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Abstract We present a system for the removal of

objects from videos. As an input, the system only needs

a user to draw a few strokes on the first frame, roughly

delimiting the objects to be removed. To the best of our

knowledge, this is the first system allowing the semi-

automatic removal of objects in videos with complex

backgrounds. The key steps of our system are the

following: after initialization, segmentation masks are

first refined and then automatically propagated through

the video. The missing regions are then synthesized

using video inpainting techniques. Our system can deal

with multiple, possibly crossing objects, with complex

motions, and with dynamic textures. This results in a

computational tool that can alleviate tedious manual

operations for editing high-quality videos.

Keywords objects removal, objects segmentation,

object tracking, video inpainting, video

completion.

1 Introduction

In this paper, we propose a system to remove one

or several objects from a video, starting with only a

few user annotations. More precisely, the user only

needs to approximately delimit in the first frame the

objects to be edited. Then, these annotations are

refined and propagated through the video. One or

several objects can then be removed automatically.
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This results in a flexible computational video editing

tool, with numerous potential applications. Removing

unwanted objects (such as a boom microphone) or

people (such as an unwanted wanderer) is a common

task in video post-production. Such tasks are critical

given the time constraints of movie production and

the prohibitive costs of reshooting complex scenes.

They are usually achieved through extremely tedious

and time-consuming frame-by-frame processes, for

instance using the Rotobrush tool from Adobe After

Effects [2] or professional visual effects softwares such as

SilhouetteFX or Mocha. More generally, the proposed

system paves the way to sophisticated movie editing

tasks, ranging from crowd suppression to unphysical

scenes modifications, and has potential applications for

multi-layered video editing.

Two main challenges arise in developing such a

system. First, not a single part of the objects to

be edited shall be left over in the tracking part of

the algorithm; otherwise, they are propagated and

enlarged by the completion step, resulting in unpleasant

artifacts. Second, our visual system is good at spotting

temporal discontinuities and aberrations, making the

completion step a tough one. We address both these

issues in this work.

The first step of our system consists of transforming

a rough user annotation into a mask that accurately

represents the object to be edited. For this, we

use a classical strategy relying on a CNN-based edge

detector, followed by a watershed transform yielding

super-pixels, which are eventually selected by the user

to refine the segmentation mask. After this step, a

label is then given to each object. The second step is

the temporal propagation of the labels. There we make

use of state-of-the-art advances in CNN-based multiple

objects segmentation. Besides, our approach includes

an original and crucial algorithmic brick which consists

in learning the transition zones between objects and

the background, in such a way that the objects will

be fully covered by the propagated masks. We call
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the resulting brick a smart dilation by analogy with

the dilation operators of mathematical morphology.

Our last step is then to remove some or all of the

objects from the video, depending on the user’s choice.

For this, we employ two strategies: a motion-based

pixel propagation for static background and a patch-

based video completion for dynamic textures. Both

methods rely heavily on the knowledge of segmented

objects. This interplay between objects segmentation

and the completion scheme improves the method in

many ways: it allows for better video stabilization, for a

faster and more accurate search for similar patches, and

for a more accurate foreground/background separation.

These improvements yield completion results with very

little or no temporal incoherence.

We illustrate the effectiveness of our system through

several challenging cases including severe camera shake,

complex and fast object motions, crossing objects, and

dynamic textures. We evaluate our method on various

datasets, in both objects segmentation and objects

removal. Moreover, we show on several examples that

our system yields comparable or better results than

state-of-the-art video completion methods applied on

manually segmented masks. This paper is organized

as follows: First, we briefly explore some related works

(section 2). Next, we introduce our proposed approach

which includes three steps: First frame annotation,

objects segmentation and objects removal (section 3).

Finally, we show experimental results as well as some

evaluation and comparison with other state-of-the-art

methods. A shorter version of this work can be found

in [40].

2 Related works

The proposed computational editing approach is

related to several families of works that we now briefly

review.

2.1 Video object segmentation

Video object segmentation, the process of extracting

space-time segments corresponding to objects, is a

widely studied topic whose complete review is beyond

the scope of this paper. For a long time, such methods

have not been accurate enough to avoid using green-

screen compositing to extract objects from videos.

Significant progress for the supervised segmentation has

been achieved by the end of the 2000s, see e.g. [2],

and in particular, the use of supervoxels became the

most flexible way to incorporate user annotations in

the segmentation process [44, 78]. Other efficient

approaches to the supervised object segmentation

problem are introduced in [49, 53].

A real breakthrough occurred with approaches

relying on Convolutional Neural Networks (CNN).

In the DAVIS-2016 challenge [63], the most

efficient methods were all CNN-based, both for

the unsupervised and semi-supervised tasks. For the

semi-supervised task, where a first frame annotation

is available, methods mostly differ in the way they

train the networks. The One Shot Video Object

Segmentation (OSVOS) method, introduced in [8],

starts from a pre-trained network and retrains it using

a large video dataset, before fine-tuning it per-video

using the annotation at the first frame to focus on

the object being segmented. With a similar approach,

[62] relies on an additional mask layer to guide the

network. The method in [7] further improves the

results from OSVOS with the help of Multi Networks

Cascade (MNC) [20].

All these approaches work image-per-image without

explicitly checking for temporal coherence, and

therefore can deal with large displacements and

occlusions. However, since their backbone is a

network used for semantic segmentation, they cannot

distinguish between instances of the same class or

between objects that resemble each other.

Another family of works deals with the segmentation

of multiple objects. Compared with the single object

segmentation problem, an additional difficulty here is

to distinguish between different object instances which

may have similar colors and may cross each other.

Classical approaches include graph-based segmentation

using color or motion information [42, 58, 87], the

tracking of segmentation proposals [17, 45], or bounding

box guided segmentation [22, 71].

The DAVIS 2017 challenge [66] established a ranking

between methods aiming at the semi-supervised

segmentation of multiple objects. Again, the most

efficient methods were CNN-based. It is proposed

in [77] to modify the OSVOS network [8] to work

with multiple labels and to perform online fine-tuning

to boost the performances. In [37], the networks

introduced in [74] are adapted to the purpose of

multiple objects segmentation through the heavy use

of data augmentation, still using annotation of the first

frame. The authors of this work also exploit motion

information by adding optical flow information to the

network. This method is further improved in [46]

by using a deeper architecture and a re-identification

module to avoid propagating errors. This last method

has achieved the best performance in the DAVIS-2017

challenge [66]. With a different approach, Hu et al. [31]
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employ a recurrent network exploiting the long-term

temporal information.

Recently, with the release of a large-scale video object

segmentation dataset called YouTube Video Object

Segmentation (YouTube-VOS) [83], many further

improvements have been made in the field. Among

them, one of the most notable work is PreMVOS [48]

which has won the 2018 DAVIS Challenge [9] and

Youtube-VOS challenge [83].

In PreMVOS, the algorithm first generates a set of

accurate segmentation mask proposals for all objects in

each frame of a video. To achieve this, a variant of the

Mask R-CNN [29] object detector is used to generate

coarse object proposals, then a fully convolutional

refinement network inspired by [82] and based on the

DeepLabv3+ [11] architecture produces accurate pixel

masks for each proposal. Secondly, these proposals

are selected and merged into accurate and temporally

consistent pixel-wise object tracks over the video

sequence. In contrast with PreMVOS which focuses

on the accuracy, some methods trade off accuracy for

speed. Those methods take the first frame with its

mask annotation either as guidance to slightly adjust

parameters of the segmentation model [85] or as a

reference for segmenting the following frames without

tuning the segmentation model [12, 13, 57].

