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Sensitivity of Legged Balance Control

to Uncertainties and Sampling Period

Nahuel A. Villa1, Johannes Englsberger2 and Pierre-Brice Wieber1

Abstract— We propose to quantify the effect of sensor and
actuator uncertainties on the control of the center of mass
and center of pressure in legged robots, since this is central
for maintaining their balance with a limited support polygon.
Our approach is based on robust control theory, considering
uncertainties that can take any value between specified bounds.
This provides a principled approach to deciding optimal feed-
back gains. Surprisingly, our main observation is that the
sampling period can be as long as 200 ms with literally no
impact on maximum tracking error and, as a result, on the
guarantee that balance can be maintained safely. Our findings
are validated in simulations and experiments with the torque-
controlled humanoid robot Toro developed at DLR. The pro-
posed mathematical derivations and results apply nevertheless
equally to biped and quadruped robots.

I. INTRODUCTION

Biped and quadruped robots are beginning now to master

the skill of walking dynamically in most standard situ-

ations [2], [4], [9]. This suggests that more widespread

commercial use of such robots will soon be possible. This

requires, however, that guarantees are provided about their

safety and operational performance. In research prototypes,

the risk of failure is usually contained by using very fast and

precise (and therefore very expensive) sensors, actuators and

computers, resulting in robots that are clearly too expensive

for commercial purposes.

The dynamics of the Center of Mass (CoM) of these robots

over the support feet is unstable, and therefore very sensitive

to all sources of uncertainties. But how fast and precise,

and therefore how expensive should the sensors, actuators

and computers be has never been investigated in the existing

scientific literature. A precise quantification of the effect of

uncertainties and sampling period on legged balance control

seems to be missing, and it is the goal of this paper to initiate

this discussion.

The balance of legged robots mostly involves motion of

their CoM with respect to their feet on the ground. We

therefore focus our analysis on the motion of the CoM,

considering that other aspects of the motion of the robot, such

as precise whole-body joint motion and contact force control,

are handled separately, as usual in this field of robotics [15].

We introduced in [14] a tube-based Model Predictive Con-

trol (MPC) of walking in order to guarantee that all kinematic
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Fig. 1. Toro is a torque-controlled humanoid robot developed at DLR [3].

and dynamic constraints are always satisfied, even in the

presence of uncertainties. We considered that uncertainties

can take any value between some bounds, generating some

tracking error which can be bounded accordingly. Here,

we propose to analyse how these bounds are related: how

much tracking error can we expect for a given amount of

uncertainty? This naturally depends not only on the kind of

uncertainty (e.g. on sensors or actuators), but also on the

control law and its sampling period.

Our findings are validated in experiments and simulations

with the torque-controlled humanoid robot Toro developed

at DLR (Fig. 1). The proposed mathematical derivations and

results apply nevertheless indistinctly to biped and quadruped

robots.

Section II introduces basic aspects of the CoM dynamics.

A standard feedback control law is proposed and conditions

for its stability are determined in Section III. The dynamics

of the tracking error is analysed in Section IV and related

to the bounded uncertainties in Section V. Feedback gains

are then optimized to minimize the span of the tracking

error in Section VI. Our theoretical analysis is validated

experimentally and in simulations on the torque-controlled

humanoid robot Toro in Section VII. Finally, we summarize

our conclusions in Section VIII.



II. WALKING MODEL

Consider a legged robot walking on flat, horizontal ground.

The Center of Pressure (CoP) p of the contact forces with

the ground can be related to the motion of the Center of

Mass (CoM) c of the robot and its angular momentum L as

follows [15]:

px,y = cx,y −
mcz c̈x,y − SL̇x,y

m(c̈z + gz)
, (1)

where x and y indicate horizontal coordinates, gz is the

vertical acceleration due to gravity, m the mass of the robot

and S =
[

0 −1
1 0

]

a π
2 rotation matrix. Due to the unilaterality

of contact forces, this CoP is bound to the support polygon

P(t), which varies with time depending on which feet are

in contact with the ground and where:

p ∈ P(t). (2)

This can be reformulated as a dynamics

c̈x,y = ω2(cx,y − px,y + nx,y), (3)

with some constant value ω2 ≈ gz

cz
, gathering all non-

linearities in a vector

n =
c̈

ω2
−

mcz c̈− SL̇

m(c̈z + gz)
, (4)

which can be bounded efficiently [1], [12]:

n ∈ N . (5)

Since the x and y coordinates appear to be decoupled, we

will consider only the x coordinate in the following.

