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Abstract

Regular variation provides a convenient theoretical framework to study large events. In the
multivariate setting, the dependence structure of the positive extremes is characterized by a measure
- the spectral measure - defined on the positive orthant of the unit sphere. This measure gathers
information on the localization of extreme events and is often sparse since severe events do not occur
in all directions. Unfortunately, it is defined through weak convergence which does not provide a
natural way to capture its sparse structure. In this paper, we introduce the notion of sparse regular
variation, which allows to better learn the sparse structure of extreme events. This concept is based
on the euclidean projection onto the simplex for which efficient algorithms are known. We show
several results for sparsely regularly varying random vectors. Finally, we prove that under mild
assumptions sparse regular variation and regular variation are two equivalent notions.

Keywords: multivariate extremes, projection onto the simplex, regular variation, sparse regular
variation, spectral measure

1 Introduction

Estimating the dependence structure of extreme events has proven to be a major issue in many applica-
tions. The classical framework in the multivariate Extreme Value Theory (EVT) is based on the concept
of regularly varying random vectors. Several characterizations of regular variation has been established
(see e.g. Embrechts et al. (1997), Resnick (1987), Resnick (2007), or Beirlant et al. (2006)). A natural
way to define multivariate regular variation is through the convergence of the polar coordinates of a
random vector. Indeed, a random vector X ∈ Rd

+ is said to be regularly varying with tail index α > 0
and spectral measure S on the positive orthant of the unit sphere if for all x > 0,

P (|X| > tx,X/|X| ∈ · | |X| > t)
d
→ x−αS(·), t→∞ , (1.1)

where
d
→ denotes the weak convergence in the space of nonnegative Radon measure on the unit sphere.

Convergence (1.1) can be interpreted as follows: the limit of the radial component |X|/t has a Pareto dis-
tribution with parameter α > 0 whereas the angular component X/|X| has limit measure S. Moreover,
both components of the limit are independent. The measure S, called the spectral measure, summa-
rizes the tail dependence of the regularly varying random vector X. Estimating this d− 1 dimensional
measure is a challenging problem, especially in high dimensions.
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Based on convergence (1.1), several nonparametric estimation techniques have been proposed to esti-
mate S. Since (1.1) holds for any norms, these estimators mainly differ in terms of the choice of the norm.
In particular, some useful representations of the spectral measure has been introduced in the bivariate
case by Einmahl et al. (1993), Einmahl et al. (1997), Einmahl et al. (2001) and Einmahl and Segers
(2009). In Einmahl et al. (1997), the authors replace the tails of the margins by fitted Pareto tails in
order to estimate S by an empirical measure. This latter is consistent and asymptotically normal under
suitable assumptions. Einmahl and Segers (2009) focuse on the choice of the ℓp norm, for p ∈ [1,∞], in
order to construct an estimator of the spectral measure which satisfies moments constraints. Inference
on the spectral measure has also been studied in a Bayesian framework, for instance in Guillotte et al.
(2011). In this paper, the authors use censored likelihood methods in the context of infinite dimensional
spectral measures.

In higher dimension, mixture of Dirichlet distributions are often used to model the spectral densities.
Boldi and Davison (2007) show that under some conditions these distributions are weakly dense in the
set of spectral measures. They propose both frequentist and Bayesian inferences based on EM algorithms
and MCMC simulations. Subsequently, Sabourin and Naveau (2014) introduce a re-parametrization of
the Bayesian Dirichlet mixture model.

Since extreme events often concentrate on small subspaces of Rd
+, the spectral measure is usually

sparse. This means that it does not put mass in some regions of the unit sphere. The subspaces where the
spectral measure puts mass are these where extreme events occur. Thus, estimating the spectral measure
is a major issue in multivariate EVT but it is a challenging problem, especially in high dimensions. This
topic of research is quite recent but some methods have already been proposed. Chautru (2015) proposes
a clustering approach to exhibit groups of variables with asymptotic dependence. In the same way, the
purpose of the algorithm in Chiapino and Sabourin (2016) is to gather the features that are likely to
be extreme simultaneously. Cooley and Thibaud (2016) model the dependence via a matrix of pairwise
tail dependence metrics. They define a transformation to consider the positive orthant Rd

+ as a vector
space before applying some factorizations on the positive matrix. Goix et al. (2017) consider ǫ-thickened
rectangles to estimate the directions on which the spectral measure concentrates. All these approaches
are based on the rank transform and try to identify groups of asymptotically dependent extremes.

In a recent work, Lehtomaa and Resnick (2019) analyse extremal dependence with application to
risk management. They study the support of the spectral measure by using a grid estimator. The
simplex Sd−1

+ is firstly mapped to an d−1 dimensional space [0, 1]d−1 before being partitioned in equally
sized rectangles. The estimation of the support is based on a classical estimator of the spectral measure,
see Resnick (2007), p. 308. The second step is then to build an asymptotically normal test statistic to
validate the support estimate.

The main issue in the study of the spectral measure S is that the self-normalized extreme X/|X| |
|X| > t that appears in (1.1) is inefficient to estimate S in subspaces of dimension smaller than d.
Indeed, if S puts mass in such subspaces, then the weak convergence (1.1) does not hold anymore since
such subspaces are not continuous sets for S. This is why the difficulty to identify the possible sparsity
of S is at the core of the multivariate extremes’ study.

Since the self-normalized vector X/|X| fails to identify the regions on which the spectral measure
puts mass, our aim is to introduce another way of projecting onto the unit sphere. This new projection
should take the sparsity of the spectral measure into account by introducing some sparsity in the vector
X. In other words, as the limit measure S in (1.1) is likely to be sparse, we need to replace X/|X| by a
unit vector based on X which is also likely to be sparse. To this end, we use the euclidean projection of
X/t onto the simplex {x ∈ Rd

+, x1 + . . .+ xd = 1}. This projection has been widely studied in learning
theory (see e.g. Duchi et al. (2008), Kyrillidis et al. (2013), or Liu and Ye (2009)). Many different
efficient algorithms have been proposed, for instance in Duchi et al. (2008) and Condat (2016).

Based on this projection, we define the concept of sparse regular variation for which the self-
normalized vector X/|X| is replaced by π(X/t) where π denotes the euclidean projection onto the
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simplex. The limit measure obtained after this substitution is slightly different from the spectral mea-
sure S. We study this new angular limit and show that it better captures the possible sparse structure
of the extremes. Besides, we prove that under mild conditions both concepts of regular variation are
equivalent and we give the relation between both limiting spectral measures.

Outline The structure of this paper is as follows. Section 2 gathers all theoretical results useful in
this paper. Firstly, we give the context of regularly varying random vector in the multivariate EVT
framework. We detail why the knowledge of the subspaces on which the spectral measure puts mass is
a main issue for the study of extreme events, and we explain which difficulties appear in this context.
Secondly, we introduce the euclidean projection onto the simplex and list several results which are of
constant use for our study. Section 3 is dedicated to the study of this projection in the context of
regular variation. We focus on the angular part of the limit after substituing the classical projected
vector X/|X| in (1.1) by a vector based on the euclidean projection onto the simplex. We also discuss to
what extend this way of projecting allows to better capture the sparse structure of the tail dependence.
Finally, in Section 4 we introduce the concept of sparsely regularly varying random vector. We establish
the equivalence, under mild conditions, between this notion and the classical regular variation’s concept.

Notations Denote in bold-face elements x = (x1, . . . , xd) of Rd. We write x ≤ y, x < y, x ≥ y,
etc. where ≤, <, ≥ refer to the componentwise partial ordering in Rd. More generally, for x ∈ Rd and
y ∈ R, we write x ≤ y if all components xi of x satisfy xi ≤ y. In the same way, x + y is defined as
the vector (x1 + y, . . . xd + y). We also define Rd

+ = {x ∈ Rd, x1 ≥ 0, . . . , xd ≥ 0}, e = (1, . . . , 1) ∈ Rd,
0 = (0, . . . , 0) ∈ Rd. For j = 1, . . . , d, ej denotes the j-th vector of the canonical basis of Rd, this means
that ej = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in position j. For a ∈ R, a+ denotes the positive part of
a, that is a+ = a if a ≥ 0 and a+ = 0 otherwise. If x ∈ Rd and I = {i1, . . . , ir} ⊂ {1, . . . , d}, then xI

denotes the vector (xi1 , ..., xir ) of Rr. For p ∈ [1,∞], we denote by | · |p the ℓp-norm in Rd. We write
d
→ for the convergence in distribution and

v
→ for the vague convergence. Finally, for a finite set I, |I|

denotes the number of elements of I.

