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Abstract 

 

We present the first direct measurement of the elastohydrodynamic lift force acting on a 

sphere moving within a viscous liquid, near and along a soft substrate under nanometric con-

finement. Using atomic force microscopy, the lift force is probed as a function of the gap size, 

for various driving velocities, viscosities, and stiffnesses. The force increases as the gap is 

reduced and shows a saturation at small gap. The results are in excellent agreement with scal-

ing arguments and a quantitative model developed from the soft lubrication theory, in linear 

elasticity, and for small compliances. For larger compliances, or equivalently for smaller con-

finement length scales, an empirical scaling law for the observed saturation of the lift force is 

given and discussed. 
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Lubricated contact between deformable solids is a situation widely encountered and studied in 

geophysical [1], as well as industrial and engineering [2] contexts. Central to such elastohy-

drodynamic settings is the coupling between the local hydrodynamic pressure induced by the 

fluid flow and the deformation of the confining solids. Recently, such a coupling was studied 

for much more compliant solids and smaller length scales, in the context of soft matter in con-

finement and at interfaces [3]. Indeed, it might play a crucial role in the motion of various 

physiological and biological entities[4,5]. Furthermore, through surface force apparatus [6-9], 

atomic force microscopy [10-14], and optical particle tracking [15], it offers an alternative 

strategy for micro- and nanorheology of soft materials, with the key advantage of avoiding 

any solid-solid adhesive contact. 

In such a soft-matter context, a novel elastohydrodynamic lift force was theoretically intro-

duced for elastic bodies moving past each other within a fluid [16], and further explored and 

generalized through: the motion of vesicles along a wall [17,18], different elastic media and 

geometries [19-21], added effects of intermolecular interactions [22], self-similar properties 

of the soft lubricated contact [23], the inertial-like motion of a free particle [24], viscoelastic 

effects [25], an equivalent emerging torque [26], and the case of membranes [27,28]. Essen-

tially, any symmetric rigid object moving within a viscous fluid and along a nearby soft sur-

face is repelled from the latter by a normal force. This force arises from a symmetry breaking 

in the contact shape and the associated low-Reynolds-number flow, due to the elastohydrody-

namic coupling introduced above. Specifically, for a non-deformable surface, and an even 

contact shape, the lubrication pressure field (i.e. the dominant hydrodynamic stress) is anti-

symmetric, resulting in a null net normal force. In contrast, a soft surface is deformed by the 

pressure field which then loses its symmetry, resulting in a finite normal force. We note that 

the qualitative behaviour is similar for the opposed situation of a soft object moving within a 

viscous fluid along a rigid surface.  

Theoretical calculations show that, as the gap between the object and the soft substrate re-

duces, the force increases. Eventually, at very small gap, the competition between symmetry 

breaking and decreasing pressure leads to a saturation of the lift force [19-22].  

Despite the above theoretical literature, experimental evidence for such an elastohydrody-

namic lift force remains recent and scarce [29,30]. Measurements of the rising speed and the 

distance to a vertical wall of a bubble allowed to extract an analogous normal force acting on 

the bubble [31]. A qualitative observation was reported in the context of smart lubricant and 

elastic polyelectrolytes [32]. A study, involving the sliding of an immersed macroscopic cyl-

inder along an inclined plane, precoated with a thin layer of gel, showed an effective reduc-
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tion of friction induced by the lift force [33]. Then, the optical tracking of the driven motion 

of a microparticle in a microfluidic channel decorated with a polymer brush revealed the po-

tential importance of this force in biological and microscopic settings [34]. From the gravita-

tional sedimentation of a macroscopic object along a vertical membrane under tension, an-

other  study observed an important normal drift, showing the amplification of the effect for 

very compliant boundaries induced by slender geometries [35]. The measurement of the shape 

deformation of a levitating droplet over a moving wall was also used to probe the effects of 

the lift force [36]. Nevertheless, while this experimental literature provides confidence in the 

existence of the elastohydrodynamic lift force, as well as in its importance at small scales and 

for biology, no direct force measurement was performed to date and the saturation at the 

nanoscale was not yet observed. 

In this Letter, we report on the first direct measurement of the elastohydrodynamic lift force 

acting on a sphere moving within a viscous liquid and along a soft substrate, under nanomet-

ric confinement. Using atomic force microscopy (AFM), the lift force is probed as a function 

of the gap size, for various driving velocities, viscosities, and stiffnesses. The results are com-

pared to scaling arguments and a novel quantitative model developed from the soft lubrication 

theory, in linear elasticity, and for small compliances. For larger compliances, a saturation of 

the lift force is observed and its empirical scaling law is discussed. 