Although these methods yield impressive results

in terms of the accuracy of the segmentation, they

may not be the optimal solutions for the problem

we consider in this paper. As said above, when

removing objects from a video it is crucial for the video

completion step that no part of the removed objects

remains after the segmentation. Said differently, we

are in a context where recall is much more important

than precision, see Section 4.2 for the definitions of

these metrics. In the experimental section, we compare

our segmentation approach to several state-of-the-art

methods with the aim of optimizing a criterion which

penalizes under-detection of objects.

2.2 Video editing

Recently, advances in both the analysis and the

processing of videos have permitted advances in

the emerging field of computational video editing.

Examples include, among others, tools for the

automatic, dialogue-driven selection of scenes [41], time

slice video synthesis [19], or methods for the separate

editing of reflectance and illumination components [6].

It is proposed in [89] to identify accurately the

background in videos to either improve the stabilization

process or proceed to tasks such as background

suppression or multi-layered editing. In a sense, our

work is more challenging since we need to identify

moving objects with enough accuracy so they can be

removed seamlessly.

Because we learn a transition zone between objects

and the background, our work is also related to

image matting techniques [43], and their extension to

videos [16] as a necessary first step for editing and

compositing tasks. Lastly, since we deal with semantic

segmentation and multiple objects, our work is also

related to the soft semantic segmentation recently

introduced for still images [1].

2.3 Video inpainting

Image inpainting, also called image completion, refers

to the task of reconstructing missing or damaged image

regions by taking advantage of the image contents

outside these missing regions.

The first approaches were variational [50], or PDE-

based [4] and dedicated to the preservation of geometry.

They were followed by patch-based methods [18, 23],

inherited from texture synthesis methods [24]. Some

of these methods have been adapted to videos, often

by mixing pixel-based approaches for reconstructing

the background and greedy patch-based strategies for

moving objects [60, 61]. In the same vein, different

methods have been proposed to improve or speed up

the reconstruction of the background [26, 30], with the

strong limitation that the background should be static.

Other methods yield excellent results in restricted

cases, such as the reconstruction of cyclic motions [36].

Another family of works which performs very well

when the background is static relies on motion-based

pixel propagation. The idea is to first infer a motion

field outside and inside the missing regions. Using

the completed motion field, pixel values from outside

the missing region are then propagated inside it. For

example, Grossauer et. al describes in [28] a method

for removing blotches and scratches in old movies

using optical flow. A limitation of this work is that

the estimation of the optical flow suffers from the

presence of the scratches. Using a similar idea, but

avoiding calculating the optical flow directly in the

missing regions, several methods try to restore the

motion field inside these missing regions by gradually

propagating motion vectors [51], by sampling spatial-

temporal motion patches [72, 73], or by interpolating

the missing motion [5, 88].

In parallel, it was proposed in [79] to address

the video inpainting problem as a global patch-based

optimization problem, yielding unprecedented time
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coherence at the expense of very heavy computational

costs. The method in [54] was developed from this

seminal contribution, by accelerating the process and

taking care of dynamic texture reconstruction. Other

state-of-the-art strategies rely on a global optimization

procedure, taking advantage of either shift-maps [27] or

an explicit flow field [32]. This last method arguably

has the best results in terms of temporal coherence,

but since it relies on two-dimensional patches, it is not

suitable for the reconstruction of dynamic backgrounds.

Recently, it was proposed in [39] to improve the global

strategy of [54] by incorporating the optical flow in

a systematic way. This approach has the ability

to reconstruct complex motions as well as dynamic

textures.

Let us add that the most recent approaches to image

inpainting rely on convolutional neural networks and

have the ability to infer elements that are not present

in the image at hand [33, 59, 76]. To the best of our

knowledge, such approaches have not been adapted to

videos because their training cost is prohibitive.

In this work, we will propose two complementary

ways to perform the inpainting step needed to remove

objects in videos. A first method is fast and relies on a

frame-by-frame completion of the optical flow, followed

by the propagation of voxel values. This approach

is inspired by the recently introduced method [5],

itself sharing ideas with the approach from [32] and

yielding impressive gains in terms of computational

times. Such approaches are computationally efficient

but not able to deal with moving backgrounds and

dynamic textures. For these complex cases, we rely on a

more sophisticated (and much slower) second approach

extending the ideas we initially developed in [39].

3 Proposed method

The general steps of our method are as follows:

(a) First, the user draws a rough outline of each object

of interest in one or several frames, for instance in

the first one (Section 3.1);

(b) These approximate outlines are refined by

the system, then propagated to all remaining

frames using different labels for different objects

(Section 3.2);

(c) If some errors are detected, the user may manually

correct them in one or several frames (using step

(a)) and propagate these edits to the other frames

(using step (b));

(d) Finally, the user selects which of the selected

objects he/she wants to remove, and the system

removes the corresponding regions in the whole

video, reconstructing the missing parts in a

plausible way (Sections 3.3.1 and 3.3.2). For this

last step two options are available : a fast one

for static background and a more involved one for

dynamic backgrounds.

In the first step most methods only select the object

to be removed. There are, however, several advantages

to tracking multiple objects with different labels:

1. It gives more freedom to the user for the

inpainting step with the possibility to produce

various results depending on which objects are

removed; in addition, objects which are labeled

but not removed are considered as important by

the system and therefore better preserved during

the inpainting of other objects.

2. It may produce better segmentation results than

tracking a single object, in particular when several

objects have similar appearance.

3. It facilitates video stabilization and therefore

increases the temporal coherence during

the inpainting step, as shown in the results

(Section 4.3).

4. It is of interest for other applications, e.g., action

recognition or scene analysis.

The illustration of these steps can be

found in the supplementary website https:

//object-removal.telecom-paristech.fr/

3.1 First frame annotation

A classical method to cut out an object in

a frame involves commercial tools such as the

Magic Wand of Adobe Photoshop which is fast and

convenient. However, this classical method requires

many refinement steps and is not accurate with complex

objects. To increase the precision and reduce the

user’s intervention, many methods have been proposed

where interactive image segmentation is performed

using scribbles, point clicks, superpixels, etc. Among

them, some state-of-the-arts annotators achieve a high

degree of precision by using edge detectors to find the

contour map and create a set of object proposals from

this map [35]; the appropriate regions are then selected

by the user using point clicks. The main drawbacks of

these approaches are a large computation time and a

weak level of user input.
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Fig. 1 General pipeline of our object segmentation method. Given the input video and annotations in the first frame, our algorithm

alternates two CNN-based semantic segmentation steps (multi-OSVOS network in green and Refining network in red) with 4 video-

tracking steps (depicted as blue blocks): (a) keyframe extraction, (b) mask propagation, (c) mask linking and (d) post processing.

These steps are detailed in Section 3.2.

In order to balance between human effort and

accuracy, we adopt a fast and simple algorithm. Our

system first generates a set of superpixels from the first

image, then the user can select suitable superpixels by

simply drawing a coarse contour around each object.

The set of superpixels is created using an edge-based

approach. More precisely, an FCN-based edge detector

network introduced in [80] is applied to the first

image, and its output is a probability map of edges.

Superpixels are extracted from this map by the well-

known watershed transform [52], which runs directly on

edge scores. There are two main advantages of using

this CNN-based method to compute the edge map:

1. It has shown superior performances over

traditional boundary detection methods that

use local features such as colors and depths. In

particular, it is much more accurate.

2. It is extremely fast: one forward pass of

the network takes about 2 ms hence the

annotation step is performed in real time and very

interactively.

After computing all superpixels, the user selects the

suitable ones by drawing a contour around each target

object to get rough masks. Superpixels which overlap

these masks by more than 80 percent are selected. The

user can also refine the mask by adding or removing

superpixels using mouse clicks. As a result, accurate

masks for all objects of interest are extracted in a frame

within few seconds of interactive annotation.

3.2 Objects segmentation

In this step, we start from the object masks computed

on the first frame using the method described in

the previous section, and we aim at inferring a full

space-time segmentation of each object of interest in

the whole video. We want our segmentation to be

as accurate as possible, in particular without false

negatives.