2 Regular variation and projection

2.1 Multivariate Extreme Value Theory

We consider a nonnegative random vector X = (X1, . . . ,Xd) with cumulative distribution function F .
Our aim is to assess the tail structure of F . It is customary in EVT to assume that the random vector X
is regularly varying, i.e. there exist a positive sequence (an), an →∞ when n→∞, and a nonnegative
Radon measure µ on Rd

+ \ {0} such that

nP

(
X

an
∈ ·

)

v
→ µ(·), n→∞ , (2.1)

where
v
→ denotes vague convergence in the space of nonnegative Radon measures on Rd

+ \ {0}. The
limit measure µ is called the tail measure and describes the behavior of the extremes. It satisfies the
homogeneity property µ(aC) = a−αµ(C) for any set C ⊂ Rd

+ \ {0} and any a > 0. The parameter
α > 0 is called the tail index.

It is often more convenient to represent the extremal behavior of X through a polar representation
(see Beirlant et al. (2006), Section 8.2.2). Choose a norm | · | on Rd and denote by Sd−1

+ the restriction

of its unit sphere to the positive orthant: Sd−1
+ = {x ∈ Rd

+, |x| = 1}. Now define the following
transformation

T : Rd
+ \ {0} → (0,∞) × Sd−1

+

v 7→ (r,θ) = (|v|,v/|v|) .

3



Note that it is even possible to choose two different norms | · | and | · |′ in the definition of T (see
Beirlant et al. (2006)) but it will not be useful here. Classical choices of norms are ℓp-norms, p ∈ [1,∞].
Define a measure S on Sd−1

+ by setting

S(B) = µ
({

v ∈ Rd
+ \ {0}, |v| > 1,v/|v| ∈ B

})
= µ

(
T−1 [(1,∞)×B]

)
,

for Borel subsets B of Sd−1
+ . The measure S is called the spectral measure of the regularly varying

random vector X. It may be seen as the projection of the tail measure µ onto the unit sphere. The
homogeneity property of the tail measure implies that

r−αS(B) = µ
({

v ∈ Rd
+ \ {0}, |v| > r,v/|v| ∈ B

})
= µ

(
T−1 [(r,∞)×B]

)
, (2.2)

for Borel subsets B of Sd−1
+ and r > 0.

Equation (2.2) can be rephrased as αr−(α+1)drS(dθ) = µ ◦T−1(dr,dθ). This gives a decomposition
of the tail measure in a radial part and an angular part. The radial component can thus be modeled
through a random variable with Pareto(α) distribution, whereas the angular one is characterized by the
spectral measure S. The decomposition in Equation (2.2) ensures that the radial and the angular parts
are independent.

We combine Equations (2.1) and (2.2) to characterize regularly varying random vector in Rd
+ in the

following way:
nP
(
a−1
n |X| > r,X/|X| ∈ ·

) v
→ r−αS(·), n→∞ .

This is the same as
P (|X| > tr,X/|X| ∈ ·)

P(|X| > t)

v
→ r−αS(·), t→∞ , (2.3)

see e.g. Resnick (1986).
We call spectral vector a random vector on Sd−1

+ whose distribution is S. Equation (2.3) then leads
to the following characterization of regular variation. A random vector X on Rd

+ is regularly varying

if there exist a random vector Θ on Sd−1
+ (the spectral vector) and a random variable Y such that the

following limit holds:

P

((
|X|

t
,
X

|X|

)

∈ ·

∣
∣
∣
∣
|X| > t

)

d
→ P((Y,Θ) ∈ ·), t→∞ . (2.4)

In this case, there exists α > 0 such that the distribution of Y is Pareto(α). Moreover, the radial limit
Y is independent of the angular limit Θ which has distribution the spectral measure S.

Equation (2.4) highlights the two quantities which characterize the regular variation propery of X.
On the one hand, the tail index α gives the size of the extremes: the smaller this index is, the larger the
extremes are. On the other hand, the spectral vector Θ informs on the localization and the dependence
structure of the extremes. Its support is the same as the one of the tail measure µ: the spectral measure
puts mass in a direction of Sd−1

+ if and only if extreme events appear in this direction.

2.2 Estimating the spectral measure: some issues

If we only focus on the second margin of the couple in (2.4), the convergence becomes

P (X/|X| ∈ · | |X| > t)
d
→ P(Θ ∈ ·), t→∞ . (2.5)

This means that the spectral vector Θ can be approximated by the self-normalized extreme X/|X| |
|X| > t, for t large enough. Therefore, its distribution gathers all information on the localization and
the dependence structure of extreme events. Hence, estimating the spectral measure is a crucial (but
challenging) problem in multivariate EVT.
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A first natural step to study large events is to focus on the subspaces on which this measure puts
mass. Indeed, they correspond to the ones where extremes events occur. It is frequent that such events
only appear in a few directions of Rd

+. This means that the spectral measure has often a sparse structure.
Thus, capturing these directions allows to significantly reduce the dimension. Unfortunately, Equation
(2.5) is not helpful to identify this potential sparsity. Indeed, as soon as the spectral measure puts mass
on a subspace A of dimension smaller than d−1, the weak convergence in Equation (2.5) often fails. On
the one hand P(Θ ∈ A) > 0 by assumption, but on the other hand, P(X/|X| ∈ A) = 0 if for instance
X has a density with respect to the Lebesgue measure in Rd

+

Let us develop a relevant example. Recall that e1, . . . , ed denote the unit vectors of the canonical
basis of Rd. If the spectral measure only puts mass on ⊔1≤j≤d {ej}, we say that the extremes are
asymptotically independent. This means that there is never more than one direction which contributes
to the extremal behavior of the data. In this case, the spectral measure concentrates on the axis:
P(Θ ∈ ⊔1≤j≤d {ej}) = 1. But except for a degenerate vector X, the probability P(X/|X| ∈ ⊔1≤j≤d {ej})
is equal to 0. In practice, real multivariate data never concentrate on the axis, and the study of the
spectral measure can not be done through the self-normalized extreme X/|X| | |X| > t, even for t very
large.

This example shows that Equation (2.5) is not helpful to study the support of the spectral vector
Θ. The self-normalized extreme X/|X| | |X| > t does not inform on the possible sparsity of Θ. This
kind of problems arises since the spectral measure may put mass on subspaces of zero Lebesgue measure
whereas the data generally does not concentrate on such subspaces. Our goal is thus to circumvent
this problem by using another projection. This projection has to capture the dependence structure of
extremes by taking into account the potential sparsity of the spectral measure. Basically, it has to be
more flexible toward the weak convergence on subspaces of dimension smaller than d− 1.

The solution we propose in this article in to replace the quantity X/|X| by the euclidean projection
onto the simplex of X/t. To this end, we have to adapt Equation (2.4). This is the aim of next
subsection.

From now on, | · | denotes the ℓ1-norm and Sd−1
+ denotes the simplex in dimension d:

Sd−1
+ := {x ∈ Rd

+, x1 + . . .+ xd = 1} .

More generally Sd−1
+ (z) := {x ∈ Rd

+, x1 + . . . + xd = z} for z > 0.

2.3 The euclidean projection onto the simplex

In the subsection, we introduce the euclidean projection onto the simplex. For more details, see
Duchi et al. (2008) and the references therein.

Let z > 0 and v ∈ Rd
+. We consider the following optimization problem:

minimize
w

1

2
|w − v|22 s.t.

d∑

i=1

wi = z . (2.6)

Since v ≥ 0, the minimization problem (2.6) is equivalent to

minimize
w

1

2
|w − v|22 s.t.

d∑

i=1

wi = z, wi ≥ 0 .

