
HAL Id: hal-02168495
https://hal.science/hal-02168495v3

Preprint submitted on 14 May 2020 (v3), last revised 18 Feb 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of extremal directions via Euclidean
projections

Nicolas Meyer, Olivier Wintenberger

To cite this version:
Nicolas Meyer, Olivier Wintenberger. Detection of extremal directions via Euclidean projections.
2020. �hal-02168495v3�

https://hal.science/hal-02168495v3
https://hal.archives-ouvertes.fr


Detection of extremal directions via Euclidean projections

Nicolas Meyer∗1 and Olivier Wintenberger†1

1Sorbonne Université, LPSM, F-75005, Paris, France

May 14, 2020

Abstract

Regular variation provides a convenient theoretical framework to study large events. In the
multivariate setting, the dependence structure of the positive extremes is characterized by a measure
- the spectral measure - defined on the positive orthant of the unit sphere. This measure gathers
information on the localization of extreme events and is often sparse since severe events do not
simultaneously occur in all directions. However, it is defined through weak convergence which does
not provide a natural way to capture this sparsity structure. In this paper, we introduce the notion
of sparse regular variation which allows to better learn the dependence structure of extreme events.
This concept is based on the Euclidean projection onto the simplex for which efficient algorithms
are known. We show several results for sparsely regularly varying random vectors and prove that
under mild assumptions sparse regular variation and regular variation are two equivalent notions.
Finally, we provide numerical evidence of our theoretical findings and compare our method with a
recent one developed by Goix et al. (2017).

Keywords: multivariate extremes, projection onto the simplex, regular variation, sparse regular
variation, spectral measure

1 Introduction

Estimating the dependence structure of extreme events has proven to be a major issue in many ap-
plications. The standard framework in multivariate Extreme Value Theory (EVT) is based on the
concept of regularly varying random vectors. Regular variation has first been defined in terms of vague
convergence on the compactified space [−∞,∞]d and several characterizations have subsequently been
established, see e.g. Resnick (1987), Beirlant et al. (2006), or Resnick (2007), Embrechts et al. (2013).
Hult and Lindskog (2006) extend the notion of regular variation on a general (possibly infinite dimen-
sional) metric space. They introduce the concept of M0-convergence of Borel measures which is based
on bounded continuous test functions with support bounded away from the origin. In this article we
use Resnick’s setting and define multivariate regular variation through the convergence of the polar
coordinates of a random vector (see Resnick (1987), Proposition 5.17 and Corollary 5.18, or Resnick
(2007), Theorem 6.1). A random vector X ∈ Rd

+ is said to be regularly varying with tail index α > 0

and spectral measure S on the positive orthant Sd−1
+ of the unit sphere if

P (|X| > tx,X/|X| ∈ B | |X| > t)→ x−αS(B) , t→∞ , (1.1)
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for all x > 0 and for all continuity set B of S. Convergence (1.1) can be interpreted as follows: The limit
of the radial component |X|/t follows a Pareto distribution with parameter α > 0 while the angular
component X/|X| has limit measure S. Moreover, both components of the limit are independent. The
measure S, called the spectral measure, summarizes the tail dependence of the regularly varying random
vector X. Note that the choice of the norm in (1.1) is arbitrary. Actually, it is even possible to choose
two different norms for the radial and angular parts (see Beirlant et al. (2006), Section 8.2.3).

Based on convergence (1.1), several nonparametric estimation techniques have been proposed to es-
timate S. These approaches tackle nonstandard regular variation for which α = 1 and all marginals are
tail equivalent (possibly after a standardization). In the bivariate case, some useful representations of the
spectral measure has been introduced by Einmahl et al. (1993), Einmahl et al. (1997), Einmahl et al.
(2001) and Einmahl and Segers (2009). In Einmahl et al. (1997), the authors replace the tails of the
marginals by fitted Pareto tails in order to estimate S via an empirical measure. The latter is consistent
and asymptotically normal under suitable assumptions. Einmahl and Segers (2009) focus on the choice
of the ℓp-norm, for p ∈ [1,∞], in order to construct an estimator of the spectral measure which satisfies
moment constraints. Inference on the spectral measure has also been studied in a Bayesian framework,
for instance by Guillotte et al. (2011). In this paper, the authors use censored likelihood methods in the
context of infinite dimensional spectral measures. Parametric approaches have also been introduced to
tackle the study of extremes in moderate (d ≤ 10) dimensions, for instance by Coles and Tawn (1991)
and Sabourin et al. (2013). In higher dimensions, mixtures of Dirichlet distributions are often used to
model the spectral densities. Boldi and Davison (2007) show that under some conditions these distri-
butions are weakly dense in the set of spectral measures. They propose both frequentist and Bayesian
inferences based on EM algorithms and MCMC simulations. Subsequently, Sabourin and Naveau (2014)
introduce a re-parametrization of the Bayesian Dirichlet mixture model.

More recently, the study of the spectral measure’s support has become an active topic of research.
However, the complete support’s estimation is often difficult to capture in high dimensions so that
dimensionality reduction algorithms have been proposed. There, a main goal in the tail dependence’s
study is to identify clusters of components which are likely to be extreme together. This approach has
firstly been introduced by Chautru (2015) who uses the Principal Nested Spheres technique to exhibit
groups of variables with asymptotic dependence. In the same way, Janßen and Wan (2019) use spher-
ical k-means in order to find clusters with the same extremal behavior. Goix et al. (2017) consider
ǫ-thickened rectangles to estimate the directions on which the spectral measure concentrates. This
estimation is based on a tolerance parameter ǫ > 0 and brings out a sparse representation of the depen-
dence structure. It leads to an algorithm called DAMEX (for Detecting Anomalies among Multivariate
EXtremes) of complexity O(dn log n), where n corresponds to the number of data points. Subsequently,
Chiapino and Sabourin (2016) provide an incremental-type algorithm (CLustering Extreme Features,
CLEF) to group components which may be large together. This algorithm is based on the DAMEX algo-
rithm and also requires a hyperparameter κmin. Several variants of the CLEF algorithm have then been
proposed by Chiapino et al. (2019). These approaches differ in the stopping criteria which are based on
asymptotic results of the coefficient of tail dependence. A O(dn log n) complexity has also been reached
by Simpson et al. (2019) who base their method on hidden regular variation. They introduce a set of
parameters (τβ)β⊂{1,...,d} which describes to what extent the direction β gathers extreme values. All
these approaches address nonstandard regular variation and are thus based on a rank transform which
provides empirical normalization of the marginals.

Some alternative approaches have also been recently proposed Lehtomaa and Resnick (2019) analyze
extremal dependence with application to risk management. They study the support of the spectral
measure by using a grid estimator. The simplex is firstly mapped to the space [0, 1]d−1 before being
partitioned in equally sized rectangles. The estimation of the support is based on a standard estimator
of the spectral measure, see Resnick (2007), Section 9.2.2. The authors then build an asymptotically
normal test statistic to validate the support estimate. Cooley and Thibaud (2019) define a vector
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space on the positive orthant Rd
+ in order to conciliate both Principal Component Analysis and regular

variation. They summarize the tail dependence through a matrix of pairwise tail dependence metrics
and apply some usual decomposition on this matrix. They illustrate their approach with simulations
on Swiss rainfall data and financial return data.

Many of the aforementioned approaches rely on dimension reduction since large events often con-
centrate in subspaces of dimension smaller than d − 1. Indeed, in many situations it is very un-
likely that a lot of coordinates are simultaneously extreme. In other words, extreme events occur in
few directions i1, . . . , ir ∈ {1, . . . , d}, with r ≪ d. In this case, the spectral measure puts mass on
Vect(ei1 , . . . , eir) ∩ Sd−1

+ , where e1, . . . , ed denote the vectors of the canonical basis of Rd. We say then
that the spectral measure is sparse. Identifying the low-dimensional subspaces on which the spectral
measure puts mass is therefore a first major step in the study of multivariate extremes. However, as
soon as r < d, the weak convergence (1.1) does not hold for subsets like Vect(ei1 , . . . , eir) ∩ Sd−1

+ , since
they are not continuity sets for S. This is why identifying the possible sparsity of S is a major challenge
in multivariate extreme value analysis. A review on sparsity in multivariate EVT has been established
by Engelke and Ivanovs (2020).

Sparsity arises all the more for standard regular variation: There, it is possible that the marginals of
X are not tail equivalent and thus that the support of the spectral measure is included in Sr−1

+ for r ≪ d.
This is the approach we use in this article. This framework is for instance used by Sabourin and Drees
(2019) who assume that the parameter r is known. The aim of their paper is to identify the sphere
Sr−1
+ with an empirical risk minimization’s technique. On the contrary, nonstandard regular variation

entails that all marginals are standardized so that they the support of the spectral measure can not
be included in a smaller sphere. Even if both approaches are not comparable, the aim of the spectral
measure’s support identification is similar: capturing the extremal directions of X.

In both cases the self-normalized vector X/|X| fails to identify the directions on which the spectral
measure puts mass. This is why we introduce another way of projecting onto the unit sphere. This new
projection should take the sparsity of the spectral measure into account by introducing some sparsity
in the vector X. In other words, since the limit measure S in (1.1) is likely to be sparse, we need
to replace X/|X| by a unit vector based on X which should also be sparse. To this end, we use the
Euclidean projection of X/t onto the simplex {x ∈ Rd

+, x1 + . . . + xd = 1}. This projection has been
widely studied in learning theory (see e.g. Duchi et al. (2008), Kyrillidis et al. (2013), or Liu and Ye
(2009)). Many different efficient algorithms have been proposed, for instance by Duchi et al. (2008) and
Condat (2016). Based on this projection, we define the concept of sparse regular variation for which the
self-normalized vector X/|X| is replaced by π(X/t), where π denotes the Euclidean projection onto the
simplex. With this approach we obtain a new angular limit vector Z whose distribution slightly changes
from the spectral measure. We prove that under mild conditions both concepts of regular variation are
equivalent and we give the relation between both limit measures. Besides, we study this new angular
limit and show that it empirically captures the extremal directions of X.

Our method proves to be an alternative to the one proposed by Goix et al. (2017). There, the authors
work with the spectral measure and propose an algorithmic approach which needs a hyperparameter ǫ.
On the other hand we slightly modify the standard case and work with an angular vector Z to exhibit
the sparsity structure of multivariate extremes. A main advantage of our approach is that it does not
need any hyperparameter to capture the tail dependence. The numerical results we provide emphasize
the efficiency of our method to detect directions β ⊂ {1, . . . , d} which may be large together. These
results also highlight how the new vector Z provides an interpretation of the relative importance of a
coordinate j in an extremal direction β.

Outline The structure of this paper is as follows. Section 2 gathers all theoretical results useful in this
paper. We first introduce the EVT framework and especially multivariate regular variation. We detail
why the knowledge of the subspaces on which the spectral measure puts mass is a main issue for the
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study of extreme events. We also explain which issues appear in this context. We introduce then the
Euclidean projection onto the simplex and list several results which are of constant use for our study.
In Section 3 we introduce the notion of sparse regular variation. We study the distribution of the new
angular vector and compare it with the spectral measure. Finally we establish the equivalence under
mild conditions between sparse regular variation and the standard regular variation’s concept. In Section
4 we discuss to what extent the Euclidean projection allows us to better capture the extremal directions
of X. We prove that Θ and Z similarly behave on so-called maximal subsets. Finally we illustrate
in Section 5 the performance of our method on simulated data and compare it with the approach of
Goix et al. (2017).

2 Theoretical background

2.1 Notation

We introduce some standard notation that is used throughout the paper. Symbols in bold such as
x ∈ Rd are column vectors with components denoted by xj, j ∈ {1, . . . , d}. Operations and relationships
involving such vectors are meant componentwise. We define Rd

+ = {x ∈ Rd, x1 ≥ 0, . . . , xd ≥ 0} and
0 = (0, . . . , 0) ∈ Rd. For j = 1, . . . , d, ej denotes the j-th vector of the canonical basis of Rd. For
a ∈ R, a+ denotes the positive part of a, that is a+ = a if a ≥ 0 and a+ = 0 otherwise. If x ∈ Rd and
β = {β1, . . . , βr} ⊂ {1, . . . , d}, then xβ denotes the vector (xβ1

, ..., xβr
) of Rr. For p ∈ [1,∞], we denote

by | · |p the ℓp-norm in Rd. We write
w→ for the weak convergence. For a set E, we denote by P(E) its

power set: P(E) = {A, A ⊂ E}. We also use the notation P∗(E) = P(E) \ {∅}. If E = {1, . . . , r}, we
simply write Pr = P({1, . . . , r}) and P∗

r = P({1, . . . , r}) \ {∅}. For a finite set E, we denote by #E its
cardinality. If #E = r ≥ 1, then #P(E) = 2r. In particular, #Pr = 2r and #P∗

r = 2r − 1. Finally, if
F is a subset of a set E, we denote by F c the complementary of F (in E).

2.2 Multivariate regular variation

We consider a nonnegative random vector X ∈ Rd
+ and our aim is to assess the tail structure of X. It

is customary in EVT to assume that the random vector X is regularly varying: There exist a positive
sequence (an), an →∞ when n→∞, and a nonnegative Radon measure µ on Rd

+ \ {0} such that

nP
(

a−1
n X ∈ ·

) v→ µ(·) , n→∞ , (2.1)

where
v→ denotes vague convergence in the space of nonnegative Radon measures on Rd

+ \ {0}. The
limit measure µ is called the tail measure and describes the behavior of the extremes. It satisfies the
homogeneity property µ(aC) = a−αµ(C) for any set C ⊂ Rd

+ \ {0} and any a > 0. The parameter
α > 0 is called the tail index.

It is often more convenient to represent the extremal behavior of X through a polar representation
(see Beirlant et al. (2006), Section 8.2.2). We consider an arbitrary norm | · | on Rd and denote by
Sd−1
+ = {x ∈ Rd

+, |x| = 1} the restriction of the associated unit sphere to the positive orthant. Following
the device of Beirlant et al. (2006), we define the polar transformation

T : Rd
+ \ {0} → (0,∞) × Sd−1

+

v 7→ (r,θ) = (|v|,v/|v|) .

It is even possible to choose two different norms | · | and | · |′ in the definition of T but it will not be
useful for our purpose. Classical choices of norms are ℓp-norms, p ∈ [1,∞]. The spectral measure S of
the regularly varying random vector X is then defined as

S(B) = µ
({

v ∈ Rd
+ \ {0}, |v| > 1,v/|v| ∈ B

})

= µ
(

T−1 [(1,∞)×B]
)

,
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for all Borel subset B of Sd−1
+ . The homogeneity property of the tail measure implies that

r−αS(B) = µ
({

v ∈ Rd
+ \ {0}, |v| > r,v/|v| ∈ B

})

= µ
(

T−1 [(r,∞)×B]
)

, (2.2)

for all Borel subset B of Sd−1
+ and all r > 0.

Equation (2.2) can be rephrased as αr−(α+1)drS(dθ) = µ ◦T−1(dr,dθ). This gives a decomposition
of the tail measure in a radial part and an angular part. The radial component can thus be modeled
through a random variable with Pareto(α) distribution while the angular one is characterized by the
spectral measure S. The decomposition in Equation (2.2) ensures that the radial and the angular
parts are independent. Combining Equations (2.1) and (2.2) entails the following characterization of a
regularly varying random vector in Rd

+:

nP
(

a−1
n |X| > r,X/|X| ∈ ·

) v→ r−αS(·) , n→∞ .

