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ABSTRACT

The study area is focused on the Mariana Trench, west Pacific Ocean. The research aim is to inves-
tigate correlation between various factors, such as bathymetric depths, geomorphic shape, geo-
graphic location on four tectonic plates of the sampling points along the trench, and their influ-
ence on the geologic sediment thickness. Technically, the advantages of applying Python
programming language for oceanographic data sets were tested. The methodological approach-
es include GIS data collecting, data analysis, statistical modelling, plotting and visualizing. Statis-
tical methods include several algorithms that were tested: 1) weighted least square linear regres-
sion between geological variables, 2) autocorrelation; 3) design matrix, 4) ordinary least square
regression, 5) quantile regression. The spatial and statistical analysis of the correlation of these
factors aimed at the understanding, which geological and geodetic factors affect the distribution
of the steepness and shape of the trench. Following factors were analysed: geology (sediment
thickness), geographic location of the trench on four tectonics plates: Philippines, Pacific, Mariana
and Caroline and bathymetry along the profiles: maximal and mean, minimal values, as well as the
statistical calculations of the 1st and 3rd quantiles. The study revealed correlations between the
sediment thickness and distinct variations of the trench geomorphology and sampling locations
across various segments along the crescent of the trench.

Keywords: Programming language, Python, Statistical analysis, Pacific Ocean, Hadal trenches,
Mariana Trench, oceanology, marine geology

INTRODUCTION zones (e.g. Schellart, 2008), statistical model-
ling using R and packages, e.g. dplyr, ggplot2,
PMCMR, car (Reid et al., 2018). Of all these, sta-
tistical modelling of the oceanological data
sets by means of R and Python programming

languages is the most cost-effective for investi-

Multiple approaches and GIS methods have
been used so far to model ocean seafloor, the
most unreachable part of the Earth. These in-
clude echo sounding (Smith, & Sandwell, 1997),

CTD (conductivity-temperature-depth profiler)
technique (Taira et al., 2005), acoustic methods,
continual profiling with single-beam systems
and bottom coverage capability, multi-beam
swath-mapping systems (Dierssen, & The-
berge, 2014), classic approaches of the GIS
mapping and other tools of geoinformatics (Fu-
jie et al., 2006), remote sensing images analysis,
navigation charts and data modelling using
schematic cross-sections of the subduction

gating hadal trench geomorphology.

Various studies have been reported on the
geologic variations of the Mariana Trench in-
volving uneven distribution of various geo-
morphic phenomena across the seafloor (e.g.,
Michibayashi et al., 2007; Grand et al., 1997).
Amongst these, the questions of how the
trench shape is varies and what are the factors
affective its geomorphology are the most chal-
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lenging in view of the importance of the deep ocean segments
for the whole ocean environment. The distribution of elevations
on the Earth or hypsography is highly uneven. Thus, the major-
ity of the depths is occupied by deep basins (4- 6.5 km) while
relatively few areas are covered by shallow zones. At the same
time, a considerable pool of resources is hidden by the ocean
depths which explains the actuality of the ocean research for
the national economies. The limitations in marine geological
methods are imposed by the high cost of the actual cruise ma-
rine expeditions. Using available open source geodata sets
have removed this problem by the use of low-cost geospatial
data and their processing in GIS and open source program-
ming language R and Python. Similarly, Python based statistical
set of libraries, such as NumPy, SciPy, StastModels, and Mat-
plotlib statistical package present effective low-cost and easily
available method for the marine oceanological data processing
and modelling.

Regional studies of the marine geology of the trenches across
the Pacific Ocean (e.g., Bello-Gonzélez et al., 2018; Boston et al.,
2017), modelling and predictions made upon analysis of the
geophysical settings of various trench, produced by these inves-
tigators were instrumental in understanding current issues of
the marine geological studies. The concepts of these reports on
seafloor spreading, tectonic slab subduction, continental drift,
and plate tectonics in the Pacific Ocean were analysed in the
current research.

STUDY AREA AND DATA

The study area is located in the Mariana Trench, west Pacific
Ocean, where the deepest place of the Earth is recorded (The-
berge, 2008).

The geomorphology of the Mariana Trench was studied through
the spatial and statistical analysis of the 25 cross-section bathy-
metric profiles digitized across the trench. Each profile has a
length of 1000 km and a distance between each two is 100 km.
The methodology consists of two parts: geospatial data process-
ing and statistical analysis.

First, during the geospatial part of the research, the data were
collected from the Quantum GIS project as vector layers. The at-
tribute tables contained numerical data on bathymetry, geology,
tectonic plates and geometric features of the Mariana Trench in
its various segments of the geographic location: north-west, cen-
tre, south-west.

Second, during the statistical part of the research, the table in
.csv format was then read into the Python environment using
Pandas package. The profiles were observed using methods of
the statistical modelling performed by Python programming lan-
guage. During the statistical testing and experiment, several ex-
isting approaches (Box, & Tiao, 1992; Timm, 2007; Oliphant,
2007; Oliphant, 2015; Lemenkova, 2019) provided by the Python
StatsModel and Matplotlib libraries were used as the core algo-
rithms described below.