(see Duchi et al. (2008), Lemma 3). The Lagrangian of this problem and the complementary slackness
KKT condition imply that this problem has a unique solution w ∈ Rd

+ which satisfies wi = (vi−λv,z)+
for λv,z ∈ R. The constant λv,z is defined by the relation

∑

1≤i≤d(vi − λv,z)+ = z.
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Hence, the following application has been defined:

πz : Rd
+ → Sd−1

+ (z)
v 7→ w = (v − λv,z)+ .

The application πz is called the projection onto the positive sphere Sd−1
+ (z). An linear time algorithm

which computes πz(v) for v ∈ Rd
+ and z > 0 is given in Duchi et al. (2008). We include it for complete-

ness.

Data: A vector v ∈ Rd
+ and a scalar z > 0

Result: The projected vector w = π(v)
Initialize U = {1, . . . , d}, s = 0, ρ = 0;
while U 6= ∅ do

Pick k ∈ U at random;
Partition U : G = {j ∈ U, vj ≥ vk} and L = {j ∈ U, vj < vk};
Calculate ∆ρ = |G|, ∆s =

∑

j∈G vj;

if (s+∆s)− (ρ+∆ρ)vk < z then

s = s+∆s;
ρ = ρ+∆ρ;
U ← L;

else

U ← G \ {k};
end

end

Set θ = (s− z)/ρ.;
Define w s.t. wi = vi − θ.

Algorithm 1: Linear time projection onto the positive sphere Sd−1
+ (z).

The linear complexity of this algorithm is essential. Indeed, multivariate extremes have already been
studied in low dimensions, especially in two dimensions (for instance in Einmahl et al. (2001) or Einmahl and Segers
(2009)). But when the dimension growths, the study of large events becomes a difficult issue. Thus,
this linear time algorithm is a non-negligible advantage in order to use this projection to study extreme
events.

Remark 1. For a vector v ∈ Rd
+, the quantity ρ which appears in Algorithm 1 corresponds to the

number of positive coordinates of π(v). It can be defined as

ρ = max

{

j ∈ {1, . . . , d}, µj −
1

j

( j
∑

r=1

µj − z

)

> 0

}

, (2.7)

where µ1 ≥ . . . ≥ µd denote the order coordinates of v = (v1, . . . , vd), see Duchi et al. (2008), Lemma
2. The integer ρ will be crucial is many proofs.

Note that the projection satisfies the relation πz(v) = zπ1(v/z) for all v ∈ Rd
+ and z > 0. This is

why we mainly focus on the projection π1 onto the simplex Sd−1
+ . In this case, we shortly denote π for

π1 and λv for λv,1:

π : Rd
+ → Sd−1

+

v 7→ (v − λv)+ .

An illustration of π for d = 2 is given in Figure 1.
We now list some results on the projection. A first straightforward result if that the projection

preserves the order of the coordinates in the following sense: if vσ(1) ≥ . . . ≥ vσ(d) for a permutation σ,
then π(v)σ(1) ≥ . . . ≥ π(v)σ(d) for the same permutation.
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Figure 1: The euclidean projection onto the simplex S1+.

Besides, recall that the projection is used to deal with the weak convergence’s issue in the spectral
measure’s definition (2.4). The idea is to substitute the quantity X/|X| in (2.4) for | · | = | · |1 by π(X/t)
and to manage to get same convergence results. A natural way to do this relies on the continuous
mapping theorem. The continuity of the projection π is thus a crucial point.

Lemma 1. The application π is continuous.

Another important property satisfied by the projection is the following one.

Lemma 2. If 0 < z ≤ z′, then πz ◦ πz′ = πz.

This means that projecting onto a sphere and then onto a smaller one is the same as directly
projecting onto the smaller sphere. This lemma will be useful to prove some technical results gathering
the projection π and regular variation.

Finally, in order to study the sparse structure of extreme events, we are interested in computing
probabilities like P(ΘI = 0) for I ⊂ {1, . . . , d}. To this end, next lemma will be helpful.

Lemma 3. Let v ∈ Rd
+ and I ⊂ {1, . . . , d}. The following equivalences hold:

π(v)I = 0 if and only if 1 ≤ min
i∈I

d∑

k=1

(vk − vi)+ , (2.8)

and

π(v)I = 0 and π(v)Ic > 0 if and only if

{
maxi∈Ic

∑

j∈Ic(vj − vi) < 1 ,

mini∈I
∑

j∈Ic(vj − vi) ≥ 1 .
(2.9)

If π(v) > 0 (that is, if I = ∅), then π(v) has necessary the following form:

π(v) = v −
1

d

( d∑

k=1

vk − 1

)

= v −
|v| − 1

d
.

Thus, for x ≥ 0, we have the following characterization:

π(v) > x if and only if v > x+
|v| − 1

d
. (2.10)

This equivalence will be of constant use in the sequel.
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Remark 2. Note that the projection π is not homogeneous. Recall that a function f is said to be
homogeneous if there exists q > 0 such that for all t > 0, f(tx) = tqf(x). If f is a continous and
homogeneous function and X is a regularly random vector in Rd

+ with tail index α > 0, then the
random vector f(X) is regularly varying with tail index α/q (see Jessen and Mikosch (2006)). Such a
result cannot be used for the euclidean projection onto the simplex.

The theoretical framework being defined, we now want to use the projection in the context of
regularly varying random vectors. This is the purpose of next section.

3 Spectral measure and projection

The purpose of this section is twofold. In the first part, we use the euclidean projection to introduce
a new convergence based on (2.4). This new convergence brings out an angular limit vector which
differs from the spectral vector. Some results on this limit and its relation with the spectral vector are
introduced. The second part is dedicated to sparsity results of this new limit. Finally, we study two
classical particular cases of the multivariate EVT: complete dependence and asymptotic independence.

3.1 Regular variation and projection

From now on, and till the end of section 3, we consider a regularly varying random vector X on Rd
+:

P

((
|X|

t
,
X

|X|

)

∈ ·

∣
∣
∣
∣
|X| > t

)

d
→ P((Y,Θ) ∈ ·), t→∞ . (3.1)

We know that in this case there exists α > 0 such that Y follows a Pareto(α) distribution and also
that the limits Y and Θ are independent. As explained in Section 2, convergence (3.1) is not helpful
to capture the possible sparse structure of the spectral vector Θ. Our idea is to substitute the self-
normalized extremes X/|X| by another vector on the simplex which better highlights the sparsity.

Let us give an intuitive idea to see how the euclidean projection can solve this kind of issue. For
I = {i1, . . . , ir} ⊂ {1, . . . , d}, we consider Vect(eI) = Vect(ei1 , . . . , eir), the subspace of Rd

+ generated
by the r vectors ei1 , . . . , eir . As explained in Section 2, if r < d, then the quantity P(X/|X| ∈ Vect(eI) |
|X| > t) always equals 0 (except for degenerate cases), whereas P(Θ ∈ Vect(eI)) could be positive. The
projection π allows to give more weight to such subspaces Vect(eI).

For instance, on Figure 1, the vector u does not have a null e1-coordinate but the projected vector
π(u) does. In this two dimensional case, a positive vector w satisfies π(w)1 = 0 if and only if w2 ≥ w1+1.
Essentially, estimating the probability P(Θ1 = 0) needs to replace the set {w, w1/|w| = 0} by a larger
one which has not zero Lebesgue measure. Our idea here is to use the space {π(w)1 = 0} = {w, w2 ≥
w1 + 1}.

Remark 3. This idea of substituing subspaces of zero Lebesgue measure by closer subspaces but
of positive Lebesgue measure has already been used. For instance, Goix et al. defined ǫ-thickened
rectangles

Cǫ
β = {v ∈ Rd

+; |v|∞ ≥ 1; ∀j ∈ β, vj > ǫ; ∀j /∈ β, vj ≤ ǫ} ,

for β ⊂ {1, . . . , d} (see Goix et al. (2017)). They worked on the tail measure µ (see (2.1)) and showed
that µ(Cǫ

β)→ µ(Cβ) when ǫ→ 0, where

Cβ = {v ∈ Rd
+; |v|∞ ≥ 1; ∀j ∈ β, vj > 0; ∀j /∈ β, vj = 0} .

