded and continuous linear functional derivative, such that (z,y) — [6a, ;/om](t, z,m)(y) is a
bounded and n-Hoélder continuous function, for some 7 € (0, 1], uniformly with respect to the other

11
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variables. The map m — [da; ;/dm]|(t,z,m)(y) has a bounded and continuous linear functional
derivative, such that (z,y’) — [6%a, ;/dm?](t,z,m)(y,y’) is n-Hélder continuous uniformly with
respect to the other variables.

(ii) For any i € {1,---,d} and any (t,z) € R x R% the map m ~ b;(t,z,m) has a bounded and
continuous linear functional derivative, such that y — [db;/dm](t, z, m)(y) is n-Holder continuous
uniformly with respect to the other variables. Moreover, for any (t,z,y) € Ry x (R%)2 the
map m +— [0b;/dm|(t,z,m)(y) has a bounded and continuous linear functional derivative, such
that y' — [62b;/0m?](t,z,m)(y,y’) is n-Holder continuous uniformly with respect to the other
variables.

(HE) The diffusion coefficient is uniformly elliptic, that is, there exists A > 1 such that for every (¢,m) €
[0,00) x P(R?) and (z,€) € (R?)?, A71¢)? < (a(t, z,m)E, &) < N|€|? where a(t,z,m) = (60*)(t,z,m).

Throughout the paper, we will frequently use the following notation. We will denote by K+ := K(T,(HR. ), (HE))
some generic constant which depends only upon T and the parameters appearing in (HR) ;. and (HE). With
a slight abuse of notation, we will proceed similarly and denote by K := K(T, (HR), (HE)) some generic
constant which depends upon T, a, b, da/dm, 6b/dm, X and 7. In particular, their values may vary from line
to line. We will emphasize the dependence of the constants K or K with respect to a prescribed parameter
B by writing K or Kg

Under (HR,) and (HE), the martingale problem associated with (ILI]) is well-posed for any initial
distribution ;1 € P(R4). Note that in [CdRF18§], the well-posedness is actually tackled under weaker regularity
assumptions on the coefficients, especially with respect to the measure argument, see Theorem 3.4 therein.
In particular, weak existence and uniqueness in law holds for the SDE (LI]). The law of the process (X; ’E)tzs
given by the unique solution to the SDE (L)) starting from the initial distribution p = [¢] at time s thus
only depends upon ¢ through its law . Given p € P(R?), it thus makes sense to consider ([X;*])i>s as a
function of the initial distribution p (and of the time variable s) without specifying the choice of the lifted
random variable ¢ that has p as distribution. We then introduce, for any x € R?, the following decoupled
stochastic flow associated to the SDE (1))

t t
XM = g+ / b(r, X351 [X5€)) dr + / o(r, X308 [ X54]) dW,. (3.1)

We note that the previous equation is not a McKean-Vlasov SDE since the law appearing in the coefficients
is not, [X5®#] but rather [X¢], that is, the law of the solution to the SDE (ILT)) (starting at time s from the
initial distribution p) at time r. Under (HR,)(i) and (HE), the time-inhomogeneous martingale problem
associated to the SDE (B.l) is well-posed, see e.g. Stroock and Varadhan [SVT79]. In particular, weak
existence and uniqueness in law holds for the SDE @).

Once weak well-posedness holds for both the McKean-Vlasov SDE and its decoupled flow, one may
consider the densities of the random variables X** and X;**. Indeed, under (HR,) and (HE), it turns
out that both random variables admit a density for any ¢ > 0. Moreover, denoting by z — p(u, s,t, 2) the
density of X;** and by z — p(u, s,t,z, z) the one of X;***, the following key relation holds

o, s,t,2) = /]Rd o, s,t,x, z) u(dx). (3.2)

In other words, z — p(u, s,t,z) is the density of the image measure of the map = — p(u, s,t,x,2) by the
measure .

It now follows from Friedman [Fri64] (see also McKean and Singer [MS67]) that p(u, s,t, z, z) admits the
following representation in infinite series also known as parametriz expansion

plps st a,y) =Y (FOHW) (1, s,t,2,9) (3.3)
k>0

12
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where for any (i, 7,2,y) € P2(R?) x [s,t) x (R?)? the parametrix kernel H(u, s, 7, t,7,y) and the Gaussian
type kernel p¥(u, s, 7, t,x, z) are given by

Z/)\(I'L’S)T)t7x7z) ::Z/)\Z(H,S,T,t,x,z),

t
(s, 1, 2) :—g</ a(r,y, [X5]) dr —) (3.4)
d
H(p,s,m,t,3,y) o= Y byl @, [X28)) 0, i, 5,7, 2, y)
=1
1 d
+ 5 Z (ai,j (T5 €T, [XT&E]) - aZJ(T Y, [XS 5]))81Z T p(luﬂ S, T, I,y)
i,j=1

and the space-time convolution operator

t
(f @h)(u,s,7,t,2,y) ::/ / fQuy sy’ @, 2)h(p, s, t, 2,y) dz dr’
r JR4

together with its iterate f @ H*) = (f @ H*~1) @ H for k > 1 with the convention that f ® H(® = f.
Note that to simplify the notation we will write (f ® g)(u, s,t,2,y) := (f®g)(u, s, s,t,2,9), H(p, s,t,x,z) =
H(w, 8, 8,t,x,2z) and proceed similarly for other maps.

We will also need the following estimates: for any 8 € [0,1], there exist positive constants K :=
K(T,b,a,n,\), Kg:= K(T,b,a,n,X, () and ¢ := ¢(\) such that for any positive integer k, any (u,x,y,2) €
Po(R?) x (RY)3, any 0 < s <t < T, any r € [s,t) and any integer n

18
8;@(:”” S, T, tvxv Z) - 8;@(:”” s, T, tvxv Z) S Kﬁﬁ {g( (t - T)? z = I) + g(C(t - T)? zZ = I/)} ) (35)
-7
Kk k—1
(k) nn — ).z —
[H™ (py s, 8,2, 2)] < T EB(E , ) gle(t—r),z —x) (3.6)
and i
~ (k) k k2 1)77 7
|p®H (u,S,t,I,Z)|<K t_S 2H 1+ 2 g(C(t—S),Z—{E) (37)
where B(k, ) fo —l4+ky=1+¢dy stands for the Beta function. From the asymptotics of the Beta

function, the series (B:{I) converges absolutely and uniformly for (u,z,z) € Pa(RY) x (R%)2. Moreover, it
satisfies the following Gaussian upper-bounds: for any 0 < s <t < T and any (u,z,y) € P2(R%) x (R?)?

" C
|amp(M7 s,t,x,y)| < m g(C(f - S)7y - (E), n= 07 17 2 (38)

and for any n € {0,1,2}, for any g € [0,1] if n € {0,1} or any 8 € [0,n) if n =2
|21 — 5|
(t— s)"TH?

where C := C(T,b,a,\,n), Cz := C(T,b,a,\,n,B3) and ¢ := ¢(\) are positive constants.
We now introduce the solution ®(u, s, 7, t,y, z) to the following Volterra integral equation

@(/I’7 877’.7 t? y7 Z) = %(/’L7 S7r7 t?y?'z) + (H ® @)(/I’7 877’.7 t? y7 Z)' (3'10)

|3Qp(u,s,t,x1,y)—3gp(u,s,t,x2,y)| Scﬁ {g(c(t—s),y—xl)—l—g(c(t—s),y—xg)} (39)

Observe from ([B.6]) for & = 1 that the singular kernel H(u, s, r,t,y, ) induces an integrable singularity in
time in the above space-time convolution so that the solution to the above equation exists and is given by
the (uniformly) convergent series

(I)(M787r7t7y7z) = ZH(k)(u787T7t7yaz) (311)
k>1
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3.1 Some remainders from |[CdRF18]: well-posedness of (ILTl), existence and regularity of its transition
density 3 OVERVIEW, ASSUMPTIONS AND MAIN RESULTS

which by (6] and the asymptotics of the Beta function satisfies

K

mg(c(t—r},z—y) (3.12)

[P (1, 5,78, y, 2)] <

for some positive constants K := K(T,b,a,n, A), ¢ := ¢(A).

In view of the relation ([B:2]) and the above discussion, the regularity properties of the map (s,u) —
p(p, s,t,z) stem from those satisfied by (s,z,u) — p(u,s,t,x,z). In this regard, we recall the following
result established in |[CdRF18].

Theorem 3.1. Assume that (HE) and (HR;) hold. Let T > 0 and (¢,2) € (0,7] x R% Then, the
mapping [0,%) x R? x Py(RY) > (s, 2, ) = p(p, s,t, 7, 2) is in CH22([0,1) x R? x Py(R?)). Moreover, for any
(Ma /1*/7 vavwlv v, v ) (PQ(Rd)) X [ at) (Rd) and any (817 32) € [O,t),
n C
|8'u [aup(,u7 Svta z, Z)](U)| S Wg(c(t - S)v Z = .I), n= 07 15 (313)
— g

glelt - 5),z — ), (3.14)

c
|(95p(,u,$,t,x,z)| S t—S

for any 8 € [0,1] if n =0 and any 8 € [0,7) if n =1,

|83[aﬂp(ﬂ737t7waz)](v) - aﬁ[aﬂp(ﬂas t, ' 2)](U)|

|z — a'|P /
<CBW{9( c(t—s),z—x)+glct —s),z —a")}, (3.15)
for any 6 € [0,1),
v—2 P
|av[aup(ﬂa S,t,LL', z)](v) - av[aup(p,, s,t,x7z)](v')| S CIB d)ﬁg(c(t - 8)’ Z = ,T), (316)
— S 2
for any 8 € [0,1] if n € {0, 1} and any 8 € [0,n) if n = 2,
Wal(p, 1')?
0Pk, s, t, 2, 2) — Opp(p', 5, t, 2, 2)|(v)] < Cﬁ(tz(l;ifis)n glc(t = 5),2 — @), (3.17)
_ 5
for any 8 € [0,1] if n =0 and any 8 € [0,7) if n =1,
Walp, 1')?
|(9:}[(9Mp(p,, 87t7$7z)](7}) - 617}[(9#17(#/7 S,t,$,Z)](’U)| < C;%Q(C(t - 8)7 z = .’L‘) (3'18)
for any 8 € [0,1] if n =0, any B € [0,252) if n =1 and any B € [0, 1) if n = 2,
|8;Lp(ﬂa Sl,t,I,Z) —821)(#752,157%2”
51 — s9f? 51 — so|P
<o {2 ot - s - 0+ 2 et s - )}, (3.19)

for any 8 € [0, :£2) for n = 0 and any 8 € [0, 2) for n = 1

|a [ Mp(ﬂaslvt z, Z)](U) _a;l[aﬂp(ﬂas%tvx?'z)](v)'
|51 — 52/

_ g8
<C+ & clt — s ,Z— T + —
=B {( g(c( 1) ) (t—52)1+gin+ﬂ

14n—n
t—s1)" 2z +8

g(c(t —s2),z — x)} , (3.20)

where C := C(T, (HR), (HE)), Cs := C(T, (HR), (HE), 8), C;{ = CZ{(T, (HR.), (HE),8) and ¢ := ¢(\)
are positive constants.
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3.2 Additional regularity of the transition densisy OVERVIEW, ASSUMPTIONS AND MAIN RESULTS

3.2. Additional reqularity of the transition density

Our approach requires to investigate additional (with respect to the aforementioned results) regularity
properties of the map (s, ) — p(u,s,t,2) and (s,x,u) — p(u, s, t,x,z). To be more specific, our aim is
to establish that (s, u) — p(u, s,t, z) belongs to C}’Q([O, t) x Pa(RY)) and that the transition density of the
decoupled flow (B satisfies the assumptions of Proposition This second claim is the purpose of the
following lemma whose proof follows from similar arguments as those employed to obtain Theorem B.] in

ICARF1§] and is thus postponed to

Lemma 3.1. Assume that (HE) and (HR;) hold. Let 7' > 0 and (¢,2) € (0,7] x R%. Then, for
all (u,s,2,0) € P2(R?) x [0,) x (R?)?, the maps R? 3 = — 9,p(u,s,t,2,2)(v) and P2(R?Y) 3 pu
Ozp(H, 8,1, z, z)(v) are continuously differentiable, with derivatives 0,0,p(, s,t, x, z)(v) and 9,0,p(u, s, t, z, z)(v)
being continuous in u, x,v and bounded with respect to the same variables.

Moreover, for any 5 € [0,n) there exist C' := C(T, (HR), (HE)), Cg = C(T,(HR,),(HE), ), ¢ :=

c(\) > 0 such that for all (u, i',s,z,2',v,v") € (Po(R?))2 x [0,t) x (RY)*, one has
C

mg(c(t— 8),z—x) (3.21)

|az [aup(:uv S, ta €z, Z)](v)| S

and

|8ﬂc [aup(,ua S, tv &€, Z)](’U) - 81 [aup(,u/v S, ta Ilv Z)](’U/)|
s

S o m WalenV o=V o =P {glelt = 9he =) +glelt = )z =)} (322

In view of the results recalled from |[CdRF1&] and the relation ([B:2)), a sufficient condition to obtain
the C}’Q([O, t) x Po(R?)) regularity of the map (s, i) — p(i, s, t,z) consists in establishing that the second
derivative (’ﬁp(u, s,t,x, z)(v) exists and is continuous in its arguments. This is the purpose of the following
proposition which provides as well the Hélder regularity of [0,%) x RY x Py(R?) x (RY)? > (s,z,1,v) —
Bip(u, s,t,z,2z)(v) and some sharp Gaussian type estimates provided the coefficients satisfy the following

additional regularity assumptions. Roughly speaking, we need the existence of an additional linear functional
derivative which is Holder continuous with respect to its space arguments.

(HR, ;) The coefficients b and o satisfy (HR.;). Moreover, for any (i,7) € {1,---,d}* and any (t,z,v,v') €
R, x (RY)3) the maps P(RY) > m — [0%a;;/6m?](t, x,m)(v,v"), [0%b;/dm?]|(t,z,m)(v,v") admit a
bounded and continuous linear functional derivative, such that (z,v"”) + [6%a; ;/dm3](t, z, m)(v, v, v")
and v” — [63b;/dm3](t, z,m)(v,v',v") are n-Holder continuous uniformly with respect to the other
variables.

As previously done, we will denote by K1 := K(T, (HR ), (HE)) some generic constant that depends
only on T and the parameters in (HR) 1, (HE). We emphasize its dependence with respect to a prescribed
parameter 8 by writing KZ{JF.

We are now in position to state the C}’2’2([0,t) x R x Py(RY)) regularity of the map (s,z,p) —
p(p, 8,t,x,2z) which is a key step toward our quantitative estimates for propagation of chaos. Its proof
being rather long and technical is postponed to Section

Proposition 3.1. Assume that (HE) and (HR, ) hold. Let T > 0 and (¢,2) € (0,7] x R%. Then, the
map (s, z, p) — p(p, s, t,x,2) € C}’2’2([O,t) x R? x P3(R9)). In particular, for any fixed (s,z) € [0,t) x R,
the map p — p(u,s,t,z,z) is fully C2. Moreover, for any 3 € [0,7), there exist positive constants CT :=
C(T,(HR;), (HE)), CE+ = C(T,(HR4),(HE),8) and ¢ := ¢(A) such that for any (u,s,z,2’,z,v) €
Pa(RY) x [0,1) x (RY)3 x (R)?

c+

bl YV < (g alelt = )2 =) (3.23)
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3.3 Fundamental solution of the backward Kolidogolv RV W, ths SUAIRISHINSpADD MAIN RESULTS

for any vi = (v1,v}), va = (v2,vh) in R? x R?,
|0np (1, 5,8, 2, 2) (V1) — Opp( s s, 8,2, 2) (Vo)
i (Walp, )P + |z — 2P + [vi — va|7] { (c(t—s),z—x)+ g(c(t —s),2 — :1:’)} (3.24)
_(t—s)l*‘? 2(Hs B 1 2 g ) g )
and for any s1,s2 € [0,¢)
(050 (1, 51,1, 2, 2)(v) = p(u', 5, 1,27, 2) (V)]

8 8
81— S9|2 S1 — S2|2
< C'Ig(Jr {%g(c(t —51),z—x)+ %g(c(t — 89),2 — x)} . (3.25)

3.8. Fundamental solution of the backward Kolmogorov PDE on the Wasserstein space.

A key feature of our analysis of convergence rate in the propagation of chaos phenomenom is to bring
to light a connection between the transition density functions of the system of particles ([L2) and of its
mean-field limit (ICT]) by means of the notion of fundamental solution of the parabolic backward Kolmogorov
PDE defined on the strip [0, 7] x P2(R9) that we now present.

Let us consider the following linear differential operator

d d
L0 = [ S bl v, B UL 0) + 5 3 iyt v, )00, 0.UW]i(0) § pldv), ¢ € [0,T] (3.26)
Rd 2
i=1 ij=1

acting on a smooth real-valued function U defined on Py(R?). The parabolic backward Kolmogorov PDE
defined on the strip [0, 7] x Pa(R?) is given by
O+ L)U () =0, (t.p) € 0,T) x Pa(R, )
U(T, 1) = h(p), p € P2(RY).

Let us underline that under mild assumptions on the functions h, b and a, the above PDE admits a unique
classical solution given by U (t, ;1) = h([X%]), (X%*)se(e,7) being the unique weak solution to the SDE (L)
starting from the initial distribution [¢] = p at time ¢. We refer to [CdRF18§] for irregular terminal condition
h and coefficients b and «a, in the uniformly elliptic setting. We also refer to |[CM17] when the terminal
condition A is irregular by means of Malliavin’s calculus still in the uniformly elliptic setting. We finally
mention the recent work [BLPR17] for the case of smooth functions h, b and a without any non-degeneracy
assumption. Let us now introduce the notion of fundamental solution related to (B:27)).

Definition 3.2. A fundamental solution of 95 +.%s = 0in [0, T] x P2(R9) is a map [0,t) x P2(R?) > (s, ) —
p(u, s,t, 2) defined for all (¢, z) € (0,T] x R? satisfying the following two conditions:
(i) For every fixed (t, z) € (0,T] x RY, the map [0,¢) x P2(R?) > (s, 1) — p(u, s, t, z) belongs to C-2([0, t) x
P2 (R)) and satisfies the equation

(05 + ZL)p(p, s,t,2) =0 on [0,1) x Pa(RY). (3.28)
(ii) For every real-valued continuous function f defined on R? with at most quadratic growth, for any
p1 € Po(R)
lim [ f(2)pluss,ty2)dz = [ f(2) p(dz). (3.29)
st JRra Rd

When there is no possible confusion, we will write limgs p(it, s,¢,2) = 8.(.) % (“x” denoting the usual
convolution operator), instead of ([3.29]).

Theorem 3.3. Assume that (HE) and (HR.) hold. Let (¢,2) € (0,7] x R%. The map [0,t) x P2(R%) >
(s, 1) = p(p, s, t, z) defined by [B2)-(B3) is a fundamental solution of 95 + %5 = 0.

Moreover, it is the unique solution among the class of fundamental solutions (s, 1) — q(i, s,t, z) defined
for all (, 2) € (0, T]xR%, being continuous with respect to z, satisfying (2.7)) for any fixed (¢, 2) € (0, T]xR?, T
being replaced by any ¢’ € [0,t), and satisfying the terminal condition (3.29) locally uniformly in x4 € Pa(R?),
that is, uniformly in 4 € K, K being any compact set of Po(R?).
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3.4 Three types of propagation of chaos estimatks OV HRVGEIdn ASSENIFIFI (NS AND MAIN RESULTS

3.4. Three types of propagation of chaos estimates for the system of particles ([L2)

Our primary objective is to study the propagation of chaos for the system of particles (2] by quantifying
in an appropriate sense its distance from its mean field limit (LIJ).

Let us first emphasize that under (HE) and (HR, ), the system of particles with dynamics (L2) is well
posed in the weak sense. Indeed, for any (t,z) € Ry x R? and x,y € (R%)V:

1
0 Rd 5m

where we used the notations mL = N~! Zil 8z, and mMN = Il + (1 - A)my. From the uniform
n-Holder regularity of z — [6b;/dm]|(t, z,m)(z), it is thus readily seen

4]
|bi(t7x7m;]j) _bi(tvxvmyﬂ < sup [—bi(t,x,m)(.) |X_y|n
teR, ,z€RI,meP(Rd) O H
where [%bi(t, x,m)(.) o stands for the Holder norm of the map [0b;/dm|(t, z,m)(.). The same inequality
also holds with the map a; ; instead of b;. As a consequence, the measurable maps R? x (R)N > (z,x)
b(t,x,m¥), a(t,z,mL) are bounded and n-Holder continuous uniformly in time so that the martingale prob-

lem related to (L2) is well posed, see e.g. [SVT7Y]. In particular, weak existence and uniqueness holds for the

SDE ().

Also, from [Fri64], the N x d dimensional random variable X; = (X}, -, X}¥) given by the unique
weak solution to (L2) taken at time ¢ > 0 starting from the N-fold product measure p’¥ admits a density
function (RN > z +— pV(u,0,t,2), 2 = (21, -+ ,2n), with respect to the Lebesgue measure on (R%)V.
For any fixed i in {1,..., N}, we denote by p»" the density of the i*! particle obtained by integrating the
joint density of the particles z — p™ (,0,¢,2z) over z; for j # i. By weak uniqueness of the SDE (I2]) and
exchangeability in law of the i.i.d. initial conditions (£%);<;<n, the one-dimensional marginal distributions
of the random variable X are equal. In particular, one has p*" = p»" for any i € {1,---, N}. Moreover,
for any fixed time T > 0, there exist two constants C := C(T,a,b, N) > 1, ¢ := ¢(\, N) > 0 such that for
any (t,u,z) € (0,T] x P(R?) x (RN the following two sided Gaussian estimate holds

c! / glc ',z —x) ™V (dx) < p™(,0,t,2) < C/ g(ct,z —x) p? (dx). (3.30)
(RE)N (RN

Remark 3.4. Hence, it is readily seen that a similar two sided Gaussian estimate hold for p™¥ instead of p™v
but with constant C, ¢ that depend on N. As a by product of our result, we will establish below a Gaussian
upper-bound with two constants C, ¢ that do not depend on N. To the best of our knowledge, this result is
new.

1,N

The first propagation of chaos estimate is an error bound of order N~! for the difference (p
p)(14,0,t,z) under (HR ;) and (HE). We then establish a first order expansion for this difference with an
explicit control of the remainder term under the additional assumption that R? x Pa(R%)(x, ) +— o (t, z, i)
is uniformly Lipschitz continuous and that M (1) = ([pa [#]? p(dz))!/? < oo for some g > 4. The proof of
the following result is postponed to Section Bl

Theorem 3.5. Assume that (HE) and (HR, ;) hold. Then, there exist positive constants Kt :=
K(T,(HR4),(HE)), c:=c¢(\), T — K(T,(HR,), (HE)) being non-decreasing, such that for any (¢, u, z) €
(0,T] x P2(R?) x R?

PV n082) K [ gletz - a)a(da) (3.31)
R
and
LN _ 0 <K—+ 1 — d 1 — d 3.32
(p P10t 2)| S —= 3 = [ 9glet,z —a)lz|u(dz) + =5 | glct,z —2)u(dz) . (3.32)
t—=2 Jrd t'72 Jpd
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3.4 Three types of propagation of chaos estimatks OV HRVGEIdn ASSENIFIFI (NS AND MAIN RESULTS

Assume additionally that R? x Py(RY) > (x,u) ~ o(t,z,p) is uniformly Lipschitz continuous, with
modulus [o]r, and that M, (1) < oo for some ¢ > 4. Then, for all (t,u,z) € (0,7] x P2(R%) x R?, the
following first order expansion holds

5 5 N
("N = p)(u,0,t,2) = iE[%p(u,O,t,é‘l,Z)(ﬁl) ~ 5 (u,O,t,SHZ)(é“)}

N p
m
1 52 ~ ~ 62 ~
+ ﬁE[Wp(u,O,tfl,Z)(&f) - Wp(uaoutaglvz)(guéa)}

I 1
+ —/ E[Asp(us, s,t,z)]ds + —=Rn(u,0,¢, 2) (3.33)
N J, N

where 5 is an R%valued random variable independent of (£%);<;<n with law p and A is the differential
operator on Py(RY) acting on smooth function ¢ : P(R?) — R

Aol = 5 [ trace(0200n)(v,v)a(s, v, ) (o)

with the following estimate on the remainder term: for any ¢ : R* — R with at most quadratic growth and
any 8 € [0,7)

5%2 a?\,ﬂ

< KTt

L IRy 0.1, 2) s < 7§ Sy N

where T — K+ := K(T,(HR ), (HE), [0]1, g, My(n)) is a positive non-decreasing function, o], standing
for the uniform Lipschitz modulus of the map o(t, .,.), and where e is defined by

N2 if 4 < 4,
en =< N Y2log(1+ N)ifd =4, (3.34)
N=2/dif g > 4.

Inspired by the previous result as well as Remark 5.110 in [CD18], we now provide a kind of weak
propagation of chaos estimate as well as an error estimate for the difference between the semigroup generated
by the system of particles (L2) and the semigroup associated to its mean-field limit both living on Py (R?).
Below, for all ¢ > 0, we denote by u; the law of the solution X; of (LI)).

Theorem 3.6. Assume that (HE) and (HR,,) hold. For a € (0,1], let €% (P2(R%)) be the class of
continuous functions ¢ : P(R%) — R that admit two continuous linear functional derivatives on Py(R%) (see
Definition 5.43 in section 5.4.1 of [CD18§]) and satisfying the following regularity and growth assumptions:
there exist C' > 0 such that for any m € P(R%), any x, 2’ € R? and any bounded set D C R?

3¢

e e 5 ) - S m(e)| < €1+ M), (3.35)
! N —« 62¢ ! 52¢ i
S G ) wa!) - S )] € L+ lel 4 Mam)), (330
and 5 52
0 ) ()| + [ -G (), )] < €1+l + o/ + Ma(m) (3.37)

where we recall that Ma(m) = ([ga [z[*m(dz))Y/2.
Then, there exists a positive constant K+ := K (T, (HR,), (HE), o, Ma(p)), T — K(T,(HR. ), (HE), o, M2(u))
being non-decreasing such that for all ¢ € €2%(P2(R%)) it holds

.
[Elp(ur)] — dlur)] < Tlf—,%% (3.38)
B (l60e) — o(ur)l] = K { Bl w2 4 1 b (3.9
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Remark 3.7. e The linear growth assumption with respect to the space variable and second order moment
of the probability measure variable m appearing in the definition of the space €>(P2(R%)) is tailor-
made to ensure the linear growth of the solution (as well as of its first and second order derivatives)
of the corresponding backward Kolmogorov PDE stated in the strip [0,7] x P2(R%) with terminal
condition ¢. This together with the fact that the initial distribution satisfies Ma(p) < oo play a
central role in the proof of [B39). Larger spaces of test function could be considered under stronger
integrability assumptions on the initial distribution u.

e Note that when a = 1, it holds

{6:Pa(RY) = R, §(u) = /R p(@)p(dz), pis 1-Lipschitz} C €24 (Py(R"))

so that, in particular, (3:38) implies the convergence of the probability measure E[uY] toward ur with
respect to the first order Wasserstein distance by the Kantorovitch-Rubinstein duality theorem.

o From the proof of (B3], it will be apparent that one could also obtain a first order expansion at the
level of the semigroup, that is, an ad-hoc version of [3:33)). However, we refrain from going further in
this direction here.

o Let us finally observe that since Ma(u) < oo, one has limy o E[Wa(ud', £)?] = 0 and that a non-
asymptotic estimate which quantifies the rate of convergence in this limit is available under the as-
sumption M,(p) < oo for some ¢ > 4, see e.g. Theorem 1 of [FG15] and Theorem 5.8 of [CD1g].
Indeed, if this stronger integrability condition on p is satisfied, then there exists a positive constant
C := C(d,q, My(u)) such that for all N > 2, E[Wa (', u)?] < Cey, where ey is defined by (3.34).

Our last objective is to prove that the system of particles (LZ) converges in the strong sense to the
solution of the McKean-Vlasov SDE (L)) by extending the classical result of propagation of chaos on the
trajectories of the particles to our framework. As in the standard case, we shall quantify the convergence
rate of propagation of chaos through a coupling argument with an auxiliary system of particles as in [Szn91].

Under the additional assumption that R? x Po(RY) > (z, u) = o (t, x, u1) is Lipschitz continuous uniformly
in time, from [Ver8(Q], strong uniqueness holds for the system of particles (L2) and from Corollary 3.5 in
ICARF18] the same conclusion holds for its mean-field limit (II). Hence, strong well-posedness for both
SDEs follows from the Yamada-Watanabe theorem.

In the above framework, we thus choose a probability space (2, F,P) as well as N independent ¢-Brownian
motion (W%);<;<n on it. We also assume that the probability space carries the i.i.d. sequence of R%-valued
and JFp-measurable random variables (£%)1<;<y with common law u satisfying Ma(p) < oo.

For any i € {1,---,N}, we then introduce the process X’ = (X{)o<t<r given by the unique strong
solution to the McKean-Vlasov SDE (LI]) but with the input (£, W?);<;<n instead of (&, W)

t t
Xi=¢ 4 [ b XL LGNS+ [ oo XLIXDAW, i =L . (3.40)
0 0

_ By weak uniqueness for the SDE (T, the two processes X' and X have the same law, in particular
[X]] = [X¢] = p, for any t € [0,T] and for any i € {1,---, N}. Our last result quantifies the propagation of
chaos at level of the trajectories. Its proof is postponed to Section

Theorem 3.8. Assume that (HE) and (HR, ) hold and that M,(u¢) < +oo, for some ¢ > 4. Assume
that for any ¢ € [0, 7], the map RY x Py(R?) > (z, i) ~— o (¢, x, 1) is Lipschitz continuous, uniformly in time.
Then, there exists a positive constant K+ := K (T, (HR..), (HE), o], M(u)) such that

sup E[Wy(ue, ¥ )]+ max  sup E[|X§ - Xﬂﬂ <KTeyn (3.41)
0<t<T i=1,....N g<¢<T
and -
E[ sup Wa(us, pl¥)?] + max E[ sup | X, — X,fﬂ < K"\en (3.42)
0<t<T i=1,...N  Lo<¢<T

where we recall that ey is defined by (8:34).
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Remark 3.9. The Zvonkin’s transform applied in our framework shows that the rate of convergence provided
in [342) is actually ruled by the quantity E[supg<s<p W§(ue, if" )] where o = + Ei\il dx; which is in
turn known to be of order /ey, see e.g. Briand et al. [BCCHI19]. This last estimate could be improved
under stronger integrability assumption on the initial distribution p. We also mention the fact that one
could achieve a convergence rate of order ey under the additional assumption that the map pu +— b(¢, x, u)
is Lipschitz continuous uniformly with respect to the variables ¢ and = but we do not engage into further
reflections in this direction.

4. The backward Kolmogorov equation

This section is dedicated to the proofs of Theorem B3] and Proposition Bl Hence, we assume that (HE)
and (HR,) are in force in subsection 1] and that (HE) and (HR) are in force in subsection 2]

4.1. Proof of Theorem[3.3
The proof is divided into two steps.

Step 1: Existence of a fundamental solution.
We fix T > 0 and (¢,2) € (0,7] x R%. From the identity (3.2) and Theorem 3.1} we already know that the

map (s,p) — p(p, s,t,2) is in CH2([0,¢) x Po(RY)) with derivatives Osp(, 5,1, 2) = [ga Osp(p, s,t, 2, 2) p(dz)
and

53[%]9(/%37@2)](“) :a;-i_np(u,s,t,’l}?Z)-i-/Rd 53[%]9(%37@%2)](“) /J,(dl'), n e {071} (41)

We now prove that it satisfies (3.28]).
From the Markov property satisfied by the SDE (L)), stemming from the well-posedness of the related
martingale problem, see Theorem 3.4 in [CdRF18], the following relation is satisfied for all 0 < h < s

p(u,s - h,t,Z) :p([X§7h7§]7satuz)'

From the relation [@I]) and the estimates [B.I3]), we deduce that the condition ([ZT) of the chain rule
formula of Proposition 2] (with respect to the measure variable only) is satisfied so that

p([Xsihﬁg]a 8,8, Z) = p(,u, s, t, Z) + / er([Xﬁih’g], s, 1, Z) dr
s—h
which in turn yields

1 S
(s~ ot 2) = pls. e ) = ¢ [ LX) st
s—h

= =

Letting h | 0, from the boundedness and the continuity of the coefficients as well as the continuity of the
maps (u,v) — 0up(p, s,t,2)(v), 0y [0up(H, s, t, 2)](v) and the differentiability of [0,t) 3 s — p(u, s, t, z, 2), we
get that (s, u) — p(p, s,t, z) satisfies (B28).

We now prove that (3:29) is satisfied locally uniformly, that is, uniformly on compact sets K C Po(R%).
From (B3], one gets

Pl s,t, @, 2) = P, s,t,2,2) + R, s,t,2,2), R, s,t,x,2) =Y (HHW)(p,s,t,7,2) (4.2)
E>1

and ([B7) implies that the infinite series defining R(u, s,t, x, z) converges and that the following estimate is
satisfied
|R(,U,,S,t,I,Z)| SK(t—S)ig(C(t—S),Z—LB) (43)
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for some positive constant K := K(T,b,a,\,n). From the mean-value theorem, the uniform n-Holder
continuity of  — a(t,z,m) and the space-time inequality (L3]), one has

|(ﬁz —[/)\SE)(ILL,S,t,I,Z” < K|Z - x|"g(c(t - S),Z - :E) < K(t_ S)%g(c(t - S)’Z B I) (44)

Let f be a real-valued continuous function defined on R? with at most quadratic growth. The key relation
(B2) together with the fact that [y, p*(u, s,t,z, 2) dz = 1 yield

f@)p(,s,t,z)dz— | f(z) p(dx) :/ [f(2) = f(@)] P* (1, s, 1, 2, 2) dzp(dex)
Rd Rd (
+/ f(2) 7 (w, s, t 2, 2) — p*(u, s, t, 2, 2)] dzu(dx)
(R)2
2)R(p, s, t,x, z) dzu(dx).
[ TR, 2 2) dep)

Thanks to (@3], @) and using the fact that f has at most quadratic growth, for any compact set
K € Pa(RY), it holds

sup| f(z)[ﬁz(u7 S, ta xz, Z) - ﬁm(uv S, ta xz, Z)] dZ‘U,(dCC)|
pek J(Rd4)2
bsup| [ JEIR s, t0.2) dopldn)| < Kt = 8)% (14 sup Ma)
pek J(R4)2 HEK

The uniform continuity of the map [0,¢] x K > (s,u) — f(Rd)z[f(z) — f(@)]p* (i, 8, t,z, 2) dzp(dz) =
2|2
f(Rd)Q[f(:E + E;/fz) - f(x)]e_%(%r)_% dzu(dz), where Ei)/tz is the unique principal square root of the

positive-semidefinite matrix fst a(r,z,[X$¢]) dr, implies that {[O, t]>s— f(Rd)2 [f(z) = f(@)]P* (1, 8, t, 2, 2) dzp(dx), u € IC}
is equicontinuous and the quadratic growth of f implies its boundedness. We thus deduce

Combining the previous results, we deduce that ([3.29) is satisfied locally uniformly on Py(R%). We thus
conclude that [0,t) x Po(RY) 3 (s, u) = p(u, 8,t, 2) is a fundamental solution of 95+ L = 0 in [0, T] x P2(R?).

Step 2: Uniqueness

In order to get the uniqueness result, let us consider any solution (s,u) — q(u,s,t,2) to the back-
ward Kolmogorov equation ([3:28) satisfying ([27) on any interval [0,¢'], with ¢’ < ¢, and [B29) uniformly
in 4 € K, K being a compact set of P2(R?). We apply the chain rule formula of Proposition 1] to
{q([X2*],7,t,2), s <7 <t} and use the fact that (95 + Ls)q(u, s,t,2z) = 0, for any (s, u) € [0,t) x P2(R%)
to get that for any r € [s,t)

a([X7¢],m,t,2) = g, 5.t 2). (4.5)

We now aim to pass to the limit as r 1 ¢ in the previous relation. To do this, we first remark that
from B3), 32), the Gaussian upper-bound B8] and the continuity of (s,t] > r — p(u,s,r, z), one has
limyy [ f(2) P(1t, 5,7, 2) dz = [pa f(2) p(1, 5, L, 2) dz for any real-valued measurable function f with at most

quadratic growth so that lim,q Wa([X5¢],[X;%]) = 0. Hence using the local uniform convergence in p of
r = Joa f(2) q(u, 7, t, 2) dz towards [5. f(2) p(dx) as r 1 ¢ and (@5), we obtain

F@alp, s t,2)dz =lim [ f(2) (X%, mt,2)dz = [ f(2)[X7€)(dz) = [ f(2)p(p,s.t,2)dz.
Rd 1Tt Rd R4 Rd

for any continuous function f with at most quadratic growth. From the continuity of the maps ¢(y, s,t,.)
and p(u, s,t,.), we deduce that q(u, s,t,2) = p(y, s, t, z) which completes the proof of Theorem
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4.2. Proof of Proposition [31]

The proof of Proposition B relies on similar arguments as those employed to prove Theorem 3.6 in
ICARF18]. To be more specific, our strategy is based on an approximation argument of the transition
density p(u, s, t, x, z) by a Picard iteration scheme and sharp uniform estimates on its derivatives from which
we can extract a uniformly convergent subsequence by using Arzela-Ascoli’s theorem.