METHODOLOGY

Design matrix and model fit summary by the Ordinary Least
Squares

The variables of geologic interest were stored in the table con-
sisting of 18 rows where numeric information describes geology,
bathymetry, geodesy and tectonics of the Mariana Trench. To fit
most of the models covered by StatsModels Python library, the
design or regressor matrix was created using existing approach-
es (Everitt, 2002; Box, & Tiao, 1992; Millman & Aivazis, 2011). The

dw
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Figure 1.
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1 from __future__ import print_function OLS Regression Results
g %matpt()thb inline Dep. Variable: profile R-squared: 0.457
ERpOT S S s D Model: OLS Adj. R-squared: 0.379
4 import pandas as pd Method: Least Squares F-statistic: 5.881
5 import stat§models.ap1 as sm Date: Sun, 24 Mar 2019 Prob (F-statistic): 0.00445
6 from patsy import dmatrices Time: 19:36:32 Log-Likelihood: -77.241
7 import os No. Observations: 25 AIC: 162.5
8 os.chdir('/Users/pauline/Documents/Python') Df Residuals: 21 BIC: 167.4
9 df = pd.read_csv("Tab-Morph.csv") Df Model: 3
10 df = df.dropna() Covariance Type: nonrobust
11 df[-10:]
12 y, X = dmatrices('profile ~ sedim_thick + igneous_volc + slope_angle', f?ff____ff?_?fr_‘ __________ f AAAAAA ‘j)lﬂ ______ F?A?%S ______ ?_?7?]
) v
e data=df, return_type="dataframe') Intercept 17.9305 6.362 2.819 0.010 4.701 31.160
14 y[:7] sedim_thick -0.1320 0.048 -2.743 0.012 -0.232 -0.032
15 X[:7] igneous_volc 0.0445 0.016 2.819 0.010 0.012 0.077
slope_angle 0.1328 0.115 1.151 0.263 -0.107 0.373
Intercept sedim_thick igneous_volc slope_angle Omnibus: 1.669 Durbin-Watson: 0.654
Prob(Omnibus): 0.434 Jarque-Bera (JB): 1.095
g 10 1820 1120 20 Skew: -0.198  Prob(JB): 0.578
1 1.0 103.0 71.0 32.0 Kurtosis: 2.054 Cond. No. 884.
2 1.0 96.0 0.0 51.0
Warnings:
3 1.0 109.0 0.0 64.0 [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
4 1.0 127.0 3.0 52.0 Intercept 17.930487
sedim_thick -0.131967
5 10 135.0 50 700 igneous_volc 0.044532
6 1.0 142.0 0.0 55.0 slope_angle 0.132841
dtype: float64
Table 1. Python code for design matrix ‘dmatrices’ (left) and OLS computation by StatsModels of Python (right), Mariana

Trench data frame.

first is a matrix of endogenous variables of sediment thickness,
which show the response or geological regressand on changed
environmental conditions: geographic location, depth or tecton-
ic plate.

The design matrix (Table 1, left) shows the results of the first six
lines representing values of explanatory variables in a set of geo-
logical attributes, Mariana Trench.

The computing of the Ordinary Least Square (OLS) was based on
the formula (1):

27:1 (Xi_)?)(y i 'W
TN

(x-%)

b

1

1

Where,

nis the sample size;

x is a constant and a scalar regressor;

y is a random regressor, sampled together with x;
h is the number of lags being tested;

Each row of the calculated OLS coefficient estimates (Table 1,
right) shows an individual bathymetric profile with the successive
columns corresponding to the geologic and oceanographic vari-
ables and their specific values across the profiles.

Quantile statistics (QQ)

The used algorithm is very straightforward with a selected func-
tion of qgplot() by StatsModels to perform this task. The QQ re-
gression is a common abbreviation for ‘quantile by quantile’ sta-
tistical plot. The plot shows (Figure 2) one quantile against an-
other across various geological parameters (from left to right): A)
Sediment thickness; B) Slope angle degrees; C) Pacific Plate; D);
Philippine Plate E) Mariana Plate; F) Distribution of samples of ig-
neous volcanic areas.

Technically, the plotting was performed using following code of
Python for each corresponding plot:

axl.plt qgplot(df.sedim thick,
ax=axl, fit=True,

line='q’,

linewidth=.5, alpha=.5, markerfacecolor='#00a497",
markeredgecolor='grey’,)

The QQ statistics calculation has been based on the following
formula (2) after Ljung, & Box (1978):

e

(n-k)

Q= n(n+2)y"_
k=1 (2)

Where,

nis the sample size;

rho is the sample autocorrelation at lag k, and

his the number of lags being tested.

The comparison of all the six subplots enables to analyse the
form of their shape against a straight line. The quantiles are
bathymetric sample observations with geologic attribute values
placed in the ascending order. The QQ statistics are used over
the pool of the sampling data to study their distribution. A QQ
statistic is a visual representation of the quantiles of a standard
normal distribution of the geological data set across the Mariana
Trench, showing their variation in space.

Weighted Least Squares

A Weighted Least Squares (WLS) for the geological variables are
shown on Figure 3. The approach of a weighted least squares is
a standard approach in regression analysis to approximate the
solution of overdetermined systems which is the case for the
complex marine geological systems. The least squares algo-
rithms has two sub-types: linear or ordinary least squares and
nonlinear least squares. In the scope of this research, only the lin-
ear least squares were tested: ordinary least squares and weight-
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QQ statistics plots of the geology of the Mariana Trench
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Figure 2. Plotted QQ statistics for the data distribution: A) Sediment thickness; B) Slope angle degrees; C) Pacific Plate; D);

Philippine Plate E) Mariana Plate; F) Volcanic spot

S.

ed least square which is a generalization of the first one. In this
case, the off-diagonal entries of the correlation matrix of the
geological residuals are null the variances of the observations,
yet unequal along the covariance matrix.

AWLS is a statistical approach representing a special case of the
generalized least squares.

The calculation is based on the principle of the Gauss—Newton
algorithm that solves a non-linear least squares problem by mod-
ifying a Newton’s method for finding a minimum of a function.
The computation was based on the general approach of existing
equation (after Bjorck, 1996):

JWIAB=JT WAy 3

Where

W is a diagonal when the observational errors are uncorrelated
and the weight matrix;

J (t) is a transposed Jacobian matrix;

B3 are unbiased estimators as linear column vectors, the entries of
the Jacobian matrix;

y is a vector of the response values.