This is the same as
P (|X| > tr,X/|X| ∈ ·)

P(|X| > t)

v→ r−αS(·) , t→∞ , (2.3)

see Resnick (1986). We call spectral vector a random vector on Sd−1
+ whose distribution is S.

Equation (2.3) then leads to the following characterization of regular variation. A random vector X
in Rd

+ is regularly varying if there exist a random vector Θ on Sd−1
+ (the spectral vector) and a random

variable Y such that the following limit holds:

P

(( |X|
t

,
X

|X|

)

∈ ·
∣

∣

∣

∣

|X| > t

)

w→ P((Y,Θ) ∈ ·) , t→∞ . (2.4)

In this case there exists α > 0 such that Y follows a Pareto distribution with parameter α. Moreover the
radial limit Y is independent of the angular limit Θ which has for distribution the spectral measure S.
Regarding extreme values, Equation (2.4) brings out the two quantities which characterize the regular
variation property of X. On the one hand, the tail index α highlights the intensity of the extremes:
The smaller this index is, the larger the extremes are. On the other hand, the spectral vector Θ informs
on their localization and their dependence structure: The spectral measure puts mass in a direction of
Sd−1
+ if and only if extreme events appear in this direction. Hence, estimating the spectral measure is a

crucial (but challenging) problem in multivariate EVT especially in high dimensions.

Example 1. We consider two independent regularly varying random variables X1,X2 ∈ R+ with tail
index α1 > 0 and α2 > α1 respectively. The vector X = (X1,X2) ∈ R2

+ is then regularly varying with
tail index α1 and spectral vector Θ = (1, 0) a.s. This example represents the case of a marginal X1

with a larger tail than another one X2 and depicts therefore a situation where extreme events are only
due to one component. In this case our aim is to identify this largest component.

Example 2. We keep the same notation as in Example 1. If we define X = (X1,X1 +X2), then the
vector X is regularly varying with tail index α1 and spectral measure Θ = (1, 1)/|(1, 1)| a.s. In this
case we have a strong dependence between the two marginals and the spectral measure places mass in
the center of the positive unit sphere.

Example 3. We consider a regularly varying random variable X ∈ R+ with tail index α > 0. Then
the vector X = (X,X/2) satisfies the convergence in distribution

X/t | |X| > t
d→ (Y, Y/2) , t→∞ .

where Y follows a Pareto(α) distribution. This means that X is regularly varying with tail index α and
spectral vector Θ = (1, 1/2)/|(1, 1/2)| a.s. If we choose the ℓ1-norm we obtain Θ = (2/3, 1/3) a.s. In
this case it seems challenging to capture exactly this direction. We are rather willing to detect that the
first marginal is larger than the second one while both contribute to the extremal behavior of X.
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2.3 Sparsity and dimension reduction

The convergence in (2.1) may be seen as standard regular variation in contrast to the nonstandard one:
There exists a nonnegative Radon measure µ̃ on Rd

+ \ {0} such that

nP ((Xi/an,i)1≤i≤d ∈ ·) v→ µ̃(·) , n→∞ ,

where the sequences (an,i)n are satisfying nP(Xi > an,i) → 1 as n → ∞ (see Resnick (2007), Section
6.5.6). Actually standard regular variation (2.1) is more general since it allows the tail measure to be
sparse which means that it places mass on some lower-dimensional subspaces of Rd

+. On the other hand,
in the nonstandard case, the condition satisfied by the an,i implies that µ̃({x ∈ Rd

+, xi > 1}) = 1 for
all i = 1, . . . , d. This means that the mass of the measure µ̃ is concentrated in all directions. The
study of extreme values under the nonstandard assumption begins with a modification of the marginals
called rank transform which provides equally distributed components (see Resnick (1987), Proposition
5.10). This is the approach mostly used in the literature (see Goix et al. (2016), Goix et al. (2017),
Chiapino and Sabourin (2016), Simpson et al. (2019), Lehtomaa and Resnick (2019)) In this paper we
de not consider any transformation of the marginals and we only focus on standard regular variation
defined by (2.1). This means that we assume that the tail measure µ is likely to be sparse.

Remark 1. In the standard case the spectral measure’s support can be included in Sr−1
+ with r ≪ d.

The first step in the study of multivariate extremes should therefore deal with the identification of this
low-dimensional sphere. This case can not arise in the nonstandard case since all marginals have the
same tail index which implies that the spectral measure puts mass in all the directions j = 1, . . . , d.

Estimating a sparse support boils down to focusing on the low-dimensional subspaces on which
this measure puts mass. In high dimensions, several authors recently addressed this issue with the
aim of detecting directions that are likely to be extreme together (Chautru (2015), Goix et al. (2017),
Chiapino and Sabourin (2016), Chiapino et al. (2019)). This requires dimension reduction techniques in
order to move from a high-dimensional sphere Sd−1 to these low-dimensional subspaces. Regarding the
spectral measure, we would like to identify some specific subsets of Sd−1

+ on which the spectral measure
puts mass. To this end it is convenient to consider the subsets

Cβ =
{

x ∈ Sd+, xi > 0 for i ∈ β, xi = 0 for i /∈ β
}

, (2.5)

for β ∈ P∗
d . This approach can be related to the one developed by Goix et al. (2017) (see Remark 6).

Note that by construction the subsets Cβ are pairwise disjoint and form a partition of Sd−1
+ :

Sd−1
+ =

⊔

β∈P∗

d

Cβ ,

where
⊔

denotes a disjoint union. An illustration of these subsets in dimension 3 is given in Figure 1.
This partition is helpful to study the tail structure of X. Indeed, for β ∈ P∗

d the inequality P(Θ ∈
Cβ) > 0 means that it is likely to observe simultaneously large values in the directions i ∈ β and small
values in the directions i ∈ βc. Then, identifying the subsets Cβ which concentrate the mass of the
spectral measure allows us to bring out clusters of coordinates which can be simultaneously large. Hence,
the main first step of the spectral measure’s estimation consists in classifying the 2d − 1 probabilities
P(Θ ∈ Cβ) depending on their nullity or not.

Remark 2. The notion of sparsity in EVT can be defined in two different ways. The first one concerns
the number of subsets Cβ which gather the mass of the spectral measure. "Sparse" means then that this
number is much smaller than 2d−1. This is for instance the device of Goix et al. (2017). It corresponds
to the assumption (S2.a) in Engelke and Ivanovs (2020). The second notion deals with the number
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Figure 1: The subsets Cβ in dimension 3 for to the ℓ1-norm. In red, the subsets C{1}, C{2}, and C{3}. In
blue, the subsets C{1,2}, C{1,3}, and C{2,3}. The shaded part corresponds to the interior of the simplex,
that is, the subset C{1,2,3}.

of null coordinates in the spectral vector Θ. In this case, "sparse" means that with high probability
|Θ|0 ≪ d, where | · |0 denotes the ℓ0-norm of Θ, that is, |Θ|0 = #{i = 1, . . . , d, θi 6= 0}. This is denoted
by (S2.b) in Engelke and Ivanovs (2020). In all this article we refer to this second notion. Our aim is
to provide a suitable model for extremes which takes this possible sparsity into account.

A standard example of sparsity is the one where the spectral measure only puts mass on the axis:
P(Θ ∈ ⊔1≤j≤d {ej}) = P(Θ ∈ ⊔1≤j≤dC{j}) = 1. This means that there is never more than one
direction which contributes to the extremal behavior of the data. In this case, we say that the extremes
are asymptotically independent. This concept has been studied by many authors, see for instance
Ledford and Tawn (1996) or Ramos and Ledford (2009). Even in cases of asymptotic dependence, the
mass of the spectral measure often only spreads on low-dimensional subsets Cβ, that is, for β such that
#β ≪ d. This is all the more true in high dimensions. Indeed, when d is large, it is very unlikely that all
coordinates are extreme together. Regarding the spectral vector, this means that P(Θ ∈ C{1,...,d}) = 0.
In such cases, it is relevant to identify the largest groups of variables β ∈ P∗

d such that P(Θ ∈ Cβ) > 0.
This motivates the notion of maximal subset.

Definition 1 (Maximal subset for Θ). Let β ∈ P∗
d . We say that a subset Cβ is maximal for Θ if

P(Θ ∈ Cβ) > 0 and P(Θ ∈ Cβ′) = 0, for all β′ ) β .

In terms of extreme values, the notion of maximality can be rephrased in the following way. First,
P(Θ ∈ Cβ) > 0 means that the coordinates of β may be extreme together. Secondly, the condition
P(Θ ∈ Cβ′) = 0, for all β′ ) β, means that β is not included in a larger group of coordinates β′ such
that the coordinates of β′ may be simultaneously extreme.

Remark 3. A straightforward but useful consequence of Definition 1 is that each subset Cβ such that
P(Θ ∈ Cβ) > 0 is included in a maximal subset of Θ. Indeed, if there exists no β′ ) β, such that
P(Θ ∈ Cβ′) = 0, then Cβ is a maximal subset itself. If not, we consider β′ ) β such that P(Θ ∈ Cβ′) > 0.
If Cβ′ is not maximal, then we repeat this procedure with β′. Since the length of the β’s is finite, the
procedure stops and provides γ ∈ P∗

d such that β ⊂ γ, P(Θ ∈ Cγ) > 0 and P(Θ ∈ Cγ′) = 0, for all
γ′ ) γ.

While the interpretation of the subspaces Cβ is rather intuitive, it is quite difficult to estimate the
probabilities P(Θ ∈ Cβ). A natural estimator of the spectral vector Θ is based on the second component

7



of convergence (2.4). Indeed, the angular component of X satisfies the convergence

P (X/|X| ∈ · | |X| > t)
w→ P(Θ ∈ ·) , t→∞ . (2.6)

This means that the spectral vector Θ can be approximated by the self-normalized extreme X/|X| |
|X| > t for t large enough. However the supports of Θ and X/|X| often drastically differ. Indeed,
since X could model real-world data, the components of X are almost surely positive. In other words,
except for degenerate cases, the random vector X/|X| concentrates on the central subspace C{1,...,d}.
Equivalently, if β 6= {1, . . . , d}, then P(X/|X| ∈ Cβ) = 0. This arises while the probability P(Θ ∈ Cβ)
is often positive for some β 6= {1, . . . , d}. Equation (2.6) is thus not helpful to study the support of
the spectral vector Θ. The self-normalized extreme X/|X| | |X| > t does not inform on the behavior
of Θ on the Cβ’s. This kind of problems arises since the spectral measure may put mass on subspaces
included in the boundary of the unit sphere Sd−1

+ (in our case the Cβ’s for β 6= {1, . . . , d}), while the
data generally do not concentrate on such subspaces.

In this context many authors approximate the behavior of extremes by working on subsets that
are close to the Cβ ’s and for which the aforementioned issue vanishes. Goix et al. (2016) define the
truncated ǫ-cones as

{

x ∈ Rd
+, |x|∞ > 1, xi > ǫ|x|∞ for i ∈ β, xi ≤ ǫ|x|∞ for i /∈ β

}

,

and study the behavior of the tail measure on theses cones. Subsequently, Goix et al. (2017) introduce
the notion of ǫ-thickened rectangles:

{

x ∈ Rd
+, |x|∞ > 1, xi > ǫ for i ∈ β, xi ≤ ǫ for i /∈ β

}

.

Chiapino and Sabourin (2016) relax the condition on βc and define the rectangles

{

x ∈ Rd
+, xi > 1 for i ∈ β

}

.

All these approaches lead to efficient dimensionality reduction algorithms. In this article, we do not
address the issue that arises with the weak convergence on the subsets Cβ by using alternative subsets.
Instead, we rather focus on the vector X/|X| in Equation (2.6) and provide a slight modification of this
vector to obtain a convergence on the Cβ’s. This needs to consider another way of projecting the vector
X on the positive unit sphere. This projection has to circumvent the weak convergence’s issue and to
highlight the extremal directions of X.

The solution we propose in this article is to replace the quantity X/|X| by the Euclidean projection
onto the simplex of X/t. To this end, we have to adapt Equation (2.4). From now on, | · | denotes the
ℓ1-norm and Sd−1

+ denotes the simplex in dimension d:

Sd−1
+ := {x ∈ Rd

+, x1 + . . .+ xd = 1} .

In particular, the subsets Cβ defined in (2.5) are associated to the ℓ1-norm. More generally Sd−1
+ (z) :=

{x ∈ Rd
+, x1 + . . .+ xd = z} for z > 0.

2.4 The Euclidean projection onto the simplex

In this subsection we introduce the Euclidean projection onto the simplex. For more details, see
Duchi et al. (2008) and the references therein. Let z > 0 and v ∈ Rd

+. We consider the following
optimization problem:

minimize
w

1

2
|w − v|22 s.t. |w|1 = z . (2.7)
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Since v ≥ 0, the minimization problem (2.7) is equivalent to

minimize
w

1

2
|w − v|22 s.t.

d
∑

i=1

wi = z, wi ≥ 0 .

(see Duchi et al. (2008), Lemma 3). The Lagrangian of this problem and the complementary slackness
KKT condition imply that this problem has a unique solution w ∈ Rd

+ which satisfies wi = (vi−λv,z)+
for λv,z ∈ R. The constant λv,z is defined by the relation

∑

1≤i≤d(vi − λv,z)+ = z.
Based on these considerations, we define the application πz which maps v to w:

πz : Rd
+ → Sd−1

+ (z)
v 7→ w = (v − λv,z)+ .

This application is called the projection onto the positive sphere Sd−1
+ (z). An algorithm which computes

πz(v) for v ∈ Rd
+ and z > 0 is given in Duchi et al. (2008). It is based on a median-search procedure

whose expected time complexity is O(d). However, this approach is not very intuitive and introduces
many variables. Hence we include it in Appendix A and detail here a more understandable version of
this algorithm with complexity O(d log(d)). Algorithm 1 emphasizes the number of positive coordinates
ρ of the projected vector πz(v):

ρ = max

{

j ∈ {1, . . . , d}, µj −
1

j

( j
∑

r=1

µj − z

)

> 0

}

, (2.8)

where µ1 ≥ . . . , µd denote the order coordinates of v, see Duchi et al. (2008), Lemma 2. The integer ρ
corresponds to the ℓ0-norm of πz(v) and thus informs on the sparsity of this projected vector. It will
therefore be crucial in what follows.

Data: A vector v ∈ Rd
+ and a scalar z > 0

Result: The projected vector w = π(v)
Sort v in µ : µ1 ≥ . . . ≥ µd;

Find ρ = max
{

j ∈ {1, . . . , n}, µj − 1
j

(

∑j
r=1 µj − z

)

> 0
}

;

Define η = 1
ρ (
∑ρ

r=1 µj − z);
Define w s.t. wi = max(vi − η, 0).

Algorithm 1: Euclidean projection onto the simplex.