Assuming that p and n are constant over time intervals

of length τ , we can obtain a discrete-time linear system

following a standard procedure [11]:

x+ = Ax+B(p− n), (6)

with matrices

A =

[

cosh(ωτ) ω−1 sinh(ωτ)
ω sinh(ωτ) cosh(ωτ)

]

, (7)

B =

[

1− cosh(ωτ)
−ω sinh(ωτ)

]

, (8)

and x+ the successor of the state

x =

[

cx

ċx

]

∈ X (t), (9)

where X (t) represents time-varying kinematic constraints on

the CoM motion.

III. STABLE FEEDBACK GAINS

We control the CoP p using a linear feedback with

compensation of n:

p = pref +K(x− xref ) + n (10)

with feedback gains of the form

K = k
[

1 λ
]

(11)

in order to track a reference trajectory xref , pref (obtained

with any standard motion generation scheme [15]). If the

reference trajectory follows the dynamics (6) without n:

x+
ref = Axref +Bpref , (12)

this leads to a closed-loop dynamics

x̃+ = (A+BK)x̃ (13)

of the tracking error

x̃ = x− xref . (14)

Consider the two poles, q1 and q2, related to this closed-

loop dynamics as follows:

q1q2 = det(A+BK)

= 1− k + k cosh(ωτ)− kλω sinh(ωτ), (15)

q1 + q2 = tr(A+BK)

= k + (2− k) cosh(ωτ)− kλω sinh(ωτ). (16)

Following Jury’s simplified stability criterion [8], this closed-

loop dynamics is stable if and only if:

q1q2 < 1, (17)

(q1 − 1)(q2 − 1) = q1q2 − (q1 + q2) + 1 > 0, (18)

(q1 + 1)(q2 + 1) = q1q2 + (q1 + q2) + 1 > 0, (19)

which corresponds to the following constraints represented

in Fig. 2:

λ >
cosh(ωτ)− 1

ω sinh(ωτ)
, (20)

k > 1, (21)

kλ <
cosh(ωτ) + 1

ω sinh(ωτ)
. (22)

IV. FROM UNCERTAINTIES TO TRACKING ERROR

Consider that the CoP is affected by a bounded additive

uncertainty

v ∈ W (23)

coming from actuators, sensors and model errors (a precise

expression will be introduced in Section VI), such that the

CoP in the linear feedback (10) actually is:

p = pref +K(x− xref ) + n+ v. (24)

The closed-loop dynamics (13) becomes

x̃+ = (A+BK)x̃+Bv. (25)

If the closed-loop matrix A + BK is stable, then when

time tends to infinity, the tracking error x̃ converges to a set

Z:

x̃ → Z =

∞
⊕

i=0

(A+BK)iBW, (26)



Fig. 2. Following Jury’s simplified stability criterion, the region of feedback
gains k−1 and λ that lead to a stable closed-loop dynamics is a triangle,

where λ varies between
cosh(ωτ)−1
ω sinh(ωτ)

and
cosh(ωτ)+1
ω sinh(ωτ)

while k−1 varies

between
cosh(ωτ)−1
cosh(ωτ)+1

and 1. The thin blue lines correspond to having both

poles equal, at least one pole equal to e−ωτ (when λ = ω−1), or at least
one pole equal to zero. The gray area corresponds to having both poles
positive real, and at least one greater or equal to e−ωτ .

where the symbol ⊕ represents a Minkowski sum1. Follow-

ing (25) and (26), once the tracking error is in Z , it stays in

Z for every future time [10]:

∀v ∈ W, x̃ ∈ Z =⇒ x̃+ ∈ Z. (27)

We use this robust positive invariance property to ensure a

bounded tracking error

x̃ ∈ Z, (28)

provided that the robot motion starts within these bounds. As

an example, the tube-based MPC scheme proposed in [14]

for biped walking generates the reference motion xref online

under this condition.