The calculations of the WLS for the data set (Table 2) were done
according to the reported procedures (Seabold & Perktold, 2010;
Strutz, T. (2016) by Python code snippet:

# Step-1.
mod_wls sm.WLS(y, X, weights=1./(w ** 2))

res_wls mod_wls.fit ()
print(res_wls.summary())

# Step-2.
sm.OLS(y, X).fit()

print(res_ols.params)

res_ols

print(res_wls.params)
# Step-3.
np.vstack([[res wls.bse],

se
[res 0ls.HCO se],
[res_ols.HC1l_ se],
[res_o0ls.HC3_se]])
np.round(se,4)
colnames [“x1’, ‘const’]
[‘WLS’, ‘OLS’,
‘OLS_HC3’, ‘OLS_HC3']
tabl SimpleTable(se,
fmt=default_ txt_ fmt)
print(tabl)

[res ols.bse],

[res ols.HC2
se],
se

rownames =

‘OLS_HCO’, ‘OLS_HC1’,

colnames, rownames, txt

Quantile regressions

Quantile regression shows (Figure 4) the estimated conditional
median and other quantiles of the response geological variables.
Thus the upper two rows of the plot show (Figure 4, A, B, C, D)
data distribution across tectonic plates: Pacific Plate, Philippine
Plate, Mariana Plate and Caroline Plate. The lower row of the plot
(Figure 4, E, F) shows data distribution for the cumulative sedi-
ment thickness and slope angle degree by profiles.

54



Aquat Sci Eng 2019; 34(2): 51-60
Lemenkova. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation

Weighted Least Squares of data distribution
at Pacific Plate by 25 bathymetric profiles
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®  Observations
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soo b4 | o~ 0 ] |— Weighted Least Squares
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=1000
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Weighted Least Squares of data distribution
at Mariana Plate by 25 bathymetric profiles
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slope angle degrees across Mariana Trench by bathymetric profiles
~.. © Gosenatons
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=5
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Figure 3. Weighted Least Squares plotted for data distribution: A) Pacific Plate, B) Philippine Plate, C) Mariana Plate, D)
Sediment thickness, E) Depths (max); F) Slope angle degree.

The quantile regressions were plotted (Figure 4) using Python
code by StatsModel:

# Step-1. Least Absolute Deviation
smf.quantreg(‘profile ~ slope angle’, data)
res mod.fit (g=.5)
print(res.summary())

# Step-2. Placing the quantile regression

mod

results 1in a Pandas DataFrame, and the OLS

results in a dictionary
quantiles = np.arange(.05, .96, .1)
def fit model(q):

res = mod.fit (g=q)

return [g, res.params|’‘Intercept’], res.

params[ ‘slope angle’]] +
int().loc[ ‘slope_angle’].tolist()

res.conf__
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==== RESTART: /Users/pauline/Documents/Python/Script-038a-SM-WLS-Pacif.py ====

Regression Results

--]-3- RESTART: /Users/pauline/Documents/Python/Script-@38b-SM-WLS-Phil.py ====
[l

Regression Results

! ==== RESTART: /Users/pauline/Documents/Python/Script-838c-SM-WLS-Maria.py ====

Regression Results

(®)]

Dep. Variable: y R-squared: ©.781 Dep. Variable: ¥y R-squared: @.905 | Dep. Variable: y  R-squared: 0.787

WLS  Adj. R-squared: 8.772  Model: WLS  Adj. R-squared: ©.900 | Model: WLS  Adj. R-squared: 0.777

Least Squares F-statistic: 82.18 Method Least Squares  F-stoistic: 218.1  Method Least Squares F-statistic: 84.77

Mon, 25 Mar 2019 Prob (F-statistic): 4.71e-09  Date: Mon, 25 Mar 2019 Prob (F-statistic): 3.17e-13 | Date: Mon, 25 Mar 2019  Prob (F-statistic): 3.55e-09

14:47:33  Log-Likelihood: -165.76  Time: 14:50:45  Log-Likelihood: -172.93 | Time: 14:52:41  Log-Likelihood: -169.16

No. Observations: 25 : 335.5  No. Observations: 25 AIC: 349.9 | No. Observations: 5 A 342.3

DFf Residuals: 23 BIC: 338,90 Df Residuals: 23 BIC: 352.3 | Df Residuals: 23 344.8
Df Model: 1 Df Model: 1 Model: 1
Covariance Type: nonrobust Covariance Type: nonrobust Covariance Type: nonrobust

coef  std err t P>Itl [0.025 0.975] coef std err t P>ltl [0.025 2.975] coef  std err t P>ltl [@.025 0.975]

const 146.6735 52.135 2.813 0.010 38.825 254.522  const 385.2523 67.098 5.742 0.000 246.450 524.@55 | const 315.5801 78.993 3.995 6.0601 152.171 478.989

x1 6086 0.288 -9.065 0.000 -3.204 -2.013 X1 -4.3747 0.295  -14.768 0.000 -4.987 -3.762 X1 -3.4095 0,370 -9.207 .000 -4.176 -2.643

Omnibus: 25.519  Durbin-Watson: 1.255  Omnibus: 10.573  Durbin-Watson: 0.805  Omnibus: 19.030  Durbin-Watson: 9.559

Prob(Omnibus): 0.000 Jarque-Bera (JB): 44.284 vmhmmmbus) ©.085 Jarque-Bera (JB): 9.239 | Prob(Omnibus): 0.000  Jarque-Bera (18): 22.681

Skew: -2.051  Prob(JB): 2.42e-10  Ske -1.161  Prob(iB): ©.00986 | Sken: -1.776  Prob(J8): 1.19e-05

Kurtosis: 8.068  Cond. No. 308. Kurtus\s 5.805 Cond. No. 37z, Kurtosis: 6.025 Cond. No. 479

Warnings Warnings: Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.
[118.71874308
[146.67351771

-2.39356004]
-2.60864727]