Doing this in complex videos with several objects

which occlude each other is an extremely challenging

task. As described in Section 2, CNNs have

made important breakthroughs in semantic image

segmentation with extensions to video segmentation

in the last two years [9, 64, 66]. However, current

CNN-based semantic segmentation algorithms are still

essentially image-based, and do not take global motion

information sufficiently into account. As a consequence,

semantic segmentation algorithms cannot deal with

sequences where: (a) several instances of similar

objects need to be distinguished; and (b) these objects

may eventually cross each other. Examples of such

sequences are Les Loulous 1 introduced in [54] or

Museum and Granados-S3 2 introduced in [26, 27].

On the other hand, more classical video tracking

techniques like optical-flow based propagation or

global graph-based optimization do take global motion

information into account [84]. Nevertheless, they

are most often based on bounding boxes or rough

descriptors and do not provide a precise delineation of

objects’ contours. Two recent attempts to adapt video-
1https://perso.telecom-paristech.fr/gousseau/video_inpainting/
2http://gvv.mpi-inf.mpg.de/projects/vidinp/
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tracking concepts to provide a precise multi-object

segmentation [68, 75] fail completely when objects cross

each other like in the Museum, Granados-S3 or Loulous

sequences.

In the rest of this section, we describe a novel hybrid

technique which combines the benefits of classical

video tracking with those of CNN-based semantic

segmentation. The structure of our hybrid technique

is shown in Figure 1. CNN-based modules are depicted

in green and red, and their inner structure is described

in Section 3.2.1 and Figure 2. Modules that are inspired

from video-tracking concepts are depicted in blue and

are detailed in Section 3.2.2.

Note that the central part of Figure 1 operates in

a frame-by-frame basis. Each segmentation proposal

by the Multi-OSVOS network (in green), or by the

Mask propagation module (in blue) is improved by the

Refinement network (in red). In the right part of the

figure the Mask linking module (in blue) builds a graph

that links all segmentation proposals from the previous

steps, and makes a global decision on the optimal

segmentation for each of the K objects to be tracked.

Finally the Keyframe extraction module is required to

set sensible temporal limits to the Mask propagation

iterations, and the final post-processing module further

refines the result with the objective of maximizing the

recall, which is much more important than precision in

the case of video inpainting. All these modules will be

explained in more detail in the next sections.

3.2.1 Semantic segmentation networks

Our system uses two different semantic segmentation

networks: a multi-OSVOS network and a refinement

network. Both operate on a frame by frame basis.

Our implementation of multi-OSVOS computesK+1

masks for each frame: K masks for the K objects

of interest and one novel additional mask covering

the objects’ boundaries. We call this latter mask a

smart dilation layer, it is a key to guarantee that the

segmentation does not miss any part of the objects,

which is especially difficult in the presence of motion

blur.

While the multi-OSVOS network provides a first

prediction, the refinement network takes mask

predictions as an additional guidance input and

improves those predictions based on image content,

similarly to [62].

Training these networks is a challenging task,

because the only labeled example we can rely on (for

supervised training) is the first annotated frame and

the corresponding K masks. The next paragraphs focus

on our networks’ architectures and on semi-supervised

training techniques that we use to circumvent the

training difficulty.

Multi-OSVOS network. The training technique of

our semantic segmentation networks is mainly inspired

from the OSVOS network [8], a breakthrough

which achieved the best performance in DAVIS-2016

challenge [63]. The OSVOS network uses a transfer

learning technique for image segmentation: the network

is first pre-trained on a large database of labeled

images. After training, this so-called parent network

can roughly separate all foreground objects from the

background. Next, the parent network is fine-tuned

using the first frame annotation (annotation mask and

image) in order to improve the segmentation of a

particular object of interest. OSVOS has proven to

be a very fast and accurate semi-supervised method

to obtain a background/foreground separation. Our

Multi-OSVOS network uses a similar transfer learning

technique, yet with several important differences:

• Our network can identify different

objects separately (instead of a simple

foreground/background segmentation) and

provides a smart dilation mask, i.e. a smart

border which covers the interfaces between

segmented objects and the background, and

reduces a lot the number of false negative pixels.

The ground truth for this smart dilation mask is

defined in the fine-tuning step by a 7-pixels wide

dilation of the union of all object masks.

• Unlike OSVOS, which uses a fully convolutional

network (FCN) [47], our network uses the Deeplab

v2 [10] architecture as the parent model since it

outperforms FCN in some common datasets such

as PASCAL VOC 2012 [25].

• In the fine-tuning training step we adopt a data

augmentation technique in the spirit of Lucid

Tracker [37]: we remove all objects from the

first frame using Newson et al’s image inpainting

algorithm [55], then the removed objects undergo

random geometric deformations (affine and thin

plate deformations), and eventually they are

Poisson blended [65] over the reconstructed

background. This is a sensible way of generating

large amounts of labeled training data with an

appearance similar to what the network might

observe in the following frames.
The smart dilation mask is of particular importance to

ensure that segmentation masks do not miss any part of

the object, which is typically difficult in the presence of

6
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Fig. 2 Two networks used in the general pipeline presented in Figure 1. Left: multi-OSVOS network, Right: refinement network.

They serve different purposes: the multi-OSVOS network helps us separating background and objects while the refinement network

is used to fine-tune a rough input mask.

Fig. 3 Advantages of using the smart dilation mask, i.e. a smart border layer in the output map of our Multi-OSVOS network.

(a) The border is obtained by simply dilating the output map of the network: some parts of the objects are not covered. (b) The

border layer is learned by the network: the transition region is covered.

motion blur. A typical example can be seen in figure 3

where some parts of the man’s hands and legs cannot be

captured by simply dilating the output mask because

motion blur leads to partially transparent zones which

are not recognized by the network as part of the man’s

body. With the smart dilation mask, the missing parts

are properly captured, and there are no leftover pixels.

Refinement network The multi-OSVOS network can

separate objects and background precisely, but it relies

exclusively on how they appear in the annotated frame

without consideration of their position, shape or motion

cues across frames. Therefore, when objects have

similar appearance, multi-OSVOS fails to separate

between individual object instances. In order to take

such cues into account we propagate and compare the

prediction of multi-OSVOS across frames using video

tracking techniques (Section 3.2.2) and then we double-

check and improve the result after each tracking step

using the refinement network described below.

The refinement network has the same architecture

as the multi-OSVOS network, except that (a) it takes

an additional input, namely mask predictions for the

K foreground objects from another method, and (b)

it does not produce as an output the (K + 1)-th

smart dilation mask that does not require any further

improvement for our purposes.

Training is performed in exactly the same way as

for multi-OSVOS, except that the training set has to

be augmented with inaccurate input mask predictions.

These should not be exactly the same as the output

masks, otherwise the network would learn to perform

a trivial operation ignoring the RGB information.

Such inaccurate input mask predictions are created

by applying relevant random degradations to ground

truth masks, e.g., small translations, affine and thin-

plate spline deformations, followed by a coarsening

step (morphological contour smoothing and dilation)

to remove details of the object contour; finally, some

random tiny square blocks are added to simulate

common errors in the output of multi-OSVOS. The

ground truth output masks in the training dataset are

also dilated by a structuring element of size 7×7 pixels

in order to have a safety margin which ensures that the

mask does not miss any part of the object.

3.2.2 Multiple object tracking

As a complement to CNN-based segmentation we

use more classical video tracking techniques in order

to take global motion and position information into

account. The simplest ingredient of our object

tracking subsystem is a motion-based mask propagation

technique that uses a patch-based similarity measure

to propagate a known mask to the consecutive frames.