Step 1: Construction of an approximation sequence and related estimates

For a given initial condition (s, ) € Ry x P2(R9) and a probability measure v € Pa2(RY), v # p, we
let PO = (PO)(#));>, be the probability measure on C([s,o0),R%), endowed with its canonical filtration,
satisfying P(O)(t) = v, t > s. Let us consider the following recursive sequence of probability measures
{]P’(m); m > O}, with time marginals (P(™) (t))t>s, where, P(™) being given, P("*1 is the unique solution to
the following martingale problem

(i) Pt (y(r) € T;0 < r < 5) = u(T), for all T € B(RY).
(ii) For all f € CZ(R?),

d

t d
£ = £ = [ 4 Db B0 + D Jais (oo B 0)GE, ) dr

s ij=1

is a continuous square-integrable martingale under P("+1),

Note that, under the considered assumptions, the well-posedness of the above standard martingale prob-
lem follows from classical results, see e.g. [SV79Y]. In particular, there exists a unique weak solution to the
SDE with dynamics

t t
Xf’5’<m+1>:g+/ b(r,Xﬁ*f*(m“),[Xf*f*(m)])dr+/ o (r, X236 m+D (X8 q . (4.6)

S S
We will also work with the decoupled stochastic flow or characterics given by the unique weak solution
to the SDE with dynamics

t t
Xt gy / b, XD, (X6 )y 4 / o, Xy (D (XS, (47)

We point out that the notation X,;"" M+ akes sense since by weak uniqueness of solution to the
SDE (@), the law [X;*™] only depends on the initial condition ¢ through its law .
From [Fri64], for any positive integer m, the two random variables X, (M) and X (™) admit a density

respectively denoted by p,, (i, 8, t, 2) and p,,(, s,t, x, z). Moreover, the following relation is satisfied for any
z € R?

pnlit5.t.9) = [ (5. t,2) ) (18)
where
D (p, 8,8,y 2) = Z(ﬁm @ HE) (u, s, t, 2, 2), (4.9)
k>0
with

ﬁm(ﬂu S,’f’,t,.’l], Z) = ﬁfn(ﬂ’? S,T,t,$7z),

t
BY (1, s,m, 1,2, 2) = g ( R x) , (4.10)

d ¢
Hon (8,7, t,2,2) = {— Zbi(r,x, (X326 m=1]) [} (/ a(r', z, [Xf;g’(mfl)])dr’, z— x)
i=1 r

—_

+3 (am‘(ﬁ 2, X240 I]) — agi(r, 2, [Xf’g’(mfl)])) (4.11)

caty? ([ ot 2 a2 ) L s, )
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and ’Hgfﬂ)(u, s,t,w,2) = (Hy(jf) QHm) (1, s,t,x,2), ) = I,, with the convention that [th,g,(o)] =PO(t) =
v, t > 0. In what follows, we will often make use of the following estimates which are reminiscent of ([B.7)),
B3) and B9): there exist positive constant ¢ := ¢(A), C := C(T, b, a, A, n), such that for any positive integer
k, any (u,2,2) € P2(R?) x (RY)? any 0 < s <t < T and any r € [s,t), it holds

c* n
MY st 2)| < Sy [T B(43:3) atett =),z =) (4.12)
(=1
and
) T ({—=1)n n
[P @ HE) (1, 5,t, , 2)| < CF(t — 5)*2 HB (1+ 5 ,§> gle(t —s),z—x) (4.13)
(=1

where we recall that B(.,.) stands for the Beta function. Consequently, the series (£9) converge absolutely
and uniformly for (i1, z,2) € P2(R?) x (R%)? and satisfies: for any positive integer m, any 0 < s <t < T,
any (p, 7, 2) € P2(R?) x (R%)? and any n € {0,1,2}

|07 D (1, 8, ¢, 2, 2)| < C(t — 8)7% glc(t—s),z — x), (4.14)
and for all (z,2') € (R%)? all B € [0,1]if n =0, 1 and all 3 € [0,n) if n = 2

|agpm(/1'7 s, 1, Z) - a:pm(ﬂv 5,1 LL'/, Z)'

o - 2 ,
m{g(( s),z—x) +g(clt —s),z—a')}, (4.15)
for some positive constants C' := C(T,b,a, A\, n), Cg := C(T,b,a, A\, n, 5). We refer again to [Fri64] for a proof
of the above estimate.

Similarly to [BI0), we denote by ®,,,(u, s,7,t, x1, x2) the unique solution to the following Volterra integral
equation

< Cj

(I)m(ua 8,7, 1,21, ,’EQ) = Hm(ua 8,1, 1,21, x?) + (Hm ® (I)m)(ﬂa 8,1, 1,21, ,’EQ) (416)
which is given by the (uniform) convergent series
(I)m(/,L, s, T, ta X1, 1'2) = Z HSy]:)(Mu S, T, ta X1, 1'2) (417)
k>1

and (L9) now writes

t
Dbty 6,0, 2) = P (1 5, 6,2, 2) + / / B (41,5, 2, y) ® (1, 5,1,y 2) dy dir- (4.18)
s Rd

Finally, from Theorem 7, Chapter 1 in [Fri64], for any positive integer m, the map ®,,(u,s,r,t,x, 2)
satisfies the following estimates: for any 8 € [0, n), there exist positive constants Cs := C(T, a,b,n, A, 8), C :=
C(T,a,b,n,\), c:= c(\), which do not depend on m, such that for any (i, x,y, 2) € Po(R?) x (R?)? and any
0<s<r<t<T

C
|(I>m(,u,s,r,t,a:,z)| < mg(C(t—T),Z—.I) (419)
and
|@m(u,s,r,t,x,z) - (I)m(ﬂus r,t Y, % )l
< BW{Q( c(t—r),z—x)+glc(t—r),z—y)}. (4.20)

We now recall from [CdRF1&] some important notations, properties and estimates. For some positive
integer m, n € {0,1}, 8 €[0,14+n)ifn=00r € [0,n)if n=1,C >0 and t € [0,T], we define

m

n,8 (k= 1)ﬂki1 nl—-n+n-0 . n
€8 (C,t) Z :[[B 3 Ti-15 ). (4.21)

k=1 =1

Let T > 0. For any fixed (¢,2) € (0,7] x R? and any positive integer m, it holds:
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o The mapping [0,t) x R? x Po(RY) > (5,2, 1) = pm (1, 5,1, 2, 2) is in CH22([0,1) x RY x Py(R?)).

o There exist positive constants C' := C(T, (HR), (HE)), Cg := C(T, (HR), (HE), ), ¢ := ¢()), which
do not depend on m, such that for any (u, s,z,z’, z,v,v") € P2(R?) x [0,t) x (R?)® and any n € {0,1}

&0 (Ot —
0 Bhpn ot 2,0 < T et =52 =) (4.22)

1,0 _
stz 2)| < T gy 2, (4.23)

|33[8#pm(u, S, tv Z, Z)](’U) - a:j[&“l)m(uv 5, ta Ila Z)](U)|
—_ '8

<G ot =) (el =902 =) +glelt =9, =),
(4.24)

where 8 € [0,1] for n =0 and § € [0,7) for n =1,

|8U[8#pm(,u7 Svta z, Z)](U) - 80[8#1)771(#7 Svta z, Z)](U/)|
—_ |8
<6 (Cput — )0

=t CUEBEER RN

where 8 € [0, 7).

o There exist three positive constants CZ{ = C(T,(HRy),(HE), 8), Cs := C(T,(HR), (HE), 8), ¢ :=
c(\), which do not depend on m, such that for any (u, u',s,z,2z,v) € (P2(R%))? x [0,t) x (R?)? and
any (51752) € [Ovt)2

Wa(u, 1')?
g Y

c(t—s),z—x), 4.26
e GRS ED

|a;lpm(ﬂu S,t,.’L’,Z) - a;lpm(ﬂlu S,t,.’IJ,Z)]l S CIB

where 8 € [0,1] for n € {0, 1} and S € [0,7) for n =2,

|8;l[a#pm(,uﬂ S, tv x, Z)](’U) - a;l[aﬂpm(,u/v S, ta z, Z)](U)|
W (s, p')”

< %ﬁ’ﬁ(CE,t—s)W gle(t —s), 2 — ), (4.27)
where 8 € [0,1] for n =0 and 8 € [0,7) for n =1,
|agpm(%51,tv%z) - 8;me([$752,t,$,2)|
|s1 — s9/” |51 — 52|”
< Oﬁ{Wg(c(t—Sﬂ,Z—I)ﬂLmg(c(t—sz)vz—@ : (4.28)

where 8 € [0,1] for n =0, 8 €[0,(1+n)/2) for n =1 and S € [0,7/2) for n =2 and

|amaupm(ﬂa S1, tu z, Z)](’U) - 8’?[aﬂpm(u7 52, t7 €, Z)](U)|

_ |8 _ |8

s1 — Sa| |s1 — 2|

<EMB(CF t—s1Vs _ sz s = ct=s1),z—2)+ —— 5.9t —s2),z—x) ¢,
— m ( B 1 2) (t_81)1+72z n+ﬁg(( 1) ) (t_82)1+; n+ﬁg(( 2) )

(4.29)

where € [0,(1+7)/2)if n=0and g €[0,1/2) if n = 1.
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With the above notations and properties at hand, we can now state the following key proposition whose

proof is postponed to

Proposition 4.1. Let 7 > 0. Assume that (HE) and (HR,) hold. Then, for any fixed (¢,2) € (0,7] x R?
and any positive integer m, the following properties hold:

o The mapping [0,t) x R? x Po(R?) > (s, 2, 1) = pm (i, 5,t, 7, 2) is in C}’Q’Q([O,t) x RZ x Py(R?)).

o Forany (p, s,z,v) € Pa(R%)x[0,1) x (R?)?, the maps R? 3 &+ 0,pm (1, 8, t, 7, 2)(v) and Po(RY) 5 p —
OzDm (W, 8,1, x, z) are continuously differentiable, with derivatives 0;0,pm (i, s, t, z, 2)(v), 0,0zpm (i, 5, t, x, 2)(v)
being continuous in u, s, x, v and bounded with respect to u, x,v.
Moreover, for any 5 € [0,7), there exist positive constants C' := C(T, (HR), (HE)), C’g =C(T,(HR,), (HE), 5)
and ¢ := ¢()\) such that for any p, i’ € P2(RY), any s,s1,s2 € [0,¢) and any z, 2", v,v" € R?

|020upm (1, 8, t, z, 2) (V)] < ﬁ g(c(t —s),z —x), (4.30)
|az [8upm(ﬂa S, tv x, Z)(v)] - 81 [@tpm(l/a S, ta :E/, Z)(v/)” (431)
C+
< G s o =P e = el 5.2 =)+ g(et = 9, =40
and
|az [aﬂpm (:ua 51, ta xz, Z) (’U)] - 896 [aﬂpm (,uv 52, tv Zz, Z)(v)” (432)

B
|s1 — 2|2

B
corl Izl oy —g(c(t = s2),2 — @) p .
B{(t_51>1+‘*2” (e =502 =) 4 P glelt = s2)2 =

o Forany 3 € [0,7), there exist positive constants C* := C(T, (HR,), (HE)), C’g = C(T,(HR,), (HE), ),
c := c¢(\), such that for any (u, s, z,2',2) € P2(RY) x [0,t) x (R?)? and any v = (v,2), vi = (v1,v}),
vy = (v2,vh) in R? x R4

CLOCHt—s)

|8ﬁpm(,u, s, t,x, 2)(v)] < g(c(t —s),z —x), (4.33)

(t—s)"3

|3ﬁpm(u, Svta z, Z)(Vl) - 8Zp’m(:u7 Svta €z, Z)(V2)| (434)

_ B
SOt o) T gl = ). ),

_ )1+

|Bipm(u, s tyx,2)(v) — 8ipm(u, s, t, 2’ 2) (V)] (4.35)

x— a8
SO =9 T olelt =97 ) gl = =)}

o If additionally (HR4 ) is satisfied, then for any 8 € [0,7), there exist positive constants C’IZFJF =
C(T,(HR ), (HE), 8), ¢ := c(\) > 0 such that for any (u, i/’ s, z,2) € (P2(R%))? x [0,t) x (R%)?, any
v € R4 x R? and any sy, s2 in [0,1)?

Wa(u, 1')?

= spriz S ohE D)

(4.36)

|05 (1, 5,1, 2, 2) (V) = Dppm (W', 5,8, 2, 2) (V)] < €2 (Ot — 9)
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and

|aﬁpm(,u7 51, t,.I, Z)(V) - aﬁpm(lu‘v 52, t,.I, Z)(V)|

B B
S1 — 82|2 S1 — S9|2
(t| : )1<2|»|B77 g(C(t—Sl),Z—I)+ (t| - )1i|ﬁn g(C(t—SQ),Z—.I)} .
— 81 2 — S92 2
(4.37)

S %71{5(0;+,t — 81 V 82) {

Step 2: Extraction of a convergent subsequence

Our next step now is to extract from the sequences {IL2 3E (€, stz 2),m > O} (the lifting of
= Py 8yt 2, 2)), {[O,t) x R% x Po(RY) x R 5 (s, 2, 1, v) > Opupm (8, t, 2, 2) (v), m > O},

{[0,£) x RY x Py(R?) x (RY)? 5 (s,2,1,v) = O2pm(, s,t,2,2)(v),m > 0} the corresponding subsequences
which converge locally uniformly using the Arzela-Ascoli theorem.

Since the coefficients b;, a; ; are bounded and the initial condition p € Pa (Rd), the sequence (]P’(m))mzo
constructed in Step 1 is tight. Relabelling the indices if necessary, we may assert that (]P)(m))mzo converges
weakly to a probability measure P>°. From standard arguments that we omit (passing to the limit in the
characterisation of the martingale problem solved by P(")), we deduce that P> is the probability measure P
induced by the unique weak solution to the McKean-Vlasov SDE (IT)). As a consequence, every convergent
subsequence converges to the same limit P and so does the original sequence (]P’(m))mzl.

By Lebesgue’s dominated convergence theorem, for any fixed ¢ > 0 and z € RY, using [@I3J), one
may pass to the limit as m 1 oo in the parametrix infinite series ([9) and thus deduce that the sequence
of functions {K 3 (s,x, u) = pm (i, 8,t,2,2), m > 1}, K being a compact set of [0,1) x R? x Py(R?), con-
verges to (s,z, ) — p(p,s,t,z,z) given by the infinite series (B3] for any fixed (s,x,u). Moreover, it
is clearly uniformly bounded and from (@22)), (£23) and @I4), it is equicontinuous. Relabelling the in-
dices if necessary, from the Arzela-Ascoli theorem, we may assert that it converges uniformly. Hence,
[0,1) x R? x Po(R?) > (s, 2, 1) — p(p, s,t,x, 2) is continuous.

For any u € P2(RY) and any positive integer m, the mapping (s, ) — pm (i, s,t,x,z) is in C%2([0,t) x
R?). Moreover, from the estimates ([@26), [@28) and @I5) (for n = 1,2), the sequence of functions
K> (s,2, 1) = Oupm(pt, s, t,2,2), 02pm (11, 5,1, 7, 2), K being again a compact set of [0,#) x R? x Py(R?), are
uniformly bounded and equicontinuous. Hence, from Arzela-Ascoli’s theorem, we may assert that (s,z) —
p(p, s,t,1,2) € C%2([0,t) x R?) and that the mappings [0,¢) x R? x Py(R?) 3 (5,2, 1) — Oup(, 5,t, 2, 2),
02p(u, s,t,x, z) are continuous.

Considering now the sequence {K 3 & — Dp, (€, s,t, 2, 2) = Oupm([€], s, t,x, 2) (), m > 1}, K being any
compact set of L2, from [@22) (with n = 0), we deduce that it is uniformly bounded. From (E22)) (with n = 1)
and ([@27) (with n = 0), it is equicontinuous. Relabelling the indices if necessary, from the Arzela-Ascoli
theorem, we may assert that it converges uniformly. We thus deduce that the map K 3 & — p(&, s, ¢, x, 2) is
continuously differentiable. As a consequence, P2(RY) > p — p(u, s,t,z, 2) is continuously L-differentiable.

From ({24), @27) and @29) (with n = 0) and (T22) (with n = 0 and n = 1), the sequence {K >
(8,2, 11, v) > Opupm (1, 8,t, @, 2)(v), m > 1}, K being a compact set of [0,£) x R? x Py(R?) x RY, is uniformly
bounded and equicontinuous so that the map [0,¢) x R? x Po(R?) x R 3 (s, 2, 1, v) = 9up(p, s,t, 2, 2)(v) is
continuous.

From [22) (with n = 1) and 25, the sequence {R? D B(0, R) 3 v + 9y [0upm (1, s, t, @, 2)](v),m > 1},
is bounded and equicontinuous so that we deduce that the map R% 3 v + 9,p(u, s,t, x, 2)(v) is continuously
differentiable. Also, the continuity of the map [0,%) x R? x Po(R?) x RY 3 (s, 2, p, v) = 0, [0,p(u, 8, ¢, 7, 2)] (v)
can be deduced from the uniform convergence of the sequence of continuous mappings {IC > (s,x, p,v) —
00 [0upm (1, s, t, 2, 2)](v),m > 1}, K being a compact set of [0,¢) x R? x P2(R?) x R?, along a subsequence,
derived by combining the estimates (£.22)), ([@24), ([£25]), (E27) and [{29) for n = 1 with the Arzela-Ascoli
theorem.

For each fixed v € R? we now consider the following sequence of Fréchet derivatives of the map
L2, AP) 3 & = 0upm([€],s,t,2,2)(v) given by {K 3 &= 02pm([€], s,t, 2, 2)(v)(€), m > 1}, K being a
compact set of L2(Q, A,P). From [@33), (E34) and (38, this sequence is uniformly bounded and equicon-
tinuous. Relabelling the indices if necessary, from the Arzela-Ascoli theorem, we may assert that it converges
uniformly. Hence, for each fixed v € R, Py(RY) 5 p +— 9,p(u, s,t,x,2)(v) is continuously L-differentiable
and we denote its derivative d2p(u, s,t, x, 2)(v)(v) by 2p(u, s,t, @, 2)(v,v").
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5 PROPAGATION OF CHAOS

From the estimates ({.24), (£27) and ([@29) (the three for n = 0) and ([#22) on the one hand and [@33)),

(@35), ([A30), [@34) and (E37) on the other hand, both sequences K 3 (s, z, 1, v) — Oupm (i, s,t,z, 2)(v)
and K' 3 (s,z, u, v) — 8ﬁpm(u, s,t,x,2)(v), m > 1, K and K’ being compact sets of [0, %) x R? x Py (R?) x R?
and [0,1) x R? x Py(R?) x (R?)2, are uniformly bounded and equicontinuous so that, from the Arzela-Ascoli
theorem, the map [0,t) x R% x Pa(R?) x RY 3 (5,2, i, v) = 0,up(p, s, t, 2, 2)(v), [0,1) x RY x Po(R?) x (RY)? 5
(s, pu, v) — 8ﬁp(,u, s,t,x,z)(v) are continuous.

The estimates [B.23), 24)) and [B25) then follow by passing to the limit in the corresponding upper-
bounds proved in the first step.

Step 3: C}’2’2([O,t) x RY x Pa(R?)) regularity and related estimates.

Let us now prove that (s, z, u) — p(u, s,t,z, z) is in C}’2’2([0, t) x R% x Py(RY)). We here follow the same
lines of reasonings as those employed in [CdRF18§]. From the Markov property satisfied by the SDE (L),
stemming from the well-posedness of the related martingale problem, the following relation is satisfied for

allh >0
p(p, s —hyt,x,2) = E[p([Xss_h’g], s, t,Xss_h’I’“, 2)].

Combining estimates (BI3) and B8) (for n = 1) with the chain rule formula of Proposition [Z1] (with
respect to the space and measure variables only) we obtain

E[p([X3~"%],s,t, X5 ™%#, 2)] = p(u, s,t,2,2) + E [/ Lop([X7 ™8] s, b, X mH, 2) dr}
s—h

where the operator £, is given by (L4).
Hence, one has

1 S
(p(,uv s — hv ta €z, Z) - p(,uv S, ta z, Z)) = EE |:/ Erp([Xiihﬁg]a S, tv erfh,m,,u, Z) d’l’:|
s—h

==

so that, letting h | 0, from the differentiability of [0,¢) 3 s — p(u, s,t, x, ), the boundedness and continuity of
the coefficients as well as the continuity of the maps (u, z,v) — p(u, s, t,z, 2), OLT"p(u, s,t,x, z), O"[Oup(u, s, t,x, 2)](v),
for n = 0,1, we deduce

Osplpty 5,2, 2) = —Lop(, s, t,7,2)  on [0,£) x R x Py(RY)

so that [0,1) x R? x Pa(R?) 3 (s,z, 1) = 9sp(p, s,t,x, 2) is continuous.

5. Propagation of chaos

This section is devoted to the proof of Theorems[B.5] and 3.8 As already mentioned, our propagation
of chaos results crucially rely on the regularity properties provided by Theorems B.1] and Proposition
51

5.1. Proof of Theorem[3.

The strategy consists in testing the fundamental solution p(u, s,t, z) to the backward Kolmogorov PDE
B28)) stated on the Wasserstein space as an approximate solution to the one-dimensional marginal density
of the N-dimensional particle systems. For any fixed (¢, 2) € (0,7T] x R%, the natural candidate for being an
approximate solution is

N
. 1
p(uév,s,t,z), with Mév = NZI6X;
i=

where {(X f)te[O)T], 1<i<N } are given by the unique weak solution to the system of particles with dynamics
given by ([L2)). We start with the following lemma concerning the control of the initial error induced by the
difference of the fundamental solution taken along the initial empirical measure uf’ and pu.
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5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

Lemma 5.1. Under (HE) and (HR.,), for any (¢, i1, z) € (0,T] x P2(R?) x R? and any positive integer N,
the following error bound is satisfied

I
i 0.0.2) = ol 0,0, < S o [ otz = alalutan) + 2y [ gtenz - omtan)} )
t7z JRd t*72 JRa
for some positive constants Kt := K(T,(HR,), HE)), ¢ := ¢()\), T — K(T,(HR,), (HE)) being non-
decreasing. _
Assume additionally that (HR.; ;) holds. Then, recalling that ¢ stands for an R?-valued random variable
independent of (£%)1<;<ny with law p, the following first order expansion holds

0 0 ~
E[p(uév, O’ t7 Z) - p(,uv Oa tv Z)] = %E[%p(luﬂ 07 ta fla Z)(é.l) - 6_p(luﬂ 07 ta 517 Z)(g):|
52 52 ~
+ LE[ (1, 0,4,62)(E8) - ~op(n, 0,66, 2)EE)] (52)
+ NR2 (1,0,t,2)
where for any 8 € [0,7)

R (n.0.1.2)| < 55 (g [ater, = - €) (Wl + 168D + 7 ) | (5.3

+ g Blotet, = = €W, 107 (14 16%)])

for some positive constants K/;FJF = K(T,(HR4),(HE),}), ¢c:=c(\), T — K(T,(HR ), (HE), 8) being
non-decreasing.

Proof. Step 1: proof of the error bound ([B&.1).

We consider the sequence {[0,¢) x P2(R?) 3 (s, 1) = pm (1, s,t,2), m > 1} of C}’2([O,t) x Pa(R%)) maps con-
structed in Section and recall that p,,(u,0,¢,2) converges to p(u,0,t,2) for any fixed u, t, z. Hence,
using the relation ([L]), the estimate (LI4) together with the dominated convergence theorem, we get
im0 E[pm (187, 0,t, 2) — pm (12,0, ¢, 2)] = E[p(ud,0,t,2) — p(u,0,t, 2)]. It thus suffices to prove the error
bound (&) for the difference E[p, (1, 0,t,2) — pm (1, 0,t, 2)].

By exchangeability in law of the random variables (£');<;<n and the mean-value theorem
E[p’m(:uévv 07 ta Z) - pm(,ufv 07 tv Z)]
_E[pm IU’O 70 t 5 ) pm(u707t7§172)]

:/ /R 5 pm(g™", 0,4,65,2) () (g — 1) (dy) | ds

5 N
:N/o E %pm(uél’N,O,t,ﬁl,z)(é) F —pm (1" O,t,fl,z)(@] M (5.4)

N-1 ! g A1,N 1 2 g A, N 1 i
T 0 E[%pm(:uo 7Oat7§ ,Z)(é. )_ %pm(:u() 7Oat7§ 7Z)(€):|dA1

where we introduced the notation MSI’N = A pd + (1 — A1) and recall that 5 is a random variable inde-
pendent of the sequence (£*)1<;<n with law u. We now introduce the measure ﬁa\l’N =) + (1= )p
with 2l == ud’ + %(62— Jd¢2) and notice that

E[ o pn(i™,0,0,, 2)(€)] = E[ (i ™,0,1.6%, 2)@)]

so that, again by the mean-value theorem

0 ) ~
E[5mpn 15", 0,4,6,2)(6) = 5-pun (15, 0,4,6",2)(€)]
_ ﬁ 1E{ & (~>\1 A2, N 0.t €1 5 ~A1,A2,N 0.1. &1 ) d\
- N 6 me H » 5€ )(5 5) gpm(:u » Y 7§ 72)(€7§ ):| 2

28



5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

wi e notation E ot 4 (1= Ae ’ uggin e previous identity into , we derive
ith the notation fig" " := A" + (1 — A2)py ™. Plugging the p identity int d

E[pm ,uO ,O,t,Z) pm(u,O,t,z)]

5 ~
N/ 13N 0,4,1,2)(€Y) = Spm (N, 0,4,€1,2)(§)] dhs
el A E[ O TN 0,61 2)EE) — (Y 0,1,€1, 2)(E €)] dhad
N [0)1] 1 6 2pm 1% s Uy ) ) 6m2pm M s Uy ) ) 1 (2 )
5.5
= [ E[0mn 06,6200+ (1= 22)8) - (€ - ] andrg
(0,1]2
N-1 ~ A S
+( N2 )/[0 s )\1]E|:§ Pm(ﬂ())\ A 707t7§172)()\3§7A4§)'§

— €2 2o (7N, 0,161, 2) (Ma€ Aa&?) - €] dhrdrzdrds
which in turn by using (£22) and (@33) eventually yield

Kt 1 1
|E[pm(:uévvoatvz) pm(,uﬂovtaz)” < 1-n / g(ct,z—x)|a:|u(d:c) + 1—1 / g(CtaZ_I)/L(dz) .
N t= Rd t72 JRra

The proof of (B.1)) is now complete.

Step 2: proof of the first order expansion (B.2).

We here assume that (HR ;) holds. In a completely analogous manner, one obtains the identity (G.5])
for E[p(ud’,0,t,2) — p(u,0,t,2)]. We thus write

E[p(1', 0., Z) p(u,0,t,2)]

5 ~
-+ / o060, 2)(E) = —p(d ™, 0,1,€1,2) @) dha
52 ~A1,A2, s & AL, A2, ¢
Mt 7 o AﬂE[(S 5p(i N, 0,16, 2) (€ 8) — sp(ii N, 0,4,€1,2)(6,€%) | dhdda
1746 g =
= N}E[%p(:uvoatvglvz)(gl) - Tp(ﬂaovtaflaz)(g)}

2 2

+LE[55 (0,1, €5 ) EE) — (1, 0,1,€1, ) €8]

+ N,RQ (/1’7 07 t7 Z)

with

RY (1,0, %, 2) == /01 (E[%p(ug‘lw,O,t,{l,z)(ﬁl) - %p(u,o,t,fl,d(é)]
B[ 0,,6,2)(E) ~ - p(n0,1,6%,2)(@)] ) d
+/[01]2 (E[%p(ﬁélv&w,o,t,fl 2)(€,€) - 522p(u,0 gl,@@@}
B[ p 0., 2)E.€) - ozl 0., 2)E €] ) dhid

1 02 ade N L oE S O AN U\ g2
- N [071]2E|:WP(MO 707t7§ 72)(675) 5 Qp(/'LO 07t7§ 72)(§7€ ):|)\1 d)\ld)\2

=: Rév’l(,u, 0,t,2)+ Rév’Q(u, 0,t,2)+ Rév’g(,u, 0,t,2).
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5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

It thus remains to provide an estimate for the three terms of the remainder RY (u,0,t, z). In order to
deal with Rév’l(u, 0,t,2), we first write

6 6
%p( )\17 O 3 51 )(6 )_ % (M,O,t,§172)(§1)
1
= ‘/0 [aup(/iéh Oatuglu Z)()\le) - aup(ﬂa 07 taé-l? Z)()‘2§1) ! 51 d)\2

so that, from BI8) with n =0, 8 = 1 and noting that W2(ug™, u) = MW2(ud, 1), we get

5 5 Wa (g,
|5, 0,6,€",2)(€1) = 5—p(u. 0,1, 2)(€N)] < K+%g<ct,z - €hle'l

Similarly, we obtain

g A1, N

|5, p(Ho

Wa(udY ~
Dottt 1) et = - 1) ],

~ ) ~
0 3 51 )(5) - % (u,O,t,fl,z)(§)| < K+

Gathering the two previous estimates and using the fact that E is independent of u)’, we conclude

+

R 1,0,1,2)] < S B [glet, =~ Wl )1 + )]

From similar arguments, using ([3.24) and the fact that Ws (~A1,A2, p) < Wo(ud', i), for any 8 € [0,7)
it holds

52 O & = Kyt
B[ gmp i .06, €2)(E8) = (e, 0,6, 2)E D] | < i Elg(et = = €)Walud )]
and
62 ~A1,\2,N 1 2 62 1 ¢ 2 K23_+ 1 N 2
B[z ,0,6, € 2)(E 6 — goanln 0.6.61,2)(E )] | < TimrBlyten, 2~ €)Waud’, 1) 1]
so that

K++
RS (1,0,t,2)| < tlfﬁ% Elg(ct, z — £)Wa(ud', 1)° (1 + [€2])].

For the last term, from (323)), we directly get

+

LElglet, s — )]

K
N3
IRy (1,0, 2)] < A-IN

Gathering the previous estimates on Rév 1 Ré\w and Rév  concludes the proof of E2).

We now move to the proof of Theorem
Step 1: proof of the Gaussian upper-bound (B.3).

Under (HE) and (HR ), the map (s,u) — p(u, s,t,z) belongs to C1 2([0,1) x P2(RY)) so that, from
Proposition 2.2] we deduce that the empirical projection function defined by

N
[0,t) x (Rd)N 3 (s, (x1,- -+ ,aN)) — p(% 251“8,1572)
i=1
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5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

belongs to the space C12([0,t) x (R?)™). Hence, from standard Itd’s lemma

p(uiv,s,t,z) :p(M(J)vvovtvz) +/ (67“ J,—f,_)p(ui\[’r’t,z) dr
0

5 N
2 B st K. 0, X2 )
+ /OS N Ztraoe( (r, X2, )82p(ufqv,r,t,z)(Xﬁ,Xﬁ)) dr
—pwgihﬁﬁ+l/:%§:3MW%vrtZXX)((rXﬁuTMmﬂ) (5.6)

4% WZWM@&%WWﬂM@mXMW

where we used the fact that (95 + Z)p(u, s,t,2) = 0 for any (i, s) € P2(R?) x [0,1).
From the relation

Oup(p, 7, t, 2)(v) = Oup(p, 7y t, v, 2) + /Rd Oup(p,r,t, 2, 2)(v) p(de) (5.7)

and the estimates (3.8) and BI3)), we get |0,p(ul, r,t,2)(v)| < K := K(t—s, (HR), (HE)), for any r € [0, s],
so that the local martingale appearing in the right-hand side of (5.6]) is a true martingale. Taking expectation
in both sides of (&), we thus obtain

E[p(ul5.,2)]
S1
— E[p(uév, 0,t,2)] —|—/ ﬁE [‘cmce(a(r7 le 7 )621?(/17]"\]’ r,t, z)(Xﬁ,Xﬂ))} dr. (5.8)
0

Now, in order to handle the second term appearing in the right-hand side of the above identity, we first
use the relation

Op (b, 2)(0,0") = 0, [0up(p, 7y 8,0, 2)] (V) + D [Dup(pt, 7,8, 0", 2) ()] (5.9)
/ (b, @, 2) (0,0") p(de)

and the estimates (B21I)) and (3:23)), so that we get the following upper-bound
|05p(p, 8, 2) (0, 0"))]

KT {g(c(t—r),z—U)—i—g(c(t—r),z—v')—i—/Rd g(c(t—r),z—:v)u(d:v)} (5.10)

S —7
(t—r)t==

for some positive constants Kt := K(T,(HR,),(HE)) and ¢ := ¢(\). Hence, using the boundedness of
a as well as the previous estimate, we derive the following estimate for the integrand of the second term
appearing in the right-hand side of (G.8])

’E [trace( (r, X}, pd )82p(uiv,r,t,z)(XT1,XT1))H
_ KT o~
< m/ﬂwg(dt_”’z —y)p " (1,0, y) dy (5.11)

which, plugged into (B.8)), in turn yields

1 [® 1
E[p(ﬂs ,S,t, Z):| =~ K {E[p(,uo ,O,t,Z)] + N /O (t _ ’f‘)l %

/ gle(t —r),z —y)p"N (1,0,7,y) dy dr} :
Rd
(5.12)
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5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

In order to conclude the proof of the Gaussian upper-estimate ([B31]), it remains to pass to the limit as
s Tt in the previous inequality. We first note that by interchangeability in law

Blp(u 5.0, = B [ ol st 2 ()] = B[l 5.1 2)]
R

so that
Bl st 2) = [ st 2) 9V 0,5.) dx (513)
(RN
where we recall that we use the notations x = (z1,---,2y), dx = dxy---dzy, md = % Zi\il 0z, and

denoted by x ~ p” (11,0, 5,x) the density function of the N-tuple X, = (X!,--- X) given by the unique
weak solution to the particle system at time s starting at time 0 from the N-fold product measure . We
then make use again of the decomposition ([£.2) and the computations that appear shortly after, namely, we
write
p(mi\]u S,t,.’IIl,Z) = ﬁz(miv,s,t,;vl,z) + R(mi\]u S,t,.’IIl,Z)
with
n
RmY, s,t,21,2)| < C(t — )} glelt - 5), 2 — 21).
Denoting X = (2,72, - ,7n), & & two random variables with [¢] = mL, [¢/] = mg and using the

estimate (A.45) of Lemma A.2 (with 8 =) in [CARF1§], we get
iy (r, 2, [X24]) = ai s (r, 2, X))
= lim fa; ;(r, 2, [X2E0M]) — ai s (r, 2, (X2 0] < CWa(my, mE)" < Clz — 24|
which in turn by recalling (84) and using the mean-value theorem and the space-time inequality (LH) yield
[p*(my, s,t, @1, 2) —]32(777/5{, s, w1, 2)| <Ot —8)3g(e(t —s), 2 — x1).

Hence, plugging the previous estimates into (513 we deduce

Elp(u, s.t,2)] = / pmY. s, 1,21, 2)p™ (1,0, 5, %) dx
(RN

= [ T st (a0 ) dx - Ot = ) [ glet,z - oulde).
(R4)

In order to pass to the limit as s 1 ¢ in the previous identity, we finally perform the change of variable 1 =
Ei{tzyl + z, where E;/tz is the unique principal square root of the positive definite matrix fst a(r, z, [er,g']) dr,
recalling that [¢'] = mg , in the integral appearing in the right-hand side of the previous equality and then

let s 1 t, by dominated convergence

lim p(miv,S,t,xl,z)pN(u,O,s,x) dx = lim ]/?\Z(’I”I’I/Jy,&t,xhz)pjv(u,o,S,X)dX:pl’N(M,07t,Z).
sTt (RE)N st (RN x

Coming back to (5I2)), passing to the limit as s 1 ¢ in (B.I3) and using the previous identity, we thus
obtain

PN (1, 0,1, 2) = 1ig1E[p(uf, s,t, 2)}
sTt

< K*{E[p(uév 0,,2) (5.14)

1 [t 1 1,N
v m/ﬂwg““‘”’z‘y)p (“’O’T’y)dy‘”}'

<K* { | otet.z = ()

1/t 1 1,N
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5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

where we also used the Gaussian upper-bound (B:8) with n = 0 for the last inequality.

Observe now that the space-time convolution kernel R% x [0,%) 3 (y,r) — (t — ) "2 g(c(t — 7), 2 — y)
leads to an integrable time singularity so that the previous inequality can be iterated and by an induction
argument that we omit, we conclude

PV (n002) < K [ glet s~ a)u(da). (5.15)
]Rd

The proof of the Gaussian upper-estimate ([3.31]) is thus complete.
Step 2: proof of the error bound (B.32).

We now come back to the identity (58], substract p(u, 0,t, z) from its both sides, then use (5.11]) together
with (EI3) so that

B o0 1.2) ~ p(1,0,2)]| < [E[p 0.8,2) — plu,0.8,9)] | + 57 | atet.z =yt

which in turn combined with (&.1) yields

o s.0.2) =062 < B { o [ atetz = alelutan) + o5 [ atetes - oputan |

1-n
t—=2

We eventually conclude the proof of ([B32) by letting s 1 ¢ in the previous inequality following similar
arguments as those used in the previous step

‘pLN(/Lv 0,1, Z) - p(uv 0,1, Z)‘ = li%l ‘E{p(ué\], S, t, Z) - p(Ma 0,t, Z)} ‘

K+
<

< B {ome [ atetes - olelutao) + 5 [ gtz — aputan}.