Remark 4. Multivariate extremes have already been studied in low dimensions especially in the bivari-
ate case (see Einmahl et al. (2001) or Einmahl and Segers (2009)). However, the study of large events
becomes a challenging issue when the dimension increases. The recent inferential methods developed
by Simpson et al. (2019) or Goix et al. (2017) reach both a computational complexity O(dn log(n))
for n representing the number of data points. While the main part of their algorithms is linear, the
n log(n) terms come from the standardization of the marginals which requires to sort them. In our ap-
proach we assume that the different marginals do not necessary have the same tail index and therefore
no standardization is required (see Section (2.3)). Algorithm 3 ensures then an expected complexity
O(dn).

Note that the projection satisfies the relation πz(v) = zπ1(v/z) for all v ∈ Rd
+ and z > 0. This is

why we mainly focus on the projection π1 onto the simplex Sd−1
+ . In this case, we shortly denote π for

π1 and λv for λv,1:

π : Rd
+ → Sd−1

+

v 7→ (v − λv)+ .

9
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Figure 2: The Euclidean projection onto the simplex S1+.

An illustration of π for d = 2 is given in Figure 2.
We list below some straightforward results satisfied by the projection.

P1. The projection preserves the order of the coordinates: If vσ(1) ≥ . . . ≥ vσ(d) for a permutation σ,
then π(v)σ(1) ≥ . . . ≥ π(v)σ(d) for the same permutation.

P2. If π(v)j > 0, then vj > 0. Equivalently, vj = 0 implies π(v)j = 0.

P3. The projection π is continuous, as every projection on a convex, closed set in a Hilbert space.

The last property will be useful in what follows since π is used to tackle the weak convergence’s issue in
the spectral measure’s definition (2.4). The idea is indeed to substitute the quantity X/|X| in (2.4) for
| · | = | · |1 by π(X/t) and to manage to get same convergence results. A natural way to do this relies
on the continuous mapping theorem.

We end this section with two important properties satisfied by the projection.

Lemma 1. If 0 < z ≤ z′, then πz ◦ πz′ = πz.

This means that projecting onto a sphere and then onto a smaller one is the same as directly
projecting onto the smaller sphere. This lemma will be useful to prove some technical results gathering
the projection π and regular variation.

Finally, in order to study the tail dependence of X, we are interested in computing probabilities like
P(Θ ∈ Cβ) and P(Θβc = 0), for β ∈ P∗

d . To this end, next lemma will be helpful.

Lemma 2. Let v ∈ Rd
+ and β ∈ P∗

d . The following equivalences hold:

π(v)βc = 0 if and only if 1 ≤ min
i∈βc

d
∑

k=1

(vk − vi)+ , (2.9)

and

π(v) ∈ Cβ if and only if

{

maxi∈β
∑

j∈β(vj − vi) < 1 ,

mini∈βc

∑

j∈β(vj − vi) ≥ 1 .
(2.10)

If π(v) > 0 (that is, if β = {1, . . . , d}), then π(v) has necessary the following form (see Algorithm
1):

π(v) = v − 1

d

( d
∑

k=1

vk − 1

)

= v − |v| − 1

d
.
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Thus, for x ≥ 0, we have the following characterization:

π(v) > x if and only if v > x+
|v| − 1

d
. (2.11)

This equivalence will be of constant use in the proofs.

Remark 5. Note that the projection π is not homogeneous. Recall that a function f is said to be
homogeneous if there exists q > 0 such that for all t > 0, f(tx) = tqf(x). If f is a continous and
homogeneous function and X is a regularly random vector in Rd

+ with tail index α > 0, then the
random vector f(X) is regularly varying with tail index α/q (see Jessen and Mikosch (2006)). Such a
result can therefore not be used for the Euclidean projection onto the simplex.

3 Sparse regular variation

3.1 Regular variation and projection

In all this section we consider a random vector X in Rd
+. Recall that if X is regularly varying, then

there exists α > 0 and a random variable Y following a Pareto(α) distribution independent of Θ such
that

P

(( |X|
t

,
X

|X|

)

∈ ·
∣

∣

∣

∣

|X| > t

)

w→ P((Y,Θ) ∈ ·) , t→∞ . (3.1)

We emphasized in Subsection 2.3 that convergence (3.1) is not helpful to capture the sparsity of the
spectral vector Θ. Thus, we substitute the self-normalized extreme X/|X| by another vector on the
simplex which better highlights this sparsity. Here is an intuitive idea to see how the Euclidean projection
can solve this kind of issue. As explained in Section 2.3, for β ∈ P∗

d the quantity P(X/|X| ∈ Cβ | |X| > t)
is always equal to 0 (except for degenerate cases), whereas P(Θ ∈ Cβ) could be positive. This arises
since for t > 0, the sets {x ∈ Rd

+, |x| > 1, x/|x| ∈ Cβ} have zero Lebesgue measure for β 6= {1, . . . , d}
while real-world data do not concentrate on such subspaces. The main issue is that a vector x ∈ Rd

+ has
to satisfy the condition xβc = 0 so that the self-normalized vector x/|x| belongs to Cβ. Our idea is to
use the Euclidean projection to relax this condition. We replace the set {x ∈ Rd

+, |x| > 1, x/|x| ∈ Cβ}
by {x ∈ Rd

+, |x| > 1, π(x/t) ∈ Cβ} which have positive Lebesgue measure. There, a vector x satisfies
π(x) ∈ Cβ even if xβc > 0. Figure 2 provides an illustration of the subsets {x ∈ R2

+, |x| > 1, π(x/t) ∈
Cβ} for β = {1} or β = {2}: They correspond to the areas between the axis and the dotted lines.

Example 4. Let us take the example of the two-dimensional case illustrated in Figure 2. Here, esti-
mating for instance the probability P(Θ ∈ C{2}) = P(Θ1 = 0) with the set of zero Lebesgue measure
{x, x/|x| ∈ C{2}} seems unachievable. Our idea here is to rather use the set {x, π(x) ∈ C{2}} =
{x, x2 ≥ x1 + 1} which has positive Lebesgue measure.

Remark 6. The idea of substituting the subspaces {x ∈ Rd
+, |x| > 1, x/|x| ∈ Cβ} which have zero

Lebesgue measure by closer subspaces with positive Lebesgue measure has already been used in the
literature. Goix et al. (2017) define for instance ǫ-thickened rectangles

Rǫ
β =

{

x ∈ Rd
+, |x|∞ > 1, xi > ǫ for i ∈ β, xi ≤ ǫ for i /∈ β

}

,

for β ∈ P∗
d and ǫ > 0. These subsets rely on a hyperparameter ǫ > 0 which has to be tuned in practice.

One of the advantages of the projection π is that it is does not need any hyperparameter. A more
detailed comparison of these two methods will be established in Section 5.
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With this in mind, we substitute the usual projection X/|X| by π(X/t). The continuity of the
projection π implies that

P

(( |X|
t

, π

(

X

t

))

∈ ·
∣

∣

∣

∣

|X| > t

)

w→ P((Y,Z) ∈ ·) , t→∞ , (3.2)

where Z = π(YΘ). Contrary to the limit in (3.1), we lose independence between the radial component
Y and the angular component Z of the limit. The dependence relation between both components will
be detailed in Proposition 2.

3.2 The distribution of Z

The purpose of this section is to explicit a relation between the new angular vector Z and the spectral
vector Θ. To this end, we define the function GZ by

GZ(x) = P(Z > x) = P(Z1 > x1, . . . , Zd > xd), x ∈ Rd . (3.3)

The function GZ characterizes the distribution of Z. However, there is no simple relation between GZ

and the cumulative distribution function of Z as soon as d ≥ 2. Since Z ∈ Sd−1
+ , we only focus on GZ(x)

for x in Rd
+ such that

∑

j xj < 1, this means for x ∈ B(0, 1) ∩ Rd
+, where B(0, 1) denotes the (open)

unit ball for the ℓ1-norm. Thus, we write

GZ(x) = P(Z ∈ Ax) ,

where the sets Ax are defined by

Ax = {u ∈ Sd−1
+ , x1 < u1, . . . , xd < ud} , (3.4)

x ∈ B(0, 1) ∩ Rd
+. Since the family A = {Ax, x ∈ B(0, 1) ∩ Rd

+} generates the Borel σ-algebra of the

simplex Sd−1
+ , the distribution of Z is completely characterized by GZ(x) for x ∈ B(0, 1) ∩ Rd

+.
Following Equation (2.11), we can express the condition Z > x in terms of Θ.

Proposition 1. Let X be a regularly varying random vector of Rd
+ with tail index α > 0 and spectral

vector Θ. We consider x ∈ B(0, 1) ∩ Rd
+ such that for all j = 1, . . . , d, xj 6= 1/d and we define

J+ = {j, xj > 1/d} and J− = {j, xj < 1/d}. Then we have

GZ(x) = E

[

(

1 ∧ min
j∈J+

(

Θj − 1/d

xj − 1/d

)α

+

−max
j∈J−

(

Θj − 1/d

xj − 1/d

)α

+

)

+

]

. (3.5)

Proposition 1 gives a relation between the distribution of Z and the one of Θ. While its complexity
makes it difficult to use in all generality, specific choices for x lead to useful results. A convenient
particular case is the one where x satisfies x < 1/d. There, we obtain

GZ(x) = E

[

1− max
1≤j≤d

(

1/d−Θj

1/d − xj

)α]

.

In particular, for x = 0 we get

GZ(0) = 1− E
[

max
1≤j≤d

(1− dΘj)
α
]

. (3.6)

Thus, the probability for Z to have a null component is

P(∃j = 1, . . . , d , Zj = 0) = E
[

max
1≤j≤d

(1− dΘj)
α
]

. (3.7)

This quantity is null if and only if for all j = 1, . . . , d, Θj = 1/d a.s. and is equal to 1 if and only
if min1≤j≤dΘj = 0 a.s. This implies that the new angular vector Z is more likely to be sparse. In
particular, all usual spectral models on Θ that are not supported on the axis are not suitable for Z.
More insight into the sparsity of the vector Z is given in Section 4.
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3.3 Sparse regular variation

In Section (3.1) we proved that the angular part π(X/t) of a regularly varying random vector X converges
to Z = π(YΘ) when t→∞, see Equation (3.2). This encourages to introduce the following definition.

Definition 2 (Sparse regular variation). A random vector X ∈ Rd
+ is sparsely regularly varying if there

exist a random vector Z defined on the simplex Sd−1
+ and a nondegenerate random variable Y such that

P

(( |X|
t

, π

(

X

t

))

∈ ·
∣

∣

∣

∣

|X| > t

)

w→ P((Y,Z) ∈ ·) , t→∞ . (3.8)

In this case, the general theory of regular variation states that there exists α > 0 such that Y is
Pareto(α)-distributed. In Section 3.1 we established that regular variation with limit (Y,Θ) implies
sparse regular variation with limit (Y, π(YΘ)). Our aim is now to prove that under mild assumption
the converse implication also holds. We consider a sparsely regularly varying random vector X and we
define the function GZ by GZ(x) = P(Z > x) for x ∈ B(0, 1) ∩ Rd

+.
Our first result concerns the dependence between the radial limit Y and the angular limit Z in (3.8).

This is established is the following proposition.

Proposition 2. Let X be a sparsely regularly varying random vector on Rd
+. Then, for all r ≥ 1,

Z | Y > r
d
= π(rZ) . (3.9)

As already mentioned in Section 3.1 we do not have independence between the angular component Z
and the radial one Y . However, the dependence between Z and Y is completely determined by Equation
(3.9) and will be helpful in the proof of Theorem 1.

Our aim is now to prove that under some assumptions on GZ sparse regular variation implies regular
variation. Note that if convergence (3.8) holds, then the radial component |X| is regularly varying. So
we need to focus on the convergence of the angular component, that is, of the self-normalized extreme
X/|X| | |X| > t when t→∞. The idea is thus to provide a result which characterizes regular variation
for a vector X when |X| is already regularly varying. This is the purpose of next lemma.

Lemma 3. Let X be a random vector on Rd
+ and α > 0. The following assumptions are equivalent.

1. X is regularly varying with tail index α.

2. |X| is regularly varying with tail index α and there exists a finite measure l on Sd−1
+ such that

lim
ǫ→0

lim inf
t→∞

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

= l(A) , (3.10)

and

lim
ǫ→0

lim sup
t→∞

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

= l(A) , (3.11)

for all continuity set A ∈ B(Sd−1
+ ) of l.

In this case, l(A) = αP(Θ ∈ A), where Θ is the spectral vector of X.

Remark 7. The assertion 2 of Lemma 3 can be weakened by taking A in a family of Borel sets that
generates B(Sd−1

+ ). In what follows we consider the family A = {Ax, x ∈ B(0, 1) ∩ Rd
+}, where the Ax

are defined in (3.4).

Remark 8. In Lemma 3, | · | denotes any norm of Rd but in what follows we apply this lemma with
the ℓ1-norm.
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Our aim is now to prove that a random vector X which satisfies (3.8) is regularly varying. This
requires some assumptions on the function GZ. We denote by λ the Lebesgue measure on the positive
unit sphere B(0, 1) ∩ Rd

+ and we consider the following assumptions on GZ:

(A1) The function GZ is differentiable for λ-almost every x ∈ B(0, 1) ∩Rd
+ with differential denoted by

dGZ.

(A2) P(Z ∈ ∂Ax) = 0 for λ-almost every x ∈ B(0, 1) ∩ Rd
+.

Let us denote by Z(GZ) the set of vectors x in B(0, 1)∩Rd
+ which satisfy (A1) and (A2). Then, the

family AZ(GZ) := {Ax,x ∈ Z(GZ)} generates the Borel sets of Sd−1
+ . If there is no confusion we simply

write Z for Z(GZ) and AZ for AZ(GZ).

Theorem 1. Let X be a sparsely regularly varying random vector on Rd
+ with angular limit Z. Assume

that GZ(·) = P(Z > ·) satisfies (A1) and (A2). Then X is regularly varying with spectral vector Θ

which satisfies
P(Θ ∈ Ax) = P(Z ∈ Ax) + α−1dGZ(x)(x − 1/d) , (3.12)

for all x ∈ Z.

Theorem 1 states under mild assumptions the equivalence between regular variation and sparse
regular variation. Moreover the distribution of Z completely characterizes the one of Θ. Equation
(3.12) completes the result (3.5) obtained in Proposition 1.

Let us summarize the results we obtained. Proposition 1 characterizes the distribution of Z = π(YΘ)
when X is regularly varying with spectral vector Θ. Conversely if X is a sparsely regularly varying
random vector, then Theorem 1 states that X is regularly varying with a spectral vector Θ which
satisfies Equation (3.12). This ensures that Z = π(YΘ) where Y is a Pareto(α)-distributed random
variable independent of Θ. In other words, we have an almost complete equivalence between the usual
regular variation’s concept and sparse regular variation.

3.4 A discrete model for the spectral measure

We introduce here a known discrete model on Θ and compute the corresponding distribution of Z.

Asymptotic independence and complete dependence We first study two particular cases in mul-
tivariate EVT. The first one is the complete dependence’s case, which is defined by the relation P(∀i =
1, . . . , d, Θi = 1/d) = 1. Equivalently, the spectral measure is a Dirac mass at (1/d, . . . , 1/d). In terms
of extremes, it means that all coordinates simultaneously contribute to large events. Note that if u =
r(1/d, . . . , 1/d) ∈ Rd

+, r ≥ 1, the projected vector π(u) corresponds to the self-normalization: π(u) =
(1/d, . . . , 1/d) = u/|u|. This implies that in case of complete dependence, Z = Θ = (1/d, . . . , 1/d) a.s.