7
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It corresponds to block (b) in Figure 1 and it will

be described in more detail below. This simple

scheme alone can provide results similar to other

object tracking methods such as SeamSeg [68] or

ObjectFlow [75]. In particular it is able to distinguish

between different instances of similar objects, based

on motion and position. However it loses track

of the objects when they cross each other, and it

accumulates the errors. To prevent this from happening

we complement the mask propagation module with five

coherence reinforcement steps:

Semantic segmentation: The refinement network

(Section 3.2.1) is applied to the output of each

mask propagation step in order to avoid errors

accumulating from one frame to the next.

Keyframe extraction: Mask propagation is effective

only when it propagates from frames where object

masks are accurate (especially when objects do not

cross each other). Frames where this is detected

to be true are labeled as keyframes, and mask

propagation is performed only between pairs of

successive keyframes.

Mask linking: When the mask propagation step is

not sure about which decision to make, it will

provide not one, but several mask candidates for

each object. A graph-based technique allows to

link together all these mask candidates. This way

the decision on which mask candidate is the best

for a given object on a given frame is taken based

on global motion and appearance information.

Post-processing: After mask linking a series of post-

processing steps are performed that use the

original Multi-OSVOS result to expand labelling

to unlabelled regions.

Interactive correction: In some situations where

errors appear, the user can manually correct them

on one frame and this correction is propagated to

the remaining frames by the propagation module.

The following paragraphs describe in detail the inner

workings of the four main modules of our multiple

object tracking subsystem: (a) Keyframe extraction,

(b) Mask propagation, (c) Mask linking and (d) Post-

processing.

Keyframe extraction. A frame t is a keyframe for

an object i ∈ {1, . . . ,K} if the mask of this particular

object is known or can be computed with high accuracy.

All frames where the object masks were manually

provided by the user are considered keyframes. This

is usually the first frame or very few representative

frames.

The remaining frames are considered keyframes for

a particular object when the object is clearly isolated

from other objects and the mask for this object can be

computed easily. To quantify this criterion, we rely

on the multi-OSVOS network which returns K + 1

masks Oi for each frame t and i ∈ {1, . . . ,K + 1}.
This allows to compute the global foreground mask

F =
⋃K+1
i=1 Oi. To verify if this frame is a keyframe

for object i ∈ {1, . . . ,K} we proceed as follows:

1. Compute the connected components of Oi. Let O′i
represent the largest connected component.

2. Compute the set of connected components of the

global foreground mask F and call it F .

3. For each connected component O′ ∈ F compute

the overlap ratio with the current object ri(O
′) =

|O′
i∩O

′|
|O′| . If ri(O

′) > 80% and both O′i and O′ are

isolated from the remaining objects3 then this is a

keyframe for object i.

Mask propagation Masks are propagated forwards

and backwards between keyframes to ensure temporal

coherence. More specifically, the forward propagation

proceeds as follows: Given the mask Mt at frame t, the

propagated mask Mt+1 is constructed with the help of

a patch-based nearest neighbor shift map φt from frame

t+ 1 to frame t, defined as

φt(p) := argminδ
∑
q∈Np

‖ut+1(q)− ut(q + δ)‖2

︸ ︷︷ ︸
d2(Dt+1(p),Dt(p+δ))

i.e. it is the shift δ that minimizes the squared

Euclidean distance between the patch centered at pixel

p in frame t+1 and the patch around p+δ at frame t. In

this expression, Np denotes a square neighborhood of

given size centered at p, and Dt(p) is the associated

patch in frame t, i.e. Dt(p) = ut(Np) with ut the

RGB image corresponding to frame t. The `2-metric

between patches is denoted as d. To improve robustness

and speed, this shift map is often computed using

an approximate nearest neighbor searching algorithm

such as Coherency Sensitive Hashing (CSH) [38], or

FeatureMatch [67]. To capture the connectivity of

patches across frames in the video, two additional

terms are used in [68] for space and time consistency:
3i.e. if O′

i ∩ O′
j = O′ ∩ O′

j = ∅ for all j ∈ {1, . . . , K} such that

j 6= i

8
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the first term penalizes the absolute shift and the

latter penalizes neighbourhood incoherence to ensure

adjacent patches flow coherently. Moreover, to reduce

the patch space dimension and to speed up the

search, all patches are represented with lower dimension

features, e.g. the main components in the Walsh-

Hadamard space, see [68] for more details. We use this

model to calculate our shift map.

Once the shift map has been computed we propagate

the mask as follows: Let ut(p) be the RGB value of

the pixel p in frame t, then the similarity between a

patch Dt+1(p) in frame t+ 1 and its nearest neighbour

Dt(p+ φ(p)) in frame t is measured as

sp = exp
(
−d2(Dt+1(p), Dt(p+ φt(p)))

)
.

Using this similarity measure the mask Mt+1 is

propagated from Mt using the following rule:

M̃t+1(p) =

{
1 if

∑
q∈Np

sqMt (q) > 1
2

∑
q∈Np

sq.

0 otherwise

The final propagated mask Mt+1 is obtained by a

series of morphological operations including opening

and hole filling on M̃t+1 followed by the refinement

network to correct some errors. Then Mt+1 is

iteratively propagated to the next frame t + 2 using

the same procedure until we reach the next keyframe.

Although this mask propagation approach is useful,

several artifacts may occur when objects cross each

other: the propagation algorithm may lose track of an

occluded object or it could mistake one object for the

other.

To avoid such errors, mask propagation is performed

in both forwards and backwards directions between

keyframes. This gives for each object two candidate

masks at each frame t: M1
t = MFW

t , i.e. the one that

has been forward-propagated from a previous keyframe

t′ < t and M2
t = MBW

t , i.e. the one that has been

backward-propagated from an upcoming keyframe t′ >

t. In order to circumvent both lost and mistaken objects

we consider for each object two additional candidate

masks:

M3
t = MFW

t ∩MBW
t and M4

t = MFW
t ∪MBW

i .

The decision between these four mask candidates for

each frame and each object is deferred to the next

step, which makes that decision based on a global

optimization.

Mask linking After the backward and forward

propagation, each object has 4 mask proposals (except

for keyframes where it has a single mask proposal).

In order to decide which mask to pick for each object

at each frame, we use a graph-based data association

technique (GMMCP) [21] that is specially well-suited

for video tracking problems. This technique does not

only allow to select among the 4 candidates for a given

object on a given frame. It is also capable of correcting

erroneous object-mask assignments on a given frame,

based on global similarity computations between mask

proposals along the whole sequence. The underlying

generalized maximum multi-cliques problem is clearly

NP-hard, but the problem itself is of sufficiently small

size to be handled effectively by a fast Binary-Integer

Program as in [21].

Formally, we define a complete undirected graph

G = (V,E) where V is a set of vertices, each vertex

corresponding to a mask proposal. Vertices in the same

frame are grouped together to form a cluster. E is

the set of edges connecting any two different vertices.

Each edge e ∈ E is weighted by a score measuring the

similarity between the two masks it connects. This

score will be detailed in the next paragraph. All

vertices in different clusters are connected together.

The objective is to pick a set of K cliques 4 that

maximize the total similarity score, with the restriction

that each clique contains exactly one vertex from each

cluster. Each selected clique represents the most

coherent tracking of an object across all frames.

Region similarity for mask linking In our graph-

based technique, a score needs to be specified to

measure the similarity between the two masks, and

the associated image data. This similarity must be

robust to illumination changes, shape deformation or

occlusion. Many previous approaches in multiple object

tracking [21, 69] have focused on global information of

the appearance model, typically the global histogram,

or motion information (given by the optical flow or a

simple constant velocity assumption). However, when

dealing with large displacement and with an unstable

camera, the constant velocity assumption is invalid and

optical flow estimation is hard to apply. Furthermore,

using only global information is not sufficient since our

object regions already resemble in global appearance.