 

A schematic of the experimental setup is shown in Fig. 1. The experiment is performed using 

an AFM (Bruker, Bioscope) equipped with a cantilever holder (DTFML-DD-HE) that allows 

working in a liquid environment. We use a spherical borosilicate particle (MO-Sci Corpora-

tion) with a radius           and a roughness of        measured over a       surface 

area. That sphere is glued at the end of a silicon nitride triangular shaped cantilever (DNP, 

Brukerafmprobes) using epoxy glue (Araldite, Bostik, Coubert). The soft samples are fixed on 

a multi-axis piezo-system (NanoT series, Mad City Labs), which allows: i) to control and scan 

the gap distance   between the sphere and the sample by displacing the sample vertically; and 

ii) to vibrate the sample transversally at a frequency             or      , and with an 

amplitude   ranging form        to      . Note that, the normal displacement speed 

        being much smaller than the smallest transversal velocity amplitude    

         , the former can be neglected and a quasi-static description with respect to the 

normal motion is valid. Using the drainage method [37], the modified stiffness         

        of the cantilever when the sphere is attached to it is determined using a rigid silicon 
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wafer as a substrate, and for large enough gap distances (   200-20000 nm). The studied 

polydimethylsiloxane (PDMS) substrates are prepared as follows. First, uncrosslinked PDMS 

(Sylgard 184, Dow Corning) and its curing agent are mixed into three different solutions, with 

different mixing ratios (10:1, 20:1, 30:1). Following a preliminary degassing process, a few 

droplets of each solution are spin-coated on a glass substrate during a minute to get a sample 

of thickness in the 25-30 m range. This is followed by an annealing step, in an oven at 50 °C 

and during 24 hours, in order to promote an efficient cross-linking. The measured Young’s 

moduli   of the samples (10:1), (20:1), and (30:1), are respectively: 

              ,              and             , where the Poisson ratio is fixed to 

      since crosslinked PDMS is an incompressible material to a very good approximation. 

At the Young’s moduli and low frequencies studied here, the loss modulus of PDMS is negli-

gible [38]. The viscous liquids employed are silicone oil and 1-decanol with dynamic viscosi-

ties            and            respectively.  

 

Using scaling arguments, the lift force acting on a sphere immersed in a viscous fluid and 

moving at constant velocity    near and parallel to a semi-infinite incompressible elastic sub-

strate of shear modulus             , reads [20]:  

 

        
    

 
 
    

     ,                                                           (1) 

 

in the limit of small dimensionless compliance,              . Note that, in this limit, 

  corresponds to the ratio between substrate’s deformation and gap distance. Note also that, 

due to Galilean invariance, moving the substrate at constant velocity instead of the sphere 

leads to the same lift force. In view of the low frequencies at which the substrate is oscillating, 

and since inertial effects are negligible for such a confined viscous flow, this invariance and 

the expression of the lift force above remain excellent approximations in our case - with the 

substitution             in Eq.(1). In addition, in all experiments, the hydrodynamic ra-

dius      being much smaller than the thickness of the soft substrate, the latter can indeed 

be described as semi-infinite. Interestingly, with such a periodic driving, and since the lift 

force depends on the squared velocity, it can be expressed as two additive components: i) a 

time-independent one          
 

          ; and ii) a component oscillating at double fre-
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quency   . Focusing only on the former, it is measured though a temporal average   

     of the instantaneous normal force  N recorded by AFM (see Fig.1). 

 

Figure 2 shows the force   as a function of the gap distance  , for rigid (silicon wafer) and 

soft substrates (PDMS 20:1). For the rigid case, no finite force is detected above the current 

nN resolution, at all distances. This is expected, since for such a hard surface (Young’s 

modulus in the              ), the elastohydrodynamic effects occur at gap distances much 

smaller than the ones typically probed here [6]. As a remark, the fact that no force – even 

purely hydrodynamic – is measured in this case is a direct confirmation for the validity of the 

quasi-static description with respect to the imposed normal motion of the sphere. In sharp 

contrast, for the soft case, a systematic non-zero force is measured, and observed to increase 

as the gap distance is reduced. Furthermore, as shown in the inset, the force asymptotically 

scales as          at large gap distances, in agreement with the prediction of Eq.(1). Interest-

ingly, at smaller gap distances, a saturation of the lift effect is observed, as reported previ-

ously [20,33].  

 

Having tested the asymptotic dependence of the force with the main geometrical parameter, 

i.e. the gap distance, which showed a first evidence of the lift, we now turn to the other key 

elastohydrodynamic parameters appearing in Eq.(1): the velocity amplitude   , the viscosity 

  of the liquid, and the shear modulus   of the substrate. To test the dependences of the force 

with those three parameters, we introduce two dimensionless variables: the dimensionless 

compliance            , and the dimensionless force      with                 

where   is systematically replaced by its root-mean-squared value       due to the tempo-

ral averaging introduced above. In such a representation, Eq.(1) becomes:       . In Fig.3, 

we thus plot   as a function of  , and in the rescaled form,      as a function of  , for vari-

ous sets of parameters: two different oscillation amplitudes (Fig.3a), two different oscillation 

frequencies (Fig.3b), two different viscosities (Fig.3c), and three different shear moduli 

(Fig.3d). In the inset of each of those panels, we first observe at small   that      is linear in 

   and that the curves for various values of the varied parameter collapse with one another, 

which validates further Eq.(1). Moreover, around    , a deviation from the previous asymp-

totic behaviour is observed, leading to a maximum prior to an interesting decay at large  . In 

addition, the collapse for various values of the varied parameter is maintained, indicating that 

even at large dimensionless compliance  , the dimensionless force      remains a function 
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of   only. This suggests that the same physics, coupling lubrication flow and linear elasticity, 

is at play at large      

 