Step 3: proof of the first order expansion ([B.33).
We here establish the first order expansion ([3.33)) under the additional assumption that (z, u) — o (¢, x, 1)

is uniformly Lipschitz continuous and that M, (u) < oo for some ¢ > 4. Coming back to (0.8]) and substracting
p(p, 0,¢, z) from its both sides, we get

E p(,uévv Svta Z) _p(u7 05 tv Z):|

S1
= E[p(uév, 0,t,2) —p(,0,t,2)] + /0 ﬁE [trace(a(r, X} ;L?{V)Bip(uiv, rt,2) (X} XTI))} dr.
(5.16)

We then pass to the limit as s 1 ¢ in the previous identity using similar arguments as those previously
employed and apply the first order expansion (2] of Lemma 5l We thus obtain

t
1
(0 = )10,t,2) = Blpa 0,8,2) = plo 0,82 + [ 5B [evace(alr XL i )20 1, 2) (X1, X1 )|
0

) J p2
= %E[%p(u,(),t,fl,z)(fl) - %p(,u,(),t,fl,z)({)}

b B 1,06, 9ED) — gl 0,161, ) E )]
W Wp,uv 57652 555 _Wp,uv 57§7Z 576

b 1
+ / S EMAP(ps, 58, 2)] ds + < (R (1,0, 8, 2) + RS (11,0,1, 2))
0
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5.1 Proof of Theorem[3.3 5 PROPAGATION OF CHAOS

where RY (u,0,t, 2) is defined in (5.2) and
1 t
R (1,0, t, 2) := 5/ E [trace( (r, X2, uM)Rp (s 7oty 2) (X} X)) — ar, Xr,ur)aﬁp(ur,T,t,Z)(Xr,Xr))} dr.
0
Observe that from (B3], for any ¢ with at most quadratic growth and any 8 € [0, 7), it holds

L IR (r.0.t,2) a:

arlery

1
++ 13 N
< wr { gl P +

[0+ 1)+ €Wl )] |

t1+ B;”I

1 1 L
<K {t (E[Wz(uév ) N) + Bl ’“)W}

where we used Holder’s inequality in the last inequality. Now, using the fact that M,(u) < oo for some g > 4,
one deduces from the concentration inequality established in Theorem 2 by Fournier and Guillin [FG15] that

E[Wo (ud , )44 < K&'%Z. We thus conclude

1/2 3/2
EN
/Rd |6(2)|IRY (1,0, 8, 2)| dz < KT {t 7 } : (5.17)

t1+ﬁ n

It thus remains to establish an appropriate estimate for RN (11,0,t, 2). Introducing the coupling dynamics
X!, we write

I _ -
RN (1,0,t,2) = 5/ E [trace(a(r,Xl,,ur )82p(,uiv,r,t,z)(Xrl,XT1)) — trace(a(r, Xrl,ur)aﬁp(,ur,r,t,z)(X ))} dr
0

and decompose the integrand appearing in right-hand side as the sum of the three following terms Rf[’l (uy 7yt 2),
Rf[’Q(u, r,t,z) and Rf[’S(u, r,t,z) defined by

Rf[’l(u, rt,z):=E [trace([a(r, Xrl,uiv) —a(r, X}, ur)]aﬁp(uiv, r,t, z)(XTl,Xrl))} ,
Rf[’Q(u, rt z) =E [trace(a(r, X} ur)[aip(uiv,r,t, (XX - 82p(uT,r,t, 2)(X}, Xﬁ)])] ,
RYS (1,1, 2) o= E [trace (a(r, XL, o) [02p(tr 7,1, 2) (X1, X1) = 02, 7,1, 2) (X1, X))

From (&.I0), we first obtain

it AL XD € oo {atett =) 2= XD+ [ gtett =)z = o)l ()}
N
= ﬁ{Q(C(t—T),Z—XﬁH%ZQ(C(t—T),z—Xi)}. (5.18)

This estimate will be used in the sequel. The uniform Lipschitz regularity of the map (x, u) — a(t, x, 1)
then gives - -
la(r, Xy, ') = a(r, Xy, )l < K[1X0 = X0+ Wy s )] (5.19)

Combining the two previous estimates with the Fubini theorem, the Cauchy-Schwarz inequality, the fact
that supy<;<p maxi<;<n E[|X/[*]'/* < CMy(u) and eventually using the estimate ([341) of Theorem B
yield

K+ -
/R JOENR .07, 2) de < =g (I = P2 4+ BIWa ()2 B2
Kt RYE
T (t—r)2 N
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In order to deal with Riv’z(u, r,t,z), we first establish an estimate for the difference 8Zp(u, rt,z)(v,v) —

92p(v,rt, 2)(v,v), for p, v € Po(R?). From (E.9), the estimates (3.22), :24), for any , v € P2(R?) and for
any coupling ™ between u and v, we get

|aﬁp(ﬂa Ty tv Z)(U, 1}) - 82})(1/, Ty tv Z)(U, 1})|
< 02 0up(p, 1, t,v, 2)(v) — OxOpup(v, 1, t, v, 2) (V)]

+1 ( )[5519(#,7",@:672)(%@)—3ﬁp(u,r,t,y,Z)(v,v)]W(dw,dy)l
R2)2

+/ |8ﬁp(u,r,t,x,z)(v,v) —83]9(1/, r.t,x, z)(v,v)|v(dz)
Rd

V)8
< K5+% {g(c(t—r),z ~v) +/Rd

K++
G [ U el =)z =) gl ). ) e

gle(t—r),z — x)u(dx)}

which directly yields

[ 100t 2)(0,0) = Bt )0, 0)

Tt — )t (R)

<K++ W2(M=V)B
e

K++
: {Wz(u, v)? (1 + [vf? +M2(V)2)+/ . o —y? (1 + |=f* + IyIQ)W(d%dy)}

(1+ [v]* + Ma(n)* + Ma(v)?)

where we used Cauchy-Schwarz’s inequality and then took the infimum over « for the last inequality.

Now, having in mind the preceding estimate and using again the Fubini theorem, the Cauchy-Schwarz
inequality and the fact that supy<; < E[My(uf')*] < KMy(p)* and supgc;cqp Ma(pe) < K My(p), we get
E[W2 (Miva MT)2]B/2

(t — r)l+"

2 N 1 1 2 1 1 ++
/Rd |0 Ell0up(s 7t 2)(Xy, X)) = Gp(pars 18, 2) (X, X ) [ dz < K

so that
++

K
N,2 B B/2
R < - .
/Rd |¢(2)|| 1 (M7r7t72)|dz— (t—’I”)H_B;n EN

We finally deal with RY?(u, 7, ¢, z). From (539), (22) and @24), for any (v1,v2) € R?, we obtain

|azp(u7 r,t, Z)(vla 1)1) - 83p(ﬂa T, 1, Z)(v27 ’02)|

< g el t—r),z— t—1),z—
=g 7 (9(c(t —=7),z —v1) +glc(t —7),z —v2) +
(t—’l”)1+ 2 Rd

gle(t —r),z —x) u(d:c)} )

Hence, from the preceding estimate, Fubini’s theorem, Cauchy-Schwarz’s inequality and (3.41]), we obtain
N,3 K;+ 1 w18 12 12 2
/Rd [G()IRy (s 7,8, 2)| dz < mE[IXT = X P+ (X7 + X7+ Ma(u)7)]
Ki
Tttt

Gathering the previous estimates, we eventually conclude that for any 8 € [0,7)

IR 0,8, 2] ds < K+ {#heif? + 473 50%)

B/2
N -

for some positive constant K/;H =K(T,(HR ), HE), [0]1,q, My(1), 8). The previous estimate together
with (BI7) allows to concluide the proof.
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5.2. Proof of Theorem[3.0.
For a fixed function ¢ in €% (Pa(R%)), we consider the following PDE on the Wasserstein space

(615 + ﬁ)U =0, U(T, ) = (b()v (5'20)

where the operator .%; is given by (8:26). From Theorem 3.8 in [CdRF18], under (HE) and (HR, ), there
exists a unique solution U € C*2([0,T) x P2(R?)) to the above PDE (5.20) given by

V(t,p) € [0,T) x P2(RY),  U(t, ) = ¢([X7"]).

Using Proposition Bl together with the estimates (3.8), B13), (314), B2I)) and [B:23]), one may apply
Proposition [Z3] to deduce that U € C}’Q([O, T) x P2(R%)). Note carefully that in Proposition 23} the linear

functional derivatives of h are assumed to be bounded for sake of simplicity while here the linear function
derivatives of ¢ is of linear growth, see (837)). However, using the pointwise Gaussian estimates ([B.8)), (3.13)),
B2I) and B23)), one can extend the analysis performed in the proof of Proposition to the current
setting.

Moreover, the first and second order L-derivatives satisfy the identities (Z.I]) and (2.I5]). Now, proceeding
as in the proof of Proposition 6.1 in [CARF1&], namely, using 335) and 330) as well as the estimates
provided by Proposition B.I, one may prove the following estimates: there exists a positive constant Kt :=
K(T,(HR,), (HE)), T — K(T,(HR,), (HE)) being non-decreasing, such that for all (¢, u) € [0,7) x Po(R)
and v = (v,v') € (R%)%:

OO U(t, ) (v) < KH(T — )7 (1 + [v] + Ma(p)), n = 0, 1, (5.21)
QXU (1, u)(v) < KH(T — £) 5 (1 + [v| + Ma()). (5.22)

Since the arguments are completely analogous to those employed in the proof of Proposition 6.1 in
ICARF18], we omit the proof of the above estimates.

Note carefully that the time singularities appearing in the previous bounds on the first and second
L-derivatives of U are integrable over [0,T).

On the one hand, from standard 1td’s formula and (G.20)), we have

N t
1 . ) )
Ula) = VO + 5 3 [ 000 (XD (s, X2 )aw?)
i=1

N ot
1 i N\92 N % %
+2N2 ;/0 trace (a’(S7XS’ M )8;,LU(S’ Hs )(stXs)) ds.

On the other hand, from the Markov property stemming from the well-posedness of the martingale problem

related to (L)
X"

Ut [X7%)) = (X7 ]) = ¢([X3]) = Uls, ),

for all s in [0,¢] and especially for s = 0. Hence

N t
1 ) ) )
Ut,p) = Ut ) = (UO.40) = U0, ) + 5> / 0,U (5, )(X2)-(o (s, X1, p ) AW
=170
N t
1 7 N 2 N 7 7
EAEP) / trace (a(s, X, 2 )O2U (5, j ) (X2, X)) ds. (5.23)

Using the Burkholder-Davis-Gundy inequality, the estimates (5.2I)), (22) and the fact that there exists a
positive constant C such that for any 1 < i < N and any s € [0, 7], E[| X|*] +E[Ma(u))?] < C(1+ Ma(p)?),
which directly stems from the dynamics (L2) together with the boundedness of the coefficients, we get

E(U(t, 1) = Ut o)) < E [JU(0, 1) = U (0, 1) + I;I

2
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5.3 Proof of Theorem [3.8 5 PROPAGATION OF CHAOS

where T — K1 := K(T,(HR,), (HE), M2(u)) is a non-decreasing positive function. Finally, letting ¢ + T

N N K* K* N2y, KT
E[|U(T, pr) = U(T, p7)|] <E[JU0, 1) = U0, g )[] + NI S poe E[Wa(u, ud )M + e
2

where we used the Lipschitz continuity of the map P2(R?) > u +— U(0, u) thanks to (BZI) for the last
inequality together with the Cauchy-Schwarz inequality and the fact that Ms(u) < co. This completes the

proof of (3.39).

In order to prove [B38), we first take the expectation in (523)). Doing so we get ride of the martingale
part therein. Then, using (5.22]), we hence obtain

K+
Ut ) —E (U, 1)]] < |UO, 1) — [U(O,/Lév)”—l—w. (5.24)
It remains to establish an error bound for the quantity E[U(0, u{)] — U(0, ). We follow similar lines of

reasonings as those employed in (54). One may also refer to |[CST19] for a similar argument. We briefly
repeat the proof here for sake of completeness. From the mean-value theorem and the exchangeability in

law Of (gi)lgiSN

E[U(0, o o)~
/ / 0.1 w) () — 1)(dy)]
Rd
-/ E[iwo i) (E) — 00, M)E)] d
0 om0 om0
= [ B[R @ ~ 0@ ax
o Lom 770 om0
1 & A1 A2, N 52 A1 A2, N
=% Jy e ME[EU O ED - SLU0 T E S | and
where we used the notations: u’\l’ = Mpd + (=), fy it N = M + (1= A)p, i = uév—l—%(&g— de1),
ﬁg‘l AN )\2~)\1 +(1- )\2),u0 ’N, € being a random variable independent of (€1)1<i<n with law p. The
previous 1dent1ty together with (B22)) finally yield

|U0, o) —E[U0,my)]| < T2 N

for some positive constant K := K(T,(HR, ), (HE), Ms(u)), T — K (T, (HR. ), (HE), M>(u)) being non
decreasing. Plugging the previous bound into (5.24)) and finally letting ¢ T T allows to conclude the proof of

B.33).

5.8. Proof of Theorem[3.8

As already mentioned in the introduction, the strategy relies on Zvonkin’s transform. To do so, we
introduce the following PDE

(O + LU,y ) = b(t,z, 1), U(T,-,-) =0q, (5.25)

where the operator (L£;):>0 is given by ([4). Note that under (HR) (iii) the drift coeflicient b is continuous
on [0,T] x RY x Py(R?) and satisfies the assumption of Theorem 3.8 in |[CARF1§] so that there exists a
unique solution U € CY22([0,T) x RY x Py(R?)) to the above PDE (5.27) satisfying for any (¢,z,u) €
[0,T) x R? x Py(R?),

Ult,z,n) =E

T T
/ b(s, X;*z"“, [X;E]) ds] = / / b(s,y, [X;f’g])p(u, t,s,x,y)dyds.
t t R4
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5.3 Proof of Theorem [3.8 5 PROPAGATION OF CHAOS

Following the lines of proof of Proposition 6.1 in [CdRF18], we readily obtain that U satisfies the following
estimates: there exists a positive constant K := K(T,(HR),(HE)), T — K(T,(HR), (HE)) being non-
decreasing, such that for all (t,z, ) € [0,T) x RY x Py(R?)

n+mn

1020,U(t, 2, 1) (v)] + |02 U (12, p)| < O(T — )27, n=0,1. (5.26)

From Theorem B Lemma Bl and Proposition Bl in particular the estimates B.8), B13), (314, B.21),
B23), one may apply Proposition [Z3] to the density function (¢,x,u) — p(u,t,s,x,y) and the map m —
b(s,y,m) to deduce that (¢, ) — b(s,y,[X5]) € C}’Q([O, s) x P2(RY)).

Moreover, we deduce from the identities (Z11), (ZIZ), (ZI5) combined with the estimates (3.8), (3.13),
BI9), B21), (B:23) as well as the uniform n-Holder regularity of the linear functional derivative [0b; /dm|(t, z, m)(.)
and the space time inequality (L0 that the following estimates hold:

—l—-n+n
2

103 [0, [b(s, , (XS] (0)] < KF (s — 1) ,n =01, |95, y, [XPOT])](0,0) < KF (s — ) 7HE

and
0ulb(s. 1, [XLECV]]| < KH(s — )7,

for some positive constant K+ := K(T, (HR ), (HE)).
Then, combining the above estimates together with the estimates B8), BI13), B14), B21), B23)
as well as the dominated convergence theorem, we eventually deduce that U is in Cl 22([O T) x R% x

P2 (R4)) with a cross derivative 9,0, U (¢, z, pu)(v) = 9, [0 U (t, x, u)](v)* and an L- derlvatlve of second order
D2U(t,z,m)(v,v") given by

0:0,U (t, z, p)( / / b(s,y, [XE £])](U) ® Opp(p, t, s, 2,9) + b(s,y, [Xg’g])(v)amaup(u,t,s,aay)(v) dy ds,
]Rd

R0 ) = [ [ 02000, DDl 2.0) + 3,060, DX DN0) & Bl ()
0l 5,,0)(0) © Db, XN 005, XSOl b 5,,0) (0,0)| dy s
and satisfying
10:0,U (t, 2, 1) (v)] + |02U (¢, 2, 1) (v,0')] < KH(T — t)%. (5.27)

We are now ready to complete the proof of Theorem 3.8 The chain rule formula of Proposition 2.1l yields

X = Ut X{, ) (5.28)
= & -U0.€ po) - /0 0.V — 1)) (5, Xy )iV — /0 100 + LU (s, X2 )
and from classical It6’s formula
X; = Ut X}, 1)) (5.20)

t t
= si—U<0,fi,uéV>—/o ([0.U — 1] 0) <s,X;‘,uéV)dW2—/0 [(0s + LU = b](s, X, ) )ds

N .t
1 . ) . .
+53z Z:j / trace (a(s, X2, ul )OpU (s, X1, ) (X7, X7)) ds

N t
N ; 0
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5.3 Proof of Theorem [3.8 5 PROPAGATION OF CHAOS

Taking the difference between (5.28) and (5:29) and using the fact that U solves the PDE (&5.20) yield

XZ - XZ = U(O7§Z7Mév) - U(O7517M0) + U(t7XZ7Mt) - U(t7X1?7 N){V) (530)

N t
o 2 | trace als, Xiu2)020 (s, X i) (X, X)) ds
j=1"0
t
_/ ([aEU - 1] U) (Sa sta ,us) - ([81-[] - 1] U) (SvX;a ,uév)dwsz
0
1L . . . .
230 [ 0 X )Xo, X)),
=170

Now, it follows from the estimates (2.20]), (527 and the boundedness of o that the terms in the third
and fourth lines appearing in the right-hand side of the above identity are true square integrable martingales
and that the term in the second line of the above equality is of order N 1.

Therefore, taking the square of the norm in both sides of the identity (5.30), then summing over i and
eventually using Burkholder-Davis-Gundy’s inequality give

1N .
E[N2|XZ—XZ|2

N
< C{IE (U0, 1) = U(0,€", o) 2] + % SCEU X, ) = Ut X], p))|?]
=1

N ¢ N | .
+%Z;/O E[\([amU—l]a) (s, X5, 1) = ([0:U = 1] 0) (s,X;,uéV)ﬂ ds}+%,

Using (.26), (527) and the uniform Lipschitz regularity of (x, u) — o (¢, x, u), we deduce that there exists
K} = K(T,(HRy), (HE)) > 0 satisfying K- | 0 when T | 0 such that

E

N N

1 i i 1 v i 7

N Z | X7 — Xt|2‘| < K;{E [W2(M07 Név)ﬂ + N ZEHXt - Xt|2] + E[W2(Ntaﬂiv)2]}
i=1 1=1

Kt - [ i i K+
5 O I - X+ B [Walin )]s +
i=170

We now introduce ¥ := N~} Efil dxi, t € [0,T], the empirical measure associated with the i.i.d. random
variable (X})1<i<xn. Noticing that for all ¢ € [0, 7],

N
= = = 2 i _ i
W, 1y )* < 2Wa (e, i) )* + 2Wa (B o) < 2Walue, 1) + 5 D 1XT = X{P? (5.31)
i=1
and choosing T" small enouglﬁ so that K}r < 1/4 and using Gronwall’s lemma lead to
N T
1 _ ; _ _ _ 1
=Y E[IX] - X{[] < KT E [Walpo, iy )?] + sup E[Wa(u, if¥)?] +/ E [Wa(us, iy’ )?] ds + — ¢ -
N = 0<t<T 0 N

Finally, the strong well-posedness of the SDEs ([40) and (L2) together with the exchangeability of
(€', W")1<;<n imply that the random variables (X?, X?);<;<y are identically distributed so that N~ Zﬁl E[|X] - X{|’] =
E [|X} — X}[?]. Hence,
1

sup E[|X; - X{[’] <K {E [Wa(po, g )*] + sup E[Wa(ps, iy )] + N} < K'fen
0<t<T 0<t<T

3There exists 7 = T((HR.), (HE)) > 0 such that for all T < T we have K;f <1/4.
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with K := K(T,(HR4), (HE), ¢, M,(11)) > 0 and where we used Theorem 1 in Fournier and Guillin [FG15]
or Theorem 5.8 of [CD18§] for the last inequality. One may then extend the above estimate to an arbitrary
finite time horizon T by considering a partition of the time interval [0, T] with a sufficiently small time mesh
and repeating the above argument, observing that the estimates (5.26) and (527)) are uniform in = and pu.
Taking expectation in (.31]), one then concludes that a similar estimate holds for the quantity

sup E[Wa (e, iy )?]-
0<t<T

Finally, coming back to (530]), one can apply similar lines of reasonings but taking first the square of the
norm, then the supremum in time and obtain, thanks to the above estimate, for T' small enough

T

S 1
max E | sup |X2—X2|2}§K+ B [Wa(po. 7] + B[ sup Walurs i)+ [ B [Waluea )] ds + ¢
1<i<N 0<t<T 0<t<T 0 N

The first and third terms appearing in the right-hand side of the above inequality are handled using Theorem
1 in [FG15]. The second term provides the rate of convergence and requires the following lemma borrowed
from [BCCH19].

Lemma 5.2. Let {Y'}1<icny be an iid. sequence of copies of a process Y satisfying sup;c(o 1) E[Y:[? <
400, for some ¢ > 4 and for some p > 2:
E[|Y, — Y. [PV, = Y;[P] < Clt—r|*, forO0<r<s<t<I;
E[|lV; - Ys|P] < Clt—s|, for0<s<t<1; (5.32)
E[|Y; - Ys]?] < Clt—s|, for0<s<t<l.

Then, introducing the notations v, := [Y;] and v := N~1 Zi\il dy:, there exists C' > 0 such that

E [ sup Wg(l/iv,ys)2:| < Cy/en. (5.33)
0<s<T

We thus derive
ax E| s X - X2 < Kty/en.
B E | s, 1K K] <V

for some positive constant K+ := K(T, (HR,), (HE), [0]L,q, My(p)). Taking first the supremum in time
and then expectation in (531]), one then concludes that a similar estimate holds for the quantity

E[ sup Wa(pu, i )?].
0<t<T

Appendix A. proof of Lemma [3.1]

We here freely use the notations and the results established in [CARF1&]. Since the arguments and the
computations are quite similar to those employed in [CdRF18], we will deliberately be short on some technical
details. We start by recalling some important estimates established in [CdRF18]. Let us emphasize that
these estimates are established for the corresponding approximation sequences, namely (P, (i, 8, €, T, 2))m>1,
Y, (u, 8,76, 2, 2))m>1, (Hm (@, s,7,t,2,2))m>1, ..., constructed in Section but are still valid for the
corresponding limiting object by copying verbatim the corresponding proof except that one directly uses the
estimates provided by Theorem 3.6 therein.

Lemma Appendix A.l. Let n € {0,1}. For any 8 € [0,1] if n =0 or any § € [0,n) if n = 1, there exist
some positive constants K := K (T, (HR), (HE)), Kg = K(T,(HR,),(HE), 8) and ¢ := ¢(A) such that for

any i, i’ € P2(R%) and any z,2’,v,v',y € R?, it holds
ag[auﬁy(ﬂv S, t? €T, Z)](’U) - ag[‘%ﬁ(ﬂ’a S, t7 xlv Z)](Ul)

N+l —a' P+ v—|P
[Wa (p, p )(t‘t|8) 1+n;|ﬂ—:— | "] {g(c(t —5), 2 —x) + g(c(t — s),z — 2")}, (A.1)

Jr
< K}
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Oy [Oyulai (., XD (v) = 07 [Bulai (2, X)) ey ) ()
Wa(p, )P + v —v'|7]

<K+[

T , A2

8’?[8#%(,“5 S, T, tv Zz, Z)](’U) - 8’?[8#%(,“5 S, T, tv €, Z)],u:,u' (’Ul)
< KFWalp, 1) + 1o —v'?) e A e (A3)

t—r)(r—s)" = t—r)—2(r—s)" =
x gle(t—r),z —x).
Similarly, for any 5 € [0,1] if n € {0,1} or any 8 € [0,7) if n =2
W, 1)?
|02 p(, s,t,w,2) — Oup(p, s, t, 2, 2)](v)] < Kg% glc(t —s),z — x), (A4)
"B

005 (1,5, 1,,2) — OLF (5,1, )| < K% gle(t — ), — ), (A5)

_ ™

and for any S € [0, 1]

"B

g, 5,7, 2) = MO st 2] < K— 2l oot ), — o), (A.6)
t—r)t2(r—29)2
s, Wa(p, p

e [ (A7)

"B
(5,7t ,2) — B .7, 6, 2)| < K2R gy ) 2. (A8)

(t—r)=z2(r—s)2

We now move to the proof of Lemma B.11
Step 1: smoothness of the maps x — O,p(u, s,t, z,2)(v), = Oxp(i, s, t, z, z) and proof of the estimate (B21).

First, combining Proposition 2.2 (applied to the maps m +— b;(t,z,m), a; ;(t,z,m)) with Theorem 3.6
in |[CdRF18], and following the lines of proof of (A.9) and (A.15) in Corollaries A.1 and A.2 therein, we
deduce that for any 8 € [0,1] there exists some positive constants Kg := K(T,(HR),(HE), (), K :=
K(T,(HR), (HE)) and ¢ := ¢()) such that

B lbi(t, 2, X)) + Bl s (8, 2, (X)) < ﬁ (A.9)
n Ky
om0, s,rt,x, 2)| (v c(t—7).z—=x A.
| 'u[ #H(/La ’ atv ’ )]( )| S (t—'f‘)liﬁ?n(r_s)l+n7(217ﬁ)n g( (t >’ )a ( 10)
and
108 [0,5" (1, 5,1, 2, 2)](0)| < — L dg(elt - 1)z - a). (A.11)

Tt=r)e (-8 T2
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Similarly to (A.23) of Proposition A.1 in [CdRF18], the following representation formulae holds:

Oup(p, s,t,x,2)(v) = Z ([Qjﬂ-p ® (9#7-[] ® H(k)) (1, 8,t, 2, 2)(v)

k>0
= 0up(p, s, t,x,2)(v) + (p ® OH) (p, s, t, 2, 2)(v) + ((Oup+ (PR O H)) @ P)(u, s, t, 2, 2)(v)

(A.12)
and
Oup(y 8,8,y 2) = O, 8,8, 2, 2) + (0,9 @ ®) (1, 8, T, x, 2) (A.13)
where for n € {0,1}
0 [0,pY (p, 5,7, t, , 2)](v)
= —% {trace <(/T a(r',y, [Xs’g ) / oOulalr,y, [Xf,g])]](v) dr')
—(z—2x)t (/ a(r',y, [Xs’g dr ) / ao.lalr,y, [Xf,g])]](v) dr’ (A.14)
X (/ a(r',y, [Xf;g])d ) (z — :E)}p (w,s,7,t,,2)
and .
0D (py 8,7t 3, 2) = Hl(/ a(r',y, [Xf,’g]) dr', z — x)ﬁy(u, $,7,t, T, 2). (A.15)

Now, it is readily seen from the identity (AI4) that = — 97'[0.pY (i, s, 7, t, x,2)](v) is continuously
differentiable with a derivative being continuous in z, u,v. Moreover, using the space time inequality (3]

and (A.9), we obtain

0, (0,5 (15,1, 7, 2)](v)]| € ———— glelt - 5), 2 — ). (A.16)

(t—s)"=

Using the Gaussian estimate ([3.8) with n = 1, splitting the time integral over [s,t] of the space time
convolution operator ® into the two disjoint intervals [s, £52] and (2,¢] and using (AI0) (with 8 =0 on
[s, HTS] and 8 = 1 otherwise) to balance the time singularity in the integral, by the dominated convergence
theorem, we deduce that z — (p ® 9, H(.)(v))(u, s,t,x, z) is continuously differentiable with a derivative
being continuous in x, u, v and satisfying

(02 © BHOW 1 5.8:2.2) € Gy olelt = 5) =) (A17)

Again, using the two previous estimates, (8.12) and the dominated convergence theorem, we deduce that
the map = — ((0,p(.)(v) + (p @ O H()(v ))) D) (u, 8, t,x, z) is continuously differentiable with a derivative
being continuous in z, p, v, satisfying 95 ((9,0(.)(v) + (p ® O H(.)(v))) ® ®)(w, s, t,z,2) = ((0:0,p(.)(v) +
(Ozp @ 0, H()(v))) @ ) (1, 5,1, 2, 2) and

N K
0. ((0up(.)(v) + (p @ O H()(v))) @ @) (1, 5,¢, 7, 2)] < T s glc(t —s),z — ). (A.18)

We thus conclude from the preceding discussion and the identity (A12) that x — 9,p(u, s, t,z,z)(v) is
continuously differentiable with a derivative being continuous in z, u, v and satisfying

OuOpup(; 8, t, @, 2) (v)
= aﬂﬂaﬂﬁ(uv S, t? z, Z)(U) + (aﬂﬂp ® 811%(')(”))(”7 S, t7 z, z) + ((6$6Mﬁ()(v) + (awp ® aHH()(U))) ® (I))(Mv S, t7 z, z)
Moreover, from the estimates (A.16]), (A.17)) and (A.18)), the following pointwise Gaussian estimate is satisfied

K
(t—s)'2

|816Mp(ﬂasat7x7z)(v)| < g(C(f—S),Z—JJ).
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We now investigate the smoothness of the map P2(RY) > u + 0,p(p, 5,t, x, z) using similar arguments.
Starting from the identity (A.13]), our aim is to prove that one is allowed to differentiate each term with
respect to p and that the derivatives of each term is a continuous function with respect to x, u,v. From
(A14), (A9) and the dominated convergence theorem, the map u — 9,p¥(u, s,7,t, %, 2) given by (ATH) is
continuously L-differentiable with a derivative being continuous in x, u, v and satisfying

Ou[0:DY (s, 8,1, t, 2, 2)|(v) = Oy {Hl (/Tt a(r',y, [Xf;ﬁ]) dr’, z — x)] (v)pY(p, 8,7, t,x, 2)

t
([l X)) 2 = )0, 5,1, 2)(0), (A.19)

Moreover, from the above expression, (A14]), (A9), the space time inequality (LH) and standard computa-
tions, we obtain
y K
|0u[02D" (1, 5, £, 2, 2)] (V)] < (D= g(c(t = ),z — x). (A.20)
Following similar lines of reasonings as those used in the proof of Corollary A.3 in [CdRF18&], namely
using the relation

t
H(k+1)(/1’7877'7t7$7z) - / H(M,S,’f’, r/,;v,y)'}-[(k)(u,s,r’,t,y,z) dyd?”/ (A21)
r JR4

as well as the estimates (3.6) and (AJ0), by induction on k, we derive that for any positive integer k the
map p +— H*F) (i, s,7,t, 2, 2) is continuously L-differentiable with a derivative Oy [H®) (1, s,7,t, 2, 2)](v) being
continuous in u, v and continuously differentiable with respect to the variable v with a continuous derivative
in p,v and satisfying for any 5 € (0, 1]

1000, [H*) (n, 5,7, 8,3, 2)])(v))|

IfK’Bc k—1 0
B alae + g—l
(r—s) (t — r)1-P3—(h-1% g (558 +(-1)

for some positive constants Kz := K(T, (HR), (HE), ), ¢ := ¢(\). It follows from the previous estimate,
the asymptotics of the Beta function, the identity (BII) and the dominated convergence theorem that
w O(p,s,r,t, x, z) is continuously L-differentiable with a derivative 9, ®(u, s, 7, t, x, 2)(v) being continuous
in p, v and continuously differentiable with respect to the variable v with a continuous derivative in y, v and
satisfying for any 8 € (0, 1]

<

N3

)g(c(t —r),z — ) (A.22)

1+4n—(1—=8)n
2

n K
0101 (1, 5,7t 2, 2)])(v)] < R — et =r).z —x). (A.23)
(r—s) 3 (t—r)t=h2
Now, it follows from (A20)), (A.23)) and the dominated convergence theorem that p — (9,p%®)(u, s,t,z, 2)
is continuously L-differentiable with a derivative given by

0u(0xp © @) (s 8,8, 2, 2) = (Ou[0:P)() (v) © @) (1, 8,1, 2, 2) + (02p © 0P () (v))(1; 8, 8, 2, 2),

being continuous in u,z, v and satisfying

|8M[(6:Eﬁ® (I))(Mv st x, z)](v)| < 1_1 g(c(t - 5)7 Z— JJ)

(t—s) 2
Hence, coming back to the identity (AI3), we conclude that pu — 9.p(u, s, t,z,2) is continuously L-
differentiable with a derivative being continuous in u,x,v. Moreover, it follows from the previous estimate

and (A.20) that
K

|au[amp(ﬂ'7 S,t,;&Z)](’U” < m

g(c(t —s),z —x).
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Let us finally mention that it follows from [B.8), (3:6) with & = 1, (A.22) and the previous estimate as
well as the relation p = p+ p ® H which directly stems from (B3]) that

61181]9(”7 S, t7 €T, Z)(’U) = aﬂ[aﬂcﬁ(ﬂa 5, t? T, Z)](U)+(awp®aﬂH()(v))(M7 S, t7 €T, 2)+(5u[5zp]()(v)®%)(% S, t7 €T, z)

Moreover, the estimates (A.20) and (A7) show that the kernel d,,[0,p(p, s, t, z, 2)]+(0:pR0,H(.) (v)) (1, 8, t, T, )
is non singular so that one may iterate the previous relation. Hence, it holds

0u0zp(H, 8, t,x, 2) (V) = 0pu[0aD (1, 8, t, z, 2)] (V) + (0xp @ O H(.)(v)) (1, 8, ¢, 2, 2)
- (OulOB®) + a0 © 0 H()(0) © ®) (15,3, 2). (A24)

Step 2: proof of the estimate ([3.22).

Starting from the decomposition (A24)), we see that it suffices to investigate the Holder regularity of each
term with respect to the variables p, x, v. We first derive an estimate for the difference 9,,0,p(, s, t, , z)(v) —
0u,0:p(1, s, t, 2, z) (V).

We split the computations into the two disjoint cases Wa(u, p') + |v — v'| + |z — 2’| < (t — 5)'/2 and
Walp, ') + |v — 0| 4 |x — 2’| > (t — s)'/2. In the first case, from ([(A2), (A7), (AJ), for any § € [0,1], we
get

t

[ e [t 0]

S

— 2|8
B P P
—Kﬁ {(t— )1+1+ﬁ - Wa(p, M) + v =" + (t_s)lJrﬁ;n

and

t

‘Hl(/t a(r,y, [X3%)) dr, z—:z:) —Hl(/ a(r,y, [Xf’gl])dr,z—x/)

S

z2—x x—x'|P
< K{(|7|W2(M,p/)5 + |71|+3}

t—s)its (t—s) %"

so that using the space time inequality (L5

t

}8# {Hl(/t a(r,y, [X3%)) dr, z—x)}(v)—[)# [Hl(/s a(r,y, [Xf’g])dr,z—x’)} (") |pY

(Wa(p, 1')? + v — 0" + | — a'|7]

(b, 5,8, 2, 2)

< Kj PR glc(t — ),z — ).
and
( alr,y, (X3 dr, 2 — =) — Hy (/t a(r,y, (X3 )) dr, = — )|, (. .1, 2. 2)(0)
SK{ L=y, <uu>+'x‘ﬁﬁ} L (et —5).2—a)
(o TErES AT
< el o -2

where we used (A1) (with » = 0 and 7 = s) and the space time inequality (L) for the last but one
inequality.
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Also, it directly follows from (A9)), 3), (A3) (both with n = 0), the inequality |z — x| < |z — 2|+ |z —
2’| < |z —2/| + (t — s)'/? and the space time inequality (IF) that

ou ([ a0 ar = o)) @ st 2) P02

s w=p
(Wa(p, ') + |z — 2’|
(t— s)1+1+—gin
(Wau, 1) + |e = )]

(t — )i+

< Kplz - af {g(c(t — s),2 — ) + glelt — 5), 2 — 2')}

< Kg

{g(c(t = 5), 2 —a) + g(c(t — 5),z =)}

and, from the space time inequality (I5), (A) and the inequality |z—2'| < |z—2|+|z—2'| < |z—z|+(t—s5)"/2,
one also obtains

t
‘H(/am%wﬁﬁmw—fﬁ%WWmummw—%WW%mfme

2 —a'| [Wa(p, )P + |2 — &' + v — ']

SK;b_g (t— o) {g(e(t = 8),2 = 2) + gle(t = 5),z = o)}
Nyl —a/|P + |v—'1P
S K;— [WQ(}L,,U) +| ﬁ|7n+| | ] {g(C(t _ 5)72 _ .I) —|—g(C(t _ 5)72 _ .I/)} .

(t—s)t=

Coming back to the decomposition (A19) and using the previous estimates yield

0,10:pY (1, 8,7t , 2)| (V) — 0p[0uDY (s 8,7, 8, &, 2)] ey (V1)

Walp )" e e P2 10 VL gy — )2 = ) + glelt = 5).2 = ')}

<Kj
(t—s)'*"z

for any 8 € [0,7) in the diagonal regime Wa(u, p') + |v — v'| + |z — 2’| < (t — 5)/2.

In the off-diagonal regime Wa (i1, ¢') + [v — v'| + |z — 2’| > (t — 5)'/2, we directly use the estimate (A20)

laﬂ[awﬁy(/h‘s?r?tﬂxvz)](v) _aﬂ[awﬁy(u737r7t7x/72)]ll:u’(v/)

< |0ul0:" (. 5.7 1, 2))(0) | +

au [811/5?! (.uv S, T, t, I/v Z)],u:,u' (’U/)

[WQ(‘LL,/L/)ﬁ + |I _x/|;8 + |1) _’Ul|ﬁ] {g(C(t— S) Z—I) +g(C(t— S) Py —.I/)}.