Unfortunately, these considerations are based on a parameter ǫ > 0 which has to be choosen in practice.
One of the advantages of the projection π is that it is does not need any parameter.
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With this in mind, we substitute the classical projection X/|X| by π(X/t). The first step is to see
how this affects the spectral vector. Since the projection π is continuous, the following convergence
holds:

P

((
|X|

t
, π

(
X

t

))

∈ ·

∣
∣
∣
∣
|X| > t

)

d
→ P((Y, π(YΘ)) ∈ ·), t→∞ . (3.2)

The limit of the angular component is now π(YΘ). Of course, we lose independence between the radial
component Y and the angular component π(YΘ) of the limit. The dependence relation between both
components will be detailed in Proposition 4.

The aim of this section is to study to what extent the new angular limit π(YΘ) differs from the
spectral vector Θ. Thus, in the rest of this subsection we establish a relation between these both vectors.

Set Z = π(YΘ) ∈ Sd−1
+ . Our aim is to explicit the relation between Θ and Z. We define the function

GZ by
GZ(x) = P(Z > x) = P(Z1 > x1, . . . , Zd > xd), x ∈ Rd . (3.3)

The function GZ characterizes the distribution of Z. However, note that there is no simple relation
between GZ and the cumulative distribution function of Z as soon as d ≥ 2. Since Z ∈ Sd−1

+ , we only
focuses on GZ(x) for x in Rd

+ such that
∑

j xj < 1, this means for x ∈ B(0, 1) ∩ Rd
+, where B(0, 1)

denotes the (open) unit ball for the ℓ1-norm. Thus, we consider

GZ(x) = P(Z ∈ Ax) ,

where the borelians Ax are defined by

Ax = {u ∈ Sd−1
+ , x1 < u1, . . . , xd < ud} . (3.4)

Since the family A = {Ax, x ∈ B(0, 1)∩R
d
+} generates the borelians of the simplex Sd−1

+ , the distribution
of Z is completely characterized by GZ(x) for x ∈ B(0, 1) ∩ Rd

+.
With Equation (2.10), we can express the condition Z > x in terms of Θ. This is the aim of next

Proposition.

Proposition 1. Let X be a regularly varying random vector of Rd
+ with tail index α > 0 and spectral

vector Θ. For x ∈ B(0, 1)∩Rd
+, such that for all j = 1, . . . , d, xj 6= 1/d, define J+ = {j, xj > 1/d} and

J− = {j, xj < 1/d}. Then, we have

GZ(x) = E

[(

1 ∧ min
j∈J+

(
Θj − 1/d

xj − 1/d

)α

+

−max
j∈J−

(
Θj − 1/d

xj − 1/d

)α

+

)

+

]

, (3.5)

with GZ defined in (3.3).

Proposition 1 gives an interesting relation between the distribution of Z and the one of Θ. Un-
fortunately, its complexity makes it difficult to use. But specific choices for x will give some useful
results.

Remark 4. Note that (3.5) still holds if there exists j0 such that Θj0 = 0 a.s. In this case, we know
that Zj0 = π(YΘ)j0 = 0. Equation (3.5) gives the same result since, for xj0 = 0, we obtain

max
j∈J−

(
Θj − 1/d

xj − 1/d

)α

+

≥

(
1/d −Θj0

1/d− xj0

)α

+

= 1 ,

so that GZ(x) = 0.
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A convenient particular case is the one where x satisfies x < 1/d. There, we obtain

GZ(x) = E

[

1− max
1≤j≤d

(
1/d−Θj

1/d − xj

)α]

.

In particular, for x = 0, we get

GZ(0) = 1− E

[

max
1≤j≤d

(1− dΘj)
α

]

. (3.6)

Thus, the probability for Z to have a null component is

P(∃j = 1, . . . , d , Zj = 0) = E

[

max
1≤j≤d

(1− dΘj)
α

]

. (3.7)

This quantity is null if and only if for all j = 1, . . . , d, Θj = 1/d a.s. and is equal to 1 if and only if
min1≤j≤dΘj = 0 a.s. It means that the new angular limit Z is more likely to be sparse. In particular,
all usual spectral models on Θ that are not supported on the axis are not suitable for Z. The goal of
the next subsection is to study more into details this sparse structure of Z.

3.2 Sparse structure of Z

Since the projection is introduced in order to better capture the sparse structure of the extremes, we
give here different results of sparsity for the angular component Z = π(YΘ). The general aim is thus
to compute probabilities like P(ZI = 0) or P(ZI = 0,ZIc > 0), for I ⊂ {1, . . . , d}, in order to generalize
Equation (3.7). These kinds of results are developed in the next Proposition.

Proposition 2. Let X be a regularly varying random vector of Rd
+ with spectral vector Θ and tail

index α > 0. Set Z = π(YΘ), where Y follows a Pareto(α) distribution independent of Θ. For any
I ( {1, . . . , d}, we have

P(ZI = 0) = E

[

min
j∈I

( d∑

k=1

(Θk −Θj)+

)α
]

, (3.8)

and

P(ZI = 0, ZIc > 0) = E

[(

min
j∈I

(
∑

k∈Ic

(Θk −Θj)+

)α

−max
j∈Ic

(
∑

k∈Ic

(Θk −Θj)+

)α
)

+

]

. (3.9)

Remark 5. In particular, Equation (3.8) imply that

P(ZI = 0) = E

[

min
j∈I

( d∑

k=1

(Θk −Θj)+

)α

1{ΘI=0}

]

+ E

[

min
j∈I

( d∑

k=1

(Θk −Θj)+

)α

1{∃i∈I,Θi>0}

]

= P(ΘI = 0) + E

[

min
j∈I

( d∑

k=1

(Θk −Θj)+

)α

1{∃i∈I,Θi>0}

]

≥ P(ΘI = 0) . (3.10)

As expected, the vector Z is more likely to be sparse than the spectral vector Θ. Besides, we have the
following equivalence:

min
j∈I

d∑

k=1

(Θk −Θj)+ = 1 a.s. if and only if ∀j ∈ I, Θj = 0 a.s.

These results lead to the following corollary.
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Corollary 1. With the same notations as in Proposition 2, we have

P(ZI = 0) ≥ P(ΘI = 0) .

Moreover, P(ZI = 0) = 1 if and only if P(ΘI = 0) = 1.

This corollary states that the euclidean projection tends to introduce more sparsity. But eventually
both angular vectors Θ and Z put mass on the same subspaces. This means that we do not lose any
information on the support of the spectral measure by studying Z instead of Θ.

Another main advantage of using the euclidean projection is gathered in the next proposition.
Recall that with the classical projection X/|X|, if I ⊂ {1, . . . , d} and BI = {x ∈ Rd

+, xI = 0}, then
the convergence P(X/|X| ∈ BI | |X| > t) → P(Θ ∈ BI) often does not hold (see Section 2). On the
contrary, based on the second component of convergence (3.2), we know that P(π(X/t) ∈ A | |X| >
t)→ P(π(YΘ) ∈ A), as soon as P(YΘ ∈ ∂π−1(A)) = 0. Next proposition states that the sets BI satisfy
this condition. Hence, the projection π allows to circumvent the issue discussed in Section 2.

Proposition 3. Let X be a regularly varying random vector in Rd
+ with spectral vector Θ and tail

index α > 0. Set Z = π(YΘ), where Y follows a Pareto(α) distribution independent of Θ. For any
I ⊂ {1, . . . , d}, we have

P

(

π

(
X

t

)

I

= 0

∣
∣
∣
∣
|X| > t

)

→ P(ZI = 0) . (3.11)

This means that the sparse structure of Z can be inferred through the euclidean projection π(X/t).
We insist that this convergence does not hold if we replace Z by Θ and π(X/t) by X/|X|.

All in all this shows that using the projected vector π(X/t) instead of the self-normalized vector
X/|X| has several advantages. Firstly, it better captures the sparse structure of the extremes (see
Corollary 1). Secondly, since the directions on which Z puts mass are the same as those where Θ puts
mass, we do not lose any information (Corollary 1). Finally, Proposition 3 states that the projection π is
more efficient with the weak convergence since convergence (3.2) holds for some zero Lebesgue measure
subspaces whereas convergence (3.1) does not.