To overcome this challenge, we define our similarity

score as the combination between global and local

features. More precisely, each region R is described by

the corresponding mask M its global HSV histograms

H, a set P of SURF keypoints [3] in it and a set

E of vectors which connect each keypoint with the

centroid of the mask. Each region is determined by

four elements:
4A clique is a subgraph in which every two distinct vertices are

connected.

9
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Fig. 4 Mask proposals are linked across frames to form a graph. The goal is then to select a clique from this graph minimizing the

overall cost. As a result, a best candidate is picked for each frame to ensure that the same physical object is tracked.

Fig. 5 Region description, each region is described by a global

histogram, a set of SURF keypoints (yellow points), and a set

of vectors which connects each keypoint and the centroid of the

region.

R := (M,H,P,E)

P := {p1, p2, . . . , pN | pi ∈M} where pi is the i-th

keypoint

E := {~e1, ~e2, . . . , ~eN | ~ei = pi − C} where C is the

barycenter of M .

Then the similarity between two regions is defined as:

S(R1, R2) = SH(R1, R2) + αSP (R1, R2)

In this expression, SH(R1, R2) = exp(−dc(H1, H2))

where dc is the cosine distance between two HSV

histograms which encode global color information, SP
is the local similarity computed based on keypoint

matching, and α is the balance coefficient to specify

the contribution of each component. SP is computed

by

SP (R1, R2) =
∑
pi∈P1

∑
pj∈P2

γij .wij

where γij is the indicator function which is set to 1

if two keypoints pi and pj match, and zero otherwise.

This function is weighted by wij based on the position

of the matching keypoints with respect to the centroid

of the region:

wij = exp

(
−d(~ei, ~ej)

2σ

)
where dc is the cosine distance between two vectors and

σ is a constant.

Post-processing At this time, we already have K

masks for K objects for all frames in video. Now we

perform a post-processing step to make sure our final

mask covers all the details of the objects. This is very

important in video object removal since any missing

detail can cause perceptually annoying artifacts in the

object removal result. This post-processing includes

two main steps:

The first step is to give a label for each region in the

global foreground mask Ft =
⋃K
i=1O

i
t (the union of all

object masks produced by multi OSVOS for frame t)

which does not have any label yet. To this end, we

proceed as follows: First, we compute the connected

components C of all masks Oit and try to assign a

label to all pixels in each connected component. To

this end we consider the masks M j
t that were obtained

for the same frame t (and possibly another object

class j by the mask linking method). A connected

10
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component is considered as isolated if C ∩M j
t is empty

for all j. For non-isolated components a label will

be assigned by a voting scheme based on the ratio

rj(C) =
|C∩Mj

t |
|C| , i.e. the assigned label for region C

will be ĵ = argmaxj rj(C), the one with the highest

ratio. If rj(C) > 80% then region C is also assigned

label j regardless of the voting result, which leads to

possibly multiple labels per pixel.

In the second step, we do a series of morphological

operations, namely opening and hole filling. Finally we

dilate each object mask again with size 9× 9, this time

allowing overlap between objects.

3.3 Object removal

Following the method from the previous section,

all selected objects have been segmented along the

complete video sequence. From the corresponding

masks, the user can then decide the objects to be

removed. This last step is performed thanks to video

inpainting techniques that we now detail. First, we

present a simple inpainting method that is adapted

to the case where the background is static (or can be

stabilized) and revealed at some point in the sequence.

This first method is fast and relies on the reconstruction

of a motion field. Then, we present a more involved

method for the case where the background is moving,

with possibly some complex motion as in the case of

dynamic textures.

3.3.1 Static background

We assume for this first inpainting method that

the background is visible at least in some frames (for

instance because the object to be removed is moving

over a large enough distance). We also assume that

the background is rigid and that its motion is only due

to the camera motion. In this case, the best option

to perform inpainting is to copy the visible parts of

the background into the missing regions, from either

past or future frames. For this, the idea is to rely

on a simple optical-flow pixel propagation technique.

Motion information is used to track the missing pixels

and establish a trajectory from the missing region

toward the source region.

Overview of the method Our optical flow-based

pixel propagation approach is composed of three main

steps, as illustrated in Figure 6. After stabilizing the

video to compensate the camera movements, we use

FlowNet 2.0 to estimate forward and backward optical

flow fields. These optical flow fields are then inpainted

using a classical image inpainting method to fill in

the missing information. Next, these inpainted motion

fields are concatenated to create a correspondence map

between pixels in the inpainting region and known

pixels. Lastly, missing pixels are reconstructed by a

copy-paste scheme followed by a Poisson blending to

reduce artifacts.

Motion field reconstruction A possible approach to

optical flow inpainting is smooth interpolation, for

instance, in the framework of a variational approach, by

ignoring the data term and using only the smoothness

term in the missing regions, as proposed in [5, 88].

However, this approach leads to over-smoothed and

unreliable optical flow. Therefore, we choose to

reconstruct the optical flow using more sophisticated

image inpainting techniques. More specifically we first

compute, outside the missing region, forward/backward

optical flow fields between two consecutive frames using

the FlowNet approach from [34]. We then rely on the

image inpainting method from [55] to interpolate these

motion fields.

Optical flow-based pixel reconstruction Once the

motion field inside the missing region is filled, it is used

to propagate pixel values from the source toward the

missing regions. For this to be done, we map each pixel

in the missing region to a pixel in the source region.

This map is obtained by accumulating the optical flow

field from frame to frame (with bilinear interpolation).

We do both forward and backward optical flow, which

leads us to two correspondance maps: forward map and

backward map. From either map, we can reconstruct

missing pixels with a simple copy-paste method, using

the known values outside the missing region.

We perform two passes: first a forward pass using

the forward map to reconstruct the occlusion, then

a backward pass using the backward map. After

these two passes, the remaining missing information

corresponds to parts that have never been revealed in

the video. To reconstruct this information, we first use

the image inpainting method from [55] to complete one

keyframe, which is chosen to be the middle frame of

the video, and then propagate information from this

frame to other frames in the video using forward and

backward maps.

Poisson blending Videos in real-life often contain

illumination changes, especially when they are recorded

outdoor. This is problematic for our approach that

simply copy-paste pixel values. When the illumination

of the sources is different from the illumination of the

11
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Fig. 6 The global pipeline of the optical flow-based propagation approach for reconstructing a static background: From input video

(a), forward/backward optical flow fields are estimated by FlowNet 2.0 (b), then are inpainted by an image inpainting algorithm (c).

From these optical flow fields, pixels from the source region are propagated into the missing region (d).

restored frame, visible artifacts across the border of

the occlusion may appear. A common way to resolve

this is by applying a blending technique, e.g. Poisson

blending [65], which fuses a source image and a target

image in the gradient domain. However, doing Poisson

blending frame-by-frame may affect the temporal

consistency. To maintain it, we adopt the recent

method of Bokov et al. [5] which takes into account

the information of the previous frame. In this method,

a regularizer which penalizes discrepancies between the

reconstructed colors and their corresponding colors in

the optical-flow-aligned previous frame is introduced.

More specifically, given the colors of the current and

previous inpainted frames It(p), It−1(p), respectively,

the refined Poisson-blended image I(p) can be obtained

by minimizing the discretized energy functional [5]:

B(I) =
∑
p∈Ωt

‖∇I(p)−Gt(p)‖2

+
∑
p∈∂Ωt

wPBp ‖I(p)− It(p)‖2

+
∑
p∈Ωt

(1− wPBp ) ‖I(p)− It−1(p+Ot(p))‖2

Here, ∂Ωt denotes the outer-boundary pixels of the

missing region Ωt, Gt(p) is the target gradient field and

Ot(p) is the optical flow at position p between frames

t− 1 and t. The terms wPBp are defined as

wPBp = (1 + σPB ||∇IPB(p)−Gt(p)||2)−1,

where IPB is the usual Poisson blended image, and

are used to weight the reconstruction results from the

previous frame It−1 in the boundary conditions. In this

definition, σPB is a constant controling the strength of

the temporal-consistency enforcement. These weights

allow to better deal with global illumination changes

while enforcing temporal stability. This Poisson

blending technique is applied at every pixel propagation

step to support the copy-paste framework.