<K
(t—s)tt=2

for any S € [0, 1].
Hence, for any 8 € [0,7), there exist some positive constants KZ{ = K(T,(HR,),(HE)) and ¢ := ¢(})
such that for any (u, 1/, s, z,2',v,v',y) € (P2(R%))? x [0,t) x (R%)?

6u[6m2/5y(ﬂu s, T, ta Z, Z)](’U) - au[awﬁy(ﬂu s, T, ta .’L'/, Z)]M:HI (U/)
(Wa(p, /)P + | — 2|7 + v — ']

- s)Hﬁ;" {gle(t —s),z —x) + g(c(t — s),z —2')}. (A.25)

+
< K

From (33), (A22), separating the time integral of the space time convolution into the two disjoint
intervals [s, (t+s)/2) and [(t+ s)/2,t] in order to balance the time singularity induced by the two estimates,
after some standard computations that we omit, we deduce that for any 8 € [0,7)

|(awp ® aHH()(U))(Mv S, t7 €T, z) - (6mp ® 6MH()(U))(/J'7 S, t? xlv Z)l

r—a'|?
| | {gle(t —s),z —x) + g(c(t — 5),z —2')}. (A.26)

<Kg———
B B(t—s)H@
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Similarly, it follows from 3], (A.3) and similar computations that for any g € [0, 7)

(Oap ® OuH()(v)(1: 5., 2, 2) = (0ep @ OH()(V')) (s 5,8, 7, 2)]
o'}’

< KF
B t—s)l"’%g

5 ( (c(t—s),z—x). (A.27)

Finally, from (A4), (A3), B8) and (A22) (with ¥ = 1 and 3 sufficiently small), separating the time
integral of the space time convolution into the two disjoint intervals [s, (t 4 s)/2) and [(t+ s)/2, ] in order to
balance the time singularity induced by (A.3]), after some standard computations that we omit, we deduce
that for any 8 € [0,7)

[(0ep ® 0 H()(0)) (1, 8, 8,7, 2) = (0up @ OH()(0)) (1, 5,8, 2, 2))
B
< KIE)L W2(N7M5)7n
(t—s)tt="

Combining (A226)), (A27) and (A2])), we thus obtain

|(Oap @ OuH()(0)) (1 5,1, 2, 2) = (Oep @ OH() (V) (W', 5,1, 2, 2))
Wa(p, )% + v — ') + o — a'|F]

(t— sy 57 {g(c(t = s), 2 —2) +glc(t —5), 2= 2)}  (A29)

which combined with (A25]), (312) and then (A20), (A17) and (A8) eventually yield
((0ul0:P1()(v) + Oap @ uH()(0) ® @) (1, 5, t, 7, 2) = (Ou[@2D)() (V') + Oap @ H() (V) @ @) (W, 5, 1,27, 2)

(Wa(u, )P + o — 0" + |o — o'|]
(t—s)i+3-n

for any 8 € [0,7n). The identity (A24) together with (A.25), (A.29) and (A.30) allow to conclude the proof
of B22)), recalling that 0,[0.p(1, s,t, x, 2)|(v) = [0:[0up(1, 5, T, x, 2)(v)]]".

glc(t —s),z — x). (A.28)

N
< K}

< K; {g(c(t —s),z —x) +g(c(t —s),2—2")} (A.30)

Appendix B. Proof of Proposition [4.7]

This section is dedicated to the proof of Proposition [l The strategy of proof is the same as the one
developed for Proposition 5.1 in M} In order to foster the understanding on the main steps of the
proof, we will collect intermediate technical results into several auxiliary lemmas and associated corollar-
ies which are based on standard but cumbersome Gaussian like computations and postpone their proof to

The reader could skip some of these derivations in a first reading.

This section is organized as follows: in[Appendix B.1I] we deal with the base case in a completely analo-
gous manner to the base case m = 1 of Proposition 5.1 in ﬂCAB_ElS} We provide it for sake of completeness.
The regularity of the maps « +— 0upm (1, 8, %, z, z) and p +— Ozpm (i, S, t, x, ) and the related estimates ,
#3T) and ([E32) are obtained as a consequence of the results established in our previous work Nﬁ]
and are thus tackled in [Appendix B.2] In particular, in Lemma we will recall some impor-
tant technical estimates established in |[CARF1§] that will be used in our analysis. In we
provide some technical results which are necessary to address the proof of the first part of the induction
step. Then, the first part of the induction step, namely, the C}’2’2([0, t) x R x Py(R?)) regularity of the map
(s,x, 1) = Pm+1(p, s, t, 2, 2) and the proof of the estimates ([4.33), (£.34) and ([£37) at step m + 1, is treated
in We eventually address the second part of the induction step, namely the estimates (£.38])
and (L37) at step m + 1 in [Appendix B.5|

Apart from [Appendix B.I|and [Appendix B.2 we will work under the following assumption. For a fixed
positive time horizon 7' > 0 and positive integer m, we assume that for any fixed (¢, z) € (0, T] x R?, the map

(s,, 1) = pm(p,s,t,z,2) defined by ([@3) belongs to C}’Q’Q([O,t) x R? x Py(R%)) and denote by [X¢™)]
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the probability measure on R? with density function z = (p, (11, ¢, T, ., 2)4).

Notations. We recall some notations that will be used in this section. As already mentioned before, we
denote by K := K(T,(HR), (HE)) a positive constant depending on T, a, b, da/dm, 6b/dm and X\. We also
denote by Kt := K(T,(HR, ), (HE)) and K*" := K(T,(HR ), (HE)) two positive constants depending
only upon T and the parameters appearing in (HR), (HE) and (HR) and (HE) respectively. If § is
any (other) parameter, we denote by Kg, K;’ or KT a positive constant depending on  and the corre-
sponding aforementioned parameters. We also denote by ¢ := ¢(A) > 0 a constant depending only on the
parameter A in (HE). As usual, all these constants may vary from line to line.

Appendiz B.1. Base case m = 1.

As far as the base case m = 1 is concerned, as already underlined in [CdRF18], since P(V)(t) = v for
any t > s, it is readily seen from (£9), [@I0), (@II) for m = 1 that the law argument in the coeffi-
cients depends neither on the initial measure g nor on the initial time s but only on v. It thus follows
from [Eri64] that the map [0,¢) x R? 3 (s,2) — p1(p, 8,t,2,2) = Y 45001 ® ’Hgk))(u,s,t,x,z) belongs to
C12([0, %) x RY) with derivatives that do not depend on g. Obviously, the map Pa(R%) 3 1+ p1(p, 5, t, , 2)
is two times continuously L-differentiable and satisfies 0,p1(p,s,t,z,2)(v) = Ou[0up1(1, s, t,x, 2)|(v) =
2p1(p, s,t,2,2)(v,0') = 0 for any (s,z,pu,v,0) € [0,t) x R? x Py(R?) x (R)2. We thus conclude that
the map [0,t) x R? x Pa(R?) > (5,2, 1) = p1(p, s,t,2,2) is in C}’2’2([O,t) x R? x Py(R%)). The estimates
([E30) up to [@3T) are straightforward since 9, [0up1 (1, s, t, 2, 2)(v)] = O2p1(p, 5, t, x, z)(v,0") = 0.

Appendiz B.2. On the regularity of the maps x — Oupm(p,s,t,x,2) and p — Oppm(u,s,t,x,2) and the

related estimates ([@30), [@E3T) and [E32).

The proof of the continuous differentiability of the maps « — 0,pm (i, s, ¢, z, z) and p +— Ozpm (i, s, t, T, 2)
and the continuity of their respective derivatives with respect to the variables x, u, v as well as the estimates
@E30) and [@3T)) is similar to the proof of Lemma Bl One just copies verbatim the proof except that one
has to replace p, p, H, @, etc... by their respective approximation sequences (pm)m>1, (Pm)m>1, (Hm)m>1,
(P )m>1, etc ... and use the corresponding estimates with constants being uniform in m. In particular, the
identity (A:24) here writes

0u0zPm (W, 8,1, z, 2)(v) = Ou[0zPm (14, 8, t, , 2)](V) + (Oxpm © O Hm () (V) (1, s, t, 2, 2)
+ ((au [6wﬁm]()(v) + awpm ® 6MHW()(U)) ® (I)m)(ﬂv S, t7 €T, z) (Bl)

and the estimates (A.20), (A.11), (A.22), (A.23) and (A.9) become

|0u[02D7 (1, 5, 1, , 2)] (v)] < a7 gle(t =),z — x), (B.2)
0210, 5ot 20} < 2 [ = 51)+_ dr'g(e(t - 1), 2 — ), (B.3)

for any 8 € (0,1] and any positive integer k

|02 (O[S (1, 5,7, 8, 2, 2)]] (v))|

k k—1
kK

5 n
< T l_IlB /3+ (€=1)3) gle(t = 1),z x), (B.4)

1+n—(1—8)n
2

(r—s)
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Kp

(T _ S) 1+n—;175)71 (t o T)l_ﬂ%

|a17)l[6u[(1)m(/1'757T7t7x7z)]](v)| < g(C(t —T‘),Z _‘T)v (B'5)

and
Ol (8,2, (XS0 + [l 8, (XDl )] < ﬁ (B.6)
In particular, it follows from (ZI4) (with n = 1) and (B.4) (with n =0, k=1 and 8 € (0,1)) that
(Oubn © B, Hon (V@) 15, 1,2,2)| £ ——— gelt = ), — ) (B.7)

(t—s)"2

The above estimate will be used in the sequel.
We thus only prove the estimate ([£32). Before proceeding with the proof, we recall some important
technical estimates established in |[CdRF18&] that will be used in the sequel.

Lemma Appendix B.1. For any 5 € [0,(1 + n)/2) and any positive integer m, there exist positive
constants K, K;, c such that for any (,z) € (0,T] x R%, any p, ¢/ € Po(R?) (denoting by ¢ and ¢ any
random variables with respective law p and u'), any s, s1, so € [0,t), any r’ € (s1Vsa,t), any z,y, v, vy, v2 € R?
and any (i,7) € {1,--- ,d}*

au[amﬁ?jn(ﬂu S1, tu x, Z)](U) - aﬂ[amﬁgn(ua 52, ta x, Z)](U)

|s1 — s2?

|s1 — s2?
(t—SQ) _%+'Bg

S K;_ {mg(c(t — Sl),Z - 33) +

(c(t — s2),2 — 3:)} , (B.8)

|02pm (14, 81,8, @, 2) — Oupm (1, S2,t, T, 2)|
|s1 — s2|”

|s1 = s2|”
(t—so)i? 7

< 8 { = gt = -+ (clt =52z - )} B.9)

’aﬂﬁzjn(ﬂu S1, ta Z, Z)(U) - 6#]3?11(/147 52, tu x, Z)(U)

|s1 — so|”

— s55|8
<K} Mg(c(t—sl),z—x)—l—f

t— SﬁliTﬂjLﬁ

g(c(t—sz),z—:zr)} , (B.10)

‘6111/5?7!71(/1'7 Slarlatu :E7Z)(U) - auﬁ?n(uu 52, ’f‘/,t, :E7Z)(U)‘

|s1 — s2?

< K7

B (T/ sV s )lan_th(C(t—T/),Z—{E), (Bll)
— 51 2

Oy Hm (p, 51,7 t, 2, 2) (v) — Oy Hn (, 52,7, t, 2, 2) () ‘

1 1
< Ktls: — 5|8 _ A _ B.12
= ﬁ' 1= 52 {(t—r’)(r’—s1\/82)17n+'8 (t—r’)l_%(r’—S1V52)%+ﬂ} ( )

x g(c(t—1"),z — ),

for any 3 € [0, 1]

las i (t, 2, [ X7V —aq (8, 2, (X0 4 (bt 2, (X700 0]) = bt 2, (X200

|s1 —S2|ﬁ |s1 —S2|ﬁ }
<K — + , B.13
o {(t—sl)ﬁé (t—Sg)ﬁf% ( )
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a;ﬁm(ua S1, rlu t,l’, Z) - 6;1]/9\777,(/147 52, rlu t,l’, Z)

<K 51 — 5| (c(t—1'),z—z), ne{0,1,2,3}
|51 — 52/
(t —r)1=2(r' — 51V s52)8

|(I)m(M7 817T/7t7 :E7Z) - (I)m(/,L, 52, rlu i, 2, Z)' <K g(C(t - T/)a z = J/'),

a;ﬁzm(U7 Slvta xz, Z) - 825?71(#7 SQvta xz, Z)

|s1 — s2|” |s1 — s2|”
gK{Wg(C(t—sl),Z—x)+mg(0(t—82),z—x) , nef0,1,2},

|z — |87

(t . S) 1+nf(217/3)n ?

10210y [ (8 2, [X5 ™)) = ai (8, 2, [XTO D) (0)] < K ne{0,1},

for any 8 € [n,1]

i (62, (X5 =g (2, (X0 TD] 4 [bita, (X050 = byt 2, (X000

W2 (/1*7 MI)'B

<K =
(t—s) ="

for any € [0,1] and any r € [s,t)

|auﬁijn(/‘7 5,7, t? z, Z)(U) - auﬁ?n(ﬂla S, T, ta z, Z)(’U)|
1 1
< KFWa(p, ')’ <m1{r—s} + ml{m}) gle(t —r), 2 — x),

for any « € [0,7n] and any 8 € [, 1]

i (62, (X0 ™]) = a2, (X0 T]) = (@ (82, (X0 ™)) = a8 2, (X040 0M])

10ty 2, [X0 ) = bt (X0 UM]) = (bt 2, (X0 UM]) = bt 2, (X0

Wa(p, 1/)?
L=a>

< K(lx—=2"YA1)
t—s) =

for any a € [0,7] and any 3 € [0,1]

i (8, X700 0)) — ag (2, (X250 = (8 2, [X05T) = a2, (X729 0)

it [X0OU]) bt 2, [XOUM]) = (bt 2, (X0 TM]) = bl 2, (X0 0M]))

1 1
SKQ(|Z—$|Q/\1)|81—82|ﬁ{ + — },

(t—Sl)’B—i_% (t—SQ)’B+Tn

for any 8 € [0,1] and any r € (s,t)
Oulai (8,2, [X70™]) = ai st 2, (X)) (0)
— Bulai g (ta, (X5 — a2, (X0 )] e (0)]

—z7A1) 1
< KWl )? { L2221 A —
g (t—s) 5 (t—s) =T
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oY (s, rt,x,2) — OnpY, (w8, rt, x, 2)

Woa(pu, t')?
(t—7)5(r—s)

<K

7 gle(t—r),z—z), ne{0,1,2}, (B.23)

|6MH7TL+1 (/1‘7 S, T, t? z, Z)(U) - 6;17{777,-‘1-1 (/1'/7 S, T, t? z, Z)(U)|

< KXWa(p, p)? L T A L . B} B.24
s Walin ) {u_m@_sr74 (t—r)=3(r —s)" (B.24)

x gle(t—r),z — x),

WQ(IUH :u/)ﬁ
(t—r)=3(r—s)%

|<I)m(u,s,r,t,x,z)—@m(u’,s,nt,x,zﬂ SK g(C(t—T),Z—{E), (B25)

for any 8 € [0,(1+1n)/2)
Oplas (b, X)) = a2, X DI 0) = Bl (8, (X750 = a8 2 (X7 0)

z—x|TA1 1
S K;lsl - 82|ﬂ (| | lj’ﬁ A 1—m ? (B26)
(f—Sl\/82)2 (t—sl \/SQ)T"‘B

for any 8 € [0,1] if n =0 or any 3 € [0,n) if n =1 and for any r € [s, t)

102100l (12, (XS] (01) — 02 [Bulai i (t, 2, X7 ™)) e (02))
00, i (1, (XS TN (1) — 820, ity (X )]y (v2)] (B.27)
1

< K {Jor —val” + Wa(p, 1)’}

W;

ag[aﬂﬁgﬂb(U7 S, T, tv z, Z)](vl) - ag[aﬂﬁiryn(ﬂa S, T, tv €, Z)(UQ)]

1+n+B8—n
t—r 5

— Bt
<K [v1 = vol / - )1 dr’ g(c(t —r),z — x), (B.28)
r (r—=S

and for any € [0,(14+n)/2)if n=0orany 8 € [0,n7/2) ifn=1
10210 [ (8, 2, [X5 N (0) — 02 B)lai s (t, 2, (X7 )] (v)]
10, i (1, [X S D (0) — 218, i, 2, [X S I (0)] (B.29)

_ B

+ |s1 — s

< Kﬁ ETET
(t—Sl \/82) 2

Proof. The estimates (B.9) up to (B:29) together with their proof are provided in |[CdRF1§] so we only prove
(B:8). Let us first observe that if |s; — sa| > t — s1 V s2 then (B.)) directly follows from (B:2). We thus
assume that |s; — s <t — s1 V so for the rest of the proof. We make use of the decomposition

0, (0202, (11 8, t, , 2)|(v) = O [Hl ( /St a(r,y, [X;‘,ﬁ,m]) dr,z — ;v)] () DY, (1 8,1, x, 2) (B.30)

t
([l X6 drz = ) 0, (s t.2)(0)
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which directly stems from (ZI0). From (B.I3) and the uniform boundedness of a, for any 8 € [0,1], we

obtain
t -1 t -1
([ v ixzeonar) = ([ arpxeonar) |
s1

s2

K ‘
_ g s1E MY _ g 52.€,(m)
S E—sive) [lsl 82|+/S max |a; j(r, y, [X;05]) = a5 (ry, [X; ])Idr]

1Vsa ]
K ¢ |81 — 82|5
<7[5 —so|P(t—s1 Vs 17ﬁ—|—/ 7 dT}
- (t — 51V 82)2 | ' 2| ( ! 2) s51Vs2 (7' —$51V 32)(5757)+
|s1 — s2|”
<K—— B.31
- (f— S1 V82)1+'B ( )
so that
t t
[ ( / alr,y, (X2 <) dr, 2 — o) — Hi / alryy, (X376 dr, 2 — ) | (B.32)
51 52
_ B
<K [51 = 52| |z — x|

- (t — 51V 52)1+5

Similarly, from (B.€]) and (B.29)), one has

‘(% [Hl ( /t a(r,y, [X$5™]) dr, z — :E)] (v)‘ < K& (B.33)

s (t — )1+

and for any 5 € [0,(1+n)/2)

/ Oulas 1o XS0y ar — [ Oulas (., (X)) (0) |

s1Vsa 1 t _ B
S Kg_[/ —)1_ndT+/ |Sl S2| dT}

1—n
Ay (r— 81 A82)72 sy (71— 51V 89) 7 TP

14n
SKZ“SI —82|'8(t—81\/82) G B,

Combining (B31)) with the previous estimates and using again (B.6]), after some standard computations,
we obtain

‘BM {Hl (/t a(r,y, [X209)) dr, 2 — :E) ] (v) — 0y {Hl (/t a(r,y, [X2250)) dr, 2 — :E) } (v)‘ (B.34)

S1 52
|z — =

(t — 81 \Y 82)3;77 +'8.

S K;|81 - 82|5

We now come back to (B30). We combine (B:33) with (BI6) (with n = 0), (B:34) with the Gaussian
upper-bound on p¥,, (BI0) with (L6), (B.32) with (B.3]) (with r = s and n = 0) and finally use the space
time inequality (IH) and the inequality |s1 — s2| < t — s1V s2. We thus deduce that for any 8 € [0, (14 17)/2)

Oul0%: (1, 51,8, 2))(0) = DDl 12,2, 2)](0)

|51 —52|ﬁ |51 _52|ﬁ
<Kj {mg@(t —51),2 —x) + Wg(c(t —82),2 — )

which concludes the proof of (B.S)).
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related estimates ([A30), (A31) and [{@32).
APPENDIX B PROOF OF PROPOSITION 77

Having the above technical estimates at hand, we now turn to the proof of [£32). The strategy is clear
inasmuch one has to quantify the Holder regularity with respect to the variable s of each term appearing in
the identity (B)). In particular, the estimate (B.S) of the previous lemma allows to deal with the first term
therein. In order to deal with the second term, we make use of the decomposition

(OzDm @ O Mo () (0)) (1, 51V 82,8, 2, 2) — (OPm @ OpHm () (V) (1, 51 A s2,t, 2, 2) =14 IT 4 11T
with

t
I ::/ / [awpm(M7 S1 \/5277°a$7y) _awpm(uasl /\SQ,T,.’L’,y)] aHHm(uasl VS27T7t7y7Z)(U) dyd?”,
s1Vsy JRE
t
II:= / / 8Ipm(:uﬂ S1 /\SQaTaxay) [8#7_[7”(“751 \/SQaTatvyaz)(v) _aﬂHm(ﬂa S1 /\SQaTatvyaz)(v)] dydra
s1Vsa R4

51Vsa

III := _/ / 81¢p’m(:uﬂ S1 /\527T7x7y) 8#Hm(lu’a S1 /\SQ,T,t,y,Z)('U) dyd?"
S1/\S2 R4

which directly stems from the very definition of the space time convolution operator ®. We now establish

an appropriate estimate for each term. In order to deal with I, we use (BX9) with 8 € [0,71/2) and (B4) with

k=1,n=0and 3 =p" € (0,1) small enough so that 3 — (1 —3")n/2 < 0 in order to ensure the integrability
of the time singularity. We thus get

t
|1 — so|”
<K [ : dr {gelt — 51),2 — ) + gle(t — s2), 2 — 7))
’ s1Vs2 (t—T)l_BTn(T— 51V s9) 1 tA-(1=5)%
S1— S B
< Ky I et - ).z 1)+ glelt - ).z - )

b (t —s51V 82)1+ﬁ7

|51 — s2l” |s1 — s2]”
S v t— & —V t— ,Z—
> ﬁ{(t_81)1§7+5g(c( 51) z .I)—F (t_82)17§,+ﬁg(c( 52) z x)

where we used the inequality (t — s1V s2)~! < 2(t — 81 A sp) ™1, recalling that |s; — sa| <t — 81V sg, for the
last inequality.

In order to deal with II, we use ([{I4) and (BI12)). In particular, we split the time interval [s; V so,1]
into the disjoint two intervals [s1 V so, (t + 51V $2)/2] and ((t + s1 V s2)/2,t]. On [s1 V sa,(t + 51V $2)/2],
we bound |[0p Hm (11, 51 V s2,7,t,y, 2)(v) — O Hum (1, 51 A S2,7,,y, 2)(v)]| by K;ﬂsl — st —r)"tr—s Vv
59)~(=M/2=Bg(¢c(t — 1), z — y) while on ((t + 51V 52)/2,t] we bound it by K;r|51 —solP(t—7) "2 (r— 51V
59) Y2 Bg(c(t — 1),z — y). After some standard computations, for any 8 € [0,7/2), we obtain

|51 — 52|
(t — 51V 82)1-’_6_%

|s1 — s2|”
(t A 82)1-’_6_%

7] < K;' gle(t—s1 Ns2),z—x) < K;’ gle(t —s1 A s2),z—x)
where we again used the inequality (t — s1 V s2)71 < 2(t — 51 A s2) ™! for the last inequality.

We handle III by using (@I4) and (B.4) with £ =1, n = 0 and any § € (0,1). We obtain

s1Vsa 1
I < K drg(c(t—si Asa),z—=x
| | o ﬁ/51/\52 (T_Sl /\82)1*(1*5)%@_7‘)1*#3% g( ( ' 2) )

|Sl — Sgl(l_ﬂ)%
c(t—s1ANs2),z2—x
(t—s1Vsp) 7Pz 9(e( 1/ s2) )

B e i
o ﬁ(t—Sl /\82)17[%%

<KB

glc(t —s1 N s2),z—x)

for any 8 € (0,1). Note that the above estimate remains valid for 8 = 1 since |s1 — s2| < t — 51 V s9.
Gathering the above estimates on I, IT and III, we thus deduce

(0zpm @ O Hm () (V) (1, 51V 82, t, 2, 2) — (OzPm Q O Ham () (V) (1, 51 A s2,t, 2, 2)

|51 — 2|7 |51 — 52/7
< K;{mg(c(t—sl),z—xﬂ—mg(c(t—sg,z—x) (B.35)
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for any S € [0,1/2).
We now turn our attention to the last term appearing in the right hand side of the identity (B.I). We
employ a similar decomposition as for the previous term. Namely, we write

((0u[02Pm] () (V) + Oupm ® O Hm () (V) © Pr) (s 81, ¢, 7, 2)
- ((au [aﬂﬂﬁm]()(v) + ampm 0 aume()('U)) & (I)m)(u, S92, t, x, Z)
=1+1I+4+1II

with

[ / / [0s5m] ()(0) + Bapim © By Hon ()(0)) (151 V 52,7, )
s1Vso JRE

(a mpm]()( )+a$pm®a H ()(v))(:uvsl /\SQaTaxay)] (I)m(:ua Sl\/SQ,T,t,y,Z)dydT,

= / / [0:5m] ()(0) + Bupim © B Hon () (0)) (1 51 A 52,7, )
51\/82 R4

,uﬂ SlstaT 'Y, % ) <I>m(,u, 51/\527T7t,y72)] dydT,

51\/52
III .= / / [02Pm](-)(v) + Ozpm @ OpHum () (V) (1, 81 A 82,7, 2,y) P (1, 51 A 82,7, 1,9y, 2) dy dr.
s Rd

1/A\S2
We deal with I by using (B.g)), (B:33) and (@I9). After some standard computations, we obtain

s 5918 s1 — so|8
1< 5 { et o -0+ S et - sz - )

We handle II using (B.2), (B.7) and (B15). For any 8 € [0,7/2), we get

|s1 — s2|”

|51 — 59/”
(t—s1V s9)l— P 9( (

(t —s1 A sg)l— 1B gle(t

I < K S1A82),z—x) <K

— 51 AS2),2—x)

using the fact that (t — s1 V s2)™! < 2(t — s1 A s3)~ ! for the last inequality.
We deal with III by using (B.2), (B1) and &IJ) so that

s1Vsa
|HI| < Lﬁ/ %drg(c(t—sl /\82)72—.’5)
(t—s1Vs2)'72 Jopsy (r—s1Vsa)2

|s1 — s2/”
< K
T (t—s1Vsp)lTth glelt -

S1A82),z—1x)

|s1 — so/”
< K
T (t—s1Asp)tTth glelt -

S1A82),z—1x)

for any 3 € [0,71/2].
We now collect the above estimates on I, IT and III. We thus obtain

(0u[02Dm]()(v) + Bapm @ O Hom () (v)) @ Py ) (1, 51,8, 7, 2)

= ((0u[02Dm] () (V) + Ozpm © OuHm()(v)) @ @) (1, 52,1, , 2)

5,8  ellB
+ |81 52| _ _ |81 52| _ _
K {7@—31)1_’7*59(06 51),% $)+7(t_82)1_n+ﬂg(c(t $2),2 — )

IN

for any 8 € [0,7/2). This last estimate concludes the proof of ([@32]).

Appendiz B.3. Some preparatory technical results

To proceed with our induction procedure, we have to prove that the statements obtained in the base
case m = 1 indeed propagate at step m + 1 provided they are satisfied at step m. Starting with the process
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(X7 &0mt) 4 e [s,T]) with dynamics given by (@6) and coefficients frozen in their measure argument
at the law of the Picard iteration scheme at step m, we importantly observe that the density function

2+ P (i, 8, t, 2) of the random variable Xf’E’(mH) satisfies the relation ([@8)) where z — po,y1(u, 8, ¢, , 2)

denotes the transition density of the decoupling SDE (Xf’m’”’(mﬂ),t € [s,T)).

As already emphasized in [CdRF18], the key point is that this transition density satisfies a representation
in infinite series given by ([49) which involves space-time iterated convolutions of the so-called parametrix
kernel H,,+1 given by ([@II) against the Gaussian type kernel p,,41 given by (£I0). These quantities in
turn depend on the density p,, built at the previous step of the Picard iteration scheme, so that, when
investigating the C}’ZQ([O, t) x R x Py (R%)) smoothness of py,,+1 and its related estimates, we will naturally
be lead to investigate the smoothness of these terms. In particular, as a preparatory step of our induction
argument, we need to investigate the regularity properties and to establish some adequate estimates for
the coefficients b; (£, 2, [X™1), a;;(t, 2, [X5™)]), the Gaussian type kernel pr, 41, the parametrix kernel

Hm+1 and its iterated space time convolution H,(szrl, k > 1, defined just after ({I1)) in order to prove that
the estimates in Proposition 4.1 indeed propagates from one step to another.

This is the purpose of this section and the associated technical results are respectively given by Lemma
[Appendix B.2Jand Corollaries[Appendix B.2][Appendix B.4l As previously mentioned, though their proofs
are rather intuitive, they are rather long and rely on technical Gaussian type computations. The reader may
want to skip these derivations in a first reading. We thus decided to postpone them to some dedicated
sections, see [Appendix C.1} [Appendix C.2] and [Appendix C.3]

Lemma Appendix B.2. For any fixed (t,2) € (0,7] x R% and any (i, j) € {1,--- ,d}?, the maps (s, s) —
bi(t, 2, [X50™)), ai (8,2, [X9™)]) belong to C}’2([O, t) x Po(R?)) and satisfy the following estimates: for
any 3 € [0,n), any 3 € [0,1], any (t,2) € (0,T] x R, any (s, p, ') € [0,t) x (Po(R?))2, any v = (v,v),
vi = (v1,7}), va = (v2,v}) in R x R and any (i,5) € {1,---,d}*

02t (XS DI+ |02 s (1, XD )|

1
<K {m + /(Rd)2(|y — &[T A1) 2P (1, 5, t, 2, y) (V)] p(da’) dy} : (B.36)

102 a5, 2, X4 = it 2, X)) ()]

/ 1
+ B
< K|z — " { o T (B.37)

+/ (ly = /|0 A1) (02 (2, 5., 27, ) (V)] pa(da’) dy} ;
(R)?

02t XD 1) = 92t XS]] (v2)

o |02l (1, XS (V) — B2l (1, XS ] (v2)

_ B
<xpq vl (B.38)
(t—s)'*>

+ /(Rd)2(|y — &' |" A |0 (1, 5, t, 2, y) (Vi) = Opm (1, 5,8, 2, y) (Vo) | p(d’) dy} :
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02 (b, XS 0]) = i 02, X D] (1) - 02

_ pln
cgrdlezal’r ) LI {|V1_V2|B (B.39)
7 (t— s)\+3 (t — s)+72"

(it - s)1+¥/

(R9)?

+(t — s)1+§ /
(R7)?

Remark Appendix B.1. Note that if estimate ([@33) holds at step m, then, from (B.38]) and the space time
inequality (LH), it holds

[ (62, [X05 ™)) — a8, 2, (X700 )) (vo)

(Iy" = 2'["A 1)‘3ﬁpm(u, s, b2, y) (Vi) — Oapm (s 5,6, 2", y) (va)| p(da’) dy

2pm (s s, t, 2, y) (Vi) — Dopm (s s, t, 2, y)(Vz)’ p(dz’) dy} :

102[bi (t, z, (X7 D) (V)] + [02[ai s (t, 2, (X0 (v)]
<K+ {(t — 57 4 (4 — )G, (OF Lt — s)} . (B.40)

Corollary Appendix B.2. Assume that the estimate [@33)) is satisfied at step m for some positive con-
stant C*. For any t in (0,T], any (r,z,y,2) € (0,t) x (R?)3, the maps (s,u) Dot (1, 8,7, 1,2, 2),
Py 1(pys,t, 2, 2) belong to C}’2’2([O,T) x R? x Py (R)) and C}’Q([O, t) x R x Py(R?)) respectively with con-
tinuous derivatives with respect to its entries.

Moreover, the second order L-derivative satisfy the following pointwise Gaussian estimates: there exist
positive constants K+ and ¢ such that for any (p,z,y,2) € Pa(R%) x (R?)3, any v € (RY)? and any
0<s<r<t<T

1020 (s, t, 3, 2) (V)| < KT {/t ;dr' (B.41)
nwm-41 3y Oy Ty by by _t—’f‘ . (T/—S)lig

t
[ Q= A DI s )9 ') dy Y et = )2 = )
r (Rd)2

For any 8 € [0,1] and any 8’ € [0,n), there exist positive constants K, K[}L, and ¢ such that for any
(2, 2,9) € P2(RY) x (RY3, any v,vi,ve € (RY)2, any 0 < s <r <t <T and any z1,72 € RY

|8;2Lﬁryn+1(ﬂa S, tv L1, Z)(V) - 8;2Lf)\ryn+1(ﬂa S, tv €2, Z)(V)|

_ B 1 1 t
<K+|‘T1 ‘T2| // g Al Qm roor dz') du' dr’
= B (t _ S)lig + t—s s (Rd)2(|y €T | A )|3Mp (M,S,T yUHyY )(V)“L( :17) Yy ar

(B.42)
x {g(c(t —s),z —x1) + gle(t — 8),z —x2)},

|8if)\gn+1(ﬂa s, T, tvxv Z)(Vl) - 8ﬁf)\ryn+1(ﬂa S, T, tvxv Z)(V2)|
K7 ¢ —vy|#

< s / [v1 V2|, o
t—r|J, (r/_s)lJrﬂ;"

t
+/ / (ly = 2" AV Oppm (s 5,7 2 4" ) (Vi) = oo (s, 5,77 2y ) (va)| p(da’) dy' dr'} (B.43)
r J(R4)2

x glc(t—r),z —x).

Remark Appendix B.3. Note that if estimate (#33]) holds at step m for some positive constant C*, then it
follows from (B.4)), the space time inequality (L5 and the fact that t — €°(C*,t) is non-decreasing that

025 (157 2, 2) (V) < K {(r = )7 4 (r = ) TEILO(CT - 5) | (B.44)
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Corollary Appendix B.4. Assume that the estimate [@33)) is satisfied at step m for some positive con-

stant Ct. For any (t,x,z) in (0,T] € (R))? and any r € (0,t), the maps [0,7) x Po(R?) > (s,u)
Homs1(p, 8,7, t,x, 2) is in C’}’Q([O, 1) x P2(R?)) with derivatives OsHpi1 (1, 8,75, 2, 2), 000y Hm1 (1, 8,75, T, 2)] (v),
n=0,1, BﬁHmH(u, s,rt,x,2)(v) being continuous with respect to the variables s, x, p, v and v.

Moreover, the second order L-derivative satisfies the following Gaussian estimates: for any 8 € [0,1] and
any B' € [0,7m), there exist positive constants K7, K . and ¢ such that for any (t, u,x,z) € (0,T] x Po(RY) x

(RY2, any s € [0,t), any r € (s,t) and any v,v1,va € (R9)?
02 Hon 1 11 5,7, 1,2, 2) (V) (B.45)
+
Kﬁ
(t—r)'Pz(r —5)1-(1-P)z

x{(l D /(Rd)2<'y’ e Y N AT 9 P X

(T — 5)17(17@" nn P ’ rogt
+m (e (ly = ' [" AD)|Opm (s, 5,7, 2",y ) (V)| p(da’) dy' dr
xg(e(t—r),z —x)

]aﬁ%mﬂ(u, 5,7, 3, 2) (V1) — 02 oyt (1 8,7 1, 2, z)(VQ)‘

1 1
<K} - — A —— (B.46)
’ {<t—r>1a<r—s>1+7 <t—r><r—s>1+T}

/ 8
X {|V1 - V2|ﬁ + (’f‘ - S)lJr 2 /(]Rd)2 |aﬁpm(ua S, T, xlu y/)(Vl) - 62?771(/% 5,7, CE/, y/)(V2)| /J,(dl'/) dy/

5'77
+(r =)' / d)z(ly = @' [" AP (s 8,7, 2",y ) (V1) = Opmn (1, 5,707, y') (Va)| plda’) dy’
(r—s) 1+ﬁ "n 2 AN 2 A ’ ',
t—’f' Rd) $| /\1)|8ﬂpm(M,S,T,.I,y)(V1)—a#pm(ﬂ,S,T,iE,y)(V2)|ﬂ(d$)dy dT

x glc(t—r),z —x)

Let us importantly observe again that if the estimate ([@33]) is satisfied at step m for some positive
constant CT then from (B.45]) with 8 =0 and 8 = 1, we deduce

}aﬁ%mﬂ(u, 5,71, 1, z)(v)} (B.47)

' 1 ! clt—r),z—x
< K {(t—r)l (T—s)A(t—r)(r—s)lg}g( (t —7), )

X{(l +(r — S)/ 102 pm (1, 5,7, 2,y ) (V)| p(da’) dy’
(RY)?

n
2

r-st [ Wuy [N )R 5,70 (V)] ) df

le

(r—s)
t—r

/ [ =P A DI ) (e d}
Rd)2

where KT does not depend on C*. Note also that taking f = 1/2 in (B45) and using the fact that
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t — €L9(C™,t) is non-decreasing and the space time inequality (L5

asz"rl (M,S,T,t7$72)(\’) (B48)

< K (L4 GOt — ) glelt — 1), 2 — ).
T (t—r) i (r—s)' 7 " ’ ’

Appendiz B.4. First part of the induction step.

Our aim here is to prove the first part of the induction step of Proposition Il Namely, we prove that if the
map (s,x, 1) = (U, s, t,x, z) belongs to C}’2’2([0, t) x R% x Py (R%)) and if the pointwise Gaussian estimate
(433) is satisfied for some positive constants CT (the constant C* being the one appearing in the definition of
the m-th partial sums €5°(C™T, t—s) therein) then (s, z, i) = pmy1(p, s,t,2,2) € C}’2’2([0, t) x REx Py(R9)).
Additionally, we prove that if the estimates ([@33)), (Z34) and (Z37) are satisfied at step m for some adequate
specification of the constants C and C;' (again the constants C* and Cg being the one appearing in the

definition of the m-th partial sums €4L°(C*+, ¢t — s) and %,};B(C;,t — 5) therein), then they remain valid at
step m + 1.