Another standard case is the asymptotic independence’s one, which appears when Θ only con-
centrates on the axis. It means that P(Θ ∈ ⊔1≤k≤d ek) = 1. Note that this case has already been
partially discussed in Section 2. As for the complete dependence’s case, we want to express asymptotic
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independence in terms of Z. To this end, we write

P(∃1 ≤ i ≤ d, Zi = 1) = P(∃1 ≤ i ≤ d, ∀j 6= i, Zj = 0)

= P (∃1 ≤ i ≤ d, ∀j 6= i, 1 ≤ Y (Θi −Θj)+)

= P
(

∃1 ≤ i ≤ d, Y −α ≤ min
j 6=i

(Θi −Θj)
α
+

)

= P
(

Y −α ≤ max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

)

=

∫ 1

0
P
(

u ≤ max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

)

du

= E
[

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

]

.

Thus, since max1≤i≤d minj 6=i(Θi −Θj)
α
+ ≤ 1, we have the equivalence

P(∃1 ≤ i ≤ d, Zi = 1) = 1 if and only if P
(

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+ = 1

)

= 1 .

This last probability can be rewritten as follows:

P
(

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+ = 1

)

= P
(

∃1 ≤ i ≤ d, min
j 6=i

(Θi −Θj)+ = 1
)

= P
(

∃1 ≤ i ≤ d, Θi = 1
)

.

This proves the equivalence between P(∃1 ≤ i ≤ d, Zi = 1) = 1 and P (∃1 ≤ i ≤ d, Θi = 1) = 1.

All in all, these two standard cases of multivariate EVT can be studied through the distribution of
Z. We do not lose any information by studying Z instead of Θ in the asymptotically independent and
completely dependent settings.

A discrete model We now extend the previous examples to a general discrete model. If β ∈ P∗
d , we

denote by e(β) the vector with 1 in position i if i ∈ β and 0 otherwise. Note that for all β ∈ P∗
d , the

vector e(β)/#β belongs to the simplex Sd−1
+ .

We consider the following class of discrete distributions on the simplex:

∑

β∈P∗

d

p(β) δe(β)/#β , (3.13)

where (p(β))β is a 2d − 1 vector with nonnegative components summing to 1. This is the device
developed in Segers (2012). Note that this class of distributions includes the previous cases, with
respectively p({1, . . . , d}) = 1 for complete dependence, and p({j}) = 1/d, for all j = 1, . . . , d, for
asymptotic independence.

The family of distributions (3.13) is stable after multiplying by a positive random variable and
projecting onto the simplex with π. Hence, if Θ has a distribution of type (3.13), then Z = Θ a.s.
This shows that (3.13) forms an accurate model for the angular vector Z. Indeed, it is stable for the
transformation Θ 7→ Z. Besides, the distributions of this class have sparse supports. Finally, they put
mass on some particular points of the simplex on which extremes values often concentrate in practice.

4 Sparsity in multivariate extremes

In Section 3 we provided an alternative notion of regular variation which coincide under mild assumptions
to the standard one. In this context our aim is to study the tail dependence of large events. We
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explained in Section 2.3 that the largest directions of a random vector X can not be easily identified
via an estimation of the spectral measure’s support. The aim of this section is to provide several results
which prove that the vector Z is more likely to be sparse and allows to capture empirically the extremal
directions of X.

4.1 Sparsity structure of Z

We start by focusing on the behavior of π(X/t) on the subsets Cβ defined in (2.5). These subspaces are
used in order to identify groups of directions which may take large values simultaneously while the other
directions are small (Goix et al. (2016), Goix et al. (2017)). In order to obtain dimension reduction, we
can also relax in the definition of the Cβ’s the condition that all directions in β are positive. Then we
introduce the subsets Vect(ej , j ∈ β) which are used to identify groups of directions which are small
simultaneously. Identifying such a subset allows to reduce the study of extremes on its complementary.
Another idea is to keep the largest directions and to relax the condition that the coordinates in βc are
equal to zero (see Chiapino and Sabourin (2016) and Chiapino et al. (2019)).

Regarding the behavior of π(X/t), convergence (3.2) holds for any pair of Borel sets A × B ∈
(1,∞) × Sd−1

+ such that P(YΘ ∈ ∂π−1(B)) = 0. Next proposition states that the subsets Cβ and
Vect(ej , j ∈ β)c satisfy this condition.

Proposition 3. Let X be a sparsely regularly varying random vector in Rd
+ with radial limit Y and

angular limit Z. Then for any β ∈ P∗
d the following convergences hold:

P(π(X/t) ∈ Cβ | |X| > t)→ P(Z ∈ Cβ) , t→∞ , (4.1)

P(π(X/t)βc = 0 | |X| > t)→ P(Zβc = 0) , t→∞ . (4.2)

Both convergences imply that the sparsity of Z can be studied through the projected vector π(X/t).
Recall that for β 6= {1, . . . , d} the convergences (4.1) and (4.2) do not hold if we replace Z by Θ and
π(X/t) by X/|X|. Proposition 3 is helpful in a statistical setting since it allows us to estimate the
sparse behavior of Z based on the one of X. This will be illustrated in Section 5.

An interpretation of Z Proposition 3 provides a link between the angular vector Z and the projected
vector π(X/t) on the two types of subsets Cβ and Vect(ej , j ∈ β)c. Based on this proposition and on
some properties of the Euclidean projection we are able to better highlight the role of Z regarding the
extreme values of X.

A first property deals with the extremality of a component with respect to the others. For j =
1, . . . , d, we apply Equation (2.10) with β = {j} and obtain the following equivalences:

π(X/t) ∈ C{j} ⇐⇒ min
i 6=j

(Xj/t−Xi/t) ≥ 1 ⇐⇒ Xj ≥ max
i 6=j

Xi + t , t > 0 .

Then, applying Proposition 3 to the subset C{j} leads to the convergence

P
(

Xj ≥ max
i 6=j

Xi + t | |X| > t
)

= P
(

π(X/t) ∈ C{j} | |X| > t
)

→ P(Z ∈ C{j}) = P(Zj = 1) , t→∞ .

This means that for t "high enough" we have the approximation

P
(

Xj ≥ max
i 6=j

Xi + t | |X| > t
)

≈ P
(

Z ∈ C{j}

)

.

In other words the vector Z concentrates on the j-th axis if the j-th coordinate of X is much larger
than the others, that is, if extreme values appear in this direction.
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More generally, if we fix β ∈ P∗
d with length r = #β, then Equation (2.9) leads to the following

equivalences:

π(X/t)βc = 0 ⇐⇒ 1 ≤ min
i∈βc

d
∑

k=1

(Xk/t−Xi/t)+ ⇐⇒ t ≤
d
∑

k=1

(Xk −max
i∈βc

Xi)+

⇐⇒ t ≤
∑

k∈β

(Xk −max
i∈βc

Xi)+ ⇐⇒ t ≤
d
∑

k∈β

Xk − rmax
i∈βc

Xi ,

where the positive part can be withdrawn since the projection keeps the order of the coordinates (see
the property P1 in Section 2.4). All in all, we obtain the equivalence

π(X/t)βc = 0 ⇐⇒ r−1
∑

k∈β

Xk ≥ max
i∈βc

Xi + t . (4.3)

Then, following Proposition 3, we obtain

P
(

r−1
∑

k∈β

Xk ≥ max
i∈βc

Xi + t | |X| > t
)

= P
(

π(X/t)βc = 0 | |X| > t
)

→ P(Zβc = 0) , t→∞ ,

and it leads to the following approximation:

P
(

r−1
∑

k∈β

Xk ≥ max
i∈βc

Xi + t | |X| > t
)

≈ P(Zβc = 0) ,

for t "high enough". This means that the vector Z does not concentrate on the directions j ∈ βc if the
average value of the marginals Xj for j ∈ β is much larger than all the components of X on βc. Thus,
regarding the extreme values of X, the vector Z highlights the relative importance of the marginals in
β with respect to the ones in βc.

Our aim is now to compare the limit probabilities in Proposition 3 which involve the angular limit
Z with the associated ones involving the spectral vector Θ.

Proposition 4. Let X be a regularly varying random vector of Rd
+ with spectral vector Θ and tail index

α > 0. Set Z = π(YΘ), where Y is a Pareto(α)-distributed random variable independent of Θ. For
any β ∈ P∗

d , we have

P(Zβc = 0) = E

[

min
j∈βc

( d
∑

k=1

(Θk −Θj)+

)α
]

, (4.4)

and

P(Z ∈ Cβ) = E

[

(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

]

. (4.5)

If we consider the case where β = {1, . . . , d}, then we obtain the probability that all coordinates are
positive. This has already been computed in (3.6). It is equal to GZ(0) = 1− E [max1≤j≤d(1− dΘj)

α].
Another particular case of Proposition 4 is the one where β corresponds to a single coordinate {j0}. In
this case, since Z belongs to the simplex, both probabilities P(Zβc = 0) and P(Z ∈ Cβ) are equal. Their
common value corresponds to the probability that Z concentrates on the j0-th axis, which is equal to

P(Zj0 = 1) = E
[

min
j 6=j0

(Θj0 −Θj)
α
+

]

. (4.6)
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Then, Equation (4.6) can be developed in the following way:

P(Zj0 = 1) = E
[

min
j 6=j0

(Θj0 −Θj)
α
+1{Θj0

=1}

]

+ E
[

min
j 6=j0

(Θj0 −Θj)
α
+1{Θj0

<1}

]

= P(Θj0 = 1) + E
[

min
j 6=j0

(Θj0 −Θj)
α
+1Θj0

<1

]

≥ P(Θj0 = 1) .

This shows again that the vector Z is more likely to be sparse than the spectral vector Θ.

Remark 9. Following Equation (4.4), we write

P(Zβc = 0) ≥ E

[

min
j∈βc

(

d
∑

k=1

(Θk −Θj)+

)α
1{Θβc=0}

]

= E

[

(

d
∑

k=1

Θk

)α
1{Θβc=0}

]

= P(Θβc = 0) . (4.7)

This can also be seen as a direct consequence of Property P2, see Subsection 2.4. This property also
gives

P(Zβ > 0) ≤ P(Θβ > 0) , (4.8)

an inequality which will be useful in some proofs.

Our aim is now to compare the probabilities P(Θ ∈ Cβ) and P(Z ∈ Cβ) for β ∈ P∗
d . The following

result is a consequence of Proposition 4.

Proposition 5. For β ∈ P∗
d , if P(Θ ∈ Cβ) > 0, then P(Z ∈ Cβ) > 0.

Proposition 5 implies that we do not lose any information on the support of the spectral measure
by studying Z instead of Θ. But it is possible that the distribution of Z puts some mass on a subset
Cβ while the one of Θ does not. However, if the overestimation is not too large, the angular vector
Z gives a reduced numbers of directions (regarding the total number 2d − 1) in which extreme events
could appear. Hence, it provides a first selection among the subsets Cβ’s.

Example 5. We detail here an example which shows that the converse implication of Proposition 5
does not hold. We consider a spectral vector Θ in S1+ with a first component Θ1 uniformly distributed
(and hence Θ2 = 1−Θ1 is also uniformly distributed). On the one hand the probability that Θ belongs
to the first axis is equal to

P(Θ ∈ C{1} = 0) = P(Θ2 = 0) = 0 .

On the other hand following Lemma 2 the probability that Z belongs to the first axis is equal to

P(Z ∈ C{1}) = P(YΘ1 − YΘ2 ≥ 1) = P(2Θ1 − 1 ≥ 1/Y ) .

If we assume that α = 1 in order to simplify the calculations, then 1/Y is uniformly distributed, and
thus, by independence of Θ and Y , we obtain

P(Z ∈ C{1}) =

∫ 1

0
P(2Θ1 − 1 ≥ u)du =

∫ 1

0
P
(

Θ1 ≥
u+ 1

2

)

du =

∫ 1

0

1− u

2
du =

1

4
.

4.2 Maximal subsets

We focus in this section on the subsets Cβ. A positive value for P(Θ ∈ Cβ) entails that the directions in
β take simultaneously large values while the ones in βc do not (Chautru (2015), Simpson et al. (2019),
Goix et al. (2017)). In this case Proposition 5 ensures that the associated probability P(Z ∈ Cβ) is also
positive. Example 5 shows that the converse implication is not always true. In order to have a partial
converse result, and similarly to Definition 3, we introduce the notion of maximal subset for Z.
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Definition 3 (Maximal subset for Z). Let β ∈ P∗
d . We say that a subset Cβ is maximal for Z if

P(Z ∈ Cβ) > 0 and P(Z ∈ Cβ′) = 0, for all β′ ) β . (4.9)

Next Theorem states that maximal subsets for Θ and Z are equivalent notions.

Theorem 2. For β ∈ P∗
d , Cβ is a maximal subset for Θ if and only if Cβ is a maximal subset for Z.

Example 5 shows it may exists β ∈ P∗
d such that P(Z ∈ Cβ) > 0 and P(Θ ∈ Cβ) = 0. In this case,

Theorem 2 states that the subset Cβ is not maximal for Z since it is not maximal for Θ. Following
Remark 3, we consider a maximal subset γ for Z such that β ⊂ γ. Then Theorem 2 states that
P(Θ ∈ Cγ) > 0. This means that even if the direction β does not gather itself coordinates on which
extreme values simultaneously occur, there exists a superset of β which actually contains extremes.
Thus, β still gives information on the study of large events.

A natural procedure to capture the extremal direction of X is then the following one. Based on the
Euclidean projection π we identify the subsets Cβ on which the distribution of Z places mass. Hopefully,
the selected subsets are low-dimensional. Among these subsets we select the maximal ones which also
correspond to the maximal subsets regarding the spectral vector Θ.

What happens on non-maximal subsets? While the study of maximal subsets is the same for
Z and Θ, we develop here some ideas which highlight the use of Z regarding non-maximal subsets.
We consider a direction β ∈ P∗

d and the associated subset Cβ, and we assume that P(Z ∈ Cβ) > 0
and P(Θ ∈ Cβ) = 0. Then, the subsets Cβ is necessary non-maximal for Z. It satisfies the following
inequalities:

0 < P(Z ∈ Cβ) = P(Zβ > 0,Zβc = 0) ≤ P(Zβc = 0) = P(π(YΘ)βc = 0) .

Following Equation (4.3), we set r = #β and obtain that

0 < P(π(YΘ)βc = 0) = P
(

r−1
∑

k∈β

Θk ≥ max
i∈βc

Θi + Y −1
)

. (4.10)

This implies that with positive probability r−1
∑

k∈β Θk ≥ Θi for all i ∈ βc. If we consider for instance
β = {j}, then we obtain that with positive probability Θj ≥ Θi for all i 6= j. More generally, regarding
the vector X, Equation (4.10) yields to

0 < P
(

r−1
∑

k∈β

Θk ≥ max
i∈βc

Θi + Y −1
)

= lim
t→∞

P
(

r−1
∑

k∈β

Xk ≥ max
i∈βc

Xi + t | |X| > t
)

.