WLS
oLS

52 1346 0.2878
42.088 0.2719
OLS_HC® 52.7997 0.5709
OLS_HC1 55.0475 0.5952
OL5_HC3 62.7974 0.6396
OLS_HC3 75.3801 0.3597

specified.
[403.36390193  -4.48279094]
[385.25234503  -4.37465139]

x1  const
WLS 67.098 0.2962
oLs 71,495 0.243

OLS_HC@ 72.1853 @.3

OLS_HC1 75.2583 0.3128
OLS_HC3 77.4842 0.3246
OLS_HC3 83.229 0.3514

specified.
[134,33527365
[315.58013093

-2.58357379]
-3.40945923]

x1

WS 78.9928 ©.3703
oLs 56.3427 0.3135
OLS_HC® 72.9913 0.6456
OLS_HC1 76.0986 ©.6731
OLS_HC3 35,9408 0.7792
OLS_HC3 101.88 0.9424

[1] Standard Errors assume that the covariance matrix of the errors is correctly [1] Standard Errors assume that the covariance matrix of the errors

is correctly

*Python 3.7.2 Shell*
= RESTART: /Users/pauline/Documents/Python/Script-@38f-SM-WLS-slope_angle.py =
WLS Regression Results

Python 3.7.2 Shell L] *Python 3.7.2 Shell*
RESTART: /Users/pauline/Documents/Python/Script-838d-SM-WLS-sedim_thickness.py ===== RESTART: /Users/pauline/Documents/Python/Script-838e-SM-WLS-Max.py =====
LS Regression Results WLS Regression Results

Dep. Variable: ¥ R-squared: 9.972 Dep. Variable: y  R-squared: .993 Dep. Variable: y R-squa 0.899
Model: WS Adj. R-squared: WS Adj. R-squared: 0.992  Model: WS Adj. R squared 0.895
Method: Least Squares F-statistic: Least Squares F-statistic: 3137,  Method: Leost Squares F-statistic: 205.7
Date: Mon, 25 Mar 2019 Prob (F-statistic): Mon, 25 Mar 2019  Prob (F-statistic): 4.27e-26  Dat Mon, 25 Mar 2019  Prob (F-statistic): 5.84e-13
Time: 15:18:49  Log-Likelihood: . : 15:54:33  Log-Likelihood: -277.18  Time: 15:21:3Z  Log-Likelihood: -53.114
No. Observations: 25 AIC: 173.8  No. Observations: 25 AIC 558.4  No. Observations: 5 AIC 110.2
Df Residuals: 23 BIC: 176.2  Df Residuals: 23 BIC: 560.8  Df Residuals: 23 BIC: 12.7
Of Model: 1 Df Model: 1 Df Model: 1
Covariance Type: nonrobust Covariance Type: nonrobust Covariance Type: nonrobust
coef  std err t Phitl [e.025 .975] coef  std err t P>t [0.025 0.975] | coef  std err t Pritl [0.025 9.975]
r

const 107.0704 6.600 16.224 0.000 93.418 120.723  const 5.709e+05  2.0le+@4 23.471 ©.000  5.29e+05  6.12e+05  const 24.4614 1.109 22.063 0.000 22.168 26.755
x1 -1.4981 ©.053  -28.117 ©.000 -1.608 -1.388 x1 153.1146 2734 s6.012 ©.000 147.460  158.769  x1 -0.3323 0.023  -14.341 ©0.000 -0.380 -0.284

nibus : ©.189  Durbin-Watson: ©.819  Omnibus: | 2.874  Durbin-Watson: 1,583  Omnibus: 1.098  Durbin-Watson: 2.239
Prob¢Omnibus): ©.910  Jarque-Bera (JB): 0.341  Prob(Omnibus): ©.238 Jarque-Bera (JB): 2.166  ProbCOmnibus): 0.578  Jarque-Bera (JB): 1.028
Skew: -0.169  Prob(JB): 9,843 Skew: -0.717  Prob(JB; 9.339 Skew: -0.430  Prob(JB): 0.598
Kurtosis: 2.538  Cond. No. 676. Kurtosis: 2.851  Cond. No. 5.56e+04  Kurtosis: 2.502  Cond. Mo. 157.
Warnings: Warnings: Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly [1] Standard Errors assume that the covariance matrix of the errors is correctly ¢[1] Stand:rd Errors assume that the covariance matrix of the errors is correctly
specified. specified.
[94.22878922 -1.38481116] [2] The condition number is large, 5.56e+84. This might indicate that there are [zs 81457577 -0.35337792]
[107.07042334 -1.49808383] strong multicollinearity or other numerical problems. [24.46144126 -0,33228819]
e ——————— [6.18224947e405 1.60220641e4+02] R

XL const [5. 708971786405 153114575442

Ws 6.5996 0.0533 x1 const WS 1.1087 0.0232
oLs 7.1957 0.0624 oLs 1.1568 0.0255

OLS_H(® 1.3046 0.0277
OLS_HC1 1.3601 ©.0288
OLS_HC3 1.3952 0.8299
OLS_HC3 1.4941 0.06323

20051,5494 2, 7336
19940.1136 2.5811
OLS_HCO 28789.1542 3.9103
OLS_HC1 30014.7681 4.8768
OLS_HC3 32358.8706 4.4195

OLS_HC@ 10.8542 0.0878
OLS_HC1 11,3163 9.0916
OLS_HC3 12.4109 0.1004
OLS_HC3 14,2337 9.1152

Table 2. Computed results of the WLS modelling for the data distribution by plates: A) Pacific; B) Philippine; C) Mariana; D)

Sediment thickness; E) Depths; F) Slope angle.