Proposition Appendix B.1. Assume that ([£33) holds at step m for some positive constant C*. For
any (t,z,2) € (0,T] x (R%)2, the map [0,t) x R? x P2(RY) > (s,z,1) = pmi1(p,s,t,x,2) belongs to
C}’ZQ([O, t) x R? x Py(R%)) and for any (s,z, 1) € [0,t) x R% x Po(R?) and any v = (v,2') € R% x R, it holds

82pm+1(u, s, t,x,2)(V) (B.49)

= > (8ﬁﬁm+1(-)(V) + Pmt1 @ Oy Hons1 (V) + (0uPm1 () (0) ® 8 Hmr1 ()(v'))

k>0

+(0upms1() (V") ® auHm-i-l(-)('U))) ® ’HS,’le(M, s,t,x,2)

where we write (9 pm-1(-) (V)@ Hm1(-)(0") (1, 5,1, 2, 2) = (([Oupm-+1 ()] (V)R 41 ()] (V) (s 5, 8, 2, 2))1<i j<a
and (9upm41()(V") ® OuHm+1()(v)) = ([0uPm+1()]; (V)] @ [0uHim41 ()i (v)])1<ii<d-
Moreover, the following Gaussian estimates hold: for any 8 € [0, 7), there exist positive constants K/}", K+

and c such that for any (t,z,2’, z) € (0,T] x (R%)3, any (s, i, v) € [0,1) x Po(R?) x (R?)2, any vy, v € (RY)?
and any value of the positive constants C* and CZ{ appearing in the definition of the m-th partial sums

CLO(CT,t—s) and %}{B(C;,t —s) of @E33), (E34) and [E3T)

k
102D (11, 5., 7, 2) (v )|_( K = {1+Z (CH*(t - s) ”HB(g,ng(i—l)g)} (B.50)

x glc(t —s),z — x),

|05Pm1 (11, 5,6, 2, 2)(V) = Oppmr (1, 5,1, 27, 2) (V)]

k
SKE(JI_)W{ +Zc+ (t— s)* HB<§,#+(@'—1)§>} (B.51)

X {g(c(t —s),z—xz)+glc(t—9),z—x )},
and

|05pmr1 (1, 5,8, 2) (V1) = Oppma (1,8, 8, 2, 2) (v2)]
k

s Ivi— v’ + k2 nn=8_, \n
S e { +Zc (t—s) 1:[13(5,T+(z—1)§>} (B.52)
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Conclusion of the first part of the induction step:
In view of the above result, it suffices to set the constants C* and C;' involved in the m-th partial sums

¢L0(Ct,t—s) and €17 (C;', t—s) of (E33), (E34) and ([£35) to be equal to the constants K and K;' ap-
pearing in (B:50), (B51) and (B.52) respectively. Indeed, doing so, by the very definition of &0, (K*,t—s)
and %771151 (K ,t—s) and Proposition[Appendix B-1} we deduce that the map [0, 1) xR xPy(R?) 3 (s, z, p1) >

Dm+1(p, 8, ¢, 2, z) belongs to C}’ZQ([O, t) x R? x P2(R?)) and the estimates (B.50), (B.51) and (B.52) directly
yield the estimates ([A33)), (34) and (@35]) at step m+1. The first part of the induction step is thus satisfied.

From the above argument, we thus conclude that for any positive integer m the map (s,x,u) —
P (s 8,8, 2) € C}’2’2([O,t) x R x Py(R?)) and that the estimates ([@33), (E£34) and (A35) are satisfied.

Proof of Proposition [Appendiz_B.1]
Step 1: (s,z,p) — p(p, s, t,z, z) belongs to Cl}’2’2([0,t) x R x Py(R?)).

We recall that according to Proposition 5.1 in M}, for any positive integer m, the map [0,¢) x RY x
Po(R?) > (s, 2, 1) = pm(p, s,t, , 2) belongs to C122(]0, 1) x R? x Py(R?)) so that it is sufficient to investigate
the existence of the L-derivative of second order and its continuity with respect to s, z, 4 and v. Again,
according to Proposition A.1 in }, the map p — pms1(w, s, t, z,2) given by ([@9) is continuously
differentiable with a first order derivative satisfying (recalling (Z17)):

0P 1 (11, 5,4, 7, 2)(0) = D (OB 1 (V) + D1 © O Hons1 ()(0) @ HWy (15,8, 7, 2)
k>0
= pjg\m-i-l (/1'7 S, t? z, Z)(U) + (pm-i-l ® auHm-l-l(')(U))(ﬂa S, t7 z, Z) (B53)
+ (au]/g\m-‘rl(')(v) +Pm+1 @ BMHW-H(')(U)) ® q)m+1(ﬂ7 s, t, @, z)

and being continuous with respect to the variables s, x, 4 and v. The previous identity allows to investigate
the L-differentiability of the map p — 0,pm+1(i, s, t, z,2)(v). First, let us note that according to Corollary

the map g — 9yPm1(p, s,t, x, z)(v) is continuously L-differentiable, with a derivative being
continuous in s, x, u and v, and combining (B.41)) with ([&33), the space time inequality (LH) and the fact
that t — €5L°(CT,t) is non-decreasing, we deduce that

1 CLO(CF t—s)
+ ’
(t—s)l—2 (t—s)t=m

|5‘Zﬁm+1(u,s,t,x,z)(v)| < K+{ } g(c(t —s),z — x).

Similarly, it follows from the continuous L-differentiability of the two maps p — pmi1(w,s,t, z, 2)
and g — OyHmi1(p, s, rt,z,z)(v) stemming from Corollary the estimates (B.4)) with
n =20,k =1and g € (0,1], E22), @I4) with n = 0, (B48) and the dominated convergence the-
orem that pu — (Pms1 ® OpHms1(.)(v))(1, s,t, 2, 2) is continuously differentiable with a derivative satis-
fying Oul(Pms1 ® P 1 ()(0)) (1513, (1) = @1 () © B Honin (V) s 5,67, 2) + (pss @
82Hm+1(.)(v))(u, s,t,x, z), being continuous with respect to the variables s, z, p and v and such that

. = (1+ EL0(CT t—5)) g(e(t —s),z — x).

0ulpri1 ® Mo YD s si 2 D] < Gy

This in turn together with the continuous differentiability of p — ®p41(p, s,r,t,x,2), the estimate
(B.A) (with n = 0, g € (0,1]), (B.3), @I4) with n = 0, (B4) (with ¥k = 1, n = 0, 8 € (0,1]) and the
dominated convergence theorem imply that p1 — (9uDm+1(.)(V) + Pmt1 @ Oy Hm41() (V) @ Prnt1 (1, 8, t, T, 2)
is continuously differentiable, with a derivative being continuous with respect to the variables s, z, y and v
and satisfying

Kt

m(l +EL0(CT t—5)) gle(t — 5),2z — ).

10,101 Pm+1() (V) + Pm41 @ Oy Himt1()(v)) @ Brpyr (s 8,8, 2, 2)] (V)] <
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We now come back to the identity (B.53). From the above discussion, we conclude that p +— 9,pm1(p, s, t, , 2)(v)
is continuously L-differentiable, with a derivative being continuous in s, z, ¢ and v and satisfying

Kt
(t—s)'"7

Step 2: proof of the representation formula (B49).

|aipm+1(ﬂ7 5,4, @, z)(")' < (1 + (5771170(0+7t - S))g(c(t - 8)7 Z = .’L‘)

The above estimate together with (B.4), (£22), (B.48)) and the dominated convergence theorem allow to
differentiate twice with respect to the measure argument p the relation

Pm+1(s 8,8, 2, 2) = Pt (1, 8,1, 2, 2) + (Pms1 @ Hims1) (1, 8,1, @, 2)
which yields
O (15,1, 2)(V) = OB (15,1, 2)(V) & (P © O (V(¥)) (3.1, 2)
+ (Oupm+1()(0) ® OuHm41() (V') (1, 8,1, 2, 2)
+ (Oupm41() (V) ® O Hm1 () (0)) (1, 5,1, 2, 2)
+ (2P () (V) © Hngr) (1, 5, 2, 2).

Now, using the estimates on the first fourth terms of the right-hand side of the above identity derived in
the first step, we conclude that one may iterate this relation. This yields the representation in infinite series
(B:49) which is absolutely convergent.

Step 3: proof of the estimate (B.50Q).

In order to establish (B.50), we start from the representation formula (B.49) and estimate each term of

the series. First, from (B4l of Corollary [Appendix B.2} (433)) and the space-time inequality (LH), we get

|0 D1 (1, 8,8, 2, 2)(V))| (B.54)
< K+{(t_i)1g+tis/s(gl(if~;f;s } 5), 2 — )
< K+{ﬁ+/j (t:fig;gc;rr__ss } ot — ),z — )
m k
< ﬁ{u;(w ké’l‘[lB(— >+ Z—l)g)}g(c(t—s),z—x)

recalling as well the definition (2] of €1°(C,t) for the last inequality.
We now establish an upper-bound for the quantity pp,+1 ® 827—[m+1(u, r,t,x,2z)(v). We first observe that
from (BA4T), [E33) and the space-time inequality (L)), the following estimate holds

|8ﬁ7—lm+1(u, s,ryt,w,2) (V)] (B.55)

+ 1 1
=0 ((t_r)l_%(r—s)/\(t—r)(r—s)l—%)

T
x{1+‘5,}1’0(0+,r—s)(r—3)%+u/ %}{%Cﬂr’—s)dr’}g(c(t—r),z—x).

t—r T

Assuming now that r € [s, (t +s)/2] so that (t —s)/2 <t —r <t — s, we obtain, using (EI4) and (B.53)

[ a5, 92 Hon 5,71 2) )
R

K+ 1,0/ v+ i} 7"—5727 1,0 +/ ’
< 14+%,°(CT,r—s)(r—s)2 + g ‘(9” (c —s)dr’ | gle(t—s),z —x)

(t—s)(r—s)'"2

59



Appendix B.4 First part of the induction step. APPENDIX B PROOF OF PROPOSITION ?7?

so that, by Fubini’s theorem

t+s
2
|7 [ sty |63Hm+1<u, 7,0, 2) (V)] dy dr
s R

B T
1 LgLo(Ct r — )
< K*{m—l—/s RS T } c(t—s),z—x)
k
< =y 5{1+ZC+ t_SkZH1B(__+ l)g)}g(C(t—S),Z—I)-

Then, assuming that r belongs to [(t + s)/2,t] so that (t — s)/2 <r — s <t — s, we similarly get

/d |pm+l(M7 S, 17,7, y)' |8L2L%m+l(/1'7 s, T, t? Y, Z)(V)|dy
R

K+
(t—s)(t—r)—2

¢
<1+9§7};0(C+,T—s)(r—s)g +ﬁ/ %%’O(C’Jr,r'—s)(r'—s)% dr’) gle(t — ),z — x)

which in turn, by Fubini’s theorem, yields

t

/r+ /d |pm+1(H757T7xvy)| |85Hm+1(,ua Sa’ratvya Z)(V)| dy dr
L S R
2

< K+ /t 1 {1+<510(c r—s)(r—s)%jLL/(gm(CJrr_S)(T_S)er p
T ot =5 Jts (t—r)l—% —/ 7
xg(c(t —s),z —x)
CIoﬂOCJrT—s)
Jr
=B {t—sl_%+ t—T T_S>1_%d7"}g(6(t—s)z—g;)

4 m k
< S {1 - [[B (5. 5+ (- 1)2)} glelt — ),z —2).

k=1 i=1

Gathering the two previous cases, we clearly obtain

[Pmt1 ® O Humi1 (V) (1, 5,8, 2, 2)| (B.56)
K m Lk :
< ﬁ{ +; k2HB(——+ 2—1)5)}g(c(t—s),z—x),

In order to handle the two last terms appearing in the right-hand side of (B49), we employ similar
computations to those used above. Namely, using (22) and (B4) with n = 0, k = 1 and 3 € (0, 1], we
obtain

t
/ / |aupm+1 (u,s,r,x,y)(vﬂ |aHHm+1 (N757T7f7y72)(7)/)| dy dT
/ / 101 (113, 7, 2, 9) (W) 10 Honss (11 5,7 £, 5 2)(0) dy

Wg(c(t —8),z —x).
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Hence, collecting the previous estimates, we clearly obtain
‘(8iﬁm+1(')(v) + D41 @ Oy Hint1 () (V) + 0ubm+1()(0) @ M1 () (v')

+a,upm+1(')(vl) & 8;LHm+1 ()(’U))(Uv 5, t’ €L, Z)

m k
= {1+Z<0+>’“<t—s>’“g [12(55+6- 1>3)} glelt =s),z ~a)

k=1 i=1

(B.57)

which in turn yields
>~ (02Pnr1 @) + Pt © M1 (YY) + 0ubins1 () (©) © D Hon 1 ()
k>0

FOubm 1)) © OuHons1()(0)) © Ly (15,82, 2)

k
(t_fi — {1+ZC+ t—skZHB(g Z+(i—1)g)}g(6(t—5>,z—@-

=1

This last estimate concludes the proof of (B.50).

Step 4: proof of the estimate (B.5).

It follows from (B.42), (£33)) and the space time inequality (I5) that for any 8 € [0,n)
|82ﬁm+1(ﬂa s, i, x, Z)(V) - aﬁﬁerl(,uv 8,1, I/v Z)(V)| (B58)

1 1 t 1,0 + _
O S S Sy NS
(t—s) ="t (t—s)te s (r—s)tT

x{gle(t =),z —2) + g(c(t — 5), 2 — a')}

K*|e—a')f : +/t GO g
(t—s) =" Sy (t—r) B (r = s)

x{gle(t —s),z —2) + g(C(t —s),z =)}
" |x x |B +) = : nn=—p2 . n
x{g(e (t—S)az—fv) +9( (t—s),2—a')}.
In order to handle the difference (pym11®802Hom11(.) (V) (1, 8,1, 2, 2) = (P41 @0 Him 11 () (V) (1, 5, t, 2, 2),
we use ([LI5H) with n = 0 and (B.55). We also split the time integral of the space-time convolution operator

into the two intervals [s, (t + s)/2) and [(t + s)/2,¢] as we did in the previous step and perform similar
computations. Skipping some technical details, we deduce that for any 8 € [0, 7)

[Pt © 02 Honss (V) (118, ,,2) = (Pt © 02 Honss (J(V)) (11,5, 8,07, 2)]

gK;(hﬁ{ +Z (CH)F t—s’“"HB(— —+( —1)2)}

t
X{g(C(t—S)az—w)Jrg( (t—S)vz—w)}-

In order to investigate the Holder regularity of the two maps « — (0upm+1(-) (V)0 Hum+1(-) (V")) (1, 8, ¢, z, 2),
= (OpPm41(-) (V") ® O Hum41()(v)) (1, 8, t, x, 2), we first claim that there exist positive constants K and ¢
such that for any 5 € [0, 1]

IN

IN

IN

|6Mpm+1(/,6,87t,.’[],2) - 6Mpm+l(M78 3 xluz)l (B59)

xz —z'|?
G el 95 ) (el =) =)}

<K
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The above estimate directly follows from @22) with n = 0 if |z — 2’| > (t —s)'/? while it is a consequence
of the mean-value theorem, (430) and the fact that for any A € [0,1] and any 0 < ¢’ < ¢

_ I 42 _ |2
exp <—c|>\3j + (lt _/\S):E d > < Kexp <—c’%> (B.60)

in the diagonal case |z — 2| < (t — s)'/2.

Then, using (B:59) with 8 € [0,7) and (B4) with n = 0, k¥ = 1 and 8 € (0,1], after some standard
computations, we obtain

@1 () (0) ® OpHon 41 () () (15 5,5 2, 2) = (Fupmta () (V) © O 1 () () (1, 5,8, 2", 2) (B.61)
+1(Oupm 1 () (V) @ OpHun 1 () () (1 5,1, %, 2) = (Oupm1 ()(V) @ OuHun1 () (0)) (s 5,8, 27, 2)]

x—a'|P
@L(s)ﬁ {g(clt = 5),2 = 2) + g(c(t — ), 2 — ')}

Gathering the estimates (B.5S), (B.59) and (B.61) yields
‘@%ﬁmﬂ (V) + Pims1 ® O Hins1 () (V) + (0pPm1 () () @ O Hanr1) () (V)

DD 1() () © a1 () (15,1, 2)
(021 (V) + Pt © B2y 1 (V) + O ()(0) © 1) ()

+H(0upm1 (V) @ OpHm 1) (v)) (1, 5,1, 2", 2 )

<K

k
SK;JCW{ +Zc+ (t—s 11:[13(;,%4-(1'—1)3)}
X{Q(C(t—s)az—ﬁ)Jrg( (t—S)az—ﬁ)}

which in turn by (ZI2) implies

S |03 1 (Y¥) + 1 © 2o 1 (V) + O 1()(0) © ByHons1) ()

k>0
+(OuPmi1() (V) @ Oy Hin 1) (V) @ HE 1 (5,3, 2)
(@2 41()(V) + Pt @ 02 Hun 41 (V) + (O 1()(0) @ B Homs1) () (o)

F D1 (V) FHon 1) () & K (5,2, 2) )|

< gy r=l? {1+ZO+ t—skgﬁB<——+(—1) >}
B ?
x{g(c(t —5),z —x) + g(c(t — ),z — a')}.

Coming back to the identity (B.49) and using the previous estimate allow to conclude the proof of (B.5I]).

Step 5: proof of the estimate (B.52).

In order to control the difference 8ﬁpm+1(u, s,t,x,2)(vy) — 8ﬁpm+1(u, s,t,x,z)(va), we start again from
the representation formula (B.49) and investigate the Holder regularity of each term of the series with respect
to the variable v.

First, from the estimate (B:43) in Corollary [Appendix B.2] (34) and the space time inequality (L),
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we get that for any 8 € [0,7)

|8;2J/)\m+1(,u7 st x, Z)(Vl) - 8l2l,ﬁm+l(u7 st x, Z)(V2)| (B62)

1 L et - )

< KE|V1—V2|ﬁ{( T +t—s/ (r—s§1+§—n dr ¢ g(c(t — ),z — )
! et —s)

< KE|V1 —V2|ﬁ{( )1 —|—/ T )172&8 )1+B”’ dr p g(c(t —s),z —x)

—s s t—r)l"2(r—s p

< Kg(!V1 1‘;2/3| { Z t—sk%H (— ——|—(z—1)g)}g(c(t—s),z—x).

k=1 i=1

In order to handle the difference (py 11992 Hum41(.)(v1)) (1, 8,8, %, 2) = (Pm 1@ Hun 11() (V2)) (11, 5, 8, T, 2),
we first remark that (B.406) together with (£34) and the space time inequality (I5) implies that for any

B €0,n)

02 i 115,70, 2) (V1) = O o (3,7 1,0, 2) (V)

1 1
S K5_|V1 - V2|ﬁ n B A B—=n
(t—r)"2(r—s)tz  (t—r)(r—s5)t—

—g)5 ot
X {1+‘€7};ﬁ(cg,r—s)(r—s)% —l—u/ ‘(o”,}iﬁ(cg,r’—s)dr’} glet—r),z —x).

t—r .

We then use the pointwise Gaussian estimate (£I4]) with n = 0 and the previous upper-bound. We also
split the time integral of the space-time convolution operator into the two disjoint intervals [s, (t 4+ s)/2]
and ((t + s)/2,t] as we already did in the previous steps and perform similar computations. Skipping some
technical details, we deduce that for any S € [0, 7)

(s © s (Y1) (115, 8:2:2) = (s © FHona ()(v2)) ot 5.1, 2) (8.63)
KE(J‘” )1‘;2! {1+Z (CHE(t—s kZﬁB(— —+( —1)2>} gle(t = s), 2 — ).
For the last two terms of the series (B.49]), we first claim that for any 3 € [0, 1]
|0uDm41 (1, 8, t, 2, 2) (V1) — OpPmt1 (1, S, t, 2, 2) (v2)] < K% gle(t — s), 2 — ).

The previous estimate is a direct consequence of [@E22) with n = 0 if |v; — va| > (t — 5)'/? or the mean-value

theorem combined with (@22) with n = 1 if |v; — ve| < (t — s)/2. Similarly, separating the computations
into the two cases [v; — va| > (r — 8)/2 and |v; — va| < (r — s)'/? and using ([B.4) with k =1 and n = 0 or
n = 1, we obtain

o1 — vo|”
(r—s) 22 —(=B3 (4 — y)L1-5'%

|8#Hm+1(,u7 5,7, ¢, T, Z)(vl)_a,u‘Hm+1(u, s, 1, t, T, Z)(v2)| < Kﬁ' g(C(t—S), Z_I>

for any S € [0, 1] and any 8’ € (0, 1].
Now, it follows from the two previous estimates as well as [£22) with n = 0, (B4) with k =1, n = 0,
B =1 and some standard computations that for any 8 € [0,7)

|(aupm+1(')(vl) ® aHHm-‘rl(')(Ui))(ﬂ? sty @, Z) - (aupm-i-l(')(U?) ® aume-',-l(')('Ué))(M, s, t, @, z)' (B'64)
+1Oppm+1(-) (V1) ® OpHmt1 () (01)) (1, 85 8, @, 2) = (OpuPm+1 () (V3) ® OpHomi1 () (v2)) (1, 8, L, 2, )|
<K [vi — val” gle(t —s),z — x).

(t—s)+3-m
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Gathering the estimates (B.62), (B.63) and (B.64) yields

‘(3ﬁﬁm+1(')("1) + Pt @ O Hon1 ()(V1) + D1 () (01) © pHam1 (+) (v7)
+aupm+1(')(vi) & a;L;L[N”Hrl (-)(")1))(,“, S, tv z, Z)

—(<aﬁﬁm+1<-><v2>+pm+l®62Hm+1<-><vz>+aupm+l )(v2) © D Honta () ()

(
+aupm+1(')(vé) ®au%m+l(')( Y, s,t, 2, 2 )
n—-pr

m k
s 35 o)
- 2 i=1
xg(c(t—s),z—x)

which in turn by (#I2) implies

> ((3ﬁﬁm+1(')("1) + Pt @ O Hun1 () (V1) + Fpupim1 () (01) © S Hama () (v7)

k>0
+0upm11() (V1) @ OpHmi1 () (v1))
— (0 Pm41()(V2) + Pmt1 @ O Hum1 () (V2) + aupm+1( )(v2) © O Hm1a () (vs)
01 () (0h) @ O 1()(v2) ) @ HILy (15,8, 2, 2)
SKE(JW%{ —I—Zl C'+ (t—s) k%ll;[l <— ——|—(Z—1)2>} glc(t —s),z — x).

Coming back to the identity (B.49) and using the previous estimate allow to conclude the proof of (B.52]).

O

Appendiz B.5. Proof of the second part of the induction step.

We here prove the second part of the induction step, that is, the estimates [@36]) and (@37 at step
m+ 1 under the additional assumption (HR ;). We importantly emphasize that in what follows we will use
the results established in the first step. In particular, we will use the estimates (Z30) to ([@35]) which now
hold for any positive integer m. Moreover, the estimate (B.5T) (with the choice CT = K as discussed just
after the statement of Proposition established in the third step of the proof of Proposition
now writes

’(3ﬁﬁm+1(')(V) + Pt @ OpHing1 (V) + (0upms1()(0) ® 8 Hums1) () (v) (B.65)

+ (aupm-i-l ()(U/) ® aH%m-‘rl)(v))(M? s, t, @, z)

0 (Ctt—s
< %g(e(t—s),z—;@

and recall that %,}lﬁl(ctt —5) < KT = limy, 00 €L0(CT,t — 5) < 00. As in the previous step, we first
need to establish some technical auxiliary estimates regarding the regularity of the coefficients, the Gaussian
kernel D41 and the parametrix kernel H,,+1 with respect to the initial measure p and starting time s.
We thus start with the following lemmas whose proofs are postponed to subsections and
The reader may want to skip their proofs in a first reading and jump to the more natural
and intuitive result stated in Proposition[Appendix B.2] which actually corresponds to the heart of the proof

of the second part of the induction step.
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Lemma Appendix B.3. For any § € [0,7), there exists a positive constant K;Jr such that for any

(s,2,v) € [0,t) x R x (RM?2, any r € [s,t), any u, i/ € Po(R?) and any (i, ) € {1,--- ,d}>
05l (1,2, (X)) = O (8 (X )]y (V)

m

02 by (t, 2, [X7OID)(v) = B2 (it @, [X5 D] ey (V)] (B.66)

< Kt WZ(Ma/J/)'B + (| ’ nn A 1)162 o 92 ’ o de’) du'
= g S 1. B-m Y _‘T| A )| ypm(uﬂ‘S?tax?y)(v)_ lu.pm(uvsutaxuy)(v”u( I’) Y )
(t_S)lJr 5 (Rd)2

|8;2Lﬁm+l(,uv 5,1, ¢, @, Z)(V) - 8;2J/)\m+1(:ulv 5,1t,, Z)(V)|

1 1
++ nel - - -
< KB {WQ(,LL, 1) <(t _ S)l_’_ﬂfn lpp=sy + (r— S)H_? 1{r>s}> (B.67)

2

/ / Y — & ALt 57,23 (V) — pm (i 5.7 o) (V)] lda’) dy'
t—T‘ (Rd)2 a K

x gle(t—r),z —x),

m

_ n
§K§+{Wg(u,u’)5(|x AL, . ) (B.68)

(t—s)T2  (t—s)t="

107 (2,3 (2, (X5 ]) = ag (82, (XS] (V) = 0] [ (e, [X790]) = i (b2, (XS] ()

+ <(Ix —2TA 1)/ 107 pm (1, 5,627,y ) (V) = Popm (1, 5, 8,2, ) (V)| u(da’) dy’
(RY)?
A / (Iy" = 2'|" A DO pm (s 5, t, 2",y ) (V) — Oopm (i 5, t, 2, ') (V)| pu(da’) dy’) }
(RY)?

102 o1 (1, 5,7, 8,3, 2) (V) — OpHga (i, 5,7, 8,2, 2) (V)|

++ "B 1 !
=Ky (WQ(“’“) {(t—r)(r—s) = A(t—r)lg(r—s)”g}

1
+ 71_2/ 107 pm (1 5,7,y ) (V) = Dopm (1 5,7, 2,y ) (v)| p(d’) dy’ (B.69)
(t—T) 2 (Rd)2

1
N /( d)2(|y' — &[T A D)0 (py 5,7, 2 Y ) (V) = 0o (1 5,7, 2y ) (V)| u(d”) dy’}
- R

=g I —x'|"A1>|aipm<u,s,r',x',y’><v>—azpm<u',s,r',x',y'><v>|u(dz')dy’dr'>
X glelt =), = ),

Lemma Appendix B.4. For any 8 € [0,7), there exist positive constants K[;H and c¢ such that for any
€ (0,T], any (u, 51,82, 2,9,2) € Pa(RY) x [0,)? x (R?)?, any v € (R?)?, any r € (51 V s2,t) and any

(Zv.]) € {L d}2

102 [az (2, [ X0 D) (v) = 92[ai s (t, 2, (X720 (V)

+ 02 by (¢, [X;H SN (v) — 92 (b (8, 2, [X70 ) (v)] (B.70)

B
S§1 — S22
< Kp {( Bt [ O A1t ) —aﬁpm<u,52,t,xﬁy/)(vm(dx’)dy'},

t—Sl \/82)1+ 2
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|8;2Li)\1yn+l(,u7 S1, 7, tv'rv Z)(V) - 8iﬁn+l(,u7 52, T, t,.I, Z)(V)|

B
< KTt 1= s2l> (B.71)
7 {(T—Sl\/sz)l-‘r%

1 t
ey I R A A R A e IO dr’}
(

r
x gle(t—r),z —x),
|8P2Li)\1yn+l(,u7 S1, tv'rv Z)(V) - 32%#1(% 52, t,.I, Z)(V)|
8
|s1 — s2|2

B
|s1 — s2|2
< K§+{mg(0(t —s1),2 —x) + TR gle(t — s2),2 — ) (B.72)

1 t
T i eV, / /(W('y/ — 2" A2 pm (1, 51,7, 2, Y ) (V) = oo (1, 52,7, 7'y ) (V)| p(da’) dy' dr’
s1Vsg

x g(c(t — 51V 82), 2 —x)},

02 [ j (toa, X705 — a8, 2, (XS] (v) = 02 ai (82, (X720 U]) = ag (2, (X725 ))] (v)

—z|"A1 1
SK;+{|S1—82|§<( |z~ 2| A ) (B.73)

15—81\/82)1-’_g (t—51\/52)1+¥

+ <(|'r - Z|’,7 A 1) / 4 |8ﬁpm(ua s1,t, .I/, y/)(V) - 3ﬁpm(,u, s2,t, .I/, y/)(V)| ‘U(dCC/) dy/
(R)?

A \/(1 d)2(|y/ - x/|77 A 1)|8ﬁpm(u7 51, tv xlv y/)(V) - 8ﬁpm(:u7 52, tv xlv y/)(V)| ILL(dZL’/) dy/> }’
R

|82Hm+1(,u7 s1,1,t, @, Z)(V> - 82Hm+1(ﬂa S2,T,1, T, Z)(V)|

8 1 1
<SKGT | s — 2|2 A . .
(t—r)r—s1Vs)T= (t—7r)"2(r—s; Vsy)lt=

1
+ 1—1 / |aipm(/147817r7 xluy/)(v) - aﬁpm(ﬂu 82,7', xl,y/)(V)“,L(d(EI) dy/ (B74)
(t - T) 2 J(R4)2

t—r

‘/( d)2(|y/ - :L-/|77 A 1)|aipm(ﬂu S1, T, xlu y/)(V) - aipm(ula 52,7, xlu y/)(v)| N(dff/) dy/}
R
1 t
e |, DIt )6) 0 )9 il dr')
- T R
x gle(t—r),z — x).

Proposition Appendix B.2. For any 8 € [0,7) there exist positive constants K[;H' and c¢ such that for
any (t,z,2) € (0,T] x (RY)?2, any s,s1,82 € [0,t), any u, ' € Pa(R%), any v € (R?)? and any value of the
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constant C;Jr appearing in the right-hand side of the estimates [£36) and (£37)

|82pm+1(ﬂa s, t,x, Z)(V) - aﬁpmﬂLl(,U/a s, t,x, Z)(V)|

i Wa(p, p')? ek T nn-=5_,. n
< K} m{ulg(cﬂ )t — s) 2EB<§,T+(Z—1)§)} (B.75)
x g(c(t —s),z —x)
and
|01 (ks 51,8, 2, 2) (V) = Oipmta (1, 52,1, 2, 2) (V)|
- L nn—B, . N
<Kit {1 + ;(O/}ur)k(t — 51V 55)"3 il;[lB (5, —— G- 1)5)} (B.76)

8 8
S1 — S2(2 S1 — 82|2
X {7| ! 2|Bfng(c(t—51),z—x)+7| ! 2|ﬁ7n g(c(t—SQ),z—aj)}.

(t—s1)1*52 (t—s2)' T

Conclusion of the second part of the induction step:
Similarly to the conclusion of the first part of the induction step, we set the constant C'EJF in the mth partial

sums €17 (C;"’, t — s) appearing in the statement of the Gaussian estimates [@L36]) and (£37) to be equal to
the constant K+ appearing in the right-hand side of the Gaussian estimates (B.Z5) and (B.76). In doing

so, from the above result and by the very definition of ‘Ki’fl(KgﬁL, t — s), we conclude that the estimates
(B15) and (B76) directly yield the desired estimates ([E36) and [@37) at step m + 1. We thus conclude
that the Gaussian estimates ([306) and ([@37)) hold for any positive integer m. This completes the proof of
the second of part of Proposition .11

Proof of Proposition [Appendiz_B.2. Step 1: proof of the estimate (B7H).
From the identities (B.49) and (#IT), it holds

3ﬁpm+1(%57tvl’»z)(v)
= 2]3m+1(/i, s, t,2,2)(V) + (Pmt1 ® 55Hm+1(.)(v))(u, s, t,x,2)
+ (0upm+1() (V) ® O M1 ()W) (1, 5., 2, 2) + (OuPm41 () (V) ® OpHin1 () () (1, 5,8, 2, 2)  (B.T7)

+ (02510 + pmss & 92 Hons1 ()(v)

+ 0uPm41(1)(0) @ OpHumr1 () (V') + 0upm+1(1) (V') @ auHm-‘rl(')(U)) ® ‘I’m+1) (1s 8,8, 2, 2).

We now investigate the Holder regularity with respect to the variable u of each term in the above
decomposition. First, from (B.67), (£36) at step m and the space time inequality (), we obtain

|07 Dms1 (s 5,2, 2) (V) = OpPmar (1, 5, 2, 2) (V)] (B.78)
1 1 tELB(CET r—5)
< ++ m 8 5 - B
i Kﬂ {(t_S)l-’_an =+ f— s /S (,,,._S)1+§—7] d?" WQ(,U/,,U) g(C(t 5)72 x)
K5 3 ) T nn=>. n
= e {1 +D(Ci -9 ] B (5, o 1)5)}
- ’ k=1 i=1

xWa(p, p')? g(c(t — s), 2 — )

for any § in [0,7). Next, separating the time integral of the space time convolution operator into the two
disjoint intervals [s, (t +5)/2] and ((t+ s)/2,t], we obtain from (B.45) (with 8 =0on [s,(t+s)/2] and B =1
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n ((t+ s)/2,t]) combined with ([@33)), the space time inequality (LH) and [{26) with n = 0 that

t
[ [ pmestisrio,) = a2, 10 M (5.t )W drdy— (B.79)
s JR
+
T N
T (t— s

for any 8 in [0,n7). Then, by splitting again the time interval as previously done, we can obtain with (£.14),
(B.69) combined with ([Z30)) at step m and the space time inequality (I.5), after some standard computations
that we omit, that

Wa(p, 1')? gle(t — 5), 2 — x)

t
/ / Do (5,72, 5) |02 o (1 8, 7,6,y 2) (v) — 02 o a (1 5,71, 2)(v)| dy drr - (B.8O)
K++

i nn—7p n
- A— ++ kg A SR N A
= )1+B ( +ZC Bt —s) i]:[lB(Z, 5+ ( 1)2>>

x W (p, ' )? g(c(t —5),z —x).

By symmetry, the third and fourth term appearing on the right-hand side of (B.ZZ) are handled by similar

arguments. In particular, from (B:24), (£27), 22) and (B4) with k = 1, n = 0 and 8 = 1, after some
standard computations that we omit, for any 8 € [0,7), we get

‘(@Pmﬂ(')(v) ® O Hn+1()(0) (1 8,8, 2, 2) = (Oppm+1() (V) ® OpHn1 (VW) (W, 5,8, @, 2)
+ ‘(5‘upm+1(')(vl) ® OpHm41(v) (115 8,8, 2, 2) = (OpuPmr ()W) @ OuHumr1 () (1, 5,1, 2, 2)
Ky
T (t—s)tEn
Gathering the estimates (B.78)), (B79), (B:80) and (B:&1)), we deduce
(0251 ()9) + Pinss © 92 Homsia (V)
1 (V0 © s V) + By (V0 © Bt (V) 15,8, 2)
~(92Br1OOO) + st @ O Mo ()(v)
0,1 (J0) © 0, o1 (V) + i (V) © 0, o (V) (5. 1,2,2)
K++

B - T — 5)kE _u o\
(t_S)Hﬁ {szlc k(t HB< 5t (i 1)2>}

i=1
XWQ(IUH H ) g(C(t - S)v z = .I)
which in turn combined with (£I9) and then using (B.65) with (B.25) imply

(B.81)

Wa(p, 1')? gle(t — 5), 2 — x).

2251 (YY) + 1 @ O2Hon 41 () (V) + (D1 (Y(0) © uHom1) (V)
+(aupm+1(')(vl) ®aume+1)(’U)] ® P18, t, 2, 2)

021 (V) + Prutr @ 92 M1 (V) + @ 1()(0) © FHans1)() (V)

)

HOupr1 (VW) @ O 1) (0)] @ B (5,1, 2)

k

K++ % n —
e (e s (315 )

k=1 =1
XWQ(H‘v H/)/B g(C(t - S)a z = I)
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for any 8 € [0,n7). Coming back to the decomposition (B.77) and gathering the two previous estimates
conclude the proof of (B75).

Step 2: proof of the estimate (BI6).