We end this subsection by applying Proposition 2 with some particular choices of I ⊂ {1, . . . , d}.
Firstly, if we consider the case where I = {1, . . . , d}, then we obtain the probability that all coordinates
are positive. This has already been computed in (3.6), it is equal to GZ(0) = 1−E [max1≤j≤d(1− dΘj)

α].
Another particular case of Proposition 2 is the one where Ic corresponds to a single coordinate j0.

In this case, since Z belongs to the simplex, both probabilities P(ZI = 0) and P(ZI = 0, Zj0 > 0) are
equal. Their common value corresponds to the probability that Z is concentrated on the j0-th axis. It
is equal to

P(Zj0 = 1) = E

[

min
j 6=j0

(Θj0 −Θj)
α
+

]

. (3.12)

Note that this quantity can also be computed with Equation (2.9) of Lemma 3. Moreover we have the
following equalities:

P(Zj0 = 1) = E

[

min
j 6=j0

(Θj0 −Θj)
α
+1{Θj0

=1}

]

+ E

[

min
j 6=j0

(Θj0 −Θj)
α
+1{Θj0

<1}

]

= P(Θj0 = 1) + E

[

min
j 6=j0

(Θj0 −Θj)
α
+1Θj0

<1

]

≥ P(Θj0 = 1) .

This shows again that the vector Z is more likely to be sparse than the spectral vector Θ.
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3.3 Special cases: asymptotic independence and complete dependence

We study here two particular cases in multivariate EVT. The first one is the complete dependence’s
case, which is defined by the relation P(Θ = 1/d) = 1. It means that the spectral measure is a Dirac
point at (1/d, . . . , 1/d). In terms of extremes, it means that all coordinates simultaneously contribute
to large events. Since

P(Z = 1/d) = P (YΘ− (Y − 1)/d = 1/d) = P(Θ = 1/d) ,

we have the equivalence
Z = 1/d a.s. if and only if Θ = 1/d a.s. (3.13)

The other case is the asymptotic independence’s one, which appears when Θ only concentrates
on the axis. It means that P(Θ ∈ ⊔1≤k≤d ek) = 1. Note that this case has already been partially
discussed in Section 2 to illustrate the difficulty to estimate the spectral vector Θ. As for the complete
dependence’s case, we want to express the asymptotic independence in terms of Z. To this end, we
write

P(∃1 ≤ i ≤ d, Zi = 1) = P(∃1 ≤ i ≤ d, ∀j 6= i, Zj = 0)

= P (∃1 ≤ i ≤ d, ∀j 6= i, 1 ≤ Y (Θi −Θj)+)

= P
(

∃1 ≤ i ≤ d, Y −α ≤ min
j 6=i

(Θi −Θj)
α
+

)

= P
(

Y −α ≤ max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

)

=

∫ 1

0
P
(

u ≤ max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

)

du

= E
[

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+

]

.

Thus, since max1≤i≤d minj 6=i(Θi −Θj)
α
+ ≤ 1, we have the equivalence

P(∃1 ≤ i ≤ d, Zi = 1) = 1 if and only if P
(

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+ = 1

)

= 1 .

This last probability can be rewritten as follows:

P
(

max
1≤i≤d

min
j 6=i

(Θi −Θj)
α
+ = 1

)

= P
(

∃1 ≤ i ≤ d, min
j 6=i

(Θi −Θj)+ = 1
)

= P
(

∃1 ≤ i ≤ d, Θi = 1
)

.

This proves the equivalence between P(∃1 ≤ i ≤ d, Zi = 1) = 1 and P (∃1 ≤ i ≤ d, Θi = 1) = 1. Based
on this result and Proposition 3, it is thus possible to test asymptotic independence by studying π(X/t).
This justifies afterwards the choice of the projection π to study the extremal dependence structure.

All in all, this means that these two classical cases of multivariate EVT can be studied through the
distribution of Z. We do not lose any information by studying Z instead of Θ in the asymptotically
independent and completely dependent settings.

4 Sparse regular variation

We consider in this section a random vector X in Rd
+. In Section 3, we assumed that X was regularly

varying. In this case convergence (3.2) holds and allows to study the properties of Z = π(YΘ). Our
aim is now to establish a converse result. Thus, we do not assume anymore that X is regularly varying.
We only start from convergence (3.2) which encourages to introduce the following definition.
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Definition 1 (Sparse regular variation). A random vector X on Rd
+ is sparsely regularly varying if there

exist a random vector Z defined on the simplex Sd−1
+ and a random variable Y such that

P

((
|X|

t
, π

(
X

t

))

∈ ·

∣
∣
∣
∣
|X| > t

)

d
→ P((Y,Z) ∈ ·), t→∞ . (4.1)

In this case, the general theory of regular variation states that there exists α > 0 such that Y is
Pareto(α) distributed. Note that we lose independence between the radial component of the limit Y
and the angular one Z. The dependence structure between Y and Z will be detailed in Proposition 4.

A direct consequence of this definition is that if the random vector X is regularly varying with
spectral vector Θ and radial limit Y , then, by continuity of π, X is sparsely regularly varying with
angular limit Z = π(YΘ).

In all this section, we consider a sparsely regularly varying random vector X. Recall that the
function GZ is defined by GZ(x) = P(Z > x). However, note that for the moment we can not write
GZ(x) = P(π(YΘ) > x) since there is no guarantee of the existence of Θ. Our aim is twofold. The first
goal is to study the dependence between the radial limit Y and the angular limit Z in (4.1). Secondly,
we prove that under some assumptions on GZ the vector X is regularly varying.

The following proposition gives the explicit dependence structure between Z and Y .

Proposition 4. Let X be a sparsely regularly varying random vector on Rd
+. Then, for all r ≥ 1,

Z | Y > r
d
= π(rZ) . (4.2)

As mentioned before, we do not have independence between the angular component Z and the radial
one Y . However, the dependence between Z and Y is completely determined by Equation (4.2), and
will be helpful in the proof of next theorem.

Our aim is now to prove that, under some conditions, if X is a sparsely regularly varying vector,
then X is regularly varying. Note that if convergence (4.1) holds, then |X| is regularly varying. So the
only step is to prove the convergence of the angular component, that is, of the self-normalized extreme
X/|X| | |X| > t when t→∞. We will base our proof on the following lemma.

Lemma 4. Let X be a random vector on Rd
+ and α > 0. The following assumptions are equivalent.

1. X is regularly varying with tail index α.

2. |X| is regularly varying with tail index α and there exists a finite measure l on Sd−1
+ such that

lim
ǫ→0

lim inf
t→∞

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

= l(A) , (4.3)

and

lim
ǫ→0

lim sup
t→∞

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

= l(A) , (4.4)

for all A ∈ B(Sd−1
+ ) such that l(∂A) = 0.

In this case, l(A) = αP(Θ ∈ A), where Θ is the spectral vector of X.

Remark 6. The assertion 2. of Lemma 4 can be weakened by taking A in a family of borelians that
generates B(Sd−1

+ ). In what follows, we will consider the family A = {Ax, x ∈ B(0, 1) ∩R
d
+}, where the

Ax are defined in (3.4).

Remark 7. In Lemma 4, | · | denotes any norm of Rd, but in what follows we will use this lemma for
the ℓ1-norm.
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We now prove that under mild assumptions on GZ, a random vector X which satisfies (4.1) is
regularly varying. The assumptions on GZ are the following ones:

(A1) The function GZ is differentiable for almost every x ∈ B(0, 1) ∩ Rd
+.

(A2) P(Z ∈ ∂Ax) = 0 for almost every x ∈ B(0, 1) ∩ Rd
+.

Let us denote by Z(GZ) the set of vectors x in B(0, 1) ∩ Rd
+ which satisfy (A1) and (A2). Then, the

family AZ(GZ) := {Ax,x ∈ Z(GZ)} generates the borelians of Sd−1
+ . If there is no confusion, we will

simply write Z for Z(GZ) and AZ for AZ(GZ).

Theorem 1. Let X be a vector on Rd
+ that is sparsely regularly varying. Assume that GZ(·) = P(Z > ·)

satisfies (A1) and (A2). Then X is regularly varying with spectral vector Θ which satisfies

P(Θ ∈ Ax) = P(Z ∈ Ax) + α−1dGZ(x)(x − 1/d) , (4.5)

for all x ∈ Z.

