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SOFT LUBRICATION MODEL

We consider a sphere of radius R, immersed in a Newtonian fluid of viscosity η and density ρ (see Fig. 1 in the
article). The sphere is placed at a distance d from a thick incompressible elastic substrate of shear modulus G. The

substrate is translated horizontally at an oscillatory velocity ~V (t) = Aω sin(ωt) ~ex, where t is time, ~ex is the unit
vector along the x-axis, and A and ω are respectively the amplitude and angular frequency imposed by the piezo
stage. We focus on the regime where the gap distance d is much smaller than the sphere radius R, such that the
lubrication scale separation can be applied. Besides, the Reynolds number Re = ρAω

√
Rd/η is much smaller than

unity in all experiments, such that we can neglect inertial terms. We also neglect the time dependence of the gap
distance since the vertical velocity of the piezo is much smaller than the horizontal one. In addition, the cantilever’s
stiffness is large enough, so that the cantilever’s deflection amplitude is negligible with respect to the gap distance in
the large-gap-distance limit. The resulting horizontal fluid velocity field ~v(~r, z, t) is a linear combination of Poiseuille
and Couette flows:

~v(~r, z, t) =
1

2η
~∇p
[
z2 − z(h0 + δ) + h0δ

]
+
h0 − z
h0 − δ

~V , (S1)

where z is the vertical coordinate, ~r = (x, y) the horizontal ones, h0(~r) ' d+ r2

2R is the gap profile in the absence of any
substrate’s deformation and invoking the parabolic approximation for the sphere in the contact zone, and δ(~r, t) is the
substrate’s deformation. The excess pressure field with respect to the ambient is denoted p(~r, t). A polar coordinate
system ~r = (r, θ) is used, with θ being the angle with respect to the x-axis. Expressing volume conservation, one can
show that the fluid thickness, h = h0 − δ, follows the lubrication Reynolds equation:

∂th(~r, t) = ~∇.
[
h3(~r, t)

12η
~∇p(~r, t)− h(~r, t)

2
~V (t)

]
. (S2)

We assume that the elastic response is linear, and that the incompressible substrate is semi-infinite as the contact
length ` =

√
2Rd is much smaller that the substrate’s thickness. Thus, the deformation reads:

δ(~r, t) = − 1

4πG

∫
d2~r′

p(~r′, t)

| ~r − ~r′ |
. (S3)

In the following, we non-dimensionalize all the variables through the lubrication scaling:

h(~r, t) = d ĥ(~̂r, t̂) , ~r = ` ~̂r , δ(~r, t) = dδ̂(~̂r, t̂) , (S4)

p(~r, t) =
ηAω`

d2
p̂(~̂r, t̂) , t =

`

Aω
t̂ , ~v(~r, t) = Aω ~̂v(~̂r, t̂) , ~V (t) = Aω V̂ (t̂) ~ex , (S5)

with V̂ (t̂) = sin(`t̂/A). For clarity, we further drop the hat symbols (̂.). The governing equations are then:

12 ∂th(~r, t) = ~∇.
[
h3(~r, t)~∇p(~r, t)− 6h(~r, t)~V (t)

]
, (S6)

h(~r, t) = 1 + r2 − δ(~r, t) , (S7)
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and:

δ(~r, t) = − ξ

2π

∫
R2

d2~r′
p(~r′, t)

| ~r − ~r′ |
, (S8)

with ξ = ηAωR/(Gd2) =
√

2κ, where κ is the dimensionless compliance introduced in the article, that corresponds
to the typical substrate’s deformation over the gap distance in the limit of small κ.

PERTURBATION THEORY

Assuming that the deformation of the substrate is small with respect to the typical gap distance, i.e. ξ � 1, we
perform a perturbative expansion in fluid thickness profile and pressure, as:

h(~r, t) = h0(~r) + ξ h1(~r, t) +O(ξ2) , (S9)

p(~r, t) = p0(~r, t) + ξ p1(~r, t) +O(ξ2) , (S10)

where the subscript 0 corresponds to the case of a rigid wall, for which h0(~r) = 1 + r2 in particular. Equation (S6)
gives at zeroth order:

0 = ~∇.
(
h30~∇p0 − 6h0~V

)
, (S11)

and thus, in polar coordinates:

r2∂2rp0 +

(
r +

6r3

1 + r2

)
∂rp0 + ∂2θp0 =

12r3V cos θ

(1 + r2)3
. (S12)

We solve this equation using an angular mode decomposition:

p0(r, θ, t) = P
(1)
0 (r, t) cos θ , (S13)

where the amplitude P
(1)
0 satisfies the ordinary differential equation:

r2∂2rP
(1)
0 +

(
r +

6r3

1 + r2

)
∂rP

(1)
0 − P (1)

0 =
12r3V

(1 + r2)3
. (S14)