This precise bound on the tracking error allows guarantee-

ing that the kinematic constraint (9) will always be satisfied,

even with the uncertainty (23), provided that

xref ∈ X (t)⊖ Z, (29)

where the symbol ⊖ represents a Pontryagin difference2. In

this case, the corresponding CoP tracking error

p̃ = p− pref − n = Kx̃+ v (30)

is bounded accordingly:

p̃ ∈ KZ ⊕W, (31)

so we can guarantee that the support polygon constraint (2)

will be satisfied as well, provided that

pref ∈ P(t)⊖N ⊖KZ ⊖W. (32)

1Given sets A and B, A⊕ B = {a+ b | a ∈ A, b ∈ B}.
2Given sets A and B, A⊖ B = {x | x+B ⊆ A}.

Feasibility of the reference motion generation and tracking

imposes that the sets in (29) and (32) are non-empty. The

support polygon P(t) constraining the CoP is normally

smaller than the kinematic constraints X (t) on the CoM

motion. And the bound KZ ⊕W on the CoP tracking error

is larger than the bound Z on the CoM tracking error when

using stable gains K , satisfying condition (21). Thus, as

usual in the balance of legged robots, the constraint (32)

on the CoP is the limiting factor, and we look to reduce

specifically the bound KZ ⊕W on the CoP tracking error.

V. COP TRACKING ERROR DUE TO UNCERTAINTIES

Using definition (26) of the set Z , the bound (31) on the

CoP tracking error becomes:

p̃ ∈
∞
⊕

i=0

K(A+BK)iBW ⊕W. (33)

Considering a real interval

W = [vmin , vmax ], (34)

the maximum and minimum values for p̃ are reached with

opposite sequences of maximum and minimum values vmax

and vmin , depending on the sign of each real coefficient

K(A+BK)iB. This results in

p̃max−p̃min =

(

∞
∑

i=0

∣

∣K(A+BK)iB
∣

∣+ 1

)

(vmax−vmin).

(35)

We can introduce then the spans

p̃span = p̃max − p̃min (36)

and

vspan = vmax − vmin , (37)

and the ratio

r =
p̃span

vspan
=

∞
∑

i=0

∣

∣K(A+BK)iB
∣

∣+ 1 (38)

between the amount of uncertainty and the resulting amount

of CoP tracking error.

The gray area in Fig. 2 corresponds to having both poles

q1 and q2 positive real, and at least one greater or equal to

e−ωτ . The extent of this area depends on the product ωτ ,

but inside this area, the above ratio is

r =
1

k − 1
+ 2, (39)

as shown in the Appendix, which is surprisingly independent

from λ, ω and τ . It can be observed numerically that this

is actually the minimum possible ratio. Within this area, the

choice λ = ω−1 is particularly interesting since it maximizes

controllability [13]. We consider therefore feedback gains of

the form:

K = k
[

1 ω−1
]

. (40)

In that case, we obtain poles

q1 = e−ωτ , (41)

q2 = 1− (k − 1)(eωτ − 1) (42)



from (15) and (16). Borrowing from the Appendix the refor-

mulation (59) of the infinite sum (38) with coefficients (65)

and (66), we obtain that the above ratio becomes

r =
k(eωτ − 1)

1− |q2|
+ 1. (43)

Depending on the sign of q2 (positive being inside of the

gray area, negative being outside), we have:

r =







1
k−1 + 2 if eωτ − 1 ≤ 1

k−1 ,

2+(eωτ

−1)
2−(k−1)(eωτ

−1) if 1
k−1 ≤ eωτ − 1 < 2

k−1 .

(44)

When eωτ − 1 ≥ 2
k−1 , the closed loop is unstable and the

ratio r is undefined.