This shows under mild assumptions the equivalence of regular variation and sparse regular variation.
Moreover, the distribution of Z completely characterizes the one of Θ. Equation (4.5) completes the
result (3.5) obtained in Proposition 1.

Let us summarize the results we obtained. Proposition 1 characterizes the distribution of Z =
π(YΘ) when X is regularly varying with spectral vector Θ. Conversely, suppose that X is a sparsely
regularly varying random vector. Then Theorem 1 states that X is regularly varying with spectral
vector Θ satisfying Equation (4.5). This ensures that Z = π(YΘ), with Y a Pareto(α) random variable
independent of Θ. In other words, we have an almost complete equivalence between the usual regular
variation and sparse regular variation.

5 Discussion

We discuss here a possible model on Z and its relation with Θ. For d ≥ 1, there are 2d − 1 non-empty
subsets of {1, . . . , d}. If c is one of theses subsets, we denote by ec the vector with 1 in position i if i ∈ c
and 0 otherwise. For instance, e{1,2,3} = (1, 1, 1, 0, . . . , 0), e{1,d} = (1, 0, . . . , 0, 1), and so on. Note that

for all non-empty subsets c of {1, . . . , d}, ec/|c| belongs to Sd−1
+ .

We consider the following class of discrete distributions on the simplex:

∑

∅6=c⊂{1,...,d}

p(c) δec/|c| , (5.1)

where (p(c))c is a 2d−1 vector with nonnegative components summing to 1. This is the device developed
in Segers (2012). In terms of stable tail dependence function l(x) = E[maxj(xjΘj)], this means that

l(x) =
∑

∅6=c⊂{1,...,d}

p(c)

|c|
max
j∈c

(xj) ,

see Segers (2012), Examples 3.4 and 3.5 for more details. Note that this class of distributions includes
the complete dependence’s and the asymptotic independence’s cases developed in Section 3. Moreover,
a distribution of this class satisfies both assumptions (A1) and (A2).

The family of distributions (5.1) is stable after multiplying by a positive random variable and
projecting onto the simplex with π. Hence, if Θ has a distribution of type (5.1), then Z = Θ a.s.
Moreover, Equations (3.5) and (4.5) show that there is a bijection between the distribution of Θ and
the one of Z. Hence, if Z has a distribution of type (5.1), then Θ has the same distribution.

14



This shows that the family of distributions (5.1) forms an accurate model for the angular vector Z.
Indeed, it is stable for the transformation Θ 7→ Z. Besides, the distributions of this class have sparse
supports. Finally, they put weights on some particular points of the simplex on which extremes values
often concentrate in practice.

Conclusion In this paper, we introduce the notion of sparsely regularly varying random vectors in
order to tackle the issues that arise with the classical notion of regular variation in a high dimensional
setting. The idea to replace the self-normalized vector X/|X| by the projected one π(X/t) allows to
better capture the sparsity structure of the extremal dependence. Our main result is the equivalence
between sparse regular variation and regular variation under some mild assumptions.

The benefits of this new way of projecting are multiple. The first one is the sparser structure of the
new angular vector Z compared to the one of Θ. Besides, contrary to the classical regular variation’s
framework, the sparsity of Z can be directly captured by studying π(X/t), as stated in Proposition
3. This means that the projection π manages to circumvent to issue of the weak convergence in the
definition of regularly random vectors. Finally, the results of Propostion 1 and Theorem 1 state that
under some assumptions, there is a bijection between the spectral vector Θ and the new angular vector
Z.

Practically speaking, the advantages of using the projection π are twofold. Firstly, the euclidean
projection onto the simplex does not introduce any parameter to estimate. In Goix et al. (2017) for
instance, the introduction of ǫ-thickened rectangles leads to the choice of the optimal parameter ǫ. The
same issue arises in Chiapino and Sabourin (2016) with the choice of κmin. The only choice that has to
be made in our case is the parameter t. At the best of our knowledge, choosing the best threshold t in
EVT is an issue that has not been completely overcome yet. Secondly, the algorithm which computes
the projection π takes linear time. Hence, the study of extreme events with π can be done in high
dimensions.

Finally, we know by Corollary 1 that the directions on which Θ and Z put mass are the same.
Hence, in order to study Θ, it is possible to study Z, and this can be done through the study of π(X/t)
(see Proposition 3). Analyzing the projected vector π(X/t) often highlights a sparse structure and then
leads to dimension reduction. In particular, asymptotic independence can be infered with Z, and thus
with π(X/t). The future work is thus to build a statistical method based on the projection π to study
the angular vector Z. Starting from a sample X1, . . . ,Xn, this method should identify the directions
on which the spectral measure puts mass, that is, the directions where extreme events occur.

6 Proofs

Proof of Lemma 1. Let ǫ > 0, let x,y ∈ Rd
+ such that |x−y| ≤ ǫ

d+1 . We have the following inequalities:

|π(x)− π(y)| = |(x− λx)+ − (y − λy)+| ≤ |(x− λx)− (y − λy)| ≤ |x− y|+ d|λy − λx| , (6.1)

where the second inequality is a consequence of the inequality |a+ − b+| ≤ |a− b| for a,b ∈ Rd.
The goal is now to control the quantity |λy − λx|. Without loss of generality, we may assume that

λx ≤ λy. Then, by definition of λx and λy, we have
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|(y − λy)+| = 1 = |(x− λx)+| =
d∑

i=1

(xi − λx)1{xi>λx}

=
d∑

i=1

(xi − λy + λy − λx)1{xi>λx}

=

d∑

i=1

(xi − λy)1{xi>λx} +

d∑

i=1

(λy − λx)1{xi>λx} ,

(6.2)

As |(x− λx)+| = 1, at least one i satisfies xi ≥ λx, so

d∑

i=1

(λy − λx)1{xi>λx} ≥ λy − λx .

Besides, 1{xi>λx} ≥ 1{xi>λy}, since we assumed λx ≤ λy. Using Equation (6.2), we then deduce that

|(y − λy)+| ≥
d∑

i=1

(xi − λy)1{xi>λy} + (λy − λx) = |(x− λy)+|+ (λy − λx) ,

which means that
(λy − λx) ≤ |(y − λy)+| − |(x− λy)+| .

We use again the inequality |a+ − b+| ≤ |a− b| for a,b ∈ Rd, and obtain

(λy − λx) ≤ |(y − λy)+| − |(x− λy)+| ≤ |(y − λy)+ − (x− λy)+| ≤ |(y − λy)− (x− λy)| = |y − x| .

Finaly, inequality (6.1) gives

|π(x) − π(y)| ≤ |x− y|+ d|λx − λy| ≤ |x− y|+ d|x− y| ≤ (d+ 1)
ǫ

d+ 1
= ǫ ,

which proves the continuity of π.

Proof of Lemma 2. We use the relation πz(v) = zπ(v/z) to simplify the problem:

∀ 0 < z ≤ z′, ∀v ∈ Rd
+, πz(πz′(v)) = πz(v)

⇐⇒ ∀ 0 < z ≤ z′, ∀v ∈ Rd
+, zπ(z

−1πz′(v)) = zπ(v/z)

⇐⇒ ∀ 0 < z ≤ z′, ∀v ∈ Rd
+, π(z

′z−1π(v/z′)) = π(v/z)

⇐⇒ ∀ a ≥ 1, ∀u ∈ Rd
+, π(aπ(u)) = π(au) .

So we need to prove this last equality. Let a ≥ 1 and u ∈ Rd
+. We divide the proof into three steps.

Recall that an expression of ρ is given in (2.7).

STEP 1: We prove that ρau ≤ ρu.
Fix j ∈ {1, . . . , d} such that π(au)j > 0. This means that

auj −
1

j

( j
∑

r=1

au(r) − 1

)

> 0 .

Thus,

uj −
1

j

j
∑

r=1

u(r) +
1

ja
> 0 .
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Since a ≥ 1, we obtain

uj −
1

j

j
∑

r=1

u(r) +
1

j
> 0 ,

which means that π(u)j > 0. This gives ρau ≤ ρu.