Let us first observe that if |s; — sa| > ¢ — s1 V s then (B.Z6) directly follows from ([@33). We thus
assume that |s; — sa2| <t — s1 V s2 for the rest of the proof. We again start from the identity (B.77) and
now investigate the Holder regularity of each term with respect to the time variable s. For the first term,
we combine (B72) with (@3T) at step m and the space time inequality (I.5). We thus obtain that for any

Bel0,n)
|ai]/5gn+l(uaslut7xaz)(v) - aﬁﬁn+1(ﬂ,‘92,t,$,2)(V)|

B
|s1 — s2|2

B
<K++{M b —s)z—q)y Pl
= ﬁ g( ( 1) ) (t—Sg)lJr@

(t— s1)1+ 5

N |51_52|§ /t (57}1’5(0;*,70—31\/52)
t— 51V s s1Vsa (’I”—Sl \/82)1-’_%_"

g(c(t — s2),z —x)

drg(c(t — 51V 82), 2 — a:)}

B B
SK;JF{MQ(C@—S;L),Z—,T)—F |Sl S2|2 g(C(f—Sg),Z—JJ)

(t—Sl)lJr@ (f—Sg)lJr@
+]s1—s |§/t G’ (C3 T =51V 52)
1 — 92
S

s (E— 1)1 R (r — 51V sp) T

drg(c(t—s1V s2),z— :C)}

k

s {1 Se st ITo (3257 v ) |

k=1 i=1

B 8

S 52| S1 — 89|22

X {ﬁg(dt— 81),2 —;U) -+ %g(e(t — 82),2 —.’L‘)} (B_82)
1 — 59

We now investigate the uniform Holder regularity of the map s — (pmi1 ® 92 Hmy1()(V)) (1, 8,1, 7, 2).
We use the following decomposition

(Pmt1 @ O Ho1 (V) (11551 V 82, 6,2, 2) = (D1 @ T Hong1 () (V) (15 51 A 82,82, 2) = T+ T+ 11T,

with

t
I:= / / [perl(,qul \/527T7x7y) _perl(,qul /\SQ,T,ZE,y)] 82Hm+1(ﬂa S1 \/SQ,T,t,y,Z)(V) dydT,
s1Vsa R4

t
Il := / / pm-‘rl(uu S1 /\SQ,T‘,(E,y) [85%777,4-1(”7 S1 \/Sg,’f‘,t,y,Z)(V) _aiHm-‘rl(uaSl A827T7t7y72)(v)] dyd7°7
s R4

1Vs2

and

s51Vsa
III := _/ / p’m+1(:uﬂ S1 /\527T7x7y) aiHm+1(:ua S1 /\SQaTatvyaz)(v) d’yd?"
s R4

1/\82

In order to deal with I, we first split the time integral into the two intervals [s1 V $2, (t + s1 V s2)/2) and
[(t+ s1V 52)/2,1] to balance the time singularity, then use the estimates ([Z28) with n = 0 and (B:45) (with
B=0o0n[s1Vsa,(t+s1Vs2)/2)and f=1on ((t+s1V s2)/2,t]) combined with (£33)) and the space time
inequality (LH) so that

B
|s1 — 22

(t—s )1+¥g(0(t_52>’2—1?)}-

B
[s1 = 82>
— o1
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To deal with II, we use (B.4), EI4) and (E3T) at step m. To be more specific, we again split the
time integral into the two disjoint intervals [s1 V so, (t + s1 V $2)/2) and [(t + s1 V s2)/2,t] as previously
done. For the time integral on [s1 V s2, (t + $1 V s2)/2), we bound the first term appearing on the right-hand
side of (B.74) which writes as a minimum by K |s; — o F(t— 1)L (r — 51 Vso) - gle(t — 1), 2 — x)
while for the second term which also writes as a minimum, we bound it by K;Jr(t —r)t f(Rd)2(|y/ -
' |" AV)|Orpm (s 51,72, Y ) (V) = 0o (1, 52,72,y ) (V)| dy' u(da’) g(e(t — 7), 2 — x). For the time integral

n [(t + 51V s2)/2),t], we bound the first term appearing on the right-hand side of (B74) by Kg+|sl —
52|§(t — ) I — 5 V 82)_1_§g(c(t — 1),z — x) while for the second term, we bound it by KZ,”L(t —
r)~its f(Rd)2 02 pm (1, 51,7, 2", 4" ) (V) = OZpm (s, 52,72,y ) (V)| dy' u(da’) g(e(t — r),z — ). For the third
term, in both cases, we use Fubini’s theorem. After some standard computations that we omit, we obtain

1 /t %,};B(C;"’, r— 81V S2) g
e - T
(t— 51V s2) 57 Jarves (E— 1) 73 (r — 51 V s9) 1T

X |81 — 82|Bg(c(t — 81 AS2),2—1x)

4+
| < K {

for any 5 € [0, 7).
We eventually deal with IIT by using (#14) and (B.45) with 8 = 0 combined with ([£33]) and the space
time inequality (LH). We get

V
|IH|§K+/Sl N ! — drg(c(t —s1 A s2),2 — )
sinss (E—1)(r—s1 Asg)t™2
n
51— 82|2
K+|7 c(t—s1Ns9),z—x
t_51v829(( 1/\ 52) )
51— s2%
<Kt ! 2 — g(c(t —s1 N s2), 2 — )

(t A 82)1+ 2
for any S € [0,n] where we used the fact that t — s; A s9 < 2(t — 81 V s3) for the last inequality. Gathering
the three previous estimates eventually yields

(pm-i-l ® ai%m—i-l()(v))(ua 51,%, 2, Z) - (pm-i—l 0 aiHm-l-l ()(V))(Ma 52, tu z, Z)’

B
|s1— 52|

B
|s1 — s2[2
SN { ot = sz =) (et = s2). 2 =)

+Kit|sy—s |§/t G (C4Tr =51V s9)
B 17— 92

sivss (t—m)173 (1 — 81 V sp) 1+ T

SK;JF{I—I—i(CgJF)k(t—Sl\/SQ HB <Q u"’( 1)3)} (B.83)

k=1

drg(c(t —s1 A s2),z —x)

|51 — 52|2

X {%Q(C(t —s1),z—x)+ s )1+ﬁ;" gle(t —s2),2 — x)} '

As for the previous estimate, the third and fourth term appearing on the right-hand side of (B.T1) are
handled by similar arguments. Namely, we first employ the decomposition

(OuPm11()(0) ® OpHmr1 (VW) (1 81 V 52,1, 2, 2) = (OuPmr1() (V) © OuHun 41 () (V) (1, 51 A 52,8, 7, 2)
=I+1II+1II
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with

t
I:= / / [6Mpm+1(M7 S1 \/SQ,T‘,ZE,y)(U) _aupm—i-l(/i, S1 /\Sg,’f‘,!E,y)(’l))]
s1Vsoy JRE

auHm-l-l (/1*7 s1V s2,T, tu Y, Z)(Ul) dy dT7

t
e [ [ o Aonrani
s1Vsy JRA

a H’m+1 M, S1 vV 52, T, ya Z)(’U/) - a,uHm+1(:ua S1 A 52,7, ta Y, Z)(vl)] dy dT,

s1Vsa
III := / / Opupm+1 (i, 81 A 2,7, 2,9) (V) Op Hmg1 (1, 81 A 2,7, 8, y, 2) (V') dy dr.
s R4

1/\s2

Then, it follows from [E29) with n = 0, (£22), (B12), (B4) with k = 1, n = 0, 8 = 1, the inequality
t—s1As2<2(t—s1Vs2) and some standard computations that we omit that for any 8 € [0,7)

8 8
I|< K+ 1= slT c(t—s1),z—x —|—7|Sl_$2|2
= K {(t—sﬂ“‘%‘ﬁg( ( ) ) (t—sz)l‘*‘%—n

ge(t — s2),2 — af)} :

B
51— 522

11} < Kg T 52)1+§—ng(c(t —$1AS2),2—1x)
and
51— 8|2
1| < K(t /\ )1+£7ng(c(t—sl A S3), 2 — )
— 51 59 2
so that

(OuPm11()(0) ® OpHmr1 (VW) (1 81 V 52,1, 2, 2) = (OuPmr1()(v) © OuHum 41 () (V) (1, 51 A 52,8, 7, 2)

B B

51— s2[2 51— s2[2
<KI¢{—""r—g(c(t—s1),2—2) + ——
’ {<t—sl>”§" (t = s2)1 57

gle(t — s2),z — :C)} . (B.84)
Following similar lines of reasonings, it holds

(OuPm11() (V) @ OuHm 1 (VW) (1, 81V 82,1, 2, 2) = (OuPmr1()(V) @ OuHun 1 () (v)) (s 51 A 52,8, w, 2)

8 B8

s1— s2|2 [s1 — s2|=
< KF |79(c(t— $1),z2 —x)+ ——m——
’ {a—sw%n (t—s2) 3

g(c(t — s2),z — 3:)} . (B.85)

Gathering (B.82)), (B.83), (B.84) and (B.85)) yields
|(82Pm 11 ()¥) + Pins1 © O Homsa ()(V)
+ 0Pns1 (V) © Mo i1 (V) + 0D (V) © O Hona (V) ) (31,1, 2)
= (021 OO + Pis © G ()

+ 0uPmr1 (1) (V) @ OuHim1 (1) (V) + Oppmir (1) (v) ® 5;»Hm+1(-)(”)) (1, 82,t, 2, 2)’

m k
<K {1 + 3 (O = 51V s2)E 1:[13 (g # + (i — 1)%) } (B.86)

k=1

B
Lﬁﬂﬂg(dtw)’z_@},

(t — 8)+72"

X {("91_782'79(0@ —$1),2—x) +

t— 51)1—’_%
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Finally, from a similar decomposition to the one employed previously, using the previous bound together
with (£19), then (B.65) with (BI5) and the inequality ¢ — s1 A s2 < 2(t — 51 V s2), after some standard
computations that we omit, for any 8 € [0,7), we obtain

(0251 ()W) + s © A in ()W)
+ 0Pnt1 (V) © OuHonis (V) + 0Pt (V) © 9 Hins1 (V(V)) © P (151,17, 2)
— (2P 1 O+ Prnts @ 02 Hon41) (V)

+ 0uPm11()(0) ® OuHm1()(V) + Oupmi2 ()(v') @ 8u7'[m+1(-)(v)) ® Prni1 (s 82,1, 2, 2)

m k
<Kt {1 +Y (CIt—sivs) T [[ B (g, T 5 . (i— 1)3)} (B.87)
k=1 =1
y Mg@(t_ s1), 2 —z) + Mgw_ s2),2— ) ¢
(= )5 | (t—s2)1 55" |

Coming back to the identity (B.77) and gathering the estimates (B.86) and (B.87) conclude the proof of
(B.74). O
Appendix C. Proof of the technical estimates of [Appendix Bl
Appendiz  C.1. Proof of Lemma [Appendiz_B.2

Step 1: regularity of the maps [0,t) x P2(RY) > (s, u) = bi(t, z, [th,g,(m)])’ a; ;(t,z, [Xf’g’(m)]).

We apply Proposition 23 with the density function (s, z, u) — pm(p, s, t,z,2) € C}’ZQ([O, t) xR x Py (R?))
and to both maps h(.) = b;(¢,x,.) and h(.) = a,;(t,z,.) respectively. Note that the regularity property es-

tablished in and the estimates (£.22), (L23), (£33), (£30) and ([LI4) ensure that the map

[0,1) x RY x Po(RY) > (5,2, 1) = pm(i,s,t,,2) satisfies the conditions of Proposition 23l In particu-
lar the estimate ([2.I0) is satisfied. We thus deduce that (s, u) — b;(¢,z, [th,ﬁ,(m)])’ a; (t,, [th,f,(m)]) €
Cp2([0,8) x Py(RY)).

Step 2: proof of the estimate (B.36)).

We start from the identity ([2.I5) in Proposition 23] applied to h(.) = b;(¢,x,.) and h(.) = a;;(t, z,.).
We deduce from the estimates [@22) (with n = 0), (ZI4) (with n = 1) and (@30), the uniform boundedness
and 7-Holder regularity of the maps [6b;/0m](t,z,m)(.) and [da; ;/dm](t,z, m)(.), [62b;/dm?](t,z,m)(v,.)
and [6%a; j/om?](t,z,m)(v,.) and the space time inequality (IF) that the estimate (B.36]) holds.

Step 3: proof of the estimate (B3T).

The identity (ZI5) applied to h(.) = a; (¢, z,.) and a; (¢, z,.) gives the decomposition

7
a [ai,j@, o, [X790) = aiy(t, 2, [X:’f’“”)n} (V)= dal;(v,m), v =(v,0),
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with
62ai 5%a;
1 L i, s,&,(m) 1o i s,&,(m) I
s || TG XD = o X )
52 s{(m) " 52@1] 5,€,(m) r
— |G (6 XD ) = S 5, X )|
Oum (i, 8,1, v, 2') @ Oupm (1, 8, 1,0, 2") d2'dz"
5 a; 5,&,(m 5 a; s m
sty = [ (G X)) - S X))
(R4)3

2
0°aq,;

. as,j 5,&,(m) oy 5,&,(m) ro
(20,2, [xp (2 - S ) )] )
Oum (i, 8,1, 0,2 ) @ Oupm (1, 8, t, 2", 2" (V") d2'd2" p(dz"),

om

dai; 5,6,(m ’ dai,; 5,6,(m
da;(v, ) ::/ {522 (o, X DE) = 58 02, X (0)
RA

om om

50471,' s,&,(m 6ai,’ s,&,(m
dai;(v, ) = / {552 (o, XD = S, [X] O ()
R4

= [0 12, D) = 2 (2, 1N @] 010 5,10, 20

60/2',' 5,&,(m
5 (1,2, XS D) 000 (5,80 ) @) 02

60/2',' 5,&,(m
|Gt X))

2
5(1”-

5 62ai,j 5,€,(m) 1o s 5,€,(m) ror
satyvn = [ (Gt DTSN ) - S o D)

5(1”

R ) - S e )]
Oupm (1, 8,1, 2,2 ) (V) @ Oppm (u, s, t,v", 2") d2" d2" u(dx'),
satyv) = [ {58 ) = S X))
’ (Rd)4 om? om?

6‘11 5,6,(m / 52(11’ 5,6,(m A7
|G (2 XS, ) = S (12, X (0| |

3upm(H7577’75072)(U)®aupm(%3:7’yf 72 )( )dZ dZ lu(dx//) ( )

60/2',' s,&,(m 5“1',' s,&6,(m
al,;(v, ) :/ {52 (o, D) = St XS @)
(R)2

om

60/2',' s,&,(m / 5“1',' s,&,(m / /A / / /
|5t XD = S (2 XS @) 30! ) (00 d ().

Now, the uniform 7-Holder regularity of the maps [da; j/dm](t,.,m)(.) and [62a; ;/dm?](t,.,m)(v,.) yields

60/7;7» 5,6, (m (50/1')‘ s,&,(m
|2 2, (X7 () = S (1, [ X)) (0)
5ai,j

sEm L Oli 5.6,(m) }
S (1,2, [ XN () - (2 (X))
<K (|z—a" A2 —v["A1)
< Ktz —al(|]2 = o] 270 AT

and
0%ai, s&(myp g my 0%ai sE(m) gt
dm2 (t,I, [Xt ])(Z ) % )_ dm2 (t,I, [Xt ])(Z ) & )
(52ai ; s.6.(m 52@1’ j 5,6, (m
(S 2 XS, 2 = S 2, X ()|

< KT|z— $|B’n(|z// _ x//|(175’)n A1)
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for any 8’ € [0,1]. It follows from the two previous inequalities as well as the estimates (£22]) (with n = 0),
(EI4) (with n = 1), (£30), the space-time inequality (LH) and standard computations based on Gaussian

kernels that
|z — x|f'

(C.1)
(t—s)!

6
> ldal (v, p)| < K},
=1

_(=pm
2

and

sal (ol K=ol [ (O A, )] el
R

Gathering the above estimates concludes the proof of (B.3T).

Step 4: proof of the estimate (B:3S).

We first apply the identity (ZI3) to the map m +— b;(¢, z,m) as already done in the two previous steps
in order to decompose the difference 97 [b;(t, x, [th’g’(m)])](vl) — 9a[bi(t, z, [Xf’g’(m)])](vz) as the sum of the
terms 6b¢(vy,va), £ =1,--- 7, defined by

1 0%bi 5,6,(m) 0% 5,6,(m) /
abivive) = [ S X ) — S S ) |
(R?)

|:896pm(/1’7 Svtavlv Z) ® 8xpm(lh S ta 1};7 Z/) - 8acpm(lh S ta V2, Z) ® 890pm(/1’7 5, t7 ’Uév Z/):| dz dzlv

6261‘ s m /
v = [T ) )
(R)3

[azpm(lu‘v S, t7 U1, Z) ® 8/1«p’m(lu‘7 S, t7 ‘Tlv Zl)(vi) - 8l‘pm(,u‘7 S, t: v2, Z) ® 8ll«p’m(,u‘7 S, t: xlv Z/)(Ué):| dZ dZ/ :u‘(dxl)7

ob;

5bz:'3(V17 V2) = / % (t7 z, [X:’E’(m)])(z) [auazpm(:u‘v s, t,v1, Z)('U;) - 8Hazpm(,u‘7 s, t, vz, Z) (Ué):| dZv
R4

5bz s m / !
v = [ B X6 [0:0p 50k 2)(00) 0Byt 15, 2)02) |
RrRd

5 52b;
0b; (vi,va) = L, (XS0 (2, 2
(v1,v3) /() D0 1, [ 2, )

[aﬂpm(p‘? ’57t7 .'I),, Z)('Ul) ® 8l‘pm(,u‘7 Svtv v’l: Z,) - 8/1«p’m(lu‘7 ’57t7 ‘T,7 Z)('Uz) ® 8l‘pm(,u‘7 Svtv 'Ué, Z,):| dZ dZ, :u‘(dxl)7

52bi s m
00 (vi, v2) = / ot b, X (2, 2) D 15,107 2)(02) © Do 31,07 ) (01)
(Rd)4

— Oupm (11, 8,t,2", 2) (v2) @ Opupim (1, 8, t, 2", z')(vé)} dzdz' p(dz")pu(dz"),

(5b1‘ 5,&,(m 5b1 s,&,(m /
7 (v1,v2) = / S X ) - e X E )
(R4)2

m

|:8;21,p’m(,u‘7 S, t: xl7 Z) (Vl) - aipm(lu‘7 S, t: ‘T/7 Z)(VZ):| dZ :u‘(dxl)

We then remark that the boundedness and uniform 7-Hélder regularity of [0b; /dm|(t, z, m)(.) directly yields

|66 (v1,va)| < K/ ) (lz = 2'|" A 1)|8zpm(u, s,t, ' 2)(vy) — 8ﬁpm(u, syt 2)(vo)| u(da')dz.  (C.2)
(R%)2
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Observe now that if [v; — va| > (t — s)1/? then we use the estimates [@I4), [E2Z) with n = 0, rewrite
§bl(v1,v2) as follows

52bi 5,6,(m ’ 52171 5,6,(m / rot /
8! (v1,v2) = / S XN - S . (X)) 2 00) [0 5,801, 2) @ Dep (1 5.£,04, ) d d
(RY)?

om? om?
52b7; s.€(m , 52b7, 5,6, (m / ro /
- / . {W(t7m7 [X; & ( )])(27:/: ) — W(t@m [X; & ( )])(27vz)}ﬁmp7n(u7s7t,v27z) ® Oupm (1, 8,t, 05,2 ) dzdz
(R4)

and then use the uniform n-Holder regularity of [§2b;/dm?](t, z,m)(z,.) and the space-time inequality (LH).
We thus obtain .
K+ _ B
St (va,va)l < < e =Vl
= (t—s)'72 (t =)+

for any /5 € [0, 1].

We eventually conclude that (B.38) is satisfied in the case |v; —va| > (t—s)/? by combining the previous
estimate with ([C.2). Let us now assume that [v, —va| < (t—s)'/2. Tt follows from the uniform boundedness
and n-Holder regularity of the maps [6b;/dm](t, z,m)(.), [62b;/dm?](t,x,m)(z,.), the estimates ([@IH) with
n =1, @I4), @31), @E22) with n = 0 and n = 1 together with the fact that [vq — va| < (t — 5)*/? which
in particular implies that |2/ — v||7 < |2/ — v4|" + v} — vh|? < |2/ — vh|" 4 (t — s)"/? and the space time
inequality (LA, that
[vi — va|”

6
166 (v, va)| < Kyt — Y21
; Tt— st

The above estimate together with (CZ2) concludes the proof of (B38) for 92[b;(t,x, (X5 (vy) —

02 (i, 2, [X; "™ D] (v2). The proof for 92[aq;(t,z, [X7S "™ )](v1) — 02[as; (t.a, [X) )] (v2) follows
from completely analogous arguments and is thus omited.

Step 5: proof of the estimate (B.39).

We start from the decomposition of Step & and establish an appropriate estimate for 5afﬁj (vi, ) —
5afﬁj(vQ,u), 0=1,---,7. We first apply (CI) for 8’ =0 and 8’ = 1 so that

6
S 180, (va, )| + [6at y(va, )] < K {

|z —z|"A1 1 }
A\
=1

t—s (t—s) 3
and remark that from the uniform boundedness and n-Holder regularity of da; ;(t,.,m)(.)
|6a’i7,j (V17 /'L) - 5%7,] (Vg, N)|

<K (lz = 2" A 2" = 2" A1) |2pm (1, s, t, 2, 2') (v1) — Oopm (1, 5, 2, Z/)(Vg)‘ p(dz')ydz'.  (C.3)
(R4)?

Combining the two previous estimates yields (B39) in the case |[vi — vo| > (t — s)'/2

that [vq — va| < (t — 5)'/2, we write

. Assuming now

5‘111,3‘ (Vi) — 5azl,j(V2, 1)

52ai i s,6,(m 52@1’ j 5,&,(m
= /(Rd>2{—5 (1, (XS 2 = S b X o)

m?2 m

520/1’ j s,&,(m 62@1' j s,&,(m
=[S o N ) = S b, D) )]

|:8Ipm(:u7 S, t? U1, ZI) ® al?p’m(:uv S, t? vllv Z”) - 8Ipm(:u7 S, t? V2, ZI) ® 8Ip77l(,u7 S, t? vév Z”) dzldzlla
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then use the uniform boundedness and n-Hélder regularity of the map [62a; j/dm?](t,.,m)(z’,.) together
with the estimates ([@I4), [@I5) with n = 1, the inequality |2” — v} |7 < |2” — vh|" + (t — 5)"/? and the space
time inequality (LH) so that for any 8 € [0, 1]

—z|"N1 1
Jal _ éal < gt lz=al —wl?.
| a‘ (Vlvlu) a’lj(v2’ )| = B { (t _ S)1+§ A (t — S)1+B§” |V1 V2|

The upper-bounds on the remaining terms, namely |6af ;(vi,u) — daf ;(va,p)|, £ = 2,---,6, can be
derived following similar lines of reasonings. Namely, using the estimates EI19), (E19), (@31), [@E22) with
n =0 and n = 1, recalling that €L°(C,t — s) < CL(C,t — s) = limy, 00 €L°(C,t — 5) < 00, as well as the
uniform 7-Holder regularity of the maps [da; j/0m](t,.,m)(z) and [62a; ;/0m?](t,.,m)(z, 2’), omitting some
technical details, we get

z—
Z|(5a (vi,p) — 8aj ;(va, )|<K+| lvi — val?.

(t — )i+

Combining (C.3) with the two previous estimates allows to derive (B:39) in the case |v; — vo| < (t — s)Y/2.
The proof is now complete.

Appendiz  C.2. Proof of Corollary [Appendiz_B.3

Step 1: smoothness of the maps (s,x, 1) — Doy 11 (1, 8,78, 2, 2), Po 1 (1, 5,1, 2, 2).

From Corollary A.1 in [CARF18], the two maps (s, z, ) — p2 1 (i, s,7,t,x,2) and pY, 1 (i, s,t,x, z) are
in C122([0,7) x RTx Py(R4)) and C122(]0, ) x R? x Py (RY)) respectively. According to Definition 2.4} it thus
only remains to investigate the L-derivative of second order and its joint continuity with respect to the vari-

ables s, x, ;1 and v to obtain that these maps belong to C3%2([0,7) x Po(R%)) and C32([0,t) x R x Py(R%))
respectively. This can be deduced from Lemma the estimates <|ES7 (B.40) together with
the dominated convergence theorem.

Step 2: proof of the estimate (B.41)).
From ({I0), (B:), the dominated convergence theorem and Jacobi’s formula, for any r € [s, t), it holds

8#5%1«%1(”’ 5T, ty Z, Z) (U)

= —% ltrace ((/T a(r',y, [Xj,’g’(m)]) dr') /T Aulalr’,y, [Xj,’g’(m)])](v) dr') —(z—x)" (/T a(r’,y, [X:;E’(m)]) dr’>
/ Aula(r’,y, XS] (v) dr’ ( / a(r',y, [X5 “’”])dr’> (2 — x)} PYi1 (s, 7t @, 2) (C4)

where

trace( / a(r',y, [ng(m)])dr') /8 [a(r',y, [ng(m)])]( )dr’)

(/ a(r’ y,[XS“m)])dr') LZ/ Bulacs(r,y, (X5 (v) dr’

R‘
,_.
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and
(z—x)" (/ a(r',y, [X :15 (m)]) ) / Oula(r’,y, [X:;f’(m)])](v) dr' (/ oy, [Xflé (m)])d ) (r—2)
- d — )" taT, 5:6:(m) r - ' a 5,€,(m) !
> -» (/ Tl D ) J, [ vt (x5 i)

([ ot pEeyar) )

From the previous identities, (B.40]) and the dominated convergence theorem, we obtain

825%1«#1(”7 S, T, t, z, Z) (V)

——%{trace([/:a o' (625D 0] 0, ([ ootz ) )

([ mixeona) [ e a)

= [ ol XSy [o,] ( / !, ) dr’) )] (€5)
([ ot pxepar) o

oo ([t ona) [ i o a
([ ot peear) o

oo ([t o a) [ i o i

®8M[ (/t o [Xs,fv(m)])d'f") 1}(0’)(;;_m)}ﬁnﬂ(u@nt,m,z)

(trace<</ a(r’ y7 f,g(m)]) ) /8“[a(r/,y,[ f/g(m)])]() )
(z — z) (/ a(r’ yy[Xé“m)])dr') /8u[‘1( Ly XS5 (0) dr!

(/ a(r',y, [X55™]) d ) (z—x))®aﬂﬁi’n+l<uysmt,m,z><v’>.

with the notations

trace( { /Tt Oula(r’,y, [Xj;f»(M)])](v) dr'} ® 0y [ (/Tt a(r',y, [Xj;&(m)]) dr') -t } (v

o ([ armixsna) [ a5 o)
= Z/Ta fac k(.| S“’"H)}(v)dr’@au[(/:aoﬂ',y,[ ey )1]&((@’)

k,f=1

i K/:“(’""y’ X ar >} [5 fara ',y XSV di,
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o [ 0ulat 7y7[XS“’")])](v)dr’®{%{( / !y, IS d )1]@')]
([ o peear) o

d —1

= > G Ol [Xiz“’")PK”)d’”'@a“[</: s DD dr > [

Jik, =1

x [(/ alr', g, (X5 dr >1<z—x>L,
(z— o) (/:awm 50 g )/a a3, (X5 )] 0) dr

@, (/<y (X)) dr )1}<v’><z ~ )

= > femar ([ a0t

kL

) ],
[8 k. y7[Xf“’">1>]<v>dr’®au[([ alr’,y, [X359)) d )1]M<v’><z—x>j

x56(m)

!

and

(z — )" </ a(r',y, [X55]) dr ) /ai[ 'y, (X535 D)(v) ar’

T
-1

/(r yy [XEE0) g ) (2 - z)

d

=2 [CRE) </ afr',y, (X)) dr >1L/:83[ak,e< Ly D)) dr

k=1

X { (/: a(r',y, [er/,.g,(m)]) dr') - (2 — J:)L.

The estimate (B.41]) now follows by combining the previous identity with (B.36), (B.3) with n = 0, (B.6)
and the space-time inequality ().

Step 3: proof of the estimate (B:42)).

Let us first observe that if |27 — 2| > (t — s)'/2 then the result directly follows from (B.4I) with r = s.
Assuming now that |z; —z3| < (£ — s)'/2, the estimate (B.42)) follows from the identity (C.5) combined with
([B36), (B2), the estimate [9,pY, 1 (1, 5,7, t, 2, 2)| < K(t—7)"Y2g(c(t —7), z — ) stemming for (LH), @22)

with n = 0, (BX)) and the space-time inequality (LE). The remaining technical details are omitted.

Step 4: proof of the estimate (B.43)).

The result follows again from the identity (C.5]) combined with the estimates (B.6), (B:27) with n = 0,
(B3), (B28) with n =0, (B:38)) and the space-time inequality (L5).

Appendiz  C.3. Proof of Corollary [Appendiz_B.j.

Step 1: (Sa :u) = Herl(lu‘v 5,1, ¢, T, Z) € 0.710)2([05 T) X PQ(Rd))
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It follows from Corollary A.2 in [CdRF18] that the map (s, ) — Hpi1(p, 8,7, ¢, 2, 2) is in CH2([0,7) x
Po(R9)). Tt thus only remains to focus on the L-derivative of second order and its joint continuity with re-
spect to the variables s, z, u and v to obtain that this map belongs to C’1 2([0,7) x Po(R%)). Tt can be deduced

from Corollary [Appendix B.2] Lemma | the estimates (IEI{I) and (B:40) together with the

dominated convergence theorem that each term appearmg in the expression of Hp,11(, s,7,t, z, z) given by
(Z11) belongs to C}’2([O, ) x Po(R?)) with a second order L-derivative being continuous with respect to the

variables s, z, pn and v. We thus conclude that the map (s, p) — Hpmi1(p, 8,7, t,2,2) € C}’Q([O, ) x P2(R%))
with continuous derivatives with respect to the variables s, x, u, v and v.

Step 2: proof of the estimate (B.43).

Then, in order to compute the L-derivative of second order of the parametrix kernel pu — Hop 11 (1, 8,7, ¢, 2, 2)
at step m + 1, we recall the following identity taken from the proof of Corollary A.2 in |[CdRF18], namely,
for any v € RY, it holds

8#Hm+1(lua s, 1, t, T, Z)(U) =: (I(lua S)(’U) + II(IUH S)(’U))Z/)\erl(,u‘v 5,1, ¢, T, Z) (06)
+ III(IUH S) 8,ul/)\m+1(,ua S, T, tv €, Z)(U),

d t
1(1,5)(0) = {—Z@L[bi(r,x, et ( [ at s x <’"1>dr’,z—x)}

+ { — ibl(r,x, [Xﬁ’g’(m)])aﬂ {Hi (/Tt a(r’, z, [Xf,’g’(m)])drl, z— 3:) } (v)},

x HE (/ta SE’(m)])dr',z—x>}

NS —

X O, [Hé’j </t a(r', 2, [ X5 (m)])dr’,z—x)}(v)},
III(p, s .:{ z:l: (r,z, (X2 M) Hi (/ a(r', z, [XS“’”)])dr',z—x)

d t
1 . s m
+ 5 Z (ai,j (Tv €, [Xﬁ7£7(m)]) = Q45 (Tv 2, [Xﬁf’(m)]))H;J (/ a(rlu 2, [Xr;gﬁ( )])drl’ T ZU)

4,J=1

so that for any v = (v,v') € R? x R?

827—[m+1(,u, s,rt,x, 2)(v) = (8#1(;1, s)(v) + 0, II(u, s)(v))ﬁm+1(u, s, t,x, 2) (C.7)
+ (L, ) (v) + I(p, 8)(v)) @ Qb (1, 8,7, 8, 2) (V)
+ 0P (i, 8,7t 2, 2) (V) @ O, I (p, s) (V')
+ II(y, s) (’ﬁﬁm“ (u, 8,7, t, 2, 2) (V).

We now estimate each of these terms.
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(1) Estimate on | (I(Na S)(U)+II(M7 S) (U)) ®6Mﬁm+1 (/1'7 5T, t? €, Z) (U/) |+|auﬁm+1 (/1'7 5T, t? T, Z) (U)®8MHI(N7 S)(Ul)|
in .

Note carefully that the estimate on the term (I(, s)(v) + IL(1, 8)(v)) Opbm+1 (1, s, 7, t, x, 2)(v') only involves
first order L-derivatives and can be derived easily by following similar lines of reasonings as those employed
to deal with the two terms I"(v) and II"(v) appearing in the decomposition of 03[0, Hm41 (1, 8,7, T, x, 2)](v)
in the proof of Corollary A.2 in [CdRF18], the only difference lying into the fact that it is multiplied by
pubmt1(p, 8,7, t,x, z)(v) instead of P41 (g, 8,7, ¢, x, z). Hence, using the estimate (B.3) instead of the stan-
dard Gaussian estimate on Dy, +1(u, 8,7, ¢, x, z), the same estimate holds up to a modification of the constant
(which does not depend on m) and a time singularity of order (r — s)*=/2 coming from the additional
L-derivative acting on p,,+1. We thus conclude that for any g8 € [0, 1]

(I, 5)(v) + (1, 8)(v)) @ DPrms1(t, 8,75 8, 2, 2) (V) (C.8)
< (ks 8) (V)| + T(p, 8)(V)D1OpPimt1 (5 8,7 8, , 2) (V')
Kp

<

1
1-(1-8)n 1—n g(C(t—T),Z—I),
—=  (r

—S)T

We then deal with the term 0, Dm+1 (1, 8,7, t, 2, 2)(v) ® 9, I11I(1, s)(v") by first observing that from its very
definition one has

OpuPm+1(p, s,m,t, 2, 2) (v) @ O I (1, 8) (V') = 8ubmt1 (1, 8,7, 8, 2, 2) (V) @ (I(u, s)(v') + (p, s)(v/)), (C.9)

(t =)= (r —s)

and then by using the fact that since our estimate are here uniform in the variables v and v’ these variables
do not play any particular role here. By doing so, we readily get that for any v, v’ € R? and any 3 € [0, 1]

KB ! i1 g(C(t—T),Z—,T).

|a ﬁmﬁ-l(ﬂasﬂTvt?x?Z)(U) ®0 HI(M? 3)(U/)| < n 1—(1—B8)n
' ’ (=)= F(r—s) =2 (r - 5)

(ii) Estimate on 0, I(w, s)(V)Dm41 (. 8,7, t, 2, z) in (C7). It holds

d t
Oy, s)(v) = — Z Hi ( / a(r’, 2, [ X550 )dr' | 2 — 3:) B2 [bi(r, , [X 5] (v)

—Za [ rya, [X56 <m>])} (v) ® 8, [H{ (/Tta(r z, [XS“’”)])dr',z—xﬂ )

- Zbi(r,x, [X260m)]) 52 [H{ ( / t a(r’, 2, [ X552 — xﬂ (v)

i=1

d ) t , s.€.(m , 5,6, (m /
_;au [H{ (/ a2, [X55 )])dr,z—xﬂ (v) ® D, [bi(r,x,[XT“ ’])] (v").

Note that for any map Pa(R?) > p + X (u) taking values in the set of positive definite matrix and being two
times continuously L-differentiable, one has

B2 (1))ij (v) = (X7 Hu )3 E( )Z (1)) (v) (C.10)
== (CT )i O (B () ks s (V) (E7 (1)) 5

k1,k2
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so that

=" (1)ig(v) (C.11)
= > (ET)iks OB (1) ks (v) @ Dy (B (1) kg ea () (E7 (1)) ey (57 (1) s

k1,k2,ks,ka

= > T )i O () e (V) (EH (1) g
> (T ))ik Ou (S0 s s (0) © B (S(00) (V)T (1) o s (B (1) 5

k1,k2,k3,ka

The above identity together with (B.6) and (B.36) yield
t
‘82 [H{ (/ a(r’, z, [XSE (m)])dr’,z —$>:| (V)‘ (C.12)

SK*{(t—J)Z(T__I'S)l 7 |:__f|// (Iy" =21 A1)I9 pm(u,s,r’,x’,y’)(V)lu(dfc’)dy’dr’}-
(C.13)

The previous estimate combined again with (B.6]), (B.36) and the space time inequality (ZH) eventually
imply

|8#I(/L’ S)(V)ﬁm+1(ﬂ,8,'r,t,x,2’)| (014)
K+t 1
T {(r_s)lg =AD"

t—r

t
[ 0= A ) ) dr’} glelt — 7).z ).

(iii) Estimate on [0,11(p, 8)(V)Dm+1 (8,7, t, 2, 2)| in (CH). We write

)
L i ([ £(m)
=3 Z HyY (/ a(r', z, [ X Ndr', z — x) 85 (ai7j(r,:v, [er,g,(m)]) —ai (r z, [er,g,(m)])) (v)

1
= Ih(p, 8)(v) + o, 8)(v) + M3 (s, 8)(v) + Ta(p, 5) (V).
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We deal with Iy (i1, s)(v) by using (B.37) and the space time inequality (LI so that

|111(,[L, S)(V)|ﬁm+1(u,s,r,t,x,z) (015)

1
+1. _ |8 - _ . 1(1=pB) 2 / ’
< Kglz -z "{(T_S)l(lﬁ)g +/(Rd)2(|y 2 TN |02p (5,7, ,y)(V)Iu(dx)dy}

x {'é:f)iJr ! }g(c(t—r),z—x)

<

(t —r)1=B3(r — 5)1-(-A)3

X {1+(7‘—8)1‘(1‘B)%/( d)Q(Iy—w'l(l"”"/\1)Iaipm(u,smx’,y)(vav’)lu(dw')dy} gle(t —r),2 — x).
R

Observe that the two terms Is(u, s)(v) and II3(y, s)(v) can be handled in a similar manner following
the computations provided in the proof of the estimate (A.15) of Corollary A.2 in [CdRF18]. In comparison
with, we have to take into account the additional time singularity of order (r — 5)(1=m/2 coming from the
first order L-derivative of the second order Hermite polynomial Hy? which is estimated using (C.I0) and
(B.6). We thus derive that for all 8 € [0, 1]

T2 (s, ) (V)] + M (12, 5) (V)]

|z — x| (|z—x|2 1 ) 1
< Kj — +
ﬁ(r—s)% t=r)? t=r) (-5

which in turn by the space-time inequality (L3 yields

(|IIQ(U7 S)(V)| + |II3(/La S)(V)|)ﬁm+1 (,ua s, 1, t, T, Z)
1

(t—r)l=P2(r—s)1=2-H2 glelt =),z — ). (C.16)

< Kj
We now deal with the last term IT;(z2)(v). From the very definition of H3? and (CII)) we obtain
P t
o2 [ ([ etz pxzeomar'z - o) | )
|Z - ‘le 1 ‘ 2 s,&,(m
: K{ ((t —5 ), e il 0w )
|z — x|? 1 t s fi(m
i <(t T Ty ( L i ‘a“[% (2 X))
¢
[ oyl 0z, Do) (©17)
b

Hence, using the estimate (B.36) of Lemma for the first term appearing in the above right-
hand side and (B.G) for the second term, the uniform n-Holder regularity of a(t,.,m) and the space time

inequality (L) give

[1Ls (2, )(9)| Bt 1 57,3, 2)
1 1
< K+ G n + n
= {(t—?~)1_§(r—5)1_§ (t—r)? =
xg(c(t —r),z —x).

t
/ /< d>2(|yl = 2| A D) (5,7 2y ) (V) () dy dr’}
T R
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Finally, gathering the various estimates on the terms IT,(u)(v), £ = 1,2,3, 4, we obtain

K+

(t—r)lfﬁg(rﬁ_S)k(l—mgg(c(t‘mz—x) (C.18)

|aHII(/’L7 S)(V) |ﬁm+l (/1'7 S, T, t? x, Z) S

x { (U =) O [ (0 35,72 ) ()

(r — S)k(lfﬁ)%

t
+(t_,r.)1—+(ﬁl)g/ /Rd)z(ly’ = @[T ADOpm (1, 5,77, 2y ) (V)] p(da’) dy’ dr’}-

(iv) Estimate on [1(p, s) 02pm+1(p, 8,7t 2, 2)(v)| in (CI). Tt follows from the pointwise estimate (B.41)

of Corollary [Appendix B.2] the boundedness of b; and the uniform 7-Hoélder regularity of a; ;(t,.,m) as well
as the space time inequality (L3 that

[TIT( 1, 5) 83]3,”“(#, syt 2) (V)] (C.19)
K+
< 7
T (t—r)"2(r—s)" 32
(r—s)t=2 [!
AU T [ ANt ) ) i g2 ),

Gathering the above estimates (C.g)), (C.10), (C14), (CI]), (CI9) and plugging them into (C.Z)) even-
tually gives (B.45).