Imposing the natural boundary conditions, p0(r → ∞, θ, t) = 0 and p0(r = 0, θ, t) < ∞, the zeroth-order solution
reads:

p0(r, θ, t) = −6rV (t) cos θ

5(1 + r2)2
. (S15)

The first-order correction h1 in fluid thickness profile can then be computed by inserting p0 into the first-order version
of Eq. (S8), as:

h1(~r, t) =
1

2π

∫
R2

d2~r′
p0(~r′, t)

| ~r − ~r′ |
. (S16)

We solve this convolution product by introducing the spatial Fourier transform h̃1(~k, t) =
∫
R2 d2~r h1(~r, t)e−i

~k~r. In
Fourier space, Eq. (S16) becomes:

h̃1(~k, t) =
p̃0(~k, t)

k
. (S17)

One can then calculate and invert this Fourier transform, and get:

h1(r, θ, t) = −3V (t)

5r

[
K(−r2)− E(−r2)

1 + r2

]
cos θ , (S18)
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FIG. S1: a) First-order correction h1 in fluid thickness as a function of radial coordinate r, for the particular case where

V (t) = 1 and θ = 0, as obtained from Eq. (S18). b) Isotropic part P
(0)
1 of the first-order correction p1 in pressure, for the

particular case where V (t) = 1, as obtained from a numerical integration of Eq. (S21).

where K and E are the complete elliptic integrals of the first and second kinds. That solution is plotted in Fig. S1a)
for the particular case where V (t) = 1 and θ = 0. Besides, the first-order correction p1 satisfies the first-order version
of Eq. (S6):

12∂th1 = ~∇.
(
h30~∇p1 + 3h20h1~∇p0 − 6h1~V

)
, (S19)

where everything is now known apart form p1. After some algebra, the latter equation can be expressed in polar
coordinates:

r2∂2rp1 +

(
r +

6r3

1 + r2

)
∂rp1 + ∂2θp1 =

36 r2V 2(t)

25(1 + r2)6

[
(−10 + 2r2) E

(
−r2

)
+ (8 + 7r2 − r4)K

(
−r2

) ]
− 36 rV̇ (t)

5(1 + r2)4

[
− E

(
−r2

)
+ (1 + r2)K

(
−r2

) ]
cos θ

+
36V 2(t)

25(1 + r2)6

[
− 2(2 + 9r2 + r4) E

(
−r2

)
+ (1 + r2)(4 + 16r2 + 3r4)K

(
−r2

) ]
cos(2θ) .

(S20)

We invoke an angular mode decomposition, through p1(r, θ, t) = P
(0)
1 (r, t) + P

(1)
1 (r, t) cos θ + P

(2)
1 (r, t) cos(2θ), and

get in particular the ordinary differential equation for the isotropic term:

r2∂2rP
(0)
1 +

(
r +

6r3

1 + r2

)
∂rP

(0)
1 =

36 r2V 2(t)

25(1 + r2)6

[
(−10 + 2r2) E

(
−r2

)
+ (8 + 7r2 − r4)K

(
−r2

) ]
. (S21)

This equation can then be solved numerically, using e.g. an order-4 Runge-Kutta algorithm, together with a shooting

parameter that converges when P
(0)
1 → 0 at large r. The solution is shown in Fig. S1(b) for the particular case where

V (t) = 1. Note that, by linearity of the ordinary differential equation on P
(0)
1 , the solution for an arbitrary V (t)

is immediately obtained from this particular solution through a simple multiplication by V 2(t). Finally, the normal
(“lift”) force is defined as

∫
R2 d2~r p(~r, t), and can thus be computed at first order in ξ from the results above. We

stress that we focused only on the isotropic angular mode of p1, as the other ones do not contribute to the force, due
to the angular integration. Putting back dimensions, this gives the first-order expression of the lift force Flift(t):

Flift(t) ' 8π F ∗ ξ

∫
R+

r̂dr̂ P̂
(0)
1 (r̂, t̂) ≈ 0.416

η2V 2(t)

G

(
R

d

)5/2

, (S22)

where F ∗ = ηAωR3/2/(2d)1/2 is the typical lubrication force scale defined in the article. Therefore, the temporal
average F of Flift over a period 2π/ω of oscillation is given by:

F ≈ 0.416κF ∗ . (S23)
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Interestingly, Eq. (S22) is not restricted to constant V , provided no new physics (e.g. viscoelasticity, poroelasticity,
acoustic waves, etc.) is added due to the temporal variation of V (t). However, the quasi-steady form of Eq. (S22)
– where the time dependence is solely implicit through V (t) – imply that transient effects do not contribute to the
average lift force F , at first order in κ (or ξ). For this reason, we simplified the discussion in the article by considering
only an analogous steady problem, with the root-mean-squared value Aω/

√
2 replacing the steady velocity all along

the article. Nevertheless, it is generally expected that transient terms will become relevant at higher orders in κ (or
ξ).
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