STEP 2: We prove that ρaπ(u) = ρau.
We recall that the definition of π(u) is given by π(u)k = (uk − λu) for 1 ≤ k ≤ ρu and π(u)k = 0

for k > ρu.
- We first prove that ρau ≤ ρaπ(u). Fix j ∈ {1, . . . , d} such that π(au)j > 0. Then

auj −
1

j

( j
∑

r=1

au(r) − 1

)

> 0 .

Since π(au)j > 0, we have j ≤ ρau, and with STEP 1 we obtain j ≤ ρau ≤ ρu. So for all r ≤ j ≤ ρu,
π(u)r = (ur − λu). Thus,

a(π(u)j − λu)−
1

j

( j
∑

r=1

a(π(u)(r) − λu)− 1

)

> 0 ,

which gives

aπ(u)j −
1

j

( j
∑

r=1

aπ(u)(r) − 1

)

> 0 .

This means that π(aπ(u))j > 0. Hence, ρau ≤ ρaπ(u).
- We now prove that ρaπ(u) ≤ ρau. Fix j ∈ {1, . . . , d} such that π(au)j = 0. Then

auj −
1

j

( j
∑

r=1

au(r) − 1

)

≤ 0 .

If j ≤ ρu, then for all r ≤ j, ur = π(u)r + λu, so that

a(π(u)j + λu)−
1

j

( j
∑

r=1

a(π(u)(r) + λu)− 1

)

≤ 0 ,

and finally

aπ(u)j −
1

j

( j
∑

r=1

aπ(u)(r) − 1

)

≤ 0 ,

which means that π(aπ(u))j = 0.
If j > ρu, then π(u)j = 0, so aπ(u)j = 0, and finally π(aπ(u))j = 0. Hence, ρaπ(u) ≤ ρau.
All in all, we proved that if j ∈ {1, . . . , d}, then π(au)j > 0 if and only if π(aπ(u))j > 0, which

concludes STEP 2.

STEP 3: We prove that π(au) = π(aπ(u)).
With STEP 2, we know that ρ := ρaπ(u) = ρau. This proves that for j > ρ, π(au)j and π(aπ(u))j

are both null. Moreover, by definition of the projection π, if j ≤ ρ,

π(au)j = auj −
1

ρ

( ρ
∑

r=1

au(r) − 1

)

.

17



Since ρ ≤ ρu (with STEP 1), we use that for all r ≤ ρ, π(u)(r) = u(r) − λu. Thus, we obtain

π(au) = a(π(u)j − λu)−
1

ρ

( ρ
∑

r=1

a(π(u)(r) − λu)− 1

)

= auj −
1

ρ

( ρ
∑

r=1

au(r) − 1

)

= π(aπ(u))j ,

which concludes the proof.

Proof of Lemma 3. Let v ∈ Rd
+. We sort v in µ such that µ1 ≥ . . . ≥ µd. Firstly, note that if two

coordinates of v are equal, then the corresponding coordinates of π(v) are equal too. Thus, they are
both null or both positive. So the way these two coordinates are ordered in µ does not matter.

Let us prove the equivalence (2.8). For i ∈ I, let j ∈ {1, . . . , d} such that µj = vi, and let
J ⊂ {1, . . . , d} be the subset of such j. By definition of ρv (see Remark 1), the projected vector π(v)
satisfies π(v)I = 0 if and only if for all j ∈ J , j > ρv, which means that for all j ∈ J ,

µj −
1

j

( j
∑

k=1

µk − 1

)

≤ 0 . (6.3)

Note that j =
∑d

k=1 1vk≥vi and
∑j

k=1 µk =
∑d

k=1 vk1vk≥vi , so that condition (6.3) can be rephrased as

vi −
1

∑d
k=1 1vk≥vi

( d∑

k=1

vk1vk≥vi − 1

)

≤ 0 .

This inequality is equivalent to

1 ≤
d∑

k=1

(vk − vi)+ ,

which proves (2.8).
For (2.9), set r = |Ic| ≥ 1 (note that Ic = ∅ is not possible). Then, the conditions π(v)I = 0 and

π(v)Ic > 0 imply that ρv = r. Thus, we obtain

∀i ∈ Ic, vi = π(v)i +
1

r

(
∑

j∈Ic

vj − 1

)

and ∀i ∈ I, vi ≤
1

r

(
∑

j∈Ic

vj − 1

)

.

On the one hand, since π(v)i > 0 for i ∈ Ic, the first equality is equivalent to

max
i∈Ic

∑

j∈Ic

(vj − vi) < 1 .

On the other hand, the second equality is equivalent to

min
i∈I

∑

j∈Ic

(vj − vi) ≥ 1 .

Proof of Proposition 1. Fix x ∈ B(0, 1) ∩Rd
+, with xj 6= 1/d for all j = 1, . . . , d. We use (2.10) to write

GZ(x) = P(Z > x) = P(π(YΘ) > x) =

∫ ∞

1
P(yΘ− (y − 1)/d > x) d(−y−α) .
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Set J+ = {j, xj > 1/d} and J− = {j, xj < 1/d}. Then, for j ∈ J+, the condition yΘj − (y − 1)/d > xj
becomes [(Θj − 1/d)/(xj − 1/d)]+ > 1/y. Similarly, for j ∈ J−, the condition yΘj − (y − 1)/d > xj
becomes [(Θj − 1/d)/(xj − 1/d)]+ < 1/y. So we can rewrite the previous integral as

GZ(x) =

∫ ∞

1
P

({

∀j ∈ J+, y
−α <

(
Θj − 1/d

xj − 1/d

)α

+

}

∩

{

∀j ∈ J−, y
−α >

(
Θj − 1/d

xj − 1/d

)α

+

})

d(−y−α) .

Thus, by the change of variable u = y−α, we obtain

GZ(x) =

∫ 1

0
P

({

∀j ∈ J+, u <

(
Θj − 1/d

xj − 1/d

)α

+

}

∩

{

∀j ∈ J−, u >

(
Θj − 1/d

xj − 1/d

)α

+

})

du

=

∫ 1

0
P

(

max
j∈J−

(
Θj − 1/d

xj − 1/d

)α

+

< u < min
j∈J+

(
Θj − 1/d

xj − 1/d

)α

+

)

du

= E

[(

1 ∧ min
j∈J+

(
Θj − 1/d

xj − 1/d

)α

+

−max
j∈J−

(
Θj − 1/d

xj − 1/d

)α

+

)

+

]

.

Proof of Proposition 2. We fix I ⊂ {1, . . . , d} and use Lemma 3. The probability that ZI is null is equal
to

P(ZI = 0) = P

(

1 ≤ min
j∈I

d∑

k=1

(YΘk − YΘj)+

)

= P

(

Y −α ≤ min
j∈I

( d∑

k=1

(Θk −Θj)+

)α
)

=

∫ 1

0
P

(

u ≤ min
j∈I

( d∑

k=1

(Θk −Θj)+

)α
)

du

= E

[

min
j∈I

( d∑

k=1

(Θk −Θj)+

)α
]

,

which proves (3.8).
For Equation (3.9), set Ic = {i1, . . . , ir} ⊂ {1, . . . , d}. We use Lemma 3, so that the probability that

Z is concentrated on the r-dimensional subspace Vect(eIc) = Vect(ei1 , . . . , eir ) is equal to

P(ZI = 0,ZIc > 0) = P

(

Y −1 > max
j∈Ic

∑

k∈Ic

(Θk −Θj) ; Y
−1 ≤ min

j∈I

∑

k∈Ic

(Θk −Θj)

)

= P

(

Y −α >
(

max
j∈Ic

∑

k∈Ic

(Θk −Θj)+

)α
; Y −α ≤ min

j∈I

(∑

k∈Ic

(Θk −Θj)+

)α
)

=

∫ 1

0
P

(

max
j∈Ic

(∑

k∈Ic

(Θk −Θj)+

)α
< u ≤ min

j∈I

(∑

k∈I

(Θk −Θj)+

)α
)

du

= E

[(

min
j∈I

(∑

k∈I

(Θk −Θj)+

)α
−max

j∈Ic

(∑

k∈I

(Θk −Θj)+

)α
)

+

]

.