This means that the extreme values of Xβ are likely to be larger than the extreme ones of Xβc . This
does not contradict the fact that P(Θ ∈ Cβ) = 0 which only implies that it is unlikely to observe
simultaneously large values in the direction β and small values in the direction βc.

Hence, if we detect a maximal subset Cγ , we first infer that it is likely that the directions in γ are
large together while the ones in γc take small values. The marginals in γ form a cluster of extremal
directions for which the relative importance of each direction can be studied via the identification of
non-maximal subsets Cβ ( Cγ . Indeed, if we detect such a subset, it means that in the cluster γ the
directions in β are likely to be larger than the ones in γ\β. A more deeper interpretation of non-maximal
subsets if deferred to future work.

Example 6. We develop the device of Example 3. We consider a regularly random variable X in
R+ with tail index α > 0 and a vector a ∈ Rd

+. We assume that the coordinates of a satisfy the

inequality a1 > a2 > . . . > ad > 0 and we also assume for simplicity that a ∈ Sd−1
+ . We define the
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vector X by setting X = Xa = (a1X, . . . , adX) ∈ Rd
+. Then, the vector X is regularly varying with

tail index α and a spectral vector given by Θ = a a.s. This means that the subsets C{1,...,d} is the only
one on which the spectral measure places mass, and it is a maximal one. Hence, the angular vector
Z satisfies P(Z ∈ C{1,...,d}) > 0. However, it is possible that the distribution of Z also puts mass on
lower-dimensional subsets. Since the Euclidean projection keeps the order of the marginals, the only
possible groups of directions are {1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d− 1}.

We first consider the direction {1} and compute the probability that Z belongs to the subset C{1}.
Following Equation (2.9), we obtain that

P
(

Z ∈ C{1}

)

= P
(

min
j≤2

(YΘ1 − YΘj) ≥ 1
)

= P
(

YΘ1 ≥ max
j≤2

YΘj + 1
)

.

Then, we use the relation Θ = a a.s. which entails that

P
(

Z ∈ C{1}

)

= P
(

Y a1 ≥ Y a2 + 1
)

= P
(

Y ≥ (a1 − a2)
−1
)

= (a1 − a2)
α .

Hence, the probability that Z belongs to the first axis depends on the difference between the first and
the second coordinate of a.

More generally, for 1 ≤ r ≤ d − 1, Equation (2.10) implies that Z belongs to the subset C{1,...,r} if
and only if

max
1≤i≤r

r
∑

j=1

(YΘj − YΘi) < 1 , and min
r+1≤i≤d

r
∑

j=1

(Y Θj − YΘi) ≥ 1 .

Thus, the probability that Z belongs to the subset C{1,...,r} is equal to

P
(

Z ∈ C{1,...,r}

)

= P

( r
∑

j=1

(Y aj − Y ar) < 1,

r
∑

j=1

(Y Θj − YΘr+1) ≥ 1

)

= P
(

(ãr − rar+1)
−1 ≤ Y < (ãr − ar)

−1
)

where ãr = a1 + . . .+ ar

= (ãr − rar+1)
α − (ãr − rar)

α .

If we take α = 1 for the sake of simplicity, we obtain that P(Z ∈ C{1,...,r}) = r(ar − ar+1) and thus the
probability that Z belongs to the subset C{1,...,r} depends only on the distance between ar and ar+1.

This example emphasizes the use of the vector Z on non-maximal subsets. It highlights the relative
importance of a coordinate regarding the extreme values of a group of directions this coordinate belongs
to.

5 Numerical results

This section is devoted to a statistical illustration of sparse regular variation. We highlight how our
approach manages to detect the tail dependence’s sparsity. We provide a method in order to approximate
the probabilities P(Z ∈ Cβ), β ∈ P∗

d , and we introduce the approach developed by Goix et al. (2017).
We develop then several numerical results and compare both methods.

5.1 The framework

We consider an iid sequence of regularly varying random vectors X1, . . . ,Xn with generic distribution
X, and with tail index α and spectral vector Θ ∈ Sd−1

+ . We set Z = π(YΘ) where Y follows a Pareto(α)
distribution independent of Θ. Our aim is to capture the directions β ∈ P∗

d in which the extreme values
of X occur. These directions are characterized by the fact that P(Θ ∈ Cβ) > 0 and therefore, by
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Proposition 5, P(Z ∈ Cβ) > 0. Thanks to Proposition 3 the latter probability is defined through the
limit

P(Z ∈ Cβ) = lim
t→∞

P(π(X/t) ∈ Cβ | |X| > t) = lim
t→∞

P(π(X/t) ∈ Cβ, |X| > t)

P(|X| > t)
. (5.1)

The goal is then to approximate this probability with the sample X1, . . . ,Xn. For t > 0 and β ∈ P∗
d ,

we define the quantity

Tβ(t) =

∑n
j=1 1{π(Xj/t) ∈ Cβ, |Xj | > t}

∑n
j=1 1{|Xj | > t} , (5.2)

which corresponds to the proportion of data Xj whose projected vector π(Xj/t) belongs to Cβ among
the data whose ℓ1-norm is above t. Intuitively, the larger the variable Tβ(t), the more likely the direction
β gathers extreme values.

The Law of Large Numbers ensures that

lim
n→∞

Tβ(t) =
P(π(X/t) ∈ Cβ , |X| > t)

P(|X| > t)
, a.s. (5.3)

Hence, Equations (5.3) and (5.1) lead to the following approximation:

Tβ(t) ≈
P(π(X/t) ∈ Cβ, |X| > t)

P(|X| > t)
≈ P(Z ∈ Cβ) ,

where the first approximation holds for n large and the second one for t large. This approximation
enables to classify the subsets Cβ depending on the nullity or not of the associated quantity Tβ(t).
Actually once t is fixed we can get rid of the denominator in (5.2) and only focus on

∑n
j=1 1{π(Xj/t) ∈

Cβ, |Xj | > t} for β ∈ P∗
d . There, the selection of the largest vectors Xj whose norm is above t boils

down to keep only a proportion, say k, of vectors. It is customary in EVT to choose a level k which
satisfies k →∞ and k/n→ 0 when n→∞.

The approach proposed by Goix et al. (2017) In order to detect anomalies among multivariate
extremes, Goix et al. (2017) propose a similar approach based on the ℓ∞-norm. They define the ǫ-
thickened rectangles by

Rǫ
β = {x ∈ Rd

+, |x|∞ > 1, xj > ǫ for all j ∈ β, xj ≤ ǫ for all j ∈ βc} ,

for β ∈ P∗
d (see Remark 6). Starting from the sample X1, . . . ,Xn with generic random vector X =

(X1, . . . ,Xd) with joint (resp. marginal) distribution F (resp. F1, . . . , Fd), the authors define the vectors
Vi = (1/(1 − F̂j(X

j
i )))j=1,...,d for i = 1, . . . , n, where

F̂j : x 7→
1

n

n
∑

i=1

1
Xj

i <x
(5.4)

is the empirical counterpart of Fj . This rank transformation provides standardized marginals to the
vectors Vi. It corresponds to the empirical counterpart of the transformation x 7→ 1/(1 − Fj(x))
which transforms the marginals into Pareto(1) random variables. This means that they focus on the
nonstandard case (see Section 2.2).

In order to go back to the ℓ∞ positive unit sphere Sd−1
+,∞, we define

Cβ,∞ =
{

x ∈ Sd+,∞, xi > 0 for i ∈ β, xi = 0 for i /∈ β
}

,

and we denote by Θ∞ the spectral vector with respect to the ℓ∞-norm. Then, Goix et al. (2017)
(Lemma 1) establish the convergence

µ(Rǫ
β)→ cP(Θ∞ ∈ Cβ,∞) , ǫ→ 0 ,
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with c = µ([0,1]c) > 0. Besides, the authors provide an empirical version of µ by defining

µn(A) =
1

k

n
∑

i=1

1Vi∈(n/k)A ,

where k = k(n) > 0 is such that k → ∞ and k/n → 0 when n → ∞ (the ratio n/k playing the role of
the large threshold t). All in all, the estimation of the quantity P(Θ∞ ∈ Cβ,∞) relies on the following
sequence of approximation:

Tβ(k, ǫ) :=
1

k

n
∑

i=1

1Vi∈(n/k)Rǫ
β
≈ µ(Rǫ

β) ≈ cP(Θ∞ ∈ Cβ,∞) ,

where the first approximation holds for k large, and the second one for ǫ close to zero. All these
considerations lead to an algorithm, called DAMEX, introduced in Goix et al. (2017), Section 4.2,
whose goal is to identify the subsets Cβ such that P(Θ∞ ∈ Cβ,∞) > 0.

Remark 10 (On the choice of the norm). We already mentioned that the spectral vector can be defined
for any norm in Rd. The choice of the ℓ1-norm in this article is deeply related to the use of the projection
π. On the other hand, Goix et al. (2017) choose the ℓ∞-norm. After some calculations we observe that
if the spectral vectors Θ and Θ∞ correspond to the nonstandard case (with α = 1), then they satisfy
the relation

P(Θ ∈ B) =
E[|Θ∞|1{Θ∞/|Θ∞|∈B}]

E[|Θ∞|]
,

for all B ∈ Sd−1
+ . This entails in particular that

P(Θ ∈ Cβ) =
E[|Θ∞|1{Θ∞/|Θ∞|∈Cβ}]

E[|Θ∞|]
.

Since Θ∞/|Θ∞| ∈ Cβ if and only if Θ∞ ∈ Cβ,∞, we obtain the equivalence

P(Θ ∈ Cβ) > 0 if and only if P(Θ∞ ∈ Cβ,∞) > 0 .

Hence, the directions in which extremes gather are the same regardless the choice of the norm.

Remark 11. At the end of the procedure we obtain a group of directions β such that Tβ(t) > 0. Since
we deal with non-asymptotic data many Tβ(t), we obtain a bias which provides a difference between
some directions β for which Tβ(t) takes small values and the theoretical quantities P(Z ∈ Cβ) are null.
We follow the idea of Goix et al. (2017), Remark 4, to deal with this issue. We define a threshold value
under which the empirical quantities Tβ(t) are set to 0. We use a threshold of the form p/#C, where
C = {β, Tβ(t) > 0} and where the hyperparameter p ≥ 0 is fixed by the user. It is of course possible to
set p to 0 which boils down to selecting all the subsets Cβ such that Tβ(t) > 0. In this case the number
of selected Cβ is still much smaller than the total number 2d − 1. We do not detail more the choice of
p and defer this issue to future work.

Taking this hyperparameter p into account we are now able to introduce the algorithm used to study
the dependence structure of sparsely regularly varying random vectors.

Data: X1, . . . ,Xn ∈ Rd
+, t > 0, p ≥ 0

Result: A list C of subsets Cβ

Compute π(Xj/t), j = 1, . . . , n;
Assign to each π(Xj/t) the subsets Cβ it belongs to;
Compute Tβ(t);
Set to 0 the Tβ(t) below the threshold discussed in Remark 11;
Define C = {Cβ , Tβ(t) > 0}.

Algorithm 2: Extremal dependence structure of sparsely regularly varying random vectors
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5.2 Experimental results and comparison with DAMEX

In this section we consider two different cases of numerical data on which we apply Algorithm 2. For each
case we generate data sets of size n ∈ {104, 5 · 104, 105}, we compute the quantities Tβ(t) and we repeat
this procedure over N = 100 simulations. Regarding the outcome C = {Cβ , Tβ(t) > 0} of our procedure,
two different types of errors could arise. The first one corresponds to the occurrence of a direction β while
it should not appear theoretically. This error will be called error of type 1 or simply T1. The second type
of error corresponds to the absence of a direction β while it should appear theoretically. This error will be
called error of type 2 or simply T2. The results correspond to the average number of each error among the
N simulations. The code can be found at https://github.com/meyernicolas/projection_extremes.

The purpose of the experiments is twofold. The first idea is to study the procedure given in Algorithm
2 and to see how it manages to detect the sparsity of the extremal data. The second aim of these
simulations is to compare our method to the DAMEX algorithm. Therefore, we also compute the
quantities Tβ(k, ǫ) for β ∈ P∗

d as well as the two types of errors for this algorithm. The DAMEX is
based on a hyperparameter ǫ for which there exists no natural choice, the results show. Indeed it may
happen that for a fixed simulation study there exists a specific hyperparameter ǫ0 for which the DAMEX
leads to better results than our approach. But as soon as we use different simulated data, this specific
ǫ0 is no longer appropriate.

Remark 12 (Choice of the parameters). It is common in EVT to define a level of exceedances k =
nP(|X| > t) and to rather work with k instead of t. For our simulations, we choose k =

√
n, following

Goix et al. (2017), who also suggest choosing ǫ of order k−1/4, that is, of order n−1/8. This choice
of ǫ is based on theoretical results (Goix et al. (2017), Theorem 1), but the authors then advise to
rather choose ǫ = 0.01 which gives better results on their simulations. In order to have a large scale of
comparison we consider ǫ ∈ {0.05, 0.1, 0.5}. Finally we consider p = 0.3 which is larger than the value
chosen in Goix et al. (2017) but leads to better results for both methods.

Asymptotic independence We consider an iid sequence of random vectors N1, . . . ,Nn in R40 with
generic random vector N whose distribution is a multivariate Gaussian distribution with all univariate
marginals equal to N (0, 1) and the correlations less than 1: E[N iN j ] < 1 for all 1 ≤ i 6= j ≤ d. We
transform the marginals with a rank transform which consists in considering the vectors X1, . . . ,Xn

such that the marginals Xj
i of Xi = (X1

i , . . . ,X
d
i ) are defined as

Xj
i =

1

1− F̂j(N
j
i )

, 1 ≤ j ≤ d ,

where F̂j is the empirical version of the cumulative distribution function of Nj ∼ N (0, 1), see (5.4). This
provides a sample of regularly varying random vectors X1, . . . ,Xn and the assumption on the correlation
leads to asymptotic independence (see Sibuya (1960)). This case has been discussed in Subsection 3.4.
Equivalently, it means that P(Θ ∈ Cβ) = P(Z ∈ Cβ) = 1/d for all β such that #β = 1 (and therefore
P(Θ ∈ Cβ) = P(Z ∈ Cβ) = 0 elsewhere). The aim of our procedure is then to recover these 40 directions
among the 240 − 1 ≈ 1012 subsets Cβ.

Regarding the multivariate Gaussian random vectors N1, . . . ,Nn, the simulation of these vectors
depends only on their covariance matrix. We proceed as follows. We generate a matrix Σ

′ with entries
σ′
i,j following independent uniform distributions on (−1, 1). Then, we define the matrix Σ as

Σ := Diag(σ′−1/2
1,1 , . . . , σ′−1/2

d,d ) ·Σ′ · Diag(σ′−1/2
1,1 , . . . , σ′−1/2

d,d ) ,

where Diag(σ
−1/2
1,1 , . . . , σ

−1/2
d,d ) denotes the diagonal matrix of Md(R) whose diagonal is given by the

vector (σ′−1/2
1,1 , . . . , σ′−1/2

d,d ). This provides a covariance matrix with diagonal entries equal to 1 and off-
diagonal entries less than 1. A given matrix Σ provides then a dependence structure for N1, . . . ,Nn and
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thus for X1, . . . ,Xn. We generate Nmodel = 20 different matrices Σ, and for each of these dependence
structures we generate N = 100 sample N1, . . . ,Nn. We summarize in Table 1 and in Table 2 the two
types of errors averaged among the N ·Nmodel = 2000 simulations.