3.3.2 Dynamic background

The simple optical flow-based pixel propagation

method that we proposed in section 3.3.1 can

produce plausible results if the video contains only

static background and simple camera motion. More

involved methods are needed to deal with large pixel

displacement and complex camera movements. They

are typically based on joint estimation of optical flow

and color information inside the occlusion, see for

instance [32, 81]. However, when the background

is dynamic or contains moving objects, these latter

methods often fail to capture oscillatory patterns in

the background. In that situation, global patch-based

methods are preferred. They rely on the minimization

of a global energy computed over space-time patches.

This idea was first proposed in [79], later improved in

[54], and recently improved again in Le et al. [39].

Let us describe briefly the method proposed in [39].

A prior stabilization process is applied to compensate

the instabilities due to camera movements (see below

for the improvement proposed in the current work).

Then a multiscale coarse-to-fine scheme is used to

compute a solution to the inpainting problem. The

general structure of this scheme is the following: at

each scale of a multiscale pyramid, we alternate until

convergence the computation of an optimal shift map

between pixels in the inpainting domain and pixels

outside (using a metric between patches which involves

image colors, texture features, and optical flow), and

the update of image colors inside the inpainting domain

(using a weighted average of the values provided by the

shift map). A key to the quality of the final result is

the coarse initialization of this scheme; it is obtained

by progressively filling in the inpainting domain (at

the coarsest scale) using patch matching and (mapped)

neighbors averaging together with a priority term based

on optical flow. The heavy use of optical flow at each

scale helps a lot to enforce the temporal consistency

even in difficult cases such as dynamic background

or complex motion. In particular, the method can

reconstruct moving objects even when they interact

with each other. The whole method is computationally

heavy but the speed is significantly boosted when all

12
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steps are parallelized.

We have recently brought several improvements to

this method of [39]:

Video stabilization : In general, patch-based

video inpainting techniques require a good video

stabilization as a pre-processing step to compensate

patch deformations due to camera motions [56, 70].

This video stabilization is usually done by calculating

a homography between two consecutive frames using

keypoints matching followed by a RANSAC algorithm

to remove outliers [15]. However, large moving objects

appearing in the video may reduce the performances of

such an approach because too many keypoints may be

selected on these objects and prevent the homography

from being estimated accurately from the background.

This problem can be solved by simply neglecting all

segmented objects for computing the homography. This

is easy to do: since we already have the masks of the

selected objects, we just have to remove all keypoints

which are covered by masks. This is an advantage of

our approach where both segmentation and inpainting

are addressed.

Background/Foreground inpainting : In addition

to stabilization improvement, multiple segmentation

masks are also helpful for inpainting separately the

background and the foreground. More precisely, we first

inpaint the background neglecting all pixels contained

in segmented objects. After that, we inpaint in priority

the segmented objects that we want to keep and which

are partially occluded. This increases the quality of the

reconstruction, both for the background and for the

objects. Furthermore, it reduces the risk of blending

segmented objects which are partially occluded because

segmented objects have separate labels. In particular,

it is extremely helpful when several objects overlap.

Let us finally mention another advantage of our

joint tracking/inpainting method: objects are better

segmented and thus easier to inpaint for it is a well-

known fact that the inpainting of a missing domain

may be of lower quality if the boundary values are

not suitable. In our case, time continuity of segmented

objects and the fact of using different labels for different

objects have a huge impact on the quality of the

inpainting.

4 Results

We first evaluate our results for the segmentation

step of the proposed method, for which we provide

quantitative and visual results and comparisons with

state-of-the-art methods. We then provide several

visual results for the complete object removal process,

again comparing with the most efficient methods.

These visual comparisons are given as isolated frames

in the paper and it is of course more informative to go

for the complete videos in the supplementary material,

see https://object-removal.telecom-paristech.

fr/. We consider various datasets: we use

sequences from the DAVIS-2016 [63] challenge, from

the MOViC [14], and from the ObMIC [86] datasets;

we also consider classical sequences from the papers

[26] and [54]. Eventually, we provide several new

challenging sequences containing strong appearance

changes, motion blur, objects with similar appearance

and possibly crossing, as well as complex dynamic

textures.

Concerning the number of annotated frames: Unless

otherwise stated only the first frame is annotated

by the user in all experiments. In some examples

(e.g. CAMEL) not all objects are visible in the first

frame and we use another frame for annotations. In

a few examples we annotate more than one frame

(e.g first and last frame in TEDDY BEAR-FIRE

AND JUMPING GIRL-FIRE) in order to illustrate the

flexibility of the system for correcting errors.

4.1 Implementation details

For the segmentation part, we use the Deeplab v2

[10] architecture for the multi-OSVOS and refining

networks. We initialize the network using the pre-

trained model provided by [10] and then adapt it to

video using the training set of DAVIS-2016 [64] and

train-val set in DAVIS-2017 [66] datasets (sequences

from which we exclude the validation set of DAVIS-

2016). For the data augmentation procedure, we

generate 100 pairs of images and ground truth from

the first frame annotation, following the same protocol

as in [37]. For the patch-based mask propagation and

mask linking, we evolved from the implementation of

[68] and [21], respectively.

For the video inpainting step, we use the default

parameters from our previous work [39]. In particular,

the patch size is set to 5, and the number of levels in

the multi-scale pyramid is 4.

For a typical sequence with resolution (854 × 480)

and 100 frames, the full computational time is of the

order of 45 minutes for segmentation plus 40 minutes

for inpainting on a core I7 CPU machine with 32

Gb of RAM and a GTX 1080 GPU. While this is a

limitation of the approach, the complete object removal

is about one order of magnitude faster than the single
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completion step from state-of-the-art methods [54]

or [32]. While interactive editing is out of reach for

now, these computational times allow the offline post-

processing of sequences.

4.2 Object segmentation

For the proposed object removal system, and as

explained in detail above, the most crucial point is

that the segmentation masks shall completely cover

the considered objects, including motion and transition

blur. Otherwise, unacceptable artifacts remain after

the full object removal procedure (see Figure 13 for

an example). In terms of performance evaluation, this

means that we favor recall over precision, as defined

below. This also means that the ground truth provided

with classical datasets may not be fully adequate to

evaluate segmentation in the context of object removal,

because they do not include transition zones induced

by, e.g., motion blur. For this reason, recent video

inpainting methods that make use of these databases to

avoid the tedious manual selection of objects, usually

start from a dilation of the ground truth. In our case, a

dilation is learned by our architecture (smart dilation)

at the segmentation step, as explained above. For these

reasons, we compare our method with state-of-the-art

object segmentation methods, after various dilations

and on the dilated versions of the ground truth. We also

provide visual results in our supplementary website:

https://object-removal.telecom-paristech.fr/.

Evaluation Metrics We briefly recall here the

evaluation metrics that we use in this work: some of

them are the same as in the DAVIS-2016 challenge [63]

and we also add other metrics that are specialized

for our task. The goal is to compare the computed

segmentation mask (SM) to the ground truth mask

(GT). The recall metric is defined as the ratio between

the area of the intersection between SM and GT, and

the area of GT. The precision is the ratio between

the area of the intersection and the area of the

SM. Eventually, the IOU (intersection over union),

or Jaccard index, is defined as the ratio between

intersection and union.