This concludes the proof of the proposition.
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Proof of Proposition 3. For I ⊂ {1, . . . , d}, set BI = {x ∈ Rd
+, xI = 0}. We want to show that

P(π(X/t) ∈ BI | |X| > t)→ P(Z ∈ BI).
We know that

P(Z ∈ BI) = P(π(YΘ)I = 0) = P

(

∀i ∈ I, Y −1 ≤
d∑

k=1

(Θk −Θi)+

)

= P((Y,Θ) ∈ DI) ,

where DI = {(r, θ) ∈ (1,∞) × Sd−1
+ , ∀i ∈ I, r−1 ≤

∑d
k=1(θk − θi)+}. This means that we need to show

that P((|X|/t,X/|X|) ∈ DI | |X| > t)→ P((Y,Θ) ∈ DI). This convergence holds if P((Y,Θ) ∈ ∂DI) =
0. Since

∂DI = ∂
{⋂

i∈I

Di

}

⊂
⋃

i∈I

∂Di =
⋃

i∈I

{

r−1 =
d∑

k=1

(θk − θi)+

}

,

we have P((Y,Θ) ∈ ∂DI) ≤
∑

i∈I P(Y
−1 =

∑d
k=1(Θk − Θi)+) = 0, since Y is a continuous random

variable independent of Θ. This gives the desired result.

Proof of Proposition 4. Fix r ≥ 1 and A ∈ B(Sd−1
+ ). For t > 0, the following sequence of equalities

holds:

P

(

π

(
X

t

)

∈ A,
|X|

t
> r

∣
∣
∣
∣
|X| > t

)

= P

(

π

(
X

t

)

∈ A,
|X|

t
> r

)
1

P(|X| > t)

= P

(

π

(
X

t

)

∈ A

∣
∣
∣
∣

|X|

t
> r

)
P(|X| > tr)

P(|X| > t)

= P

(

π

(

r
X

tr

)

∈ A

∣
∣
∣
∣

|X|

t
> r

)

P(|X| > tr | |X| > t)

= P

(

rπ1/r

(
X

tr

)

∈ A

∣
∣
∣
∣
|X| > tr

)

P(|X| > tr | |X| > t)

= P

(

rπ1/r

(

π

(
X

tr

))

∈ A

∣
∣
∣
∣
|X| > tr

)

P(|X| > tr | |X| > t) ,

where last equality results from Lemma 2. Now, when t → ∞, assumption (4.1) and the continuity of
π1/r and π give

P(Z ∈ A, Y > r) = P
(
rπ1/r (Z) ∈ A

)
P(Y > r) .

Finally, we conclude the proof with Lemma 2:

P(Z ∈ A | Y > r) = P(π(rZ) ∈ A) .

Proof of Lemma 4. We first prove that 1 implies 2: assume that X is regularly varying with index α.
Then |X| is regularly varying with the same index. Denote by Θ the spectral vector of X and consider
a random variable Y which follows a Pareto(α) distribution and is independent of Θ. For A ∈ B(Sd−1

+ )
such that P(Θ ∈ ∂A) = 0, and ǫ > 0, we have

ǫ−1 lim
t→∞

P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

= ǫ−1P(Y ∈ (1, 1 + ǫ],Θ ∈ A)

= ǫ−1P(Y ≤ 1 + ǫ)P(Θ ∈ A)

= ǫ−1(1− (1 + ǫ)−α)P(Θ ∈ A) .

This last quantity converges to αP(Θ ∈ A) when ǫ → 0, which proves that X satisfies (4.3) and (4.4)
with l(·) = αP(Θ ∈ ·).
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We now prove that 2 implies 1. Fix ǫ > 0, u > 1, and A ∈ B(Sd−1
+ ) such that l(∂A) = 0. Denote by

l+ǫ (A) the limsup in (4.3) when t → ∞, and by l−ǫ (A) the liminf in (4.4) when t → ∞. For u ≥ 1, we
decompose the interval (u,∞) as follows:

(u,∞) =

∞⊔

k=0

(
u(1 + ǫ)k, u(1 + ǫ)k+1

]
.

Then for t > 0,

P

(
|X|

t
> u,

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

=

∞∑

k=0

P

(
|X|

tu(1 + ǫ)k
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

=
∞∑

k=0

P
(

|X|
tu(1+ǫ)k

∈ (1, 1 + ǫ], X
|X| ∈ A

)

P(|X| > t)

= ǫ

∞∑

k=0

ǫ−1P

(
|X|

tu(1 + ǫ)k
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣

|X|

u(1 + ǫ)k
> t

) P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)
.

Since |X| is regularly varying with tail index α, the limit of the right part of the sum can be computed
as follows:

P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)
= P

(

|X| > tu(1 + ǫ)k | |X| > t
)

→
(
u(1 + ǫ)k

)−α
, t→∞ . (6.4)

Besides, we know by (4.3) that

lim inf
t→∞

ǫ−1P

(
|X|

tu(1 + ǫ)k
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣

|X|

u(1 + ǫ)k
> t

)

= l−ǫ (A) . (6.5)

We now gather (6.4) and (6.5) and use Fatou’s lemma to conclude:

lim inf
t→∞

P

(
|X|

t
> u,

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

≥ ǫ

∞∑

k=0

lim inf
t→∞

ǫ−1P

(
|X|

tu(1 + ǫ)k
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣

|X|

u(1 + ǫ)k
> t

) P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)

= ǫ

∞∑

k=0

l−ǫ (A)
(
u(1 + ǫ)k

)−α

= u−αl−ǫ (A)
ǫ

1− (1 + ǫ)−α
,

and this last quantity converges to u−αl(A)α−1 when ǫ→ 0.
In the same way, we know by (4.4) that

lim sup
t→∞

ǫ−1P

(
|X|

tu(1 + ǫ)k
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣

|X|

u(1 + ǫ)k
> t

)

= l+ǫ (A) . (6.6)
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Thus, Equations (6.4) and (6.6) and Fatou’s lemma allow to write

lim sup
t→∞

P

(
|X|

t
> u,

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

≤ ǫ

∞∑

k=0

lim sup
t→∞

ǫ−1P

(
|X|

tu(1 + ǫ)k
∈ (1, 1 + ǫ],

X

|X|
∈ A

∣
∣
∣
∣

|X|

u(1 + ǫ)k
> t

) P
(

|X|
u(1+ǫ)k

> t
)

P(|X| > t)

= ǫ

∞∑

k=0

l+ǫ (A)
(
u(1 + ǫ)k

)−α

= u−αl+ǫ (A)
ǫ

1− (1 + ǫ)−α
,

and this last quantity converges to u−αl(A)α−1 when ǫ→ 0.
This proves that

P

(
|X|

t
> u,

X

|X|
∈ A

∣
∣
∣
∣
|X| > t

)

→ u−αl(A)α−1, t→∞ ,

for all u > 1 and all A ∈ B(Sd−1
+ ) such that l(∂A) = 0. Thus, the random vector X is regularly varying

with tail index α and spectral vector Θ defined by P(Θ ∈ ·) = α−1l(·).

Proof of Theorem 1. The proof is based on Lemma 4. Firstly, note that if (4.1) holds, then |X| is
regularly varying with tail index α. Hence, the main part of the proof is to show that convergences
(4.3) and (4.4) hold for all A = Ax, x ∈ Z, where the Ax are defined in (3.4). We divide our proof into
two steps.

Before dealing with these two steps, we make a brief remark which will be of constant use. For ǫ > 0
and x > 0, we have the following equivalence:

π((1 + ǫ)Z) > x ⇐⇒ Z >
x+ ǫ/d

1 + ǫ
. (6.7)

This is a consequence of Equation (2.10) and the fact that Z belongs to the simplex.

Let us move to the proof. We fix x ∈ Z and ǫ > 0. The first step consists in proving that

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ], π

(
X

t

)

∈ Ax

∣
∣
∣
∣
|X| > t

)

converges when t→∞, ǫ→ 0. By (4.1) and assumption (A2), we know that this quantity converges to
ǫ−1P(Y ∈ (1, 1 + ǫ], Z ∈ Ax) when t→∞. Then, Proposition 4 gives

P(Y ∈ (1, 1 + ǫ],Z ∈ Ax) = P(Z ∈ Ax)− P(Z ∈ Ax | Y > 1 + ǫ)P(Y > 1 + ǫ)

= P(Z ∈ Ax)− P(π((1 + ǫ)Z) ∈ Ax)(1 