Step 3: proof of the estimate (B48).

We come back to the identity (C7) and investigate the Holder regularity of each term of the decompo-
sition with respect to the variable v.

(i) Hélder regularity of the two maps v — (I(w, s)(v) + (g, $)(v)) @ Oubm+1 (i, s, t, 2, 2) (V') and v —
OuPmt1(, 8,7t z, 2)(v) ® 0,III(1, 8)(v').

Note that it can deduced from the estimate on the two terms I"(v) and II" (v) appearing in the decomposi-
tion of 9 [0p Hum+1 (1, s, 7, t, , 2)](v) in the proof of Corollary A.2 in [CARF1E&] that v — I(u, s)(v)+II(y, s)(v)
is continuously differentiable with

100 [L(1, ) (v) +T1(12, 8) (V)] @ OpPmt1 (s 8,78, 7, 2) (V")) (C.20)

< Kg olelt 1)z — ).
T (=) PR (r — 5)m(-B ’

where we also used the estimate (B.3) instead of the standard Gaussian estimate on Dy,+1(p, s, 7, ¢, z, 2) for
the last but one inequality. Similarly, using (B.3) with n = 1 and the computations employed in Corollary
A2 in [CARF18] to estimate I(u,s)(v) and II(k,s)(v), it follows that o' — (I(g,s)(v) + I(u,s)(v)) ®
OuPmt1(, s, 7, t,x, 2)(v') is continuously differentiable with

[L(p, 8)(v) + (1, 8) (V)] @ Op[OpPmy1 (s 5,7t 2, 2)] (V')
Kp
< -
(t—7)P2(r —s)

(C.21)

t— — ).
1*(12*6)n+17% g(C( ’I”),Z I)

1/2

We now distinguish the two cases |vi — vo| > (r — 5)1/2 and |v; — va| < (r — 5)'/2. In the first case, it
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directly follows from (C.8)) that for any 3, 8’ € [0, 1]

|(I(:u7 S)(vl) + H(,uv S)(vl)) ® aﬂﬁerl(:uv 5,1, ¢, , Z)(’Ull) - (I(:uv S)(UQ) + H(:uv S)(UQ)) ® aﬂﬁerl(:uv 5,7, ¢, T, Z)(’Uéﬂ

Kﬁ’ 1
< — —
S G = g it o)

[vi — v/

(t—r) =73 (r — s) T2

< Kg

Gy 9t —7), 2 —x).
2

In the second case, using the mean-value theorem together with (C20) and (C21)) imply that for any
B, B €[0,1]

|(I(/1'7 S)(Ul) + H(N‘? S)(Ul)) ® aﬂﬁm-l-l (/1'7 s, 1, Z)(Ull) - (I(Na S)(U2) + H(N‘? S)(U2)) ® aﬂﬁm-l-l (/1'7 s, 1, Z)(Ué)l

[vi — o
< Kg ctt—v).z—a
— ﬂ (t_,r)l_ﬂ/%(’r_5)3;77_(1_ﬂ/)% g( ( ) )
|V1—V2|ﬁ
= Kp iy 0(elt 1),z — ).
(t— )03 (r — )it B2 O

Gathering the two previous estimates, we conclude that for any 8, 8 € [0, 1]

|(I(M7 S)(Ul) + II(Mv 3)(“1)) by 6u1/7\m+1(/% s, t,x, z)(vll) (022)
— (I(/J,, S)(’U2) + H(M, 3)(U2)) ® a;ﬂ/g\m-l-l (/1'7 s, 1, Z)(Ué)l
V1 — va|
< Kg RSy 8)3%]7(17#3/)% glc(t—1),z —x)

lvi —vol?

(t—r)'=F'2(r - S)H@’

< Kg Ry glc(t —7r),z — x).

The Holder regularity of the map v — 9,Dm+y1 (1, 8,7, t, 2, 2)(v) ® 9,I(p, s)(v') is a consequence of the
previous estimates recalling the relation (C.9). We thus obtain that for 8, 8’ € [0, 1]

|8ﬂﬁm+1(ﬂa S, T, tv €, z)(v1)®8#HI(,u, S)(Ui) - 8,ul/)\m+1(lua S, T, tv €, Z)(UQ) Y 8#111(,“5 S)(’U/2>| (023)
Vi —va’

(t—r)'=F"2(r— s)”gf

< Ky oy 9(c(t — 1),z — ).
2

(i) Holder regularity of the map v — 0,1(1, $)(V)Dm+1 (1, 8,7, t, 2, 2).

From (B38), we directly obtain

i ([ o2 By 2 = ) (2RI, L) = 8 XSO )|

cgylzal] m-val? o o= a1 A D 102005, ) (2) = 25, 9) ) sy
=Pty (T_S)lJrB;" (R4)2 K i

From the identity (CI0), (B:27) with n = 0 and (B.) we get
¢
o, [n:tr Exz <) o0) 0, [ ([ atr' s, x5 a2 - 0] 00)
ks | ;
-9, [bi(r, z, [er,g,(m)])} (v2) ® 0y, {H{ </ a(r', z, [Xf}g’(m)])dr’, z— x)} (U’z)‘

|2 — 2]

S K+|V1 — V2|’8
A (t—r)(r— S)HQ*”
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and similarly
o [ ([ atr' 2. a2 =) | ) 90, [ P00 1)
=0, [t ([ a2 0 O part = 2] 02) © 4 st D25 00))] )

|2 — 2]

(t —r)(r —s)l+5-n

< K/;F|V1 —vy|?

It follows from the relation (CI)), (B:27) with n = 0, (B.), (B:38)) and the uniform boundedness of b;

bi(r, @, [X m>])[a2 [Hl </t a(r', 2, [X55 (m)])dr’,z—x)}(vl)—[)ﬁ[Hli </t (2, [ng(m)])dr’,z—x>}(vz)”

z —
< KF S |vi—val’ |
’ { <t—r><r—s>l+%-n

/ 182 ais (' 2 XS (1) — 2 laa (2, [Xiz“m)])](vzndr'}

t—r

z — x|
<KF{|vi—vaff | —
7 { (t—r)(r—s)”ﬁ

zZ—X
L lz=d / / (ly— P A1) pmw,s,r',xcy)(vl)—aipmw,s,r',x',yxw)m(d:c’)dydr'}.

t —r)?
Gathering the above estimates and using the space time inequality (LE]), we conclude
(010, 5)(v1) = (1, 9)(v2)] B (15,71, 2)
Jr
Kﬁ
T (t— r)% (r —s

(C.24)

= [vi —va|” + (ly = 2" AV 10ipm (1, 8,752, y) (V1) = O (11, 5,7, 27, y) (V)| p(da’) dy
)1+ (R4)2

T—S

|y /|77/\ 1) | pm(,u,s,r/,x/,y)(Vﬂ —8ﬁpm(,u,s,r/,x/,y)(vzﬂu(d:c’) dydT/}g(C(t—T),Z—I).

(iii) Holder regularity of the map v — 0,I1(1, 8)(V)Dm+1(p, s, 7, ¢, T, 2).

We investigate the Holder regularity of each map Il (u,s)(.), £ = 1,---,4, of the decomposition of
0, I1(p, s)(v) appearing in Step 2.
From (B39), for any 3 € [0,7), we obtain

z—x|? z—zx|"
ISR (= FSE (TS XUV

X {|v1 —vol? + (r — S)1+§ /
(Re)2

B—mn
+(r— )tz /(Rd)Q(Iy —a'|TA 1) ’ pm (s 8,7, 7" y) (Vi) — 8ﬁpm(uvs,r,x’,y)(\f2)’u(dx’)dy}-

Epm (i, 8,72, y) (Vi) — 0o (p, 5,7, 2, y)(Vz)’ p(dz") dy
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From the relation (CI0Q), (B2T) with n = 0, (BI17) with n =0 and 8 = 1, we obtain

}(% {H;] (/Tt a(r’, z, [Xf,’g’(m)])dr', z— x) ] (v1) — Oy {H;J (/Tt a(r’, z, [Xf,’g’(m)])dr', z— x) ] (’1}2)}
%100 (s (1, [X0D]) = g (r, 2, (X240 ) (v)

B Ak A ek W (St
TP ()2 t—=7r)J (r— s+

From (BI7) with 8 = 1 and n = 0 if |v; — va| > (r — 5)'/? or with n = 1 together with the mean-value
theorem if [v; — va| < (r — 8)'/2, we deduce that for any £ € [0, 1]

90 (a0 [XE0)) = i 2, (XS0 ) (1) = By (s, [XEO)) = iy (2, [X2E0M))) ()|

z—x|"
| 1|+_,3|111—U2|B

< Kjp
(r—s)—=

which in turn, combined with (CI0) and (B6]), yield

Oy (ai,j(rv% (X280 — a4(r, 2, [Xﬁ’g’(m)])) (v1) — Oy (am'(ﬁ z, [ X35 M]) — a5 5(r, 2, [Xf’g’(m)])) (v2)

.. t
X ’(% {H;] (/ a(r’, z, [er}g’(m)])dr',z - x) ](vl)’
— x|?tn — x| — o8
(e

(t—r)? (t—r) T—S)l-’_%.

Gathering the two previous estimates, we obtain

L2 (2, 8)(v1) — a(p, s)(ve)| + [Hs(p, s)(v1) — Ha(p, s)(va)]

e, [Pt e —al”) v vol
B G R0 NPT

From the relation (CI1)), (B:6), (B:27) with n = 0, (B:38) and then the uniform n-Holder regularity of
a(t,.,m), we get

L, 8)(v1) — a(p, s)(v2)|

< K+ |z — z**7 T |z =" |vi—wvo/
P (t-1)2 t=r J (r—s)+5-n

= aPt  ealt) [ s 3002, X6 :
r { BT BRI [ 020 0,2 I DIn) = 08l 07 LX)

T/
< K+{|Z—$|2+" n |Z—$|"} [vi — ol
< Ag

(t—r)? t—r (T_S)l—k@
[z =P Je—af) [
+Kg { G—rF =) Rd(ly — 2 [T A [0 pm (s 5,7, 2 y) (Vi) — Fapm (s, 5,77 2 y) (va) | p(da’) dy dr”.
Collecting the estimates on |IIy(p, s)(v1) — ILe(p, s)(v2)|, £ = 1, - ,4 and using the space time inequality
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(T3, we obtain

‘ [6MII(/J‘7 S)(Vl) - aHII(M7 3)(V2)]ﬁm+l(ﬂ7 5,7t T, Z)‘ (025)

S K;{ 7771 B N ! B—=n }
(t—r)t=2(r—s)tz  (t—r)(r—s)t—=

B
X {Ivl —volf 4 (r—s)' "2 / o ‘fﬁpm(u,s,r, ) (vi) = Oopm (5,7, 2" y) (Vo) | p(da’) dy
R

Bfn
+(r—s)tt / (Iy' :vl"/\l} 2 Dm (1 5,758 y) (V1) = Onpm (1, 5,7, 2, y) (va)| p(da’) dy
]Rd2

v / | == ane pmw,s,r’,x/,y)(vn—aﬁpmw,s,r:xﬁy)(vQ)m(d:c’)dydr’}
x gle(t —1),z — x).

(iv) Holder regularity of the map v = |11(y, s) 0% P11 (p, 5,7, L, x, 2)(v)]. Tt follows from the Holder regular-

ity estimate (B.43)) of Corollary [Appendix B.2] the boundedness of b; and the uniform 7n-Holder regularity
of a; ;(t,.,m) as well as the space time inequality (L35]) that for any 8 € [0,7)

|HI(M7 S) [az]/g\m-‘rl (/1*7 s, 1, Z)(Vl) - aﬁﬁm-l—l (/1'7 5,7, T, Z)(VQ)H (026)
K+

(r —s)
1
x{ + P
X gle(t—r),z—x)

Gathering the above estimates (C22), (C23) (both with 8 = 1), (C24), (C25), (C26) and plugging
them into (C.G)) eventually gives (B.40]).

Appendiz  C.4. Proof of Lemma [Appendiz_B.3

|y - ‘r/|77 A 1)| pm(luﬂ 8, T/a I/5 y/)(vl) - 8me(U7 5, Tlv xlv y/)(V2)| /L(dz/) dy/ drl}

Step 1: proof of the estimate (B.66).

We first observe that if Wa(u,p’) > (t — 5)'/? then the result directly follows from (B.36) combined
with ([@33) and the space time inequality (ILH). We thus assume that Wa(u, u') < (t — s)'/2 for the rest of
the proof. It now follows from the identity ([2I5) applied to the map m +— b;(t,z,m) that the difference

92 [bi(t, x, [Xf’g’(m)])](v)—aﬁ [bi(t, x, [Xf’g’(m)])]m:#, (v) writes as the sum of the terms §b¢ (1, p'), £ = 1, -+ , 7,
defined by

1 no_ 62171’ s,€,(m) / 62b1 s,6",(m) /
5bl(ﬂ7ﬂ)7 4 W(t7x7 [Xt ])(272) 5m ( 5 7[X ])(272)
(R)2

O (11, 8,1, v, 2) @ OuDm (1, 8,t,0", 2') dz d2’

62bi s,&",(m) ’ 62bl 5,6’ ,(m) /
S X ) = g [ )
(R4)2

|:8me(111‘7 S, t: v, Z) ® 8l‘pm(,u‘7 S, t: vlv Z,) - 81p’m(,u‘/7 ’57t7 v, Z) ® 81p’m(,u‘/7 S, t: 'Ul, Zl):| dZ dzly
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2 / 52b; 5,€,(m) N 07D 5,6, (m) /
5b1(lu‘mu‘): |:6m2(t7x7 [Xt ])(272)_ (t7x7 [Xt ])(Z,Z):|
(Rd)a

om?
896pm(/1’7 5, t? v, Z) ® 8Hpm(/j’7 S5, t? I/7 Zl)(v/) dz dzl /J/(dZC/)

52bi s,6",(m) /
+ 5m2 (t7x7 [Xt ])(272)
(R)3

{E)acpm(u7 5,4,0,2) @ Oupm (1, 8,, 2,2 ) (V') — D (1, 8,8,v, 2) @ Opupm (i, s,t, 2", 2" ) (V') | dzdz’ p(dx")
52bi s,6",(m) /
+ t,x, [ X, " 2,2
/(Rd)s oD o X )z, 2)

azpm(/"L/7 S, t: v, Z) ® al‘«pm(,u‘lv S, tv xlv Z/)(U/) dZ dZ/ [,U, - lu/] (d.’l}l)7

/ 5bz s,€,(m 5bz s,&,(m /
) = [ [ 500 [XTSN) — SEE 0 XS D] 0,0t )0
R4

(Sbl s.&' . (m i / !
[ B XS D) [0 2)0) = 05,80, 2) )]
R4

’ 6bz s,6,(m 61)1 s,&",(m ’
0b (') = / St (XS (2) = St [ )(2) | 000, (15,0, 2)(0) d2
Rd

ob; 5,&",(m ’ / ’
[ B X ) [0:0u0 58, D0) = 0By o5, 0]
Rd

5 ’ 621)1 s,&,(m) / 62b1 s,&",(m) /
W)= [ | S X)) - g [ ) (2,2
(R2)3

Oupm (5,8, 2", 2) (V) ® Oapm (11, 5,t,0", 2") dzdz’ p(da’)

5°b; 5,€",(m) /
+ u 5m2 (t7x7 [Xt ])(Z7Z)
(R4)3

[aﬂpm(p‘? S, t7 .'I)/, Z)('U) ® aIp’m(,u‘v S, t7 vl7 Zl) - al‘«pm(lu‘/v S, t: xl7 Z) (U) ® azpm(lu‘/? S, t7 vlv Z/) dZ dZ/ :u‘(dxl)

52bi s,&",(m
+/ 5m2 (t,l}, [Xt . )])(Z7Zl)aﬂpm(,u‘l7S7t7xlvz)(v) ®8€L‘pm(lu‘/737t7vlyzl)d2dz/ [lu‘_:u‘l](dx/)7
(R%)3

6 no_ 52b2 s,&,(m) ’ 52b2 s,&",(m) ’
5bz (:u‘7:u‘) - Sm2 (t,:l}, [Xt ])(sz)_ Sm2 (t,:l}, [Xt ])(sz)
(R4

Oupm (i, 8, 8,7, 2)(0) © Oupm (p, 5,8, 2", 2") (V') dz dz" p(da’) p(dz”)
5271 s,¢,(m
+ / St (2 DX ) (2,2 [0, 5,68, 2)(0) © Oy (5,2, ) ()
(Re)s O
— Oupm (W, 8, 8,27, 2) (V) @ Oupm (W', 5,8, 2", Z')(v')} dz dz' pu(dz") p(dz")
52bi s,¢",(m) ’
+ tox, [ X, 2,2
Lt e

(5,4, 2)(0) @ Dups (4 5,1, 2", ') () dz d2” [u(da)u(da”) — i (da )i (da”)),

7 N db; 5,6,(m) db;
= [ [free o - 5

(82,17 )(2)| G 5,2, 2)(v) de (e

6b; 5,€,(m) _ 0bi s, (m)7y (- }
" /() (52 (, [X ) 2) = 32 (1, (X7 ) )
[8me(u, st z)(v) — Bipm(,u/, st z)(v)} ,u(d:c’) dz

5bz s,&",(m
+ / S (62, (X7 ) (2) 0o (s, 1,0, 2) (v) dz [0 — ) (da).
(®d)2 O
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Let us recall from the proof of the estimate (A.45) of Lemma A.2 in [CdRF1g] that if A : P(RY) — R
has a bounded and continuous linear functional derivative such that [6h/dm](m)(.) is uniformly n-Ho6lder
continuous then for any § € [n, 1] one has

(XS 0) = R(XTE )] < KW

The above estimate is established in M] for the map m — a; ;(t,2,m) but the argument works,
mutatis mutandis, in this general form. In particular, for any /3 € [n, 1], it holds

0b;

8b; s .

8 e~ e, 1 o
O 56,4 0%b; 5,6’ ,(m Wo(u, i')?
+‘5m2(t7$7 (X200 (2, 2") — = (t, 2, (X)) (2, 2) §K++M

om? (t—s)="

It should be noted, however, that since Wa(u,u') < (t — s)'/2, the above estimate holds for any

B € [0,1]. Now it follows from (C27) together with (Z26), ([@I4), the uniform n-Holder regularity of
[62b; /6m?](t, x,m)(z,.) and the space time inequality (LH) that

W. "B
100 (e, )| < R 22l 1) MB),N :
(t—s)tt7 2

Similarly, from the boundedness of [62b;/dm?], (C.27), (EI4), [E22), [E26), (@27), the inequality

62bi 5,6, (m
[ St X O )0 (. 5:0,2) © [0y 45,1, V) = By 85,8, 2) (0] d
(RT)?

2" —y|”

< K7M,
(t—s)tt—=

B elo,1],
stemming from the estimates ([@24) and ([@I4), we deduce

AY:
(062, )| < FeH+ V2 )7
7 B—=n
(t—s)'*

From (C27), (E30) and ([&3T)), we obtain

Wa(p, 1)
3 / 4 / ++ 2
|5bi(ﬂaﬂ)|+|5bi(ﬂvﬂ)|§Kﬂ m-

We deal with 667 (u, 1') using (C27), @I4), (E22), E26), (E27) and the inequality

52bi 5,¢",(m
| /( o G XEE D) Db 5.8,072)(0) = O (1 5,4,y 2) (V)| © Do (b 5.8,0', ') dz
Rd)3

2" —yl°

<Kt —0r,
(t—s)t+—=

B el0,1],
stemming from (£I4) and ([£24]). We obtain

Wa(p, p)°
62 (py )| < Kt —=2 2
1067 (1, )| < K g (= oy
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We handle 6b9(p, 1) in a similar manner. First, it follows from (@22) and [@24) that the last term
appearing in the decomposition of 6b%(u, u') satisfies

[ St L a2

dy4 5m2

Oupm (1 5,1, 2, 2) (V) @ Oupm (', 5,8, 2", 2") (V) dz d2' [p(da’ ) pu(da") — p' (da” ) (da”)]

< K+ WQ(Na MI)'B
- (t— 3)1+§*’7'

for any 8 € [0,1]. Then, using the above estimate together with (C.27), (£22) and ([£2ZT), we obtain

Wa(p, 1')°
6 < ++ 2 ) .
|6bz ([L,,LL )| K (t )1+B n
Finally, from (@335), recalling that €57 (CT,t — s) < K = limmteo €57 (CF,t — 5) < 00, we deduce
that the last term appearing in the decomposition of db7 (i, u') satisfies

Wa (p, 1')?

<K* -
(t —s)+="

6bi 5,&"(m
[ o DXE D) 3,120 = o )

for any 3 € [0,n), while the first term is handled using (C.27) and (£33)), recalling again that €5°(CT,t—s) <
KT < 00, so that

Yy

We finally remark that the boundedness and uniform n-Hoélder regularity of [0b; /dm](¢, z, m)(.) directly
implies that the second term satisfies

0b;

! ’ 5
(X ) )| 25,2, 2)(v) dz () Walw )7
m

<Kt .
T (t-s)tE

X5 ()~

5bi 5,6",(m 6[)1 5,6",(m
| /() [ o, X)) (2) = S, (XD @] |02, 4,07, 2)(V) = 2o (05,107 2) (V)] mlda’) d

< K/ (Iz = 21" AD)Ogpm (s 5., 2", 2)(V) = Oppm (i, 5., 27, 2) (V)] p(da’) dz.
(R)?

We conclude the proof of (B.GG) for 97 [b;(t,x, [Xf’g’(m)])](v) — O2[bi(t, x, [Xf’g’(m)])]m:#/ (v) by gather-

ing the above estimates. The difference 97[a; ;(t, , (X5 (v) — a4t [Xf’g’(m)])]wzul (v) can be
handled in a completely analogous manner. The proof is thus omitted.

Step 2: proof of the estimate (B.6T).

The strategy is clear inasmuch one starts from the identity ([C.5) and has to quantify the regularity with
respect to the variable p of each term. We first note that from the mean-value theorem one has for any

B €10,1]
1

([ otz ar )—(/ ol X ar) |

<t / max fai g (', 4, [X55V]) = a0, (X5 )

(
Wa(p, ')° 1 /
=k (t—r)? /r (r’—s)g i
< KWa(p, p')? <ml{r—s} + ml{r»}) (C.28)
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where we used the estimate (B.I18)) inside the time integral if Wa(u, u’) < r’ — s or the boundedness of a; ;

otherwise. Similarly, from the identity (C.I0), the above estimate, (B.6) and (B:27) with n = 0, we get that
for any 3 € [0, 1]

‘aﬁ[ ( / t a(r’,y, (X550 dr’)

-1

Jo - o[ ([ ot bzpar) ] )

1
< KiWa(p,p)? <

[ .
(t— S)WT*TI {r=s} (t—r)r—s) ESE {r>s} | -

Then, we use the identity (CH) together with the two above estimates, (B-66), (B:36]) (combined with
(@33) and the space time inequality (LH)), (B:6), (B19) and (B27) with n = 0. After some standard

computations that we omit, we obtain

|8;2J/)\m+1(,ua s, 1,1, , Z)(V) - aﬁﬁerl(:u‘/a s, 1t T, Z)(V)|

1 1
< KW Ay _ I
> Kﬁ { 2(:“'7” ) ((t _ S)lJrﬁg" 1{r75} + (T‘ _ 8)1+B;" 1{r>s}>

t
/ /Rd)2(ly’ — 2" A D)2 (1, 5,7 2y ) (V) = 2o (1, 5,77 2y ) (V)| (da’) dy’ dr’}

1

t—r

+

x gle(t —r),z — x).
Step: 8: proof of the estimate (B.6S).

We first remark that if Wa(u, p') > (t —s)'/? then the result directly follows from (B.37) with 5’ = 0 and
B = 1 combined with [#33)) and the space time inequality (LH). We thus assume that Wa(u, p/) < (t —s)*/?
for the rest of the proof. Similarly to the proof of (B.66]), we apply the identity (ZI5) to the map m —

a; ;(t,z,m) and write the difference 82 [a; ;(t,x, [th,g,(m)]) —a; ;(t, 2, [Xf’g’(m)])](v) —Bﬁ [a; ;(t,z, [th,g,(m)]) —

a; ;(t, 2, [th,f,(m)])]wzu/ (v) as the sum of the following terms

1 5204',]' 5,&,(m) ro_n 52@1’,]’ 5,§,(m) i
,Iyivj = Sm2 (t7 T, [Xt ])(Z ) % ) - Sm2 (t7 2, [Xt ])(Z y % )
(R9)2

2
1) QAs,j5

52(11" s & (m .
— ( 5m2’] (t7137 [)(t’5 »( )])(2’72//) _ 52 (t,Z, [Xt &5 ( )])(ZI,ZH))}

896pm(/1’7 5, t? v, Zl) ® 8$pm(lj’7 S t? U,7 Z”) dZ, dZ”

6%ai; wt )y oy 000 S € (m)y
B b XN ) - S 5 X ) |
(R)?2

{E)acpm(u7 5,4,0,2") @ Oupm(, 5, t,0",2") — Oupm (i, 8,t,v,2") @ Oupm (', 5,t, 0, z”)} dz' dz"

2 5204',]' 5,&,(m) ro_n 52@1’,]’ 5,§,(m) i
,I;'VJI = Sm2 (t7 T, [Xt ])(Z y % ) - Sm2 (t7 2, [Xt ])(Z y % )
(R)3

62@1’,' s.£ (m 620,,-'- o
- (G o XSG = T N ) |

Oum (i, 8,1, v, 2') @ Oupm (p, 8, t, 2", 2" ) (V") d2’ d2"" p(dx")

62‘11' j 5,67, (m) ron 620/1‘ j s,&",(m) 1o
s (S NG - S X))
(R)3

|:azpm(/l, ’57 t7 'U, Zl) ® al‘«pm(lu‘? ’57 t7 ‘T/7 Z”)(U/) - azpm(/"L/7 '57 t: 'U, Z/) ® 8ll«p’m(,u‘l7 ’57 t: xlv ZN)(UI):| dZ/ dZN :u‘(dxl)

62@1" ¢, (m) o 620/1‘ j & (m) o
+/ {5t 2 O 2 = S 2 X ) 2 )
(R)3

Oupm (1, 5,t,v,2") @ Oupm (1, 5, t, 2", 2" ) (V') d2’ d2" [u — p'](dx"),
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60/2',' 5,€,(m / 5‘11',' 5,€,(m /
1ty o= [ {5 ) - 2 )2
R

6(11',’ s,¢,(m 6ai,’ 5,8 (m
(52 D) = S (k2 XD ) 00 1t 0, 20 2
6(11',’ s,¢,(m 50471,' s,¢,(m
+/{ 8 (1, (X7 — S (1, (X0 O () }
(041002115 8,0, ) = Buldpin(h 51,0, ) '

50,1'" 5,6, (m ’ 5(17;7‘ $,€,(m ’
1y o= [ {5 ) - S )2
R

6(11' j s,¢,(m 6ai,’ s,&,(m
(52 7N E) = S (2 XD ) JO0ulOupm 8,0, 2 (0) 2
dai; s.€ () _ 0% 5.0 (m)7y (1 }
# [ {GE e ) - G e e )

(00101138, ) (0)] = Bulpin(h 31,0/, ) )] ) '

1= [ {50 e ) - R (xS, 2
7 (Rd)3 om? om?

5
Oupm (p, 8,6, ", 2" ) (V) @ Oupm (1, 5,t,0", 2" ) d2’ d2"" u(dx")

52‘11' j 5,67, (m) r o 62‘11' j 5,67 ,(m) ron
s G e e e - S s ) )
(R4)3

(Szai,- s (m 52(11-,- e m
- (T o TG - T T E ) |

(@me(u’ s,t,2",2") () ® Oupm (i, 8, 8,0",2") = Bupm (W', 8, 8,27, 2) (V) @ Oupm (1, 5,1, 0, Z")) dz' dz" p(dx")
(Szai,- s & (m 52(11-,- .
i / G e ) - S X
(R)
8Mpm(/1//7 s, 1, 3,7 Zl)(v) ® 8acpm(//7 s, t, U,7 Z”) dz' dz" [/1/ _ M’](d:c/)7

6 62ai,j 5,€,(m) ron 52‘“;3' 5,€,(m) I
Ti;j = Sm2 (t7 T, [Xt ])(Z y % ) - Sm2 (t7 2, [Xt ])(Z y % )
(R4

52@1’,' s,¢,(m ron 62@1’,' s,&,(m /i
(St NG ) = S 2, X)) |

Oupm (1, 8,6, ", 2) (V) @ Oupm (1, 8, t, 2", 2" (V") dz d2’ p(dx") p(dz")

52@1’,3’ 5,6, (m) U 62ai:j s,6",(m) ron
i dy4 { om? (t7x7 [Xt ])(Z 2 ) - om?2 (t7Z7 [Xt ])(Z 4 )}
(R?)

(@‘pm(”v s, t,",2)(0) @ Oupm (i, 5,1, 2", 2") (V) = Oupm (W', 5, 8,27, 2) (V) @ Dupm (W', 5,8, 27, Z')(v')) dzdz’ p(dz") p(da’)
52@1’,3' 5,6, (m) rn (52(11-,3- s, (m) ;o
+/(Rd)4{ 5 (b [X; D27 = 550 (8 2, (X (.2 )}

D (11,5, 1,2", 2)(0) © Bypr (s 5,1, ", 2) (') dz d' [pu(da” Yu(da') — p (da )y (da')],
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om

= [ G e e ) - s ) )
(RY)2 om

5(11'" s,&",(m ’ 5042',' s,¢,(m ’ r / ’
— (5L, 167N = S 2, XN ) s, ) () 2 )

5041',' s,¢,(m / 5(11',’ s,&,(m ’
[ S e - S s )
(R9)2

om
50471,' s,&,(m 50471,' s m
(2 D @) - FL a2, (X @) |
(02015, 8.5, 2) (%) = Do (01,07 2 (¥) ) ' ()

60’2'»' 5,6 (m ’ 5“1',' s,¢,(m ’ ’ ro ’ ’ ’ ’
+/d {52 (NG = S (12, 157 N E) i s, ) () 4 (da') = g (da))
(R4)2

om

As previously done, we quantlfy the contribution of each term in the above decomposition. We let
9(;’7;) = (1 - N)[X, ok (m)] + A[X] s (m)] and h € {ba; ;/0m,6%a; ;/6m?}. We write

Wit X)) = bt 2, (X))

/ /R O ) P11, 5,t,2') = P11, 5,1, 2')) d=' dA

so that, from similar arguments as those used to derive (A.49) of Lemma A.2 in |[CdRF18], we get that for
any « € [0,7] and any 3 € [a, 1]

Wo(p, )P
e NaL S

|h(z) = h(z)] < K7 (|2 —2[77% A1) e
(t—s)"2

(C.29)

Since Wa(u, ') < (t — 5)'/2, the above estimate remains valid for any 8 € [0,1]. We now consider the
first term T}'; which can be decomposed as the sum of Tzlj1 and Tilf as written above. From ([@I4]) and
(C29) with a« = 0 and o = 7, we deduce that for any g € [0, 1]

—x|"A1 1
|T1 1| < K Wa(u, p )ﬁ |z — 2| = A = (-
(=57 —s)

In order to deal with T."

i » We use a centering argument. Namely, we write

5m2 om?

Tl 9 ‘ / 52 ah] 71.’ [thyg/’(m)])(zx Z”) . 62ai,j (t, z, [‘X—ts,ﬁlﬁ(rn)])(,z/7 Z’/)
Rd

0%a; 5,¢',(m 6%a; ; 5,8, (m
— (S N ) - S (X)) ) |

[afpm(:uvsvtvvvz ) ® al?pm(:uvsvtvv/az”) - al?p’m(:u ,S,t,l},Z ) ® al?pm(:u ,S,t,l} < ):| dZ/ dZN

I
< K+M (Jz =" A2" =" " AD)g(e(t —s), 2" —v) gle(t —s),2" —v")dz" d2"
(t—5)'+5 Jmay
—z|"A1 1
< KWyl py? { EZ2AL
< 2(ps 1) {(t—s)H% (L= st

for any S € [0, 1], where we used the uniform n-Holder regularity of [6%a; j/dm?](t,.,m)(2',.), (@Z8), @EI)
and eventually the space time inequality ([LH)). Gathering the above estimates, we thus conclude that TZ1 ;s
bounded by the first term appearing on the right-hand side of (B.6S)).

The other terms T j» £ =1,---,6, can be dealt in a similar manner so we will be short and omit some

technical details. We use (C29) with o = 0, (£14), (£22), the boundedness and uniform n-Hélder regularity
of [62a; ;/0m?|(t,.,m)(2',2"), @E28), (EZT) and @24). Hence, for any 3 € [0,7), we obtain
g lz—x["A1

(1 — 5)1+ 5

2 (s, 1)
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for any g8 € [0,1]. By symmetry, the two terms Tf’] and Ti‘fj can be handled by similar arguments. Namely,
we use (C29) with o = 0, ([@30), (£31) and the uniform n-Holder regularity of [da; j/dm|(t,.,m)(z") so that
for any 3 € [0,7)
g lz—z["A1

(t—s) 5"
Similarly, using (C29)) with o = 0, ([E14), (£22), (£26), ({.27), (E24) and the uniform n-Holder regularity

of [6%a; j/dm?|(t,.,m)(2',2"). For any 8 € [0, 1], we get

+

3
Ti,

4
T;,

< K3 Wa(p, 1)

g lz—2["A1
(t _ S)1+ ﬁg" .
We now deal with the last term, namely, Tfj We decompose this term as the sum of the three terms

TZ;-l, TZ;? and TZ;B as written above. The first and the third terms are handled using (C29) with o = 0,
(@.33), (435)) and the uniform n-Holder regularity of [da; ;/dm](t,.,m)(z’) so that for any S € [0,7)
g lz—x|"A1

(t— )+ 5"

For the second one, it follows from the uniform 7-Ho6lder regularity of [da; ;/dm](¢t,.,m)(.) that

Ti5,j + Tiﬁ,j SK/§L+W2(U7H/)

T+ TP < K Walp, i)

»J »J

TIPS K [ a1 A5 5., 2)06) — 5,19 e

< KT(Jz — 2" A 1)/

- |0 (1, 5,1, 2", 2") (V) = Dopm (i, 5, 8,27, 2") (V)] p(da’) dz’
A /(Rd)2(|z' — &[T A0 (i, 5,77, 2) (V) = Dapm (1, 5, 8,2, 2" ) (V)| p(da’) d2.
Collecting the above estimates allows to conclude the proof of (B.6S).
Step 4: proof of the estimate (B.69).

We start from the decomposition of 9> H,1(p, s,7,t, 2, 2)(v) given by (C7) and investigate the regular-
ity of each term with respect to the variable u.

(i) Regularity of the map pu— (9,1(1, $)(v) + 0, 11(p, 8)(V)) D1 (s 5,7, 8, @, 2).