Single object segmentation We use the DAVIS-

2016 [63] validation set and compare our approach to

recent semi-supervised state-of-the-art techniques

(SeamSeg [68], ObjectFlow [75], MSK [64],

OSVOS [8] and onAVOS [77]) using the pre-computed

segmentation masks provided by the authors. As

explained above, we consider a dilated version of the

Metric

Recall (%) Precision (%) IoU (%)

SeamSeg 59.31 73.08 50.20

ObjectFlow 70.63 90.97 67.78

MSK 82.83 95.00 79.94

OSVOS 86.78 92.38 80.58

onAVOS 87.64 96.67 85.17

Ours 89.63 94.31 84.70

Tab. 1 Quantitative evaluation of our object segmentation

method compared to other state-of-the-art methods, on the

single object DAVIS-2016[63] validation set. As explained in the

text, the main objective when performing object removal is to

achieve high Recall scores.

ground truth (we use a dilation by a 15×15 structuring

element, as in [32, 39]). Therefore, we apply a dilation

of the same size to the masks from all the concurrent

methods. In our case, this dilation has both been

learned (size 7 × 7) and applied as a post-processing

step (size 9×9). Since the composition of two dilations

with such sizes yields a dilation with size 15 × 15, the

comparison is fair.

Table 1 shows the comparisons using the three above-

mentioned metrics. Our method has the best recall

score overall, therefore achieving its objective. The

precision score remains very competitive. Besides, our

method outperforms OSVOS [8] and MSK [64], those

having a similar neural network backbone architecture

(VGG16), on all metrics. The precision and IOU scores

compare favorably with onAVOS [77] which uses a

deeper and more advanced network. Table 2 provides

a comparison between OSVOS [8] and our approach on

two sequences from [27]. These sequences have been

manually segmented by the authors of [27] for video

inpainting purposes. On such extremely conservative

segmentation masks (in the sense that they over-detect

the object), the advantage of our method is particularly

strong.

As a further experiment, we investigate the ability

of dilations with various sizes to improve the recall

without degrading the precision too much. For this,

we plot precision-recall curves as a function of the

structuring element size (ranging from 1 to 30). To

include our method on this graph, we start from our

original method (highlighted with a green square) and

apply to it either erosions with a radius ranging from

1 to 15, or dilation with a radius ranging from 1 to

15. Again this makes sense since our method has

learned a dilation whose equivalent radius is 15. Results

are displayed in Figure 8. As can be seen from this
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Metric

Recall (%) Precision (%) IoU (%)

Granados-S1

OSVOS 62.04 59.17 52.15

Ours 80.12 86.31 67.53

Granados-S3

OSVOS 74.42 87.00 63.02

Ours 80.12 86.31 67.53

Tab. 2 Quantitative evaluation of our object segmentation

method compared to the OSVOS segmentation method [8], on

two sequences manually segmented for inpainting purposes [27]

Metric

Recall (%) Precision (%) IoU (%)

MOViCs

SeamSeg 78.63 74.06 65.96

ObjectFlow 59.50 77.01 52.33

OSVOS 85.48 83.87 76.63

Ours 89.28 87.09 81.58

ObMIC

SeamSeg 91.00 80.30 75.33

ObjectFlow 53.14 83.00 43.64

OSVOS 85.89 84.08 74.55

Ours 94.42 88.48 83.81

Tab. 3 Quantitative evaluation of our object segmentation

method compared to other state-of-the-art methods, on two

multiple objects datasets (MOVICs [14] and ObMIC [86])

figure, our method is the best in terms of recall, and

the recall is increasing significantly with respect to

the dilation size. With the sophisticated onAVOS

method, on the other hand, the recall increases slowly,

and the precision drops drastically as the dilation

size increases. Basically, these experiments show that

the performances achieved by our system for the full

coverage of a single object (that is, with as few missed

pixels as possible) cannot be obtained from state-of-

the-art object segmentation methods by using simple

dilation techniques.

Multiple objects segmentation Next, we perform

the same experiments for datasets containing videos

with multiple objects. Since the test ground truth

was not yet available (at the time of this writing)

for the DAVIS-2017 dataset and since our network

was trained on the train-val set of this dataset, we

consider two other datasets: MOViCs [14] and ObMIC

[86]. The datasets include multiple objects, but only

have one label per sequence. To evaluate the multiple

object situations, we only kept sequences containing

more than one object, and then manually re-annotated

the ground truth giving different labels for different

instances. Observe that these datasets contain several

major difficulties such as large camera displacement,

motion blur, similar appearances, and crossing objects.

Results are summarized in Table 3. From this table,

roughly the same conclusions as in the single object

can be drawn, namely the superiority of our method

in term of recall score, without sacrificing much the

precision score.

Some qualitative results of our video segmentation

technique are shown in Figure 7. In the first two

rows, we show some frames corresponding to the single

object case, on the DAVIS-2016 dataset [63]. The

last three rows show multiple objects segmentation

results on MOViCs [14], ObMIC [86] and Granados’s

sequences [26] respectively. We observe on these

examples that our approach yields full object coverage,

even with complex motion and motion blur. This

is particularly noticeable on the sequences KITE-

SURF and PARAGLIDING-LAUNCH. In the multiple

objects cases, the examples illustrate the capacity of

our method to deal with complex occlusions. This

cannot be achieved with mask tracking methods such

as objectFlow [75] or SeamSeg [68]. The OSVOS

method [8] yields some confusion between objects,

probably because the temporal continuity is not taken

into account by this approach.

4.3 Object removal

Next, we evaluate the complete object removal

pipeline. We consider both the inpainting versions

that we have introduced. We use the simple, optical-

flow based method introduced in Section 3.3.1 for

sequence having static background. We refer to this

fast method as the static version. We use the more

complex method derived from [39] and detailed in

Section 3.3.2 for more involved sequences, exhibiting

challenging situations such as dynamic background,

camera instability, complex motions, and crossing

objects. We refer to this second slower version as the

dynamic version.

In Figure 9, we display examples of both

single and multiple objects removal, through several

representative frames. The video results can be

fully viewed in the supplementary website. The first

sequence BLACKSWAN (DAVIS-2016) shows that our

method (dynamic version) can plausibly reproduce

dynamic textures. In the second sequence COWS

(DAVIS 2016), the method yields good results, with

15
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Fig. 7 Visual comparison of different segmentation approaches. From left to right, Original, SeamSeg [68], ObjectFlow [75],

OSVOS [8], ours.

Fig. 8 Precision-recall curves for different methods with

different dilation sizes.

a stable background and continuity of the geometrical

structures, despite a large occlusion implying that some

regions are covered through all the sequence. We

then turn to the case of multiple objects removal.

In the sequence CAMEL (DAVIS-2017), we show the

removal of one static object, a challenging case since

the background information is missing at places. On

this example, the direct use of the inpainting method

from [39] results in some undesired artifacts when the

second camel enters the occlusion. By using multiple

object segmentation masks to separate background

and foreground, we can create a much more stable

background. The last two examples are from an original

video. This sequence again highlights that our method

can deal with dynamic textures and hand-held cameras.

Comparison with state-of-the-art inpainting

methods In these experiments, we compare our

results with the state-of-the-art video inpainting

methods [32] and [54].

First, we provide a visual comparison between our

optical flow-based pixel propagation (that is, the static

approach) with the method of Huang et al. [32] using a

video with a static background. Figure 10 shows some

representative frames of the sequence HORSE-JUMP-

16
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Fig. 9 Visual illustrations of our objects removal system.

17
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Fig. 10 Qualitative comparison with Huang’s method [32]. From top to bottom: our segmentation mask, result from [32] performed

on manually segmented mask, our inpainting results performed on our mask.

Fig. 11 Qualitative comparison with Huang’s method [32] on video with dynamic background. From left to right: our segmentation

mask, result from [32], our inpainting result performed on our mask.

Fig. 12 Qualitative comparison with Newson et al’s method [54]. Top: our segmentation masks, red and green masks denote

different objects, yellow region is the overlap region between two objects. Middle: results from [54] performed on our segmentation

masks. Bottom: our inpainting results performed on the same masks.