Euclidean DAMEX T1 DAMEX T1 DAMEX T1
projection T1 ǫ = 0.05 ǫ = 0.1 ǫ = 0.5

n1 = 104 22.62 3034.70 2899.05 987.63

n2 = 5 · 104 19.43 6972.52 4646.43 271.87

n3 = 105 1.83 8401.21 4813.46 235.80

Table 1: Average number of errors of type 1 in an asymptotic independence case (d = 40).

Euclidean DAMEX T2 DAMEX T2 DAMEX T2
projection T2 ǫ = 0.05 ǫ = 0.1 ǫ = 0.5

n1 = 104 0.07 39.43 13.76 0.00

n2 = 5 · 104 0.00 3.69 0.01 0.00

n3 = 105 0.00 0.07 0.00 0.00

Table 2: Average number of errors of type 2 in an asymptotic independence case (d = 40).

For the Euclidean projection, we observe that our algorithm manages to capture almost all d =
40 directions regardless the value of n. The first column of Table 2 gives indeed an error which is
very close (or even equal to) to 0. On the other hand, it seems that for n = n1 = 104 and n =
n2 = 5 · 104, the procedure also captures extra-subsets that should not be identified. This is maybe
a consequence of the choice of p in Remark 11 which may be to high and for which a deeper study
should be conducted. However, the number of errors of type 1 becomes very low for n = n3 = 105. For
this data size, we therefore obtain very accurate results since our algorithm manages to capture almost
all the relevant directions and no extra ones. As expected, the angular vector Z is helpful to detect
asymptotic independence.

Regarding the DAMEX algorithm, a large ǫ leads theoretically to more mass assigned on the axis.
This explains why in our simulations choosing a large ǫ reduces the error of type 2. With ǫ = 0.5 the
algorithm manages to capture all the d = 40 axes. However, the error of type 1 is quite large regardless
the choice of ǫ or of n: The DAMEX captures a too large number of subsets. Hence, it seems that our
procedure leads to the best compromise between both types of errors.

Remark 13. In this example we standardized the marginals of N with a rank transform in order to
obtain a regularly varying random vector X. Following Remark 4, we obtain here a similar computational
time for both procedures. However, the modification of the marginals is not a necessary step in our
algorithm as soon as the random vector X is already regularly varying. On the other hand, this step is
required for the DAMEX algorithm. This difference provides then cases where the computational time
of the latter increases due to this extra step. Besides, this time could also be longer since the DAMEX
algorithm is based on a hyperparameter and tuning such a parameter requires to compute the algorithm
for different values of ǫ.

A dependent case We now consider a dependent case where extremes occur on lower-dimensional
subsets. In order to include dependence we proceed as in Example 2. We consider two independent
random variables P and P ′ following respectively a Pareto(1) and a Pareto(2) distribution. Then, the
two-dimensional vector P whose marginals are P1 = P and P2 = P + P ′ is regularly varying with tail
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index 1 and with spectral vector ΘP = (1/2, 1/2) a.s. Similarly, we consider three independent random
variables R, R′, and R′′ following respectively a Pareto(1), a Pareto(2), and a Pareto(2) distribution.
Then, if we consider the three-dimensional vector R whose marginals are R1 = R, R2 = R + R′,
and R3 = R + R′′, then the vector R is regularly varying with tail index 1 and with spectral vector
ΘR = (1/3, 1/3, 1/3) a.s.

For our simulations we consider s1 = 10 independent copies P1, . . . ,Ps1 of P ∈ R2
+ and s2 = 10

independent copies R1, . . . ,Rs2 of R ∈ R3
+. We aggregate these vectors and form a vector X in R50

+ .
which is then regularly varying with a discrete spectral measure placing mass on the points (ej+ej+1)/2
for j = 1, 3, . . . , 17, 19 and on the points (ej+ej+1+ej+2)/3 for j = 1, 4, . . . , 25, 28. Besides, as discussed
in Section 3.4, in this case the angular vector Z and the spectral vector Θ are equal almost surely.

For our simulations we consider a sample of iid random vectors X1, . . . ,Xn with the same distribution
as X. Our aim is then to recover the s1 = 10 two-dimensional subsets Cβ which contain the directions
(ej + ej+1)/2 for j = 1, 3, . . . , 17, 19 and also the s2 = 10 three-dimensional subsets Cβ which contain
the directions (ej + ej+1 + ej+2)/3 for j = 1, 4, . . . , 25, 28. All in all, we would like to recover these
s = s1 + s2 = 20 subsets among the 250 − 1 ≈ 1015 subsets.

Euclidean DAMEX T1 DAMEX T1 DAMEX T1
projection T1 ǫ = 0.05 ǫ = 0.1 ǫ = 0.5

n1 = 104 8.22 1868.11 1448.21 117.18

n2 = 5 · 104 0.32 2776.68 613.66 17.78

n3 = 105 0.04 2560.76 295.86 1.15

Table 3: Average number of errors of type 1 in a dependent case (d = 50).

Euclidean DAMEX T2 DAMEX T2 DAMEX T2
projection T2 ǫ = 0.05 ǫ = 0.1 ǫ = 0.5

n1 = 104 0.76 12.02 0.01 0.00

n2 = 5 · 104 0.04 0.00 0.00 0.00

n3 = 105 0.03 0.00 0.00 0.00

Table 4: Average number of errors of type 2 in a dependent case (d = 50).

Table 3 (resp. Table 4) show the average number of errors of type 1 (resp. of type 2) among the
N = 100 experiments. This number decreases with n regardless the type of error or the algorithm.
Except for the number of error of type 1 with n = n1 = 104, our algorithm provides small values of
errors. This means that not only it is able to detect all the s = 20 subsets on which the distribution of Z
puts mass, but it also does not identify subsets which does not gather the mass of Z. These results are
all the more accurate since the identification of the s = 20 subsets is done among a very large number
of subsets, indeed 250 − 1 ≈ 1015.

Compared to the DAMEX algorithm, we obtain lower values of errors of Type 1, which means that
our procedure less overestimates the number of identified subsets. On the other hand, it is possible that
our procedure miss some β’s that should appear theoretically. However, this case happens only rarely
since the averaged error of type 2 is smaller than 1. Regarding this error, the DAMEX obtains perfect
results for n = n2 = 5 · 104, and n = n3 = 105. If we combine both types of errors, our algorithm
provides quite accurate results and manages to capture the theoretical directions.
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5.3 Sparse regular variation and non-maximal subsets

In this section we illustrate some interpretation of the vector Z regarding extremal directions in non-
maximal subsets. Following Example 6, we consider a vector a ∈ Sr−1

+ , r ≥ 2, such that a1 > . . . >
ar > 0. If X is a random variable following a Pareto distribution with parameter α > 0, then the vector
aX = (a1X, . . . , arX) ∈ Rr

+ is regularly varying with tail index α and spectral vector Θr = a a.s. We

combine this device with the one of Example 2 and consider independent random variables X̃2, . . . , X̃r

following a Pareto distribution with parameter α′ > α. Then, the random vector

X̃ = aX + (0, X̃2, . . . , X̃r) = (a1X, a2X̃ +X2, . . . , arX + X̃r)

is regularly varying with tail index α and spectral vector Θr = a a.s.
The spectral vector Θr places mass only on the subset C{1,...,r} which is maximal. Regarding the

vector Z, it is likely that it places mass on some non-maximal subsets {1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d−
1}, see Example 6. In our simulations, we fix α = 1, α′ = 2, and r = 3, and we consider a vector
a = (7, 6, 4)/|(7, 6, 4)|. This leads to a regularly varying random vector X̃ in R3

+. Finally, we consider

s = 20 iid copies X̃1, . . . , X̃s of the vector X̃ and aggregate them to build the vector X ∈ R60. The
vector X is then regularly varying with tail index 1 and with spectral measure placing mass on the
three-dimensional maximal subsets C{j,j+1,j+2}, for j ∈ J := {1, 4, 7, . . . , 58}. Regarding the vector Z,
it is likely that its distribution puts mass on the two-dimensional subsets C{j,j+1} for j ∈ J , and on the
one-dimensional subsets C{j} for j ∈ J .

The aim of our simulations is twofold. The first step is to see if our procedure manages to capture
the s = 20 maximal subsets C{j,j+1,j+2} for j ∈ J . The second purpose is to recover the 40 non-maximal
subsets aforementioned. The first column of Table 5 gives the averaged number of the three-dimensional
maximal subsets that have been recovered by our algorithm. Similarly, the second (resp. third) column
gives the number of the two-dimensional (resp. one-dimensional) non-maximal subsets that have been
identified by our algorithm. Recall that for each type of subsets, the theoretical number of these subsets
is s = 20. Finally, the last column deals with the number of subsets that should not appear theoretically.
All the results are averaged among the N = 100 simulations. In this case, we do not compare the results
with the DAMEX. Indeed, this latter algorithm requires to standardize the marginals so that there is
no partial order between them.

Three-dimensional Two-dimensional One-dimensional Other
subsets subsets subsets subsets

n1 = 104 13.16 12.28 17.92 14.96

n2 = 5 · 104 18.40 18.04 19.91 17.35

n3 = 105 17.95 17.39 19.92 0.68

Table 5: Average number of subsets recovered by Algorithm 2 (d = 60).

For n = n1 = 104 we observe that the procedure manages to identify most of the one-dimensional
subsets, while the average number of two-dimensional subsets is quite smaller than the theoretical one.
The same arise for the maximal subsets for which we only manage to recover two third of the theoretical
ones. We also obtain a non-negligible number of extra-subsets which should not be identified. For
n = n2 = 5 · 104, the three types of subsets are quite well recovered by our algorithm, with once again
very good result for the one-dimensional ones. The number of extra-subsets is still relatively high.
For n = n3 = 105, we keep a high level of accuracy regarding the identification of the three types
of subsets while the number of extra-subsets drastically decreases. This last case provides therefore
accurate results.
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This example highlights the relevance of our approach to identify clusters of directions that are
simultaneously large but also to study the relative importance of the coordinates in a given cluster.
This second aspect provides a more deeper interpretation of Z is terms of extremes.

6 Conclusion

The notion of sparse regular variation that is introduced in this paper is a way to tackle the issues that
arise in the study of tail dependence with the standard concept of regular variation. Replacing the self-
normalized vector X/|X| by the projected one π(X/t) allows us to capture the extremal directions of X.
Our main result is the equivalence between both concepts of regular variation under mild assumptions.
The results of Proposition 1 and Theorem 1 establish a bijection between the spectral vector Θ and the
angular vector Z.

Regarding extremes values, the vector Z enjoys many useful properties. This vector is sparser than
the spectral vector Θ which entails that it seems more suitable to identify extremal directions, especially
in high dimensions. Indeed, large events often appear due to a simultaneous extreme behavior of a small
number of coordinates. This similarity between extreme values and the vector Z appears even more
with the study of the subsets Cβ which highlights the tail dependence of X. Proposition 3 provides a
natural way to capture the behavior of Z on these subsets. In other words the Euclidean projection π
manages to circumvent the weak convergence’s issue which arises in the standard definition of regularly
varying random vectors.

Practically speaking, Section 5 illustrates the advantages of our approach for the study of large
events. First, using the Euclidean projection allows to study tail dependence without introducing
any hyperparameter. On the contrary, the introduction of ǫ-thickened rectangles in Goix et al. (2017)
requires to identify a suitable ǫ. Hence, our procedure reduces the algorithmic complexity by avoiding
running the given code for different ǫ and to compare the outcomes. Since the projection can be
computed in expected linear time, the study of extreme events can then be done in reasonable time
in high dimensions. More generally, the numerical results provide good results for our approach and
encourage to further develop the statistical study of sparsely regularly varying random vectors. In
particular, the future work should address the question of the threshold t, or equivalently the level k,
and of the bias issue introduced in Remark 11. Moreover, a comparison between Z and Θ on non-
maximal is also a crucial point to tackle. The results we obtained in Section 5.3 highlight the behavior
of Z on these kind of subsets and a deeper study should be conducted.

7 Proofs

Proof of Lemma 1. We use the relation πz(v) = zπ(v/z) to simplify the problem:

∀ 0 < z ≤ z′, ∀v ∈ Rd
+, πz(πz′(v)) = πz(v)

⇐⇒ ∀ 0 < z ≤ z′, ∀v ∈ Rd
+, zπ(z

−1πz′(v)) = zπ(v/z)

⇐⇒ ∀ 0 < z ≤ z′, ∀v ∈ Rd
+, π(z

′z−1π(v/z′)) = π(v/z)

⇐⇒ ∀ a ≥ 1, ∀u ∈ Rd
+, π(aπ(u)) = π(au) .

So we need to prove this last equality. Let a ≥ 1 and u ∈ Rd
+. We divide the proof into three steps.

Recall that an expression of ρ is given in (2.8).

STEP 1: We prove that ρau ≤ ρu.
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Fix j ∈ {1, . . . , d} such that π(au)j > 0. This means that

auj −
1

j

( j
∑

r=1

au(r) − 1

)

> 0 .

and thus,

uj −
1

j

j
∑

r=1

u(r) +
1

ja
> 0 .

Since a ≥ 1, we obtain

uj −
1

j

j
∑

r=1

u(r) +
1

j
> 0 ,

which means that π(u)j > 0. This proves that ρau ≤ ρu.

STEP 2: We prove that ρaπ(u) = ρau.
We recall that the definition of π(u) is given by π(u)k = (uk − λu) for 1 ≤ k ≤ ρu and π(u)k = 0

for ρu < k ≤ d.
- We first prove that ρau ≤ ρaπ(u). Fix j ∈ {1, . . . , d} such that π(au)j > 0. Then

auj −
1

j

( j
∑

r=1

au(r) − 1

)

> 0 .

Since π(au)j > 0, we have j ≤ ρau, and with STEP 1 we obtain j ≤ ρau ≤ ρu. So for all r ≤ j ≤ ρu,
π(u)r = (ur − λu). Thus,

a(π(u)j − λu)−
1

j

( j
∑

r=1

a(π(u)(r) − λu)− 1

)

> 0 ,

which gives

aπ(u)j −
1

j

( j
∑

r=1

aπ(u)(r) − 1

)

> 0 .

This means that π(aπ(u))j > 0. Hence, ρau ≤ ρaπ(u).
- We now prove that ρaπ(u) ≤ ρau. Fix j ∈ {1, . . . , d} such that π(au)j = 0. Then

auj −
1

j

( j
∑

r=1

au(r) − 1

)

≤ 0 .

If j ≤ ρu, then for all r ≤ j, ur = π(u)r + λu, so that

a(π(u)j + λu)−
1

j

( j
∑

r=1

a(π(u)(r) + λu)− 1

)

≤ 0 ,

and finally

aπ(u)j −
1

j

( j
∑

r=1

aπ(u)(r) − 1

)

≤ 0 ,

which means that π(aπ(u))j = 0.
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If j > ρu, then π(u)j = 0, so aπ(u)j = 0, and finally π(aπ(u))j = 0. Hence, ρaπ(u) ≤ ρau.
All in all, we proved that if j ∈ {1, . . . , d}, then π(au)j > 0 if and only if π(aπ(u))j > 0, which

concludes STEP 2.