First, it follows from the identity (CI1), (C28) (with » > s), (B21), (B.66), (B.6) and (B:36) combined

with (£33) (recalling that €L°(CT,t — ) < KT := lim, 00 €5°(CT,t — s) < 00) that for any 3 € [0,7)
t t
‘612‘ [Hi (/ a(rlv 2 [er;gﬁ(m)])drl’ T ;C) } (v) - 6:‘2‘ [H{ (/ a(rlv 2 [er;gﬁ(m)])drl’ T !E) }M:u’ (V)’

<Kt |z —a| | Wa(u,p)’
g /8 t_,r. (T—S)1+B;n

1

t—r

t
v [ <|y/—x’|"A1>|a,€pm<u,s,r',x',y’><v>—azpmw,s,r’,x’,y’><v>|u<dx'>dy'dr/}
r (Rd)2

and
t t
e ([ Yo ([ )]
T T p=p'
< Kt { |Z—$|2 + 1 } {(W2(,U‘7,u/)/8

t—r)?2 t—r T_S)1+ﬁ§”

Ay =" A D[ pm (5,7 2"y ) (V) = Oopm (i, 5,77 2,y ) (V)| p(d”) dy’ d?"} :
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Then, using the aforementioned estimates together with the two above estimates, (B.22), (B.68]), the
uniform boundedness of b;, the uniform n-Hoélder regularity of a; ;(t,.,m) and the space time inequality

([LH), we obtain that for any 3 € [0,7)

10,101, $)(¥) = L1, 5) (V)] Bt (13,7 1,0, 2)

{ Wa(p, 1')”
-7 (t—r)E(r — )+
1

e /(Rd)z(ly’ — @' [" AD)|Oapm (s 8,7, 2",y ) (V) = Oppm (' 5,7, 27y ) (V)] pda”) dy’
1 t
bt | 8 A DI 2% 0) = S5, il dr’}

gle(t =),z — x),

10,11(14,5)(v) = BT $)(V) e (1 57,1, 2)

/ 1 1
<Kjt {Wz(u,u ) <(t e R Ay )

1
NG /@W 0P (s 8,2,y ) (V) = Oupm (' 5,72y ) (V)] plda’) dy'
n / (|y/ _x/|’,7 A 1)|8me(,u;$;'r, I/,y/)(V) - 8ﬁpm(,u/,s,r, ,I/,y/)(V)LUJ(dIE/) dy/
T J(r2
1 t
MTSER / / d)2(|y’ — 2/ [" A D) (s 5,7y ) (V) = Do (i 8,77, 2y ) (V)| alda’) dy’ dr'}
- T R

glc(t—1),z —x)

and, using (C.I4) and (CI8) (combined with (#33) and the space time inequality (L)) the latter being
used both with 8 = 0 and 8 = 1, replacing therein the standard Gaussian estimate on p,,+1 by the estimate

m on ﬁm+1(M,S,T,t,I,Z) _Z/)\M+1(:u‘/5 s,r,t,x,z), we get

(aHI(M/7 S)(V) + 6MH(/1‘/7 S)(V))(ﬁmﬂ-l(ﬂv s,r,t,:mz) _ﬁm-i-l(//v 5,11, x, z))‘
+ L ! L ct—r),z—=x
SK WQ(Muﬂ) <(t—7‘)1%(T—S)prg/\(t—T)(T‘—S)lJr%)g( (t )7 )

Hence the difference (3,11, 8)(v)-+ 8,011t )(v))Brvs (15,7 .2, 2)— (D107 ) (V)LD TE( 8)(V)) s (1 571, . 2)
is bounded by the right-hand side of (B.69) by gathering the three previous estimates.

(i) Regularity of the maps 11 — (L(s1, $)(0)+IL(1, 8) (0)) @, Bt (1 8,7, 2, 2) V), DuBer (1, 5,7 £, 2) (0) @

O (1, 5)(v").
Note that these two terms only involve first order L-derivative so that they can be handled using the regu-

larity results established in [CdRF18]. To be more specific, if Wa(u, it’) > (r — s)*/2, one simply uses (C.5)
with 8 =1 to conclude that
| (1, )(0) + 111, 8)(0)) @ b1 (15,7 6,2, 2) (1)
- (I(Mlv S)(“) + H(Mlv S)(U)) ® auﬁm-i-l(//v 5,71, %, z)(vl)

Wa(p, 1')*
(t—r)=3(r — s)l+2"

<K
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If Wo(u, ') < (r —s)'/2, one uses the Lipschitz regularity of the maps u > I(y, ), II(i, s) provided by
the estimates (CI14)), (CI8) with 8 = 1 combined with ([33]), in which we replace the Gaussian estimate
on Pp,+1 by the estimate (B3) with n = 0. Hence, we get

‘[I(u, $)(v) = 1(u', 8) () + I(p, ) (v) = TI(', ) (V)] @ Pt (s 8,7, L, w, 2) (1)

< KTt = T?l/zé/‘(;ﬂi)s)g% g(c(t —r), 2 — x)
<K Walp " gle(t =),z —x).

(t—r)l=3(r — s)1+ 55"

Then, one uses (C8) with 8 = 1 replacing therein the estimate on 9,pm,+1 by (BI9) with » > s. We
thus obtain

’[I(:u/a S)(’U) + II(M” S)(v)] & [8ﬂﬁm+1(u’ S, T, tv Zz, Z)(v/) - 8,ul/)\m+1(lu‘/7 S, T, ta z, Z)(’U/)]

< K+ W, p')?
R T e T e

glc(t —r),z — ).

Gathering the above estimates, we get that | [I(z, s)(v)+1I(u, 8)(v)] @D Pmt1 (1, 5,7, b, 2, 2) (V') = [1(1', 8) (v)+
(W, $)(v)] @ OuPmsr (W, 5,7, t, 2, 2)(v)| is bounded by the first term appearing on the right-hand side of

From the symmetry identity (C9), the same conclusion holds for |9, Dm1 (i, 8,7, t, %, 2) (V)@ I (1, s)(v')—
OuPms1(p, s, t,x, 2)(v) @ O, II(1/, s)(v’)‘.

(iii) Regularity of the maps p — 1(p, 5) 2Pmy1(p, 5,7, 8,2, 2)(V).

We remark that 9,III(x, s)(v) = I(u,s)(v) + (i, s)(v) so that using the uniform estimate (C8) with
B = 1 in which we replace the Gaussian estimate on 0,pm+1(u, s, 7.t z, 2)(v') by (#33) recalling that
CLO(CT,t—8) < KT :=limy, 0o €5°(CT,t — ), we obtain

Wa(p, 1')"
(t —r)\= 3 (r — 5)1+72"

(T, ) = TG, ) 025 (15,7, 2, 2)(v)| < K

<K%

gle(t —r),z —x)

if Wa(p, i) < (r — s)Y/2. Assuming now that Wy (u, p/) > (r — 5)'/2, we directly use ((C.19) combined with
([#33)) so that we get the previous estimate.

Now, from the uniform boundedness of b; and the uniform n-Hoélder regularity of a; ;(¢,.,m), (B.67) and
the space time inequality (L)

LG 8) (9B 1 (1372, 2) (V) = 2P (5,7, .2, 2)(¥) )|

< K+t { Wa(u, 1t')?

g (t—r)lfg(r—s)”@
1 t
e o 0 A DI04 = 5., ) ) dr'}

x g(c(t—r),z — ).

Collecting the above estimates concludes the proof of (B.69).
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Appendiz  C.5. Proof of Lemma[Appendiz_B.J)

Step 1: proof of the estimate (B.Z0).

We first observe that if |s; — s3] > ¢t — s1 V s3 then the result directly follows from (B:36]) combined with
([@33) and the space time inequality (ILH), recalling that €L0(CT,t—5) < KT 1= lim,, 00 €5°(CT,t—35) <
00. We thus assume that |s; — s3] < t—s1V sy for the rest of the proof. As in the proof of (B.66]), we make use
of the identity (2.I5) applied to the map m ~— b;(t,z,m) so that the difference 02 [b;(t, z, [Xfl’g’(m)])](v) -

d2[bi(t, x, [sz,g,(m)])](v) writes as the sum of the terms §b¢(s1, s2), £ = 1, ,7, defined by

| 0%bs ey, o Ob $2.6.0m) 5/
5bi(51752): |:5m2(t7x7 [Xt ])(272)_ Sm2 (tvx7 [Xt ])(Z,Z):|
(R)2

5acpm(lh s1,t,v, Z) ® 890pm(u7 s1,t, vlv Z/) dz dz,
2

6%bs 52,6,(m) n_ 07bs 52,€,(m) '
[ [t G e ) - (b, G )]
(R)2

{&cpm(lh s1,¢,0, Z) ® 8xpm(lh 817t71},7 Zl) - 896pm(/1/7 s2,t,, Z) ® 8acpm(/1/7 S2,1t, vl7 Z,)jl dz dzl7

2 §%b; s16(mpy, oy _ O°bi s2,6.(m)]y
6bi (81752) = 4 [W(tvxv [Xt ])(Z,Z ) - Sm2 (t7I7 [Xt )(Z,Z ):|
(R)3

896pm(/1’7 51,1, 0, Z) ® 8Mpm(u7 s1,t, xlv Zl)(vl) dzdz' /’L(dml)

b 52,6 ,(m) /
+ o Tme (t,z, [X, D(z,2z")
(R?)3

[azpm(:u‘v s1,t,0, Z) ® ald«pm(lu‘v s1,1t, xl7 Z/)(U/) - a;vpm(,u, s2,t,v, Z) ® aupm (1“‘7 52,1, xlv Zl)(vl):| dz dZ/ :u‘(dxl)7

5bi s m 5bz s m /
5b§(sl,32):/ {5_““’[){’51'“ M) = = (2, [X72 )])(z)} 0pOapm (1, 52,1,v, 2)(v') dz
rd LOM om
5b1 s m
+/ %(tﬁ& [Xt%é’( )])(Z) [8M8xpm(u,sl7t,v,z)(v')—8M8mpm(u7527t7v,z)(v')} dz7
Rd
(5b1‘ s m 5b1 s m
1t (on,00) = [ [T X)X )| 0B s 2)0)
ra LOM m
6bz s m
+/ %(tvxv [Xt%&( )])(Z) [axaupm(u7817tavl7z)(v)_axaupm(u7527t7vl7z)(v):| dZ7
R4

50 (1, 52) = [—52“’ (b (X7 ) = 0 (1, (x2S )]
i\51,52) = (R Sm2 t ) Sm2 t ’

8Hpm(/j’7 51, t7 mlv Z) (U) ® 896pm (N’v 51, t7 U,7 Z,) dz dzl /J/(dZC,)
)
(Rd)3 om

|:8Mpm(/"/7 817t7$,7 Z)(’U) ® 890pm(/"/7 51, t7vl7 Zl) - 8Hpm(/j’7 $2,t, ml7 Z)(U) ® 8$pm(lj’7 s2,t, vl7 Z,) dz dzl N’(d:c,)v

568 (51, 52) = {521” (0, X)) (5 27 — S0 (280
i ) (Reys Sm2 L ) Sm2 L )
al»‘«p’m(,uﬂ 317 t7 xl7 Z)(U) ® 8ll«p’m(,u‘7 317t7 ,'1}”, Z/)(vl) dZ dZ/ ,u(d:c'),u(dx”)

52bi s m / "
+ / S, X)) (2, 2) | 0 (s 51, 8, 2, 2) (1) © B (1, 51, 8,27, 2 (V)
(Rd)4

om?

— Oupm (1ty 52, 1,77, 2) (V) @ Dupm (1, 52, t, 2", Z’)(v')} dz dz' p(dz") p(dz"),
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(Sbi s9,&,(m ’ /
= St (XS 2] O s, 0!, 2)(v) dz ()

(Sbl s m
o) = [ B ()
(R)2

ob; ob;
I [ Ltz (X260 (2) — 284 g, (X560 x'}
[ [t €7D o (€

(0291151, 2)() = O (152,57, 2)(v)| (') =

We recall from the proof of the estimate (A.62) of Lemma A.3 in |[CdRF1§] that if h : P(RY) — R
has a bounded and continuous linear functional derivative such that [6h/dm](m)(.) is uniformly n-Holder

continuous then for any 5 € [0, 1] one has

1 1
h X'Slvgv(m) _h X527§7(m) < Klgi — ,8{ =+ . }
X)) = B < Ko = ol { g g

The above estimate is established in |[CdRF18] for the map m — a; (¢, x,m) but the argument works,
mutatis mutandis, in this general form. In particular, under our current assumptions, for any g8 € [0, 1], it

holds
6bz s1,€,(m 6bz s2,&,(m
S (B2 XS (=) ([0S )) 2) (C.30)
62bi s1,€,(m) 62[)1 s52,&,(m)
| (b (X)) (2 2) = S, X)) (2, )

om?2

1 1
< KTH|sg —s ﬁ{ + }
- 51 2| (t—sl)5*% (t — s9)8~

The above estimate together with (@14), (£28), the uniform n-Hélder regularity of [§2b; /6m?](t, x,m)(z, .),
the space time inequality (LI) and the fact that |s; — s2| <t — s1 V s2 give that for any 8 € [0,7)

nls

B
|s1 — s2|2

(t — 81 \Y 82)1+

B=mn*
2

|(5b11 (81, Sg)l < KEJF

Similarly, from (C30), (£14), #E22) with n = 0, @28) with n = 1, ([E29) with n = 0, we deduce
51— 8|2

(t -5V Sz)lJF@ -

|(5b?(81, Sg)l < K;_—i_
The two next terms, namely, 6b3(s1, s2) and 6b(sy, s2) can be handled in a similar manner. From (C.30),

(#30) and [{A32), we obtain
|51 — 52|%

|6b7,3(81782)| + |6b;4(81782)| S K++ S
7 (t—s1V 52)1+¥

We deal with 6b3(s1,s2) using (C.30), (E14), @22), (@28) and [@29). We obtain
|1 — s2*

(t —s51V Sz)lJF@ '
We handle 6b%(s1, s2) in a similar manner. It follows from (C.30), #22), (£29) with n = 0 that

B
51— 522

(t -5V 52)1-"_%_77.

667 (s1, 52)| < KT

|66 (51, 82)] < K*F
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Finally, from (C.30), ({33), the boundedness and uniform n-Hélder regularity of [§b;/dm| (¢, z, m)(.), we
deduce that the last term satisfies

B
|s1 — s2|2

(f - 51V 52)1+§—77

|0b] (s1,52)| < KT {
+/( ., (Iz = &[T AD)|O2pm (1, 51, t, 2", 2) (V) — Oppm (s 52, 8,2, 2) (V)| p(da’) dZ} :
R 2

We conclude the proof of (B.Z0) for |92 [bi(t, =, [Xfl’g’(m)])](v)—é‘ﬁ [b;(t, z, [Xf’g’(m)])](v)’ by collecting the

above estimates. The proof of the upper-bound for ’83 [ai (82, [ XS ]](v) — Onfaq;(t, [Xf’g’(m)])](v)‘

follows from completely analogous arguments and is thus omitted.

Step 2: proof of the estimate (BIT1).

We proceed as in the proof of (B.67). Namely, we start from the identity (C3]) and quantify the regularity
with respect to the variable s of each term. We first note that from the mean-value theorem, for any 8 € [0, 1],

it holds

t -1 t -1
‘ (/ a(r’,y, [Xf,l’g’(m)])drl) — (/ a(r',y, [Xf?’g’(m)])drl) ’ (C.31)
K ! s m S m
< o | Ml X)) a7, XS

_ B rt
< gl / L dr’
(t—r)? (r' — 51V 82)P

|51 — 52/
<K
T (t=r)(r—s1Vs2)P

where we used the estimate (B3] inside the time integral if |s; — s3] <7/ — 81 V 83 or the boundedness of
a; j otherwise. From the identity (C.10), the previous estimate, (B.6) and (B.29) both with n = 0, we get
that for any 8 € [0, 1]

[ ([ otz na) Yo - o] ([ ot s o

_ B
+ |51 — 82|
(t—r)(r—s1Vsa) 2

(C.32)

Then, we use the identity (CH]) together with the two above estimates, (BI7Q), (B.36) (combined with
(£33) and the space time inequality (LH)), (B:), (B14), (BII) and (B:29) with n = 0. After some standard

computations that we omit, for any 3 € [0,7), we obtain

|af¢jj\3/71+1(u7 S1,T, ta Z, Z)(V) - aﬁjg\z}n-{-l (/1’7 82,1, ta x, Z)(V)'

B
++ |s1 — 522
< Kj {

(r—s1V 52)”@
1 t
+ n r ‘/( d)2(|y/ _:I;/|77/\ 1)|azpm(ﬂ7Slurluxlayl)(v) _aipm(/hszﬂ"/aff/ay/)(v)|ﬂ(d$/)dyld7“/}
- r R

x glc(t—r),z —x)

which completes the proof of the estimate (B.71)).
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Step 3: proof of the estimate (B.2).

We first remark that if [s; —sg| > t—s1Vsa then the announced estimate directly follows from (B:4T) (with
r = s) combined with [@33) recalling that €2°(C*,t —s) < KT :=€2(CT,t — 5) = limyeo 60 (C Tt —
s) < oo. From now on and for the rest of the proof, we assume that [s;1 — s2| < ¢t — s1 V s3. The proof
being quite similar to the previous one, we will be short on some arguments and will omit some technical
details. Observe that from the identity (C.I0), the estimates (B.31]), (B.6)) and (B:29) with n = 0, after some
standard computations that we omit, we get that for any 8 € [0, (1 +1)/2)

—1 -1

o[ iz nar) Jor-a[ ([ vt ixznar) )

|s1 — s2|”

< K7 —.
g (f -5V Sg)sTn+ﬁ

Now, we again use the identity (C5) (with r = s) together with the above estimate, (B31)), (B.0),
(B:36) (combined with ([&33) and the space time inequality (LH)), (B:6), (B10), (B:29) with n = 0 and the

fact that [s1 — s2| <t — s1 V s9. After some standard computations that we omit, for any 5 € [0,7), we
obtain

|azﬁm+1(U7 s1,t,x, Z)(V) - aﬁﬁerl(lu‘v S2,t, T, Z)(V)|

B
|s1 — s2|2

B
[s1 — 52|
< Ky *{ oy s A BV ) Em ) b g (elt — o1 M),z )

1 t
s Ve, / /(Rd)z(ly’ — &' A DO pm (s 51,7 2y ) (V) = Oitpm (1, 52,7, 2"y ) (V)| p(da’) dy' dr’
s1Vsa
X gle(t —s1V 82),2 — x)}

The proof of the estimate (B72) is now complete.

Step 4: proof of the estimate (B.3).

We proceed as in the proof of (B.68). We first remark that if |s; — sa| > t — s1 V s then the result
directly follows from (B.37)) with 8/ = 0 and 8’ = 1 combined with (£33) and the space time inequality
(CH). We thus assume that |s1 — s2| < t — 81 V s for the rest of the proof. We now apply the identity

(ZI5) to the map m — a; ;(t, 2, m) so that the difference 97 [a; ;(t, , (XS0 Zag (8 2, (XS] (v) —
D2ai j(t, z, [Xf2’§’(m)]) —a;,;(t, 2, [Xf2’§’(m)])](v) can be decomposed as the sum of the following terms

1 52(11'7]‘ 51,&,(m) ron 52¢1i,j 51,&,(m) 1o
= | SR SN - S 5, [ S ()

(520,7; . s m (SZCL»L' . . .
_ ( 5m; (¢, =, [th,é,( )])(Zl,z//) o 6mé] (t, 2, [th,&( )])(2177;//))}

O (11, 81,1,0,2") @ Oupm (1, 81,t,v",2") d2’ d2”

520/1" £,(m) ron 52@1" £,(m) o
+/ (S (4, XS0 2 = S (12, X)) |
(R%)2

|:8acpm(/j,7 51 t’ v, Z,) ® 8acpm(/1/7 817t7U,7 Z”) - 8$pm(lj’7 52, t7 v, Z,) ® 890pm(/1’7 52, t7 vl7 Z”):| dZ, dz”v
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2
iy

T3,

2,7

T

2,7

5
T

T8, .—

%7

T/, ==

@]

52(17; j s m 520471 j s m
= / {5 (6, XS0 ) = S (12, (X7 )
(]Rd)3

(520,1"- s m (5204'" . .
_ ( 5m23 (t, z, [th»&( )])(2/72//) -~ 5m23 (t, 2, [th,éy( )])(217211))}

896pm(/1/7 s1,t,v, Z,) ® 8Hpm(/j’7 s1,t, $,7 Z”)(U,) dZ, dZ” /’L(dml)

52@1" s2,€,(m) ron 62@1" 52,&,(m) ron
+/ {5 (b, S 2 = S (12, XN 2 |
(R4)3

[azpm(lu‘7 81, t: v, Z,) ® 8ll«p’m(,u‘7 S1, t7 ,'1),, Z”)(vl) - azpm(/“‘? 52, t: v, Zl) ® 8ll«p’m(,u‘7 52, t? xlv Z”)('Ul):| dZ, dZ” :u‘(dxl)7

5(17,',’ 51,6,(m ’ 5(11',’ 51,&,(m ’
= [ {5 el - S s b )
R

5‘11',' s2,E,(m ’ 60/1‘,' s9,6,(m ’ ’ ’ ’
(52 XN E) - S 2, N E) ) f0ul0apm (51t 0, 2] 2

5017:7- s9,&,(m 5(17;,' s2,€,(m
+ [ G e - F e )

|00 1011 31,0, 20)(01) = B 52,0, )01

5(17,',’ 51,€,(m ’ 5(11',’ 51,&,(m ’
::/ {52 (o DGO = S 1,2, X)) ()
Rd

om
5‘11',' s0,&,(m ’ 60/1‘,' s9,6,(m ’ r ’
(52 SN E) - S 2, DN E)) 0 0upm (51t 0, ) ()] 2

60/1-,- s9,&,(m (504‘,' s2,€,(m
+ [ G e - Fi e )

00113, ,0', ) (0)] = 0201152, .0, ) 0)]]

62ai,j 51,&,(m) ron 52ai,j 51,E,(m) /i
= SR e XN ) - S [ )
(R4)3

52@1', j s m ro 62@1’, j s m A
(St DN () - S s L2 ) |

8;;,pm(/l, ’517 t? ,'1)/, Zl)(v) ® aIp’m(,u‘v ’517 t? 'U/, ZN) dZ/ dZN :u‘(dxl)

52@1',' s m ro 62@1’,' s m ron
[ R e D) - T D)
(R2)3

m2

[aﬂpm(lu‘v 317 t: xl7 Z/)('U) ® 8l‘pm(,u‘7 317 t: vl7 Z”) - al‘«pm(lu‘? 327 t: xl7 Z/)(U) ® 8l‘pm(lu‘7 327 t: vlv Z”):| dZ/ dZN :u‘(dxl)7

620/1‘,' s m ' 520/1',' s m ron
/d (St 6, XS, 2 = S (1, (X7 )
(R)4

52@1’ j s m ' 52@1’,’ s m A
- (Gt x2S 2 - S0 XS (2 ) |

Oupm (i, 1,2, 2) (V) @ Bupm (1, 51,8, 2", 2") (V') dz dz" p(da”) p(dz")
8%a;,; 82ai,;
i, n XSQ,E,(m) AN i, ¢ ng,g,(m) ron }
+/(Rd)4{ om?2 (7$7[ t ])(272 ) Sm2 (7’27[ t ])(Z7Z )
[E)kdr)m(u7 s1,t, 2", 2) (V) @ Oupm (1, 81, t, 2", 2 ) (V) — Oupm (1, 52, , 2", 2) (V) @ Oppm (i1, 52, 2", z')(v')} dzdz' p(dz'") p(dx'),

60/1',' s1,€,(m 5“1',' s1,6,(m
[ B e e - S ) )
(R%)?2

om

5“1',' s9,€,(m / 5“1',' s52,€,(m / i / /
(52 (o DN E) — S (12, XN ) | (a1, ) (0) 42 e

da;,j 0a;,j
i { I (4, (X526 (27) = 2% (4 5 [xE2E ) (o
L, s ke = e i€

5“1',' s9,E,(m ’ 5ai,' s9,&,(m ’
~ (G X N6 - S w )E) ) |

[aipm(lu‘v s1,t, xl7 Z/)(V) - aipm(lu‘7 52,1, xl7 Z/)(V):| le lu‘(dx/)
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As previously done, we now quantify the contribution of each term in the above decomposition. Letting
oy == (1 - N[X )+ AX>S™) and h € {ai ;/6m, 62a; ;/6m?}, it holds

Bt 2, X)) = bl X7 ()
t//d (1,2, O ) (V) Do (1 51,1 ) — Dot 52,1, 2°)) 2’ AN
R
so that, from similar arguments as those used in order to derive (A.80) of Lemma A.5 in [CdRF18§], namely,

using the uniform 7n-Hoélder regularity of the map (z,2’) — [0h/dm](t, z,m)(.)(2") together with [@28)) with
n = 0, we get that for any a € [0,7n] and any § € [0, 1]

At 2, (XS = At 2, (XSO — Rt 2 (XS TD ) = At 2, (X)) (€.33)
N 1 1
= K§+(|$ ~ AT A Dl -l { (t —sp)Pt 72" * (t — s9)Pt"2" } '

We now consider the first term Ti{j which we decompose as the sum of Ti173-1 and Tllf as written above.
Then, taking o = n in (C33) and using ({14, we get
51— S2|ﬁ
TH < Kit(lz—z"A1 |—
| 1,] | — B (| | )(t—Sl\/82)1+B

We then take o = 0 in (C.33)) so that using again (I4) and the fact that [s; — sa| <t — 81V 52

|51 — 52|°
(f —51V Sg)lJﬁBi%

T < Ki*

for any /5 € [0, 1].
Combining the two above estimates, we conclude that for any g € [0, 1]

—z|"A1 1
T11 <K++s — s9° il A .
75 o1 = =] (t—s1V82)lHB " (1 — 51V sp)lHP—3

We deal with Til’-2 by using a centering argument. Namely, we write

20
\/ 52,Lw?“mmawwff?mawﬁ“mmawﬁ
Rd)2 m m

- {55:;2 ( [XS2 ok (m)])(z v ) 552:;; (f, z, [X:2,§,(m)])(217 v/)H

[azpm(:uﬂ 51, tv v, Z/) Y al?p’m(:u’? 51, ta 1)/, Z”) - 8Ipm(:u’7 52, ta v, Z/) ® 8mpm(:uﬂ 52, tv ’Ul, ZN):| dzl dZN

—zTAL 1
< K|y — 8o { 127 A 7
< Kgls =l {(t—slvs2)1+/3 (t — 51V 89) 1518

for any 3 € [0, 1], where we used the uniform n-Hélder regularity of [62a; ;/0m?](t,.,m)(z',.), E28]) with
n = 1 and eventually the space time inequality (3] together with the fact that |s3 — s2| < t — 51V so.
Gathering the estimates on T and Tllj , we conclude that Ti{j is bounded by the first term appearing on
the right-hand side of (]mb

The other terms T”, £ =2 ---,6, can be treated in the same way so we will be short and omit some
technical details. We first use (C.33) with a = n, (Z.14)), (£22)) to deal with Tf;-l and then use the boundedness
and uniform n-Hélder regularity of [62a; ;j/dm?](t,.,m)(z’,2") together with (E2]), [@29), the space time
inequality (LH) and the fact that |s; — so| <t — s1 V s2 to handle Tff We thus obtain

5 |z —z|" A1 1
— 52| 1+A—% 1457
(t—Sl\/Sz) 2 (t—Sl\/Sz) 2
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for any 8 € [0, (1 +n)/2). By symmetry, the two terms Ti?:j and Tfj can be handled by similar arguments.
Namely, we use (C.33)) with a = 7, ([@30), ([E32) and the boundedness and uniform n-Holder regularity of
[0ai j/om](t,.,m)(z") so that for any S € [0,7/2)

|z —z|" A1

+ .
(t -5V 82)1+57%

3
T3

4
T;,

< K;r+|51 — 82|ﬁ

Similarly, using (C33) with « = 7, @&I4), E22), (@28), (@29) and the boundedness and uniform

n-Holder regularity of of [62a, ;/dm?|(t,.,m)(z/,2"). For any 3 € [0, (1 +n)/2), we get

|z —z|" A1

+ .
(t — 51V 52)1+ﬂ_%

5
Ti;

6
Ti);

< Kf 51— 8]’
We deal with the last term by decomposing it as the sum of two terms T:Jl and TZ;? as written above.
The first is handled using (C.33) with o = 7 and (£33)) so that for any 5 € [0,1]

|z — 2" A1
(f - 51V Sz)lJFﬁ*% -

7,1
T < Kg+

For the second term, it follows from the boundedness and uniform 7-Hoélder regularity of [da; ; /dm](¢, ., m)(.)
that

rip <Kt [

(R9)

(lz = " A 2" = 2" A1) 0% (s, 51, 8,2, 2" ) (V) = O (1 52, t, 2, 2') (V)| pu(da’) d2'
2

<K (|Jz —a|"A 1)/ |8ﬁpm(u, s1,t, ', 2" (v) — Bipm(u, so,t, 2’ 2" (V)| p(da') d2’
(R%)2

A / (12" = 2" ADOpm (s 51, 2", 2") (V) = o (1, 52,1, 27, 2') (V)| pl(da”) .
(R)2
Collecting the above estimates allows to conclude the proof of (B.73).

Step 5: proof of the estimate (B.4).

The proof is quite similar to the one of (B.69), namely, we start from the decomposition of 92 H 1 (i, s, 7, t,, 2) (V)
given by (CX) and investigate the regularity of each term with respect to the variable s.

(i) Regularity of the map s +— (9,1(w, s)(v) + 0,11(11, 8)(V)) Dt1 (11, 5,7, L, @, 2).
Again, we first remark that the identity (CII]) combined with (C31)), (B:29), (B-Z0), (B.6) and (B30)

combined with [@33)) (recalling that €L0(CT,t — s) < KT := lim, 00 €5°(CT,t — s) < 00) imply that for
any 8 € [0,7)

‘aﬁ [H;‘ (/t a(r', 2, [ XSS dr! | 2 — 3:) ](v) — [H;‘ (/t alr', 2, [X225 a2 — 3:) } (v)’

8

++12—a 51— 52|

SKﬁ t—r {( _ 14+8-n
r—51 Vst e

1

t—r

+

t
S 0= DI 1002 ) = S5, el dr'}
T R
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and

‘Bi {H;] (/Tt a(r', z, [Xf,l’g’(m)])dr', z— ;E) ] (v) — 85 [H;J (/Tt a(r’, z, [Xf?’g’(m)])dr', z— ;E) } (V)’

|z — x| 1 51— s2]?
<Kt 5 + =
E=r)? t=r] | (r—s V) t="
1

t—r

Then, using the two above estimates, (B.70), (B73), (C31)), (B:29), (B.:26), (B.f), the uniform bound-

edness of b;, the uniform n-Hélder regularity of a, ;(¢,.,m) and the space time inequality (LI]), we obtain
that for any 8 € [0,7)

+

t
S O = A DI, )6 = St YO ) dr’} .

191 51)(v) = L1t 52) (V)B4 (11,7, 1,2, 2)

8
++ |51 = 52|2

SKﬁ 1 1+B*n

(t—r)2(r—s1Vse)lt™2

1
+ (t _ T‘)% /(Rd)2(|y/ - I/|’,7 A 1)|8ﬁpm(:uﬂ 51,7, xlv y/)(V) - aﬁpm(:uv 52,7, ZE/, y/)(V)| ‘U(dCC/) dy/

1 t
ST o 8 A DI 1,72 Y0 = Bt Y () ] dr'}
- T R

gle(t —r), 2 — x),

19,01, 51)(v) = 0uT1(1t, 52) (V)P 1 11, 51,7, 2, 2)

1 1
<K ls—sof® . 7 A
(t—r)t=2(r—s1Vs)ttz  (t—7r)(r—s1 Vst =

1
+m ‘/( ay |8;2me(/fb7 S1,T, xla yl)(V) - 6ipm(ﬂa S2,T, xlu y/)(v)| N(dff/) dy/
- R
N /( d)z(Iy’ = &' [T A DO (1, 51,7, 27,y ) (V) = Opm (i, s2, 7,27,y ) (V)] p(da’) dy'
- R

1 t
+m/ /Rd)z(ly’ — 2" A DD pm (s, 51,7, 2,y ) (V) = Bapm (52,7, 2,y ) (V)| p(da”) dy'’ d?"’}

gle(t—r),z —x)
and, using (CI4) and (CI8) (combined with (£33)) and the space time inequality (I5)) the latter being

used both with 8 =0 and 8 = 1, replacing therein the standard Gaussian estimate on D,,+1 by (BI4) with
n=>0

(8;/&1(/1‘7 82)(") + auII(Mu 32)(V))(ﬁm+1 (/1'7 S1,T, t7 €, Z) - ]/j\m-‘rl (/147 S2,T, t7 €, Z))‘

8 1 1
SKZ{|S1—82|2 ( A )g(c(t—r),z—x).

(t—r)'"2(r —s1 \/52)1+§ (t—7r)(r—s \/32)”@

Gathering the three previous estimates, we conclude that (8,1(u, s1)(v)+0,11(1, $1)(V)) Dt (1, 81,7 8, 2, 2)—
(0,11, 52)(v) + 0, 11(p1, 52)(V)) Pt (1, 52,7, £, @, 2) is bounded by the right-hand side of (B.Z4).

(ii) Regularity of the maps s — (L(1, 8)(v)+1L(1, 8)(v)) @O Prmg1 (1, 5,7, b, 2, 2) (V) OpPmy1 (s 5,7, 2, 2) (V)@
8,11 (1, 5)(0").
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Again these two terms only involve first order L-derivative so that they can be handled using the regularity
results established in [CdRF18]. To be more specific, we first use (C.8)) with 3 = 1 replacing therein the
estimate on 9, py,+1 by (BII) so that

[I(M7 32)(“) + H(M? 52)(”)] ® [au]/g\m-i-l (/1'7 51,758, 2, z)(vl) - auﬁm-i-l (/1'7 S2,7, 8,2, z)(vl)]
|51 — 507

(t—r)'"2(r—sV @)H@

From (B29), (C31), (C32), (BIJ) if |s1 — s2] < ¢ — s1 V s2 and the boundedness of the coefficients
otherwise, (B.3)), (B.6)), the space time inequality (LH) and standard computations that we omit, we deduce

<Kj glct —r),z — z).

[I(:ua 81)(1)) - I(,uv 52)(’0)] Y aﬂﬁanl(:ua s1,7,t, @, Z)(v/)
|51 — 52| 2

(t—7)3(r — 51V so)LT5 7 glelt =),z — ).

+
< K}

From (B.26), (C31), (C32), (B11) with n =0, 8 =1 and 8 =0, (B21) with o = 5, (B, the uniform

n-Hélder regularity of a; j(t,.,m), (B.3)), the space time inequality (LF) and standard computations that we
omit, we obtain and

‘[H(ﬂa ‘91)(’0)) - II(N? 82)(U)] ® aﬂﬁm+l(ﬂ7 51,11, , z)(vl)
1 1

t—r)r—sV 52)1"‘? : (t— r)l_% (r—s1Vv 52)1"'%

< Kfls) —sﬁ{ }g<c<t—r>,z—x>.

Gathering the three above estimates yields

‘[I(Nv ‘91)(’0)) + II(M? Sl)(“)] ® 8Mﬁm+l(ﬂ7 s1,7,t, @, Z)(U/) - [I(/J’v 82)(U)) + H(N‘? 82)(U)] ® aﬂﬁm-l-l (/1'7 82,11, , z)(vl)

8 1 1
< K;ﬂsl — 89| { 5 } gle(t—r),z —x).

(t—r)(r—s1V 52)“‘? : (t—7) 13 (r — s Vsg)ltz

Moreover, from the symmetry identity (C.9) and similar arguments, we also deduce

OpuDm1(py 81,758, 2, 2)(v) @ O, III(p, $1) (V') — OpPmt1(ps S2, 7,8, 2, 2) (V) @ O, II(p, s2) (V)
1 1

— A
(t—7)(r—s \/52)1+¥ (t—r)l’%(r—sl\/SQ)l*g

< Kjlsi — 32|§ { } gle(t —r),z — ).

(iii) Regularity of the maps s — 1I(p, ) 2pm1 (1, 5,7, t, 2, 2)(V).

From (B:21) with o = n, (B13)), (B:41) combined with (£33)) and the space time inequality (LH) recalling
that €L0(CF t—s) < KT := limy, 00 €5°(CT, t—s), (C31), the uniform boundedness of b; and the uniform

n-Holder regularity of a; ;(t,.,m) and again the space time inequality (L5]), we deduce that for any 8 € [0,7)

B
|s1 — s2|2

| (1012, 51) = T8, 52) ) 02 (1 1.7, 1, 2) ()| < K —gle(t—r),z —x)

(t — T)l_%(’l” — 51V 82)1+ 2

and, again from the uniform boundedness of b; and n-Hélder regularity of a; ;(t,.,m), (BXI) and the space
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time inequality (L)

‘III(Mu 82) (azﬁm-‘rl (/1'7 §1,7,t, 2, Z)(V) - 83]/9\17'7,-{-1 (/1'7 52,7, 1,2, Z)(V)) ‘

8
<Kit o1 = oa)? =
’ { (t—7)1 =8 (r — 51V 82) 1t 77"

e A o =7 A1, 2 0) aipm<u,52,r',x’,y'><v>|'u'<d:c'>dydr'}

x g(c(t —r),z —x).

Gathering the two above estimates, we thus obtain

III(IUH Sl) 8;2ﬂ/)\m+1(,u7 s1,7,t, @, Z)(V) - III(IUH 82) 8;2ﬂ/)\m+1(,u7 S2,7,t, @, Z)(V)) ‘

8
< K+ 7|31 — 52| _
b {(t_'f')lé('f'_81\/82)1+¥

t T 27% / / d)2 $/|77 A 1)|aipm(ﬂu Slurlaxlayl)(v) - aipm(u7s27rlax/7y/)(v)lp‘/(d‘rl) dy/ d’l”l}
- R

x g(c(t —r),z — x).

Collecting the above estimates concludes the proof of (B.74).
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