We now rationalize the missing prefactor in Eq.(1), and discuss further the behaviour at large 

 . For the first purpose, we go beyond scaling analysis [20] and develop a model based on 

soft lubrication theory [19-26] for a rigid sphere translating in a viscous fluid and along a 

semi-infinite incompressible elastic wall. Details are provided in SI, and lead to the expres-

sion of the lift force at first order in  : 

 

                       
    

 
 
 

 
 
   

,                                 (2) 

 

where         is the first-order lubrication pressure term, and         is the coordinate 

vector in the horizontal plan (see Fig.1a). 

 

Equation (2) thus provides the missing prefactor of Eq. (1), allowing to go beyond scaling 

analysis. In order to test this prediction, we plot      as a function of   in Fig.4, for all the 

experiments performed in this study. First, all the experimental data collapses on a single non-

monotonic master curve, confirming further the results of Fig.3. Secondly, Eq. (2) is found to 

be in excellent agreement with the low-  part of the data, with no adjustable parameter. Fi-

nally, the behaviour at large   reveals the possible existence of a power law:           , 

equivalent to                   . This gap-independent empirical scaling suggests that the 

lift force saturates at small enough distances, in agreement with the observation made in Fig.2. 

Such a result [25] might tentatively be attributed to a competition between the increase of the 

elastohydrodynamic symmetry breaking and the decrease of the pressure magnitude due to the 

substrate’s deformation, but further work is needed to quantify this hypothetical mechanism, 

and to disentangle it from potential non-stationary effects [8]. Indeed, the latter are a priori 

not negligible anymore at large   (see SI). 

In conclusion, our results robustly demonstrate the existence and the first direct measurement 

of the elastohydrodynamic lift force at the nanoscale, and confirm our novel quantitative as-

ymptotic theoretical prediction. Moreover, the latter having been developed in the framework 

of classical soft lubrication theory, the collapse of the data with it for various amplitudes, fre-

quencies, viscosities, and shear moduli, allows to safely exclude artefacts from viscoelasticity, 

poroelasticity, or non-linear elasticity. For large compliances, or equivalently at small con-

finement length scales, a saturation of the lift force is observed and an empirical scaling law is 
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discussed. In future, focusing the efforts on the resolution of the nonlinear problem at any 

dimensionless compliance, and including non-stationary terms associated with the driving 

oscillation, might help to explore further the saturation regime. We anticipate important impli-

cations of the existence of the elastohydrodynamic lift force at the nanoscale for nanoscience 

and biology. 
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Figures  

 

 
 

Figure 1. Schematic of the experimental setup. The soft PDMS sample is fixed to a rigid piezo 

stage that is transversally oscillated along time  , at angular frequency  , and with amplitude 

 . A rigid borosilicate sphere is glued to an AFM cantilever and placed near the substrate, 

with silicone oil or 1-decanol as a viscous liquid lubricant. The normal force  N exerted on 

the sphere, at a gap distance   from the surface, is directly measured from the deflection of 

the cantilever. 
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Figure 2. Temporal average   of the normal force  N (see Fig.1) as a function of the gap 

distance   to the substrate, for both rigid (silicon wafer) and soft (PDMS 20:1) substrates. 

The liquid used is silicone oil with viscosity =        . The amplitude of the velocity is 

            . The inset shows a log-log representation of the data for the soft substrate, 

and the solid line therein indicates a -5/2 power law. 
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   Figure 3. Measured temporal-averaged force   as a function of gap distance   to the soft 

PDMS substrates, and (insets) dimensionless force     as a function of dimensionless com-

pliance   in logarithmic scales, for various sets of parameters. (a) Two different velocity am-

plitudes (as indicated) obtained with different oscillation amplitudes are investigated. The 

substrate is crosslinked PDMS (10:1), and the liquid is 1-decanol with viscosity   
          ; (b) two different velocity amplitudes (as indicated) obtained with two different 

working frequencies are investigated. The substrate is crosslinked PDMS (10:1), and the liq-

uid is silicone oil with viscosity           ; (c) two different liquids with different asso-

ciated viscosities (as indicated) are investigated. The substrate is crosslinked PDMS (10:1), 

and the velocity amplitudes are              and              for silicone oil 

(          ) and 1-decanol (            ) respectively; (d) three different shear 

moduli (as indicated) of the substrate are investigated. The liquid is silicone oil with viscosity 

          , and the velocity amplitude is             .  
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Figure 4. Dimensionless force     as a function of dimensionless compliance   (see defini-

tions in text) in logarithmic scales, as measured from force-distance data (see Figs.2 and 3), 

for all the experiments performed in this study (see Fig.3). The solid line corresponds to the 

theoretical prediction for   at low  , obtained from Eq.(2) where   is replaced by       

due to the temporal averaging step. The dashed lined indicates a -1/4 power law. 