STEP 3: We prove that π(au) = π(aπ(u)).
With STEP 2, we know that ρ := ρaπ(u) = ρau. This proves that for j > ρ, π(au)j and π(aπ(u))j

are both null. Moreover, by definition of the projection π, if j ≤ ρ,

π(au)j = auj −
1

ρ

( ρ
∑

r=1

au(r) − 1

)

.

Since ρ ≤ ρu (with STEP 1), we use that for all r ≤ ρ, π(u)(r) = u(r) − λu. Thus, we obtain

π(au) = a(π(u)j − λu)−
1

ρ

( ρ
∑

r=1

a(π(u)(r) − λu)− 1

)

= auj −
1

ρ

( ρ
∑

r=1

au(r) − 1

)

= π(aπ(u))j ,

which concludes the proof.

Proof of Lemma 2. Let v ∈ Rd
+. We sort v in µ such that µ1 ≥ . . . ≥ µd. Firstly, note that if two

coordinates of v are equal, then the corresponding coordinates of π(v) are equal too. Thus, they are
both null or both positive. So the way these two coordinates are ordered in µ does not matter.

Let us prove the equivalence (2.9) For i ∈ βc, let j ∈ {1, . . . , d} such that µj = vi, and let γc ⊂
{1, . . . , d} be the subset of such j. By definition of ρv, the projected vector π(v) satisfies π(v)βc = 0 if
and only if for all j ∈ γc, j > ρv, which means

µj −
1

j

( j
∑

k=1

µk − 1

)

≤ 0 . (7.1)

Note that j =
∑d

k=1 1vk≥vi and
∑j

k=1 µk =
∑d

k=1 vk1vk≥vi , so that condition (7.1) can be rephrased as

vi −
1

∑d
k=1 1vk≥vi

( d
∑

k=1

vk1vk≥vi − 1

)

≤ 0 .

This inequality is equivalent to

1 ≤
d
∑

k=1

(vk − vi)+ ,

which proves (2.9).
For (2.10), set r = |β| ≥ 1 (note that β = ∅ is not possible). Then, the condition π(v) ∈ Cβ imply

that ρv = r. Thus, we obtain

∀i ∈ β, vi = π(v)i +
1

r

(

∑

j∈β

vj − 1

)

and ∀i ∈ βc, vi ≤
1

r

(

∑

j∈β

vj − 1

)

.

On the one hand, since π(v)i > 0 for i ∈ β, the first equality is equivalent to

max
i∈β

∑

j∈β

(vj − vi) < 1 .

On the other hand, the second equality is equivalent to

min
i∈βc

∑

j∈β

(vj − vi) ≥ 1 .
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Proof of Proposition 1. Fix x ∈ B(0, 1) ∩Rd
+, with xj 6= 1/d for all j = 1, . . . , d. We use (2.11) to write

GZ(x) = P(Z > x) = P(π(YΘ) > x) =

∫ ∞

1
P(yΘ− (y − 1)/d > x) d(−y−α) .

Set J+ = {j, xj > 1/d} and J− = {j, xj < 1/d}. Then, for j ∈ J+, the condition yΘj − (y − 1)/d > xj
becomes [(Θj − 1/d)/(xj − 1/d)]+ > 1/y. Similarly, for j ∈ J−, the condition yΘj − (y − 1)/d > xj
becomes [(Θj − 1/d)/(xj − 1/d)]+ < 1/y. So we can rewrite the previous integral as

GZ(x) =

∫ ∞

1
P

({

∀j ∈ J+, y
−α <

(

Θj − 1/d

xj − 1/d

)α

+

}

⋂

{

∀j ∈ J−, y
−α >

(

Θj − 1/d

xj − 1/d

)α

+

})

d(−y−α) .

Thus, by the change of variable u = y−α, we obtain

GZ(x) =

∫ 1

0
P

({

∀j ∈ J+, u <

(

Θj − 1/d

xj − 1/d

)α

+

}

⋂

{

∀j ∈ J−, u >

(

Θj − 1/d

xj − 1/d

)α

+

})

du

=

∫ 1

0
P

(

max
j∈J−

(

Θj − 1/d

xj − 1/d

)α

+

< u < min
j∈J+

(

Θj − 1/d

xj − 1/d

)α

+

)

du

= E

[(

1 ∧ min
j∈J+

(

Θj − 1/d

xj − 1/d

)α

+

−max
j∈J−

(

Θj − 1/d

xj − 1/d

)α

+

)

+

]

.

Proof of Proposition 2. Fix r ≥ 1 and A ∈ B(Sd−1
+ ). For t > 0, the following sequence of equalities

holds:

P

(

π

(

X

t

)

∈ A,
|X|
t

> r

∣

∣

∣

∣

|X| > t

)

= P

(

π

(

X

t

)

∈ A,
|X|
t

> r

)

1

P(|X| > t)

= P

(

π

(

X

t

)

∈ A

∣

∣

∣

∣

|X|
t

> r

)

P(|X| > tr)

P(|X| > t)

= P

(

π

(

r
X

tr

)

∈ A

∣

∣

∣

∣

|X|
t

> r

)

P(|X| > tr | |X| > t)

= P

(

rπ1/r

(

X

tr

)

∈ A

∣

∣

∣

∣

|X| > tr

)

P(|X| > tr | |X| > t)

= P

(

rπ1/r

(

π

(

X

tr

))

∈ A

∣

∣

∣

∣

|X| > tr

)

P(|X| > tr | |X| > t) ,

where last equality results from Lemma 1. Now, when t → ∞, assumption (3.8) and the continuity of
π1/r and π give

P(Z ∈ A, Y > r) = P
(

rπ1/r (Z) ∈ A
)

P(Y > r) .

Finally, we conclude the proof with Lemma 1:

P(Z ∈ A | Y > r) = P(π(rZ) ∈ A) .

Proof of Lemma 3. We first prove that 1 implies 2: assume that X is regularly varying with index α.
Then |X| is regularly varying with the same index. Denote by Θ the spectral vector of X and consider
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a random variable Y which follows a Pareto(α) distribution and is independent of Θ. For A ∈ B(Sd−1
+ )

such that P(Θ ∈ ∂A) = 0, and ǫ > 0, we have

ǫ−1 lim
t→∞

P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

= ǫ−1P(Y ∈ (1, 1 + ǫ],Θ ∈ A)

= ǫ−1P(Y ≤ 1 + ǫ)P(Θ ∈ A)

= ǫ−1(1− (1 + ǫ)−α)P(Θ ∈ A) .

This last quantity converges to αP(Θ ∈ A) when ǫ→ 0, which proves that X satisfies (3.10) and (3.11)
with l(·) = αP(Θ ∈ ·).

We now prove that 2 implies 1. Fix ǫ > 0, u > 1, and A ∈ B(Sd−1
+ ) such that l(∂A) = 0. Denote by

l+ǫ (A) the limsup in (3.10) when t→∞, and by l−ǫ (A) the liminf in (3.11) when t→∞. For u ≥ 1, we
decompose the interval (u,∞) as follows:

(u,∞) =

∞
⊔

k=0

(

u(1 + ǫ)k, u(1 + ǫ)k+1
]

.

Then for t > 0,

P

( |X|
t

> u,
X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

=

∞
∑

k=0

P

( |X|
tu(1 + ǫ)k

∈ (1, 1 + ǫ],
X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

=

∞
∑

k=0

P
(

|X|
tu(1+ǫ)k

∈ (1, 1 + ǫ], X

|X| ∈ A
)

P(|X| > t)

= ǫ
∞
∑

k=0

ǫ−1P

( |X|
tu(1 + ǫ)k

∈ (1, 1 + ǫ],
X

|X| ∈ A

∣

∣

∣

∣

|X|
u(1 + ǫ)k

> t

) P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)
.

Since |X| is regularly varying with tail index α, the limit of the right part of the sum can be computed
as follows:

P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)
= P

(

|X| > tu(1 + ǫ)k | |X| > t
)

→
(

u(1 + ǫ)k
)−α

, t→∞ . (7.2)

Besides, we know by (3.10) that

lim inf
t→∞

ǫ−1P

( |X|
tu(1 + ǫ)k

∈ (1, 1 + ǫ],
X

|X| ∈ A

∣

∣

∣

∣

|X|
u(1 + ǫ)k

> t

)

= l−ǫ (A) . (7.3)

We now gather (7.2) and (7.3) and use Fatou’s lemma to conclude:

lim inf
t→∞

P

( |X|
t

> u,
X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

≥ ǫ

∞
∑

k=0

lim inf
t→∞

ǫ−1P

( |X|
tu(1 + ǫ)k

∈ (1, 1 + ǫ],
X

|X| ∈ A

∣

∣

∣

∣

|X|
u(1 + ǫ)k

> t

) P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)

= ǫ

∞
∑

k=0

l−ǫ (A)
(

u(1 + ǫ)k
)−α

= u−αl−ǫ (A)
ǫ

1− (1 + ǫ)−α
,
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and this last quantity converges to u−αl(A)α−1 when ǫ→ 0.
In the same way, we know by (3.11) that

lim sup
t→∞

ǫ−1P

( |X|
tu(1 + ǫ)k

∈ (1, 1 + ǫ],
X

|X| ∈ A

∣

∣

∣

∣

|X|
u(1 + ǫ)k

> t

)

= l+ǫ (A) . (7.4)

Thus, Equations (7.2) and (7.4) and Fatou’s lemma allow us to write

lim sup
t→∞

P

( |X|
t

> u,
X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

≤ ǫ

∞
∑

k=0

lim sup
t→∞

ǫ−1P

( |X|
tu(1 + ǫ)k

∈ (1, 1 + ǫ],
X

|X| ∈ A

∣

∣

∣

∣

|X|
u(1 + ǫ)k

> t

) P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)

= ǫ

∞
∑

k=0

l+ǫ (A)
(

u(1 + ǫ)k
)−α

= u−αl+ǫ (A)
ǫ

1− (1 + ǫ)−α
,

and this last quantity converges to u−αl(A)α−1 when ǫ→ 0.
This proves that

P

( |X|
t

> u,
X

|X| ∈ A

∣

∣

∣

∣

|X| > t

)

→ u−αl(A)α−1 , t→∞ ,

for all u > 1 and all A ∈ B(Sd−1
+ ) such that l(∂A) = 0. Thus, the random vector X is regularly varying

with tail index α and spectral vector Θ defined by P(Θ ∈ ·) = α−1l(·).

Proof of Theorem 1. The proof is based on Lemma 3. Firstly, note that if (3.8) holds, then |X| is
regularly varying with tail index α. Hence, the main part of the proof is to show that convergences
(3.10) and (3.11) hold for all A = Ax, x ∈ Z, where the Ax are defined in (3.4). We divide our proof
into two steps.

Before dealing with these two steps, we make a brief remark which will be of constant use. For ǫ > 0
and x > 0, we have the following equivalence:

π((1 + ǫ)Z) > x ⇐⇒ Z >
x+ ǫ/d

1 + ǫ
. (7.5)

This is a consequence of Equation (2.11) and the fact that Z belongs to the simplex.

Let us move to the proof. We fix x ∈ Z and ǫ > 0. The first step consists in proving that

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ], π

(

X

t

)

∈ Ax

∣

∣

∣

∣

|X| > t

)

converges when t → ∞, ǫ → 0. Following Equation (3.8) and assumption (A2), we know that this
quantity converges to ǫ−1P(Y ∈ (1, 1 + ǫ], Z ∈ Ax) when t→∞. Then, Proposition 2 gives

P(Y ∈ (1, 1 + ǫ],Z ∈ Ax) = P(Z ∈ Ax)− P(Z ∈ Ax | Y > 1 + ǫ)P(Y > 1 + ǫ)

= P(Z ∈ Ax)− P(π((1 + ǫ)Z) ∈ Ax)(1 + ǫ)−α

=
[

1− (1 + ǫ)−α
]

P(Z ∈ Ax) + [P(Z ∈ Ax)− P(π((1 + ǫ)Z) ∈ Ax)] (1 + ǫ)−α .
(7.6)
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The first term divided by ǫ converges to αP(Z ∈ Ax) when ǫ→ 0. We use (7.5) to compute the second
term:

P(Z ∈ Ax)− P(π((1 + ǫ)Z) ∈ Ax) = P(Z > x)− P

(

Z >
x+ ǫ/d

1 + ǫ

)

= GZ(x)−GZ

(

x+
ǫ

1 + ǫ
(1/d− x)

)

.

Since x is a differentiability point of GZ, we obtain

ǫ−1P(Y ∈ (1, 1 + ǫ], Z ∈ Ax) = αP(Z ∈ Ax) +
1

1 + ǫ
dGZ(x)(x− 1/d) + o(1) ,

when ǫ→ 0. This means that

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ], π

(

X

t

)

∈ Ax

∣

∣

∣

∣

|X| > t

)

converges to αP(Z ∈ Ax) + dGZ(x)(x − 1/d) when t→∞, ǫ→ 0.

For the second step, we define

(⋆) := ǫ−1

[

P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ Ax

∣

∣

∣

∣

|X| > t

)

− P

( |X|
t
∈ (1, 1 + ǫ], π

(

X

t

)

∈ Ax

∣

∣

∣

∣

|X| > t

)]

,

and the goal is to prove that limǫ→0 lim supt→∞(⋆) = limǫ→0 lim inft→∞(⋆) = 0.
We first deal with the lim sup. Assume that |X|/t ∈ (1, 1 + ǫ]. Then (|X|/t − 1 − ǫ)/d ≤ 0.

Thus, if xj < Xj/|X|, then xj + (|X|/t − 1 − ǫ)/d < Xj/|X| < Xj/t. This implies that xj − ǫ/d <
Xj/|X| − (|X|/t − 1)/d. The left member is positive for ǫ > 0 small enough, so we proved that if
xj < Xj/|X|, then xj − ǫ/d < π(X/t).

These considerations imply that

(⋆) ≤ ǫ−1

[

P

( |X|
t
∈ (1, 1 + ǫ], π

(

X

t

)

∈ Ax−ǫ/d

∣

∣

∣

∣

|X| > t

)

− P

( |X|
t
∈ (1, 1 + ǫ], π

(

X

t

)

∈ Ax

∣

∣

∣

∣

|X| > t

)]

,

and thus

lim sup
t→∞

(⋆) ≤ ǫ−1[P
(

Y ∈ (1, 1 + ǫ],Z ∈ Ax−ǫ/d

)

− P (Y ∈ (1, 1 + ǫ],Z ∈ Ax)] =: ǫ−1[P1(ǫ)− P2(ǫ)] .