18
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HIGH. In this sequence, we get a comparable result

using our simple optical flow-based pixel propagation

approach. Our advantage is the considerable reduction

of the computational time. With a not-optimized

version of the code, our method takes approximately

30 minutes to finish while [32] takes about 3 hours to

complete this sequence.

Next, we qualitatively compare our method with [32]

when reconstructing dynamic backgrounds. We use

the code released by the author on several sequences

using the default parameters. In general, Huang et

al. [32] fail to generate convincing dynamic textures.

This can be explained by the fact that their algorithm

relies on dense flow fields to guide the completion,

these fields being often unreliable for dynamic texture.

Moreover, they fill the hole by sampling only 2D

patches from the source regions and therefore the

periodic repetition of the background is not captured.

Our method, on the other hand, fills the missing

dynamic textures in a plausible way. Figure 10

shows the representative frames of the reconstructed

sequence TEDDY-BEAR, which is recorded indoor.

This sequence is especially challenging because of the

presence of both dynamic and static textures, as well as

because of illumination changes. Our method yields a

convincing reconstruction of the fire, contrarily to [32].

The complete video can be seen in the supplemental

material website.

We also compare our results with the video

inpainting technique from [54]. Figure 12 shows

some representative frames of the sequence PARK-

COMPLEX, which is taken from [27] and is modified

to focus on the moment where objects occlude each

other. In this example, the method of [54] cannot

reconstruct the moving man on the right which is

occluded by the man on the left. This is because

the background behind this man changes over time

(from tree to wall). Since Newson et al’s method [54]

treats the background and the foreground similarly, the

algorithm can not reconstruct the situation ”man in

front of the wall” because it never sees this situation

before. Our method, by making use of the optical

flow and thanks to the objects segmentation map, can

reconstruct the ”man” and the ”wall” independently,

yielding a plausible reconstruction.

Impact of the segmentation masks on the inpainting

performances. In these experiments, we highlight the

advantages of using the segmentation masks of multiple

objects to improve the video inpainting results.

First, we emphasize the need for masks which fully

cover the objects to be removed. Figure 13 (top)

demonstrate the situation where some object details

(the waving hand in this case) are not covered by the

mask (here using the state-of-the-art OSVOS method)

[8]. This situation leads to a very unpleasant artifact

when video inpainting is performed. Thanks to the

smart dilation, introduced in the previous sections,

our segmentation mask fully cover the object to be

removed, yielding a more plausible video after the

inpainting step.

Object segmentation masks can also be helpful for

the video stabilization step. Indeed, in case of large

foregrounds, these can have a strong effect on the

stabilization procedure, yielding a bad stabilization of

the background, which in turn yields bad inpainting

results. In contrast, if the stabilization is applied only

to the background, the final object removal results

are much better. This situation is illustrated in the

supplementary material.

To further investigate the advantage of

using multiple segmentation masks to separate

background/foreground in the video completion

algorithm, we compare our method with the direct

application of the inpainting method from [39], without

separating objects and background. Representative

frames of both approaches are shown in Figure 14.

Clearly, [39] produce artifacts when the moving objects

(the two characters) overlap the occlusion, due to

patches from these moving objects being propagated

within the occlusion in the nearest neighbor search

step. Our method, on the other hand, does not

suffer from this problem because we reconstruct

background and moving objects separately. This way,

the background is more stable, and the moving objects

are well reconstructed.

5 Conclusion, limitations and

discussion

In this paper, we have provided a full system

performing object removal in videos. The input of

the system is made of a few strokes provided by the

user to indicate the objects to be removed. To the

best of our knowledge, this is the first system of this

kind, even though the Adobe company has recently

announced to be developing such a tool, under the name

Cloak. The approach can deal with multiple, possibly

crossing objects, and can reproduce complex motions

and dynamic textures.

Although our method achieves good visual results on

different datasets, it still suffers from a few limitations.
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Fig. 13 Results of object removal using masks computed by OSVOS (top) and ours (bottom). From left to right: Segmentation

mask, the resulting object removal on one frame, zooms. We can see that when the segmentation masks do not fully cover the object

(OSVOS), the resulting video contain visible artifacts (the hand of the man remains after object removal).

Fig. 14 The advantage of using the segmentation masks to separate background and foreground. Left: without separating

background/foreground, the result have many artifacts. Right: the background and foreground are well reconstructed when being

reconstructed independently.

First, parts of the objects to be edited may be

ignored by the segmentation masks. In such cases,

as already emphasized, the inpainting step of the

algorithm will amplify the remaining parts, creating

strong artifacts. This is an intrinsic problem of the

semi-supervised object removal task and room remains

for further improvement. Further, the system is still

relatively slow, and in any case far from realtime.

Accelerating the system could allow for interactive

scenarios where the user can gradually correct the

segmentation-inpainting loop.

The segmentation of shadows is still not flawlessly

performed by our system, especially when the shadows

are not strongly contrasted. It is a desirable property

of the system to be able to deal with such cases. This

problem can be seen in several examples provided in

the supplementary material.

Concerning the inpainting module the user has

to currently choose between the fast motion-based

version (which works better for static backgrounds)

and the slower patch-based version which is required

in the presence of complex dynamic backgrounds. An

integrated method that reunites the advantages of both

would be preferable. Huang’s method [32] makes a nice

attempt in this direction, but its use of 2D patches

is not sufficient to correctly inpaint complex dynamic

textures, which are more plausibly inpainted by our 3D

patch-based method.

Another limitation occurs in some cases where the

background is not revealed, specifically when some

20



Object removal in complex videos from a few annotations 21

semantic information should be used. Such difficult

cases are gradually being solved for single images by

using CNN-based inpainting schemes [33]. While the

training step of such methods is still out of reach for

videos as of today, developing an object removal scheme

fully relying on neural networks is an exciting research

direction.
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A. Sorkine-Hornung, and L. Van Gool. The

2017 davis challenge on video object segmentation.

arXiv:1704.00675, 2017.
[67] S. A. Ramakanth and R. V. Babu. Featurematch: A

general annf estimation technique and its applications.

IEEE Transactions on Image Processing, 23(5):2193–

2205, 2014.
[68] S. A. Ramakanth and R. V. Babu. Seamseg: Video

object segmentation using patch seams. In Proceedings

of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 376–383, 2014.
[69] A. Roshan Zamir, A. Dehghan, and M. Shah. Gmcp-

tracker: Global multi-object tracking using generalized

minimum clique graphs. Computer Vision–ECCV

2012, pages 343–356, 2012.
[70] J. Sánchez. Comparison of Motion Smoothing

Strategies for Video Stabilization using Parametric

Models. Image Processing On Line, 7:309–346, nov

2017.
[71] G. Seguin, P. Bojanowski, R. Lajugie, and I. Laptev.

Instance-level video segmentation from object tracks.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3678–3687,

2016.
[72] T. Shiratori, Y. Matsushita, X. Tang, and S. B. Kang.

Video completion by motion field transfer. In Computer

Vision and Pattern Recognition, 2006 IEEE Computer

Society Conference on, volume 1, pages 411–418. IEEE,

2006.
[73] N. C. Tang, C.-T. Hsu, C.-W. Su, T. K. Shih, H.-

Y. M. Liao, et al. Video inpainting on digitized vintage

films via maintaining spatiotemporal continuity. IEEE

Trans. Multimedia, 13(4):602–614, 2011.
[74] P. Tokmakov, K. Alahari, and C. Schmid.

Learning motion patterns in videos. arXiv preprint

arXiv:1612.07217, 2016.
[75] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video

segmentation via object flow. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pages 3899–3908, 2016.
[76] H. V. Vo, N. Q. K. Duong, and P. Pérez. Structural
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