VI. OPTIMAL GAINS AND SAMPLING PERIODS

With feedback gains of the form (40), the linear feedback

with uncertainties (24) can be reformulated as

p = pref + k(ξ − ξref ) + n+ v, (45)

where

ξ = c+ ω−1ċ (46)

is the Capture Point (CP) [15]. Considering an error ξ̂ in

the estimation of the CP ξ and an error n̂ in the model of

the robot (including inaccuracies in the actuation and ground

contact), this linear feedback actually becomes

p = pref + k(ξ + ξ̂ − ξref ) + n+ n̂, (47)

corresponding to an uncertainty v of the form:

v = kξ̂ + n̂. (48)

Using the ratio (38), the resulting span of CoP tracking

error is:

p̃span = rk ξ̂span + r n̂span . (49)

Based on (44), its minimum value

p̃∗span =

(

√

ξ̂span +

√

2(ξ̂span + n̂span)

)2

(50)

is obtained using a feedback gain

k∗ = 1 +

√

ξ̂span + n̂span

2ξ̂span
. (51)

Typical values for these sources of uncertainties are n̂span =
ξ̂span = 1 cm [5], resulting in a minimal span of CoP

tracking error p̃∗span = 9 cm, corresponding to Toro’s feet

width. In this case, the optimal gain is k∗ = 2.

But the key observation in (44) is that once a gain k

has been decided, the ratios r and rk don’t depend on the

sampling period τ , as long as it is shorter than

τ0 = ω−1 ln

(

1

k − 1
+ 1

)

. (52)

The maximum CoP tracking error p̃span is not improved

by reducing the sampling period below this value, but it

degrades sharply when τ > τ0, as shown in Fig. 3. When

k = 2, τ0 = ω−1 ln 2 = 216 ms (ω ≈ 3.2 s−1 for Toro).
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Fig. 3. Span of the CoP tracking error p̃span produced by model and

estimation errors with span n̂span = ξ̂span = 1 cm, using the optimal
feedback gains k = 2 and λ = ω−1 (ω ≈ 3.2 s−1 for Toro) for
different sampling periods τ . The tracking error degrades sharply when
τ > ω−1 ln 2 = 216 ms, but it doesn’t improve for sampling periods
below this value.

VII. EXPERIMENTAL RESULTS

The CP linear feedback (45) is implemented in the hu-

manoid robot Toro, with a feedback gain k = 2 as discussed

above, together with a standard Quadratic Program (QP)

based inverse dynamics scheme for Whole-Body Control

(WBC) of joint positions and contact forces [3]. The sam-

pling period of the QP-based WBC is kept constant at 3 ms

while varying the sampling period τ of the CP feedback (45).

The reference trajectory for a simple sequence of steps is

actually not adapted to the sampling period, making it more

difficult to track precisely at each contact transition with

longer sampling periods (see video).

We can observe in Fig. 4 that in experiments with Toro,

the lateral CP and CoP tracking performances are similar and

satisfactory when τ = 51 ms or 120 ms, as expected from

our theoretical analysis. For longer sampling periods, the

WBC generates larger arm motions in order to compensate

angular momentum variations, which ends up triggering an

emergency stop due to the increased risk of collision (see

video). The resulting failure originates in the QP-based WBC

and not the CP linear feedback (45), so this doesn’t contradict

the proposed theoretical analysis. In simulations, this safety

system is not triggered and we can observe in Fig. 5 that the

tracking performance is maintained at a satisfactory level for

sampling periods up to τ = 216 ms while degrading sharply

afterwards, validating strikingly well the theoretical analysis

proposed above.

VIII. DISCUSSION AND CONCLUSION

We quantify the effect of sensor and actuator uncertainties

on the CoM and CoP tracking error in legged robots, since

this is central for maintaining their balance with a limited
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Fig. 4. Lateral component of walking experiments with the humanoid robot
Toro using a feedback gain k = 2 and sampling period τ = 51 ms (top)
or τ = 120 ms (bottom). The CP ξ is represented in blue, while the CoP
is in dashed black. The reference values ξref and pref are indicated with
dotted lines.

support polygon. Our approach is based on robust control

theory, considering uncertainties that can take any value

between some bounds. The relationships we obtain can be

used during the design stage of a legged robot, when looking

for the best compromise between sensor, actuator, and CPU

performance and cost. This principled approach also provides

the corresponding optimal feedback gains.