( A) QuantReg Regression Results (B) QuantReg Regression Results Q) QuantReg Regression Results
Dep. Variable: profile Pseudo R-squared 0.2581 Dep. Variable: profile Pseudo R-squared: 0.5912 Dep. Variable: profile Pseudo R-squared: 0.4455
Model : jantReg  Bandwidt 13.16 Model: QuantReg  Bandwidth: 4.941 1: QuantReg Bundmd 5.825
Method: Least Squares  Sparsity: 22.34 Method: Least Squares  Sparsity: 8.064 Method: Least Squares  Sparst 11.46
Date: Mon, 25 Mar 2019 No, Observations: 25 Date: Mon, 25 Mar 2019 No. Observations: 25 Date: Mon, 25 Mor 2615 Re. Cbsarvations: 2
Time: 10 Df Residuals: 23 Tim ©9:51:42  Df Residuals: 23 Time: @9:44:40  Df Residuals: 3
f Model : 1 DF Model: 1 DF Model: 1
coef  std err t Plt] [0.625 0.975) coef  std err t Prltl [0.025 2.9751 coef  std err t Pritl [0.025 0.975]
Intercept 17,0020 3.450 4.928 0.000 9.864 24.136 Intercept 2.3059 1.574 1.465 9.156 -0.950 5.562 Intercept 21.0000 1.872 11.220 0.000 24.872
plate pacif  -0.0354 0.022  -1.587 0.126 -@.081 .11 plate_phill  ©.0463 0.005 8.649 .000 0.035 0.057 platemaria  -0.0513 0.610  -4.975 0.000 -0.030
q a b 1b ub q a b ub q a b ub
0 0.05 1.000007 ©.005650 NN NaN ® .05 2.188076 -0.002294 Nt Kok © 0.05 1.000005 ©.002294 NaN Nt
1 0.15 7.771084 -0.012048 NaN Nal 1 0.15 0.753246 0.043290 1 .15 8.199032 -@.014218 NN Nall
2 0.25 15.038463 -0.038461 -0.085862 0.008939 2 0.25 2.395155 0.040323 0 azss:\s o. e51327 2 9.25 20.606061 -0.060606 -0.081754 -0.039458
3 0.35 15.874999 -2.037500 -0,083386 0.008336 3 0.35 2.387755 0.040816 0029346 0.052286 3 0.35 20.950741 -0.054187 -0.073418 -0.034957
4 0.45 16.0€0000 -0.033491 -0.079744 0.012762 i 638 23esens oles o.gsens 6.ats 4 9.45 21.000000 -0.053253 -0.074117 -0.032390
5 0.5 17.199201 -0.035857 -o 079062 0.007349 S .55 2.584616 ©.046154 0.035649 0.057258 5 0.5 21.999999 -0.@55556 -0.675791 -0.035320
6 0.65 17.999998 -0.037879 -0.084098 0.008339 6 .65 2.764206 ©.043295 0.037708 0.058883 6 0.65 22.000001 -0.045018 -0.069954 -0.622783
7 0.75 25.783556 -0.057534 -0.109538 -0.005530 7 @.75 4.843333 ©.043333 0.031794 0.054872 7 0.75 23.999997 -0.050453 -0.076879 -0.624038
§ 0.85 27.514284 -0.057143 Nal NaN 8 0.85 5.010830 0.043321 NN Nal 8 0.85 24.999953 -8,050000 Nab
9 0.95 27.500001 -0.046296 NN NN 9 .95 5.657380 ©.044568 NoN NaN 9 0.95 25.000000 -0.04434L NN Nall
(D) QuantReg Regression Results (E) QuantReg Regression Results (F) QuantReg Regression Results
Dep. Variable: profile Pseudo R-squared: 0.1667 Dep. Variable: profile  Pseudo R-sauared: a.2080 Dep. Variable: profile Pseudo R-squured: 0.07835
Model; QuantReg Bundmd 12.94 Model: QuantReg  Bandwidth Mode QuantReg  Bandwidtl 13.89
Method: Legst Suares  Sparsit 2,44 Method Least Squares  Sparsity: Least Squares Sparslty .22
Date: Mon, 25 Nor 2819 Re. Gbsbrvations: 25 Date: Mon, 25 Mar 2019  No. Observations: Men, 25 Mar 2019 MNo. Observations: F
Time: 5ot D neordute: 23 Time: 09:49:29 w Resldua'ls' 23 Time: ©09:49:07 D Residuals: 23
: 1 1 Df Model: 1
coef  std err t Polt] [0.025 0.975] coef  std err t Pitl [0.025 .975] coef  std err t Plt] [0.025 0.975]
Tntercept 12,0000 2.408 4.984 00 7.019 16.981 Intercept 32.8295 9.246 3.551 0.002 13.703 51.956 Intercept 23.2222 8.306 2.79% 0.010 6.033 40.405
plate_carol  0.4333 0.165 2.623 0.015 0.092 0.775 sedim_thick  -0.1477 0080 -1.843 ©0.078 -0.314 ©0.018 slope_angle  -0.2222 0.183  -1.215 0.237 -@.601 9.156
q a b b ub q a b b ub q a b ub
0 ©0.¢5 2.000000 ©.333983 NN NN ) -0.034483 Nah NaN 0 0.65 -0.973076 0.076923 NaN NaN
1 0.15 4.000000 ©.305085 NN NN 1 0.055556 Nall NaN 1 0.15 -0.000022 0.062501 NaN NN
2 0.25 6.000001 0.271186 -0.270035 0.812408 2 042253 -0.232282 0.147775 2 8.25 9.255824 -0.046512 -0.558346 0.465322
3 0.35 8.000018 0.237288 -0.198529 0.673105 3 -0.175824 -0.324716 -0.026932 3 0.35 18.499998 -0.178571 -0.607333 0.250190
4 0.45 ©.466634 ©.113959 0.820209 4 -0.142445 -0.310477 0.021587 4 0.45 23.222223 -0.222222 -0.607558 0.163114
5 .55 12.999999 ©.400800 0.064198 0.735802 5 -0.147727 -0.303778 0.008324 5 0.55 27.769232 -0.269231 -0.639233 0.100772
6 0.65 15.000000 ©.333333 0.019033 0.647633 3 mras -0.142857 -0.282081 -0.003633 6 0.65 32.956522 -0.347826 -0.692941 -0.002711
7 .75 16.999998 ©.300000 -0.013342 0.613342 7 -0.170732 -0.286019 -0.055444 7 0.75 33.565218 -0.347826 -0.671457 -0.024195
§ 0.85 18.999994 ©.217392 Nl NaN 8 96 -0.160000 Nah NaN § 0.85 35.333327 -0.333333 NaN N
9 0.95 20.714286 0.142857 NaN NN 9 -0.145833 Nall NaN 9 .95 33.999997 -0.281250 NaN NN