We use Proposition 2 and Equation (7.5) to compute P1(ǫ) and P2(ǫ). For P1(ǫ), we have the following
relations

P(Y ∈ (1, 1 + ǫ],Z ∈ Ax−ǫ/d) = P(Z ∈ Ax−ǫ/d)− P(Z ∈ Ax−ǫ/d | Y > 1 + ǫ)P(Y > 1 + ǫ)

= P(Z > x− ǫ/d)− P(π((1 + ǫ)Z) > x− ǫ/d)(1 + ǫ)−α

= P(Z > x− ǫ/d)− P(Z > x/(1 + ǫ))(1 + ǫ)−α

= GZ(x− ǫ/d)[1 − (1 + ǫ)−α] + [GZ(x− ǫ/d)−GZ(x− ǫx/(1 + ǫ))](1 + ǫ)−α .

The first term is equal to G(x)αǫ + o(ǫ) when ǫ→ 0, whereas the second one is equal to

GZ(x−ǫ/d)−GZ(x)+GZ(x)−GZ(x−ǫx/(1+ǫ)) = dGZ(x)(−ǫ/d)−dGZ(x)(−ǫx/(d(1+ǫ)))+o(ǫ), ǫ→ 0 .

33



This proves that ǫ−1P1(ǫ) converges to αGZ(x) + dGZ(x)(x− 1/d) when ǫ→ 0. For P2(ǫ), we refer to
(7.6) in which we proved that ǫ−1P2(ǫ) converges to αGZ(x) + dGZ(x)(x− 1/d) when ǫ→ 0. All in all
we proved that ǫ−1[P1(ǫ)− P2(ǫ)]→ 0, when ǫ→ 0.

We similarly proceed for the lim inf. Assume that |X|/t ∈ (1, 1+ǫ]. Thus, if π(X/t)j > xj(1+ǫ), then
Xj/t− (|X|/t− 1)/d > xj(1 + ǫ), and therefore Xj/t > xj(1 + ǫ). Finally we obtain that Xj/|X| > xj.
So we proved that if π(X/t)j > xj(1 + ǫ), then Xj/|X| > xj . These considerations give the following
inequality:

(⋆) ≥ ǫ−1

[

P

( |X|
t
∈ (1, 1 + ǫ), π

(

X

t

)

∈ A(1+ǫ)x

∣

∣

∣

∣

|X| > t

)

− P

( |X|
t
∈ (1, 1 + ǫ), π

(

X

t

)

∈ Ax

∣

∣

∣

∣

|X| > t

)]

,

and thus

lim inf
t→∞

(⋆) ≥ ǫ−1[P
(

Y ∈ (1, 1 + ǫ),Z ∈ A(1+ǫ)x

)

− P (Y ∈ (1, 1 + ǫ),Z ∈ Ax)] =: ǫ−1[P3(ǫ)− P4(ǫ)] .

We use again Proposition 2 and Equation (7.5) to compute P3(ǫ):

P(Y ∈ (1, 1 + ǫ],Z ∈ Ax−ǫ/d) = P(Z ∈ A(1+ǫ)x)− P(Z ∈ A(1+ǫ)x | Y > 1 + ǫ)P(Y > 1 + ǫ)

= P(Z > (1 + ǫ)x)− P(π((1 + ǫ)Z) > (1 + ǫ)x)(1 + ǫ)−α

= P(Z > (1 + ǫ)x)− P(Z > x+ ǫ/((1 + ǫ)d))(1 + ǫ)−α

= GZ((1 + ǫ)x)[1 − (1 + ǫ)−α] + [GZ((1 + ǫ)x)−GZ(x+ ǫ/(d(1 + ǫ)))](1 + ǫ)−α

= GZ((1 + ǫ)x)αǫ + [dGZ(x)(ǫ(x − 1/d)/(1 + ǫ))] + o(ǫ), ǫ→ 0 .

The first term is equal to GZ(x)αǫ + o(ǫ), when ǫ→ 0, whereas the second one is equal to

GZ((1 + ǫ)x)−GZ(x) +GZ(x)−GZ(x+ ǫ/(d(1 + ǫ))) = dGZ(x)(ǫ(x − 1/d)) + o(ǫ) , ǫ→ 0 .

This proves that P3(ǫ) converges to αGZ(x) + dGZ(x)(x − 1/d) when ǫ → 0. Note that P4(ǫ) =
P2(ǫ), so that P4(ǫ) converges to αGZ(x) + dGZ(x)(x − 1/d) when ǫ → 0. All in all we proved that
ǫ−1[P3(ǫ)− P4(ǫ)]→ 0, when ǫ→ 0.

Gathering all these results together, we can write

ǫ−1[P3(ǫ)− P4(ǫ)] ≤ lim inf
t→∞

(⋆) ≤ lim sup
t→∞

(⋆) ≤ ǫ−1[P1(ǫ)− P2(ǫ)] .

Since ǫ−1[P1(ǫ)−P2(ǫ)] and ǫ−1[P3(ǫ)−P4(ǫ)] converge to 0 as ǫ→ 0, we proved that limǫ→0 lim inft→∞(⋆) =
limǫ→0 lim supt→∞(⋆) = 0.

To conclude the proof, we write

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ Ax

∣

∣

∣

∣

|X| > t

)

= (⋆) + ǫ−1P

( |X|
t
∈ (1, 1 + ǫ], π

(

X

t

)

∈ Ax

∣

∣

∣

∣

|X| > t

)

,

and both steps lead to

lim
ǫ→0

lim inf
t→∞

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ Ax

∣

∣

∣

∣

|X| > t

)

= αGZ(x) + dGZ(x)(x − 1/d) ,

and

lim
ǫ→0

lim sup
t→∞

ǫ−1P

( |X|
t
∈ (1, 1 + ǫ],

X

|X| ∈ Ax

∣

∣

∣

∣

|X| > t

)

= αGZ(x) + dGZ(x)(x − 1/d) .

Since |X| is regularly varying with tail index α, we apply Lemma 3 to conclude that X is regularly varying
with tail index α and with spectral vector Θ satisfying P(Θ ∈ Ax) = P(Z ∈ Ax)+α−1dGZ(x)(x−1/d).
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Proof of Proposition 3. We only prove (4.1) (the proof of (4.2) is similar).
Let β ∈ P∗

d . Following Lemma 2, we have the equivalence

π(YΘ) ∈ Cβ if and only if

{

maxi∈β
∑

j∈β(Θj −Θi) < 1/Y ,

mini∈βc

∑

j∈β(Θj −Θi) ≥ 1/Y .

Hence, (4.1) is equivalent to

P
(

(|X|/t,X/|X|) ∈ Dβ | |X| > t
)

→ P((Y,Θ) ∈ Dβ) , (7.7)

with

Dβ =
{

(r, θ) ∈ (1,∞) × Sd−1
+ , ∀i ∈ β,

d
∑

j∈β

(θj − θi) < 1/r, and ∀i ∈ βc,

d
∑

j∈β

(θj − θi) ≥ 1/r
}

.

This convergence holds if P((Y,Θ) ∈ ∂Dβ) = 0.
The boundary ∂Dβ of Dβ is included in the union of the subsets

⋃

i∈β

∂
{

(r, θ) ∈ (1,∞) × Sd−1
+ ,

d
∑

j∈β

(θj − θi) < 1/r
}

,

and
⋃

i∈βc

∂
{

(r, θ) ∈ (1,∞) × Sd−1
+ ,

d
∑

j∈β

(θj − θi) ≥ 1/r
}

,

and for all i = 1, . . . , d, we have the equality

∂
{

(r, θ) ∈ (1,∞) × Sd−1
+ ,

d
∑

j∈β

(θj − θi) < 1/r
}

=
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d
∑

j∈β

(θj − θi) = 1/r
}

,

and similarly

∂
{

(r, θ) ∈ (1,∞) × Sd−1
+ ,

d
∑

j∈β

(θj − θi) ≥ 1/r
}

=
{

(r, θ) ∈ (1,∞)× Sd−1
+ ,

d
∑

j∈β

(θj − θi) = 1/r
}

.

This implies that

P((Y,Θ) ∈ ∂Dβ) ≤
∑

i∈β

P

(

∑

j∈β

(Θj −Θi) = Y −1

)

+
∑

i∈βc

P

(

∑

j∈β

(Θj −Θi) = Y −1

)

,

and all these probabilities are null since Y is a continous random variable independent of Θ. Hence,
we proved that P((Y,Θ) ∈ ∂Dβ) = 0 which implies that convergence (7.7) holds and then convergence
(4.1) holds as well.
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Proof of Proposition 4. We fix β ∈ P∗
d and use Lemma 2. The probability that Zβc is null is equal to

P(Zβc = 0) = P

(

1 ≤ min
j∈βc

d
∑

k=1

(YΘk − YΘj)+

)

= P

(

Y −α ≤ min
j∈βc

(

d
∑

k=1

(Θk −Θj)+

)α
)

=

∫ 1

0
P

(

u ≤ min
j∈βc

(

d
∑

k=1

(Θk −Θj)+

)α
)

du

= E

[

min
j∈βc

( d
∑

k=1

(Θk −Θj)+

)α
]

,

which proves (4.4).
For Equation (4.5), we use Lemma 2, so that the probability that Z is concentrated on Cβ is equal

to

P(Z ∈ Cβ) = P

(

max
j∈β

∑

k∈β

(YΘk − YΘj) < 1, min
j∈βc

∑

k∈β

(YΘk − YΘj) ≥ 1

)

= P

(

(

max
j∈β

∑

k∈β

(Θk −Θj)+

)α
< Y −α, min

j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
≥ Y −α

)

=

∫ 1

0
P

(

max
j∈β

(

∑

k∈β

(Θk −Θj)+

)α
< u ≤ min

j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
)

du

= E





(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+



 .

This concludes the proof of the proposition.

Proof of Proposition 5. The proof of Proposition 5 is based on the following lemma whose result will
also be used in other proofs.

Lemma 4. Let β ∈ P∗
d . Then we have the inequality

P(Θ ∈ Cβ) ≤ P
(

max
j∈β

∑

k∈β

(Θk −Θj)+ < 1
)

. (7.8)

Proof of Lemma 4. While Lemma 4 is stated and used in this way, we rather prove the following in-
equality:

P
(

max
j∈β

∑

k∈β

(Θk −Θj)+ = 1
)

≤ P(Θ /∈ Cβ) .

The first probability can be rephrased as follows:

P
(

max
j∈β

∑

k∈β

(Θk −Θj)+ = 1
)

= P
(

∑

k∈β

(Θk −min
j∈β

Θj) = 1
)

= P
(

∑

k∈β

Θk = 1 +#βmin
j∈β

Θj

)

.

Since Θ ∈ Sd−1
+ , the equality

∑

k∈β Θk = 1 + #βminj∈β Θj holds only if there exists k ∈ β such that
Θk = 0. Thus, we obtain the inequality

P
(

max
j∈β

∑

k∈β

(Θk −Θj)+ = 1
)

≤ P(∃k ∈ β ,Θk = 0) ≤ P(Θ /∈ Cβ) ,
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which concludes the proof.

We now prove Proposition 5. We fix β ∈ P∗
d and assume that P(Θ ∈ Cβ) > 0. Then, starting from

Equation (4.5), we write

P(Z ∈ Cβ) ≥ E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

1Θ∈Cβ

]

= E

[(

(

∑

k∈β

Θk

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

1Θ∈Cβ

]

= E

[(

1−max
j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

1Θ∈Cβ

]

= E

[(

1−max
j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

| Θ ∈ Cβ

]

P(Θ ∈ Cβ) .

The expectation is positive by Lemma 4 and the probability P(Θ ∈ Cβ) is positive by assumption. This
shows that P(Z ∈ Cβ) > 0.

Proof of Theorem 2. We separatly prove both implications.
We first consider β ∈ P∗

d such that Cβ is a maximal subset for Θ:

P(Θ ∈ Cβ) > 0 and P(Θ ∈ Cβ′) = 0, for β′ ) β .

Following Proposition 5, we already know that P(Z ∈ Cβ) > 0. Besides, if β′ ) β, then Equation (4.8)
gives

P(Z ∈ Cβ′) ≤ P(Zβ′ > 0) ≤ P(Θβ′ > 0) .

and this last probability equals zero since Cβ is a maximal subset for Θ. This proves that Cβ is a
maximal subset for Z.

We now consider β ∈ P∗
d such that Cβ is a maximal subset for Z:

P(Z ∈ Cβ) > 0 and P(Z ∈ Cβ′) = 0, for β′ ) β .

First note that, for β′ ) β, P(Θ ∈ Cβ′) = 0. If not, Proposition 5 implies that P(Z ∈ Cβ′) > 0, which
contradicts the maximality of Cβ for Z.

Secondly, Equation (4.5) of Proposition 4 gives

P(Z ∈ Cβ) = E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

]

= E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

1Θ∈Cβ

]

+ E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+
1Θ/∈Cβ

]

= (A) + (B) .

(7.9)

The first term (A) has already been calculated in the proof of Proposition 5. It is equal to

(A) = E

[

1−max
j∈β

(

∑

k∈β

(Θk −Θj)+

)α
| Θ ∈ Cβ

]

P(Θ ∈ Cβ) .
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For the second term (B), note that the assumption Θ /∈ Cβ implies that there exists l ∈ β such that
Θl = 0, or that there exists r ∈ βc such that Θr > 0. We then decompose (B) into two terms:

E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

1Θ/∈Cβ

]

≤ E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

1∃l∈β,Θl=0

]

+ E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−max

j∈β

(

∑

k∈β

(Θk −Θj)+

)α
)

+

1∃β′)β,Θ∈Cβ′

]

.

The first expectation is equal to

E

[(

min
j∈βc

(

∑

k∈β

(Θk −Θj)+

)α
−
(

∑

k∈β

(Θk)+

)α
)

+

1∃l∈β,Θl=0

]

,

and is thus zero. The second expectation is smaller than P(∃β′ ) β, Θ ∈ Cβ′) which is zero. Indeed,
if P(∃β′ ) β, Θ ∈ Cβ′) > 0, then by Proposition 5, we also have P(∃β′ ) β, Z ∈ Cβ′) > 0, which
contradicts the maximality of Cβ for Z. All in all, this proves that (B) = 0.

Going back to Equation (7.9), we have proved that

P(Z ∈ Cβ) = (A) = E

[

1−max
j∈β

(

∑

k∈β

(Θk −Θj)+

)α
| Θ ∈ Cβ

]

P(Θ ∈ Cβ) .

By Lemma 4, we know that the expectation is positive. Hence, the assumption P(Z ∈ Cβ) > 0 implies
that P(Θ ∈ Cβ) > 0, which proves that Cβ is a maximal subset of Θ.

A Appendix

We introduce here the linear-time algorithm given in Duchi et al. (2008). It is based on a random
selection of the coordinates.

Data: A vector v ∈ Rd
+ and a scalar z > 0

Result: The projected vector w = π(v)
Initialize U = {1, . . . , d}, s = 0, ρ = 0;
while U 6= ∅ do

Pick k ∈ U at random;
Partition U : G = {j ∈ U, vj ≥ vk} and L = {j ∈ U, vj < vk};
Calculate ∆ρ = |G|, ∆s =

∑

j∈G vj;

if (s+∆s)− (ρ+∆ρ)vk < z then
s = s+∆s;
ρ = ρ+∆ρ;
U ← L;

else
U ← G \ {k};

end

end
Set η = (s− z)/ρ.;
Define w s.t. wi = vi − η.

Algorithm 3: Linear time projection onto the positive sphere Sd−1
+ (z).
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