Our main observation is that the sampling period for a

human-sized humanoid robot such as Toro can be as long

as 200 ms with literally no impact on maximum tracking

error and, as a result, on the guarantee that balance can

be maintained safely. Concerning quadruped robots, stable

locomotion has been realized recently with similarly low,

15 Hz control rates [6]. Faster sampling periods might be

useful for other aspects of the motion of the robot, such as

arm or swing leg motion, but not for CoM motion.
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Fig. 5. Lateral component of walking simulations with the humanoid robot
Toro using a feedback gain k = 2 and sampling periods τ = 216 ms (top)
or τ = 232 ms (bottom). The CP ξ is represented in blue, while the CoP
is in dashed black. The reference values ξref and pref are indicated with
dotted lines.

This provides some freedom in the choice of the sampling

period, which helped us achieve a substantial reduction of the

oscillations mentioned in [3] by avoiding structure resonance

modes. This could also help reduce energy consumption,

using lower gains, estimating the state and computing the

control law less often (CPU power consumption has been

observed to represent a significant fraction of the whole

power consumption of the robot Toro [7]).

The proposed analysis doesn’t consider maintaining bal-

ance by actively using angular momentum (whirling limbs

in the air) or modifying the support polygon by making a

step. Investigating how uncertainties relate to the decision to

make steps, when, how and where, is our next goal.



APPENDIX

If each real coefficient K(A + BK)iB in the infinite

sum (38) is negative, we actually have

r = −Kh+ 1, (53)

where

h =

∞
∑

i=0

(A+BK)iB. (54)

By construction, this vector h is the solution of

h = (A+BK)h+B, (55)

which can be easily obtained:

h =

[

1
1−k

0

]

, (56)

resulting in a ratio

r =
1

k − 1
+ 2 (57)

independent from λ, ω and τ .

In order to show that this is the case in the gray area of

Fig. 2, factorize the closed-loop matrix as follows:

A+BK = M

[

q1 0
0 q2

]

M−1, (58)

with an invertible matrix M , so that:

r =

∞
∑

i=0

∣

∣

∣

∣

KM

[

qi1 0
0 qi2

]

M−1B

∣

∣

∣

∣

+ 1

=

∞
∑

i=0

∣

∣α1q
i
1 + α2q

i
2

∣

∣+ 1, (59)

with coefficients α1 and α2 obtained directly from the

matrices KM and M−1B. Reorganize each of these terms:

α1q
i
1 + α2q

i
2 = (α1 + α2)q

i
1 + α2(q

i
2 − qi1), (60)

considering that the two poles are positive real and ordered

as follows:

0 ≤ q1 ≤ q2 < 1. (61)

The first element is negative since we can observe from (38)

and (59), and then from (16) that

α1 + α2 = KB (62)

= k − k cosh(ωτ) − kλω sinh(ωτ) (63)

= q1 + q2 − 2 cosh(ωτ) < 0. (64)

With the help of a computer algebra system, we can

actually obtain that

α1 =
1− q1

(k − 1)(q1 − q2)
(q1q2 − 1 + k(1− q1)), (65)

α2 =
1− q2

(k − 1)(q2 − q1)
(q1q2 − 1 + k(1− q2)). (66)

Having α2 also negative would complete the proof. The

fraction on the left is positive, so α2 has the same sign as

the term on the right. When λ ≥ ω−1, this term can be

reformulated, using (15), as

k(cosh(ωτ)− λω sinh(ωτ)− q2) ≤ k
(

e−ωτ − q2
)

. (67)

When λ ≤ ω−1, the gray area satisfies k ≤ 1 + e−ωτ , so

q1q2 − 1 + k(1 − q2) ≤ q22 − 1 + k(1− q2) (68)

≤ (1− q2)(k − 1− q2) (69)

≤ (1− q2)(e
−ωτ − q2). (70)

In both cases, this term is negative since at least one pole is

greater or equal to e−ωτ in the gray area, so q2 ≥ e−ωτ .
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