Table 3. Results of the computations for the quantile regression for sediment thickness versus geologic parameters: A) Pacific
Plate, B) Philippine Plate, C) Mariana Plate, D) Caroline Plate, E) Cumulative sediment thickness and F) Slope angle

degree by profiles.
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models = [fit model(x) for x in quantiles] ols = dict(a = ols.params[‘Intercept’],

models = pd.DataFrame(models, columns=[‘q’, ‘a’, b = ols.params[‘slope_angle’],
‘b’,"1b’,’ub’]) lb = ols_ci[O0],
ols = smf.ols(‘profile ~ slope angle’, data).fit() ub = ols ci[1])
ols ci = ols.conf int().loc[’slope angle’]. print(models)
tolist() print(ols)
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Figure 4. Quantile regression plotted for sediment thickness (m) versus geologic parameters: A) Pacific Plate, B) Philippine

Plate, C) Mariana Plate, D) Caroline Plate, E) Cumulative sediment thickness and F) Slope angle degree by profiles.
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Essentially, quantile regression is another approach of the linear
regression tested in the current research. The quantitative results
of the quantile regression are shown on Table 3, with respect to
the relevant plots shown on Figure 4 (corresponding to Figure 4:
A B,C D, EF).

Dynamic regression model: State Autoregressive Moving Av-
erage (SARIMA)

The methodology of the dynamic regression model is based on
the StatsModels embedded algorithm (Seabold & Perktold, 2010).

The abbreviation of SARIMA is the Space AutoRegresslve Mov-
ing Average model, initially developed by Ansley & Kohn, (1985).
The concept of the application of the SARIMA time series esti-
mation and post-estimation lies in the following. The changes in
the variables that are taken as time lags in classic dynamic re-
gression models are applied towards bathymetric profiles from 1
to 25. In this way, unlike in time series case when the SARIMA fits
the univariate models with time-dependent disturbances, this
case applies space-dependent disturbances, crossing the sam-
pling selection from 1 to 25 (X axe).

Because the model includes both dependent and independent
variables, the selected type of SARIMA was SARIMAX (see the Py-
thon code snippet below). The first group consists in changing
variables that is geologic settings and bathymetry (depths). The

second group (independent variables) is presented by the pro-
files lags that cross the Mariana Trench with the distance between
each of 100 km and the length of 1000 km. This cross-section pro-
files are taken as independent variables. Therefore, the depen-
dant variables differ spatially in different segments of the trench.

The model (Figure 5) fits univariate model of the geomorphic
structure of the trench by independent values of the distribution
of the bathymetric observation by profiles with dependent dis-
turbances of depths.

Fitting the model was done using the Python snippet:

mod = sm.tsa.statespace.SARIMAX(data[‘sedim
thick’], trend=’'c’, order=(1,1,1))

res = mod.fit (disp=False)

print(res.summary())

fig = sm.graphics.tsa.plot pacf(data.iloc[1l:]
[ “Ddf.geology’], lags=25, ax=axes[l])

The algorithm fits a model where the disturbances follow a linear
specification of the bathymetric distribution across the trench.
The dependent and independent geological variables vary by
profiles (Figure 5). Plotting was done using sublplot function of
Matplotlib:

fig, axes = plt.subplots(2, 2, figsize=(15,8))
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Figure 5.

Plotted SARIMAX statistics for the bathymetry: A) Sediment thickness index; B) Data distribution index, Philippine
Plate; C) Autocorrelation; D); Partial Autocorrelation.
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® © @ *Script-040-Sari
# Step-1. Import data
os.chdir('/Users/pauline
data = pd.read_csv("Tab-Morph
data.index = data.profile
Step-2. Fitting the model by sediment thickness
mod = sm.tsa.statespace.SARIMAX(data['sedim_thick'], trend='c'
res = mod.fit(disp= )
print(res.summary())
# Step-3. Dataset
data['sedim_thickn'] = np.log(data['sedim_thick'])
data['D.sedim_thickn'] = data['plate_phill'].diff()
# Step-4. Graph data
fig, axes = plt.subplots(l, 2, figsize=(15,4))
axes[0].plot(data.in epr(), data['sedim_thick'],
axes[0].set_xlabel(’ profiles, 1:25', fontsize=10)
axes[0].set(title= h: Sediment
axes[@].annotate('A", .95, .92), xycoor
bbox=dict(boxstyle="round, pad=0.3"'
# Step-5. Log difference
axes[1].plot(data.index._mpl_repr(), data['D.se
axes[1].hlines(0, da dex[0], data.index[
axes[1].set_xlabel(’ 1:2
axes[1].set(title="Ma
axes[1].annotate("
bbox=dict(boxstyle=
# Step-6|. Graph data
fig, axes = plt.subplots(l, 2, figsize=(15,4))
fig = sm.graphics.tsa.plot_acf(data.iloc[1:1['D
axes[0].annotate('C’, xy=(0.95,
bbox=dict(boxstyle="r:
fig = sm.graphics.tsa.plot_pac

Stata.py - /User y /Script-040-Sarimax Stata.py (3.7.2)*

Documents/Python')

sv™)

- order=(1,1,1))

, \nby bathymetric profiles')
on", fontsize=12,

', edgecolor="grey', linewidth=1, alpha=0.9))

thickn'], '

P

7 \nPhill difference of

ta distribution i
xycoords=
pad=0.3', f

pine Plate,
ction", fontsize=12,
, edgecolor="grey', linewidth=1, alpha=0.9))

a logs');

, -92),

"round,

m_thickn'], lags=21, ax=axes[0])

xes fraction”, fontsize=12,

', edgecolor="grey', linewidth=1, alpha=0.9))
).sedim_thickn'], lags=21, ax=axes[1])

Statespace Model Results

Dep. Variable: sedim_thick No. Observations: 25
Model : SARIMAX(1, 1, 1) Log Likelihood -108.677
Date: Fri, 29 Mar 2019 AIC 225.354
Time: 10:49:01 BIC 230.066
Sample: @ HQIC 226.604
- 25
Covariance Type: opg
coef std err Zi P>zl [0.025 0.975]
intercept -1.8019 2.957 -0.609 0.542 =7:597 3.993
ar.L1 0.2696 0.390 0.692 0.489 -0.49%4 1.033
ma.Ll -0.6914 0.414 -1.669 0.095 -1.503 0.121
sigma2 495.4968 197.897 2.504 0.012 107.625 883.369
Ljung-Box (Q): 18.06 Jarque-Bera (JB): 4.25
Prob(Q): 0.75 Prob(JB): 0.12
Heteroskedasticity (H): 0.38 Skew: -0.73
Prob(H) (two-sided): 0.19 Kurtosis: 4.46

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

axes[1].annotate('D’, xy=(0.95, .92), xycoords="axes fraction”, fontsize=12, 555

bbox=dict(boxstyle="round, pad=0.3', fc="w', edgecolor='grey', linewidth=1, alpha=0.9))
plt.show() Ln: 28 Col: 29
Table 4. Python programming code for used SARIMAX algorithm (left) and Statespace Model Results (right). Tested case in

Mariana Trench tectonics: sediment thickness across Philippine Plate.

RESULTS AND DISCUSSIONS

The conducted statistical data modelling and several types of
the regression analysis were aimed to compare the variance in
the geological data sets of the Mariana Trench explained by the
complex interplay of the geomorphic, geological and oceano-
logical attributes of the data and the bathymetric factors of the
location of several segments of the trench in various parts of the
Pacific Ocean. Using StatsModels library of Python, in particular
several linear models of the correlation between various factors
were computed, analysed and explained by the groups of vari-
ables.

Tested environmental variables of the Mariana Trench include
four main geological factors (location on the tectonic plates,
slope steepness degree, sediment thickness of the layer and
bathymetric depth and submarine volcanism) and attributes of
the 25 cross-section bathymetric profiles (mean values, maximal
depths, median values and two quartile sub-division of the data
sets) and the shared variances between environment and attri-
butes. Shared variance arises due to correlations between the
factor of sediment thickness and slope angle degree, e.g. be-
cause the attributes of the sediment accumulation are influenced
by the canyon shape apart from the directly or indirectly depend-
ing on the oceanological conditions of the submarine currents.

The graphical output shows normal data distribution as demon-
strated by (Figure 2), where each QQ profile has a given value for
data distribution by quantiles across the trench profiles. The dis-
tribution of the geologic residuals is shown on Figure 3 showing
particularly data correlation for several cases: frequency of the
data distribution by Pacific Plate, Philippine Plate, Mariana Plate,
sediment thickness, and range of the bathymetric depths taken
for the maximal values, and finally, geomorphological shape as
slope angle degree. The results shown on Table 2 represent the
computed numerical values of the previous graph (Figure 3).

The results on the Quantile regression (Figure 4) show the condi-
tional median of the response geologic variable given changing

bathymetric values with movement southwards across the Mari-
ana Trench. Thus, the upper plots shows (Figure 4, A, B, C) data
distribution across tectonic plates: Pacific Plate, Philippine Plate,
Mariana Plate and Caroline Plate. The lower plot (Figure 4, D, E,
F) shows data distribution for the Caroline Plate and cumulative
sediment thickness and slope angle degree by profiles.

The numerical explanation of the Figure 4 with corresponding
sub-plots is presented in Table 3. The Figure 5 shows dynamic re-
gression model using Python function embedded in StatsModel:
State Autoregressive Moving Average. Finally, Table 4 shows the
Python code that was used to perform the procedure of SARI-
MAX and the resulting output table. The model shows autocor-
relation of the data by bathymetric profiles. The results demon-
strated a correlation between the geological variables and geo-
spatial location of the samplings across Mariana Trench, which
proves the interplay between multiple factors affecting its geo-
morphology.

CONCLUSIONS

While the usage of the traditional methods of geoinformatics
and spatial analysis is, beyond doubts, strongly recommended
for any research in geoscience, there is another powerful tool for
the geospatial data processing other than GIS, sometimes over-
looked or skipped by the geographers: a data modelling by use
of Python or R programming languages. Python, an open source
free programming language is highly suitable for the statistical
analysis in geoscience research, since it has a powerful statistical
and math libraries, e.g. StatsModel, highly effective for scientific
computing and used in the current research. The functionality of
Python language and StatsModel, tested in this work, is proved
to be highly effective for the statistical analysis of the geo-marine
sets.

The proposed approach of the Python based statistical analysis
enables accurate and efficient computation and modelling of the
large data sets in marine geology and oceanology. A challenge
in the evaluation of geological big data sets (that is, several thou-
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sand of observation points as in this case, 12.590 samples) con-
cerns the difficulty in manual identifying a correct algorithms in
the computations and data distribution analysis.

The necessity to apply a precise machine learning algorithms is
recently increased in geographic sciences with respect to the im-
portance of choosing an effective method for data visualization
and computation. The solutions to the mentioned above prob-
lems are provided by Pandas data frames: for example, optimiz-
ing structure of the data, selecting the correct parts from the
whole data frame (columns, rows in the data arrays) and plotting.
Based on the presented results, the application of Python pro-
gramming language is strongly recommended in geoscience re-
search as an addition to the traditional GIS methods.

Conflict of Interests: The author declares no conflict of interest.

Funding: This research was funded by the China Scholarship
Council (CSC), State Oceanic Administration (SOA), Marine
Scholarship of China, Grant Nr. 2016SOA002, Beijing, People’s
Republic of China.

REFERENCES

Ansley, C. F. & R. J. Kohn. (1985). Estimation, filtering, and smoothing in
state space models with incompletely specified initial conditions.
Annals of Statistics 13, 1286-1316. [CrossRef]

Bello-Gonzélez, J. P, Contreras-Reyes, E. & Arriagada, C. (2018).
Predicted path for hotspot tracks off South America since Paleocene
times: Tectonic implications of ridge-trench collision along the
Andean margin. Gondwana Research, 64, 216-234. [CrossRef]

Boston, B., Moore, G. F, Nakamura, Y. & Kodaira, S. (2017). Forearc slope
deformation above the Japan Trench megathrust: Implications for
subduction erosion. Earth and Planetary Science Letters, 462, 26-34.
[CrossRef]

Bjorck, A. (1996). Numerical methods for least squares problems. SIAM,
Philadelphia. ISBN 0-89871-360-9. [CrossRef]

Box, G. E. P; Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis.
New York: John Wiley and Sons. ISBN 0-471-57428-7. (Section 8.1.1).
[CrossRef]

Dierssen, H. M. & Theberge Jr. A. E. (2014). Bathymetry: History of
Seafloor Mapping. Encyclopedia of Natural Resources, Taylor &
Francis. [CrossRef]

Fujie, G., Ito, A., Kodaira, S., Takahashi, N., & Kaneda, Y. (2006). Confirming
sharp bending of the Pacific plate in the northern Japan trench
subduction zone by applying a traveltime mapping method. Physics
of the Earth and Planetary Interiors, 157, 72-85. [CrossRef]

Grand, S. P, Hilst, R. D. van der, & Widiyantoro, S. (1997). Global Seismic
Tomography: A Snapshot of Convection in the Earth. GSA Today,
7(4), 2-7.

Lemenkova, P. (2019). Processing Oceanographic Data by Python
Libraries NumPy, SciPy And Pandas. Aquatic Research, 2(2), 73-91.
[CrossRef]

Ljung, G. M. & Box, G. E. P. (1978). On a Measure of a Lack of Fitin Time
Series Models. Biometrika. 65 (2): 297-303. [CrossRef]

Michibayashi, K., Tasaka, M., Ohara, Y., Ishii, T., Okamoto, A., & Fryer, P.
(2007). Variable microstructure of peridotite samples from the
southern Mariana Trench: Evidence of a complex tectonic evolution.
Tectonophysics, 444, 111-118. [CrossRef]

Millman, K. J. & Aivazis, M. (2011). Python for Scientists and Engineers,
Computing in Science & Engineering, 13, 9-12. [CrossRef]

Oliphant, T. (2015). Guide to NumPy (2 ed.). CreateSpace. ISBN 978-
1517300074.

Oliphant, T. E. (2007). Python for scientific computing. Computing in
Science & Engineering 9(3), 10-20. [CrossRef]

Reid, W. D. K., Cuomo, N. J., & Jamieson, A. J. (2018). Geographic and
bathymetric comparisons of trace metal concentrations (Cd, Cu, Fe,
Mn, and Zn) in deep-sea lysianassoid amphipods from abyssal and
hadal depths across the Pacific Ocean. Deep-Sea Research Part |,
138, 11-21. [CrossRef]

Schellart, W. P. (2008). Subduction zone trench migration: Slab driven or
overriding-plate-driven? Physics of the Earth and Planetary Interiors,
170, 73-88. [CrossRef]

Seabold, S. & Perktold, J. (2010). Statsmodels: Econometric and statistical
modeling with python. Proceedings of the 9th Python in Science
Conference.

Smith, W. H. F,, & Sandwell, D. T. (1997). Global Sea Floor Topography
from Satellite Altimetry and Ship Depth Soundings. Science, 277,
1956-1962. [CrossRef]

Strutz, T. (2016). Data Fitting and Uncertainty (A practical introduction to
weighted least squares and beyond). Springer Vieweg. ISBN 978-3-
658-11455-8.

Taira, K., Yanagimoto, D., & Kitagawa, S. (2005). Deep CTD Casts in the
Challenger Deep, Mariana Trench. Journal of Oceanography, 61,
447-454. [CrossRef]

Theberge, A. (2008). Thirty years of discovering the Mariana Trench.
Hydro International, 12, 38-39.

Timm, N. H. (2007). Applied Multivariate Analysis. Springer Science &
Business Media, 695 p. ISBN: 978-0-387-95347-2. [CrossRef]

60


https://doi.org/10.1214/aos/1176349739
https://doi.org/10.1016/j.gr.2018.07.008
https://doi.org/10.1016/j.epsl.2017.01.005
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1002/9781118033197
https://doi.org/10.1081/E-ENRW-120047531
https://doi.org/10.1016/j.pepi.2006.03.013
https://doi.org/10.3153/AR19009
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.1016/j.tecto.2007.08.010
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1016/j.dsr.2018.07.013
https://doi.org/10.1016/j.pepi.2008.07.040
https://doi.org/10.1126/science.277.5334.1956
https://doi.org/10.1007/s10872-005-0053-z
https://doi.org/10.1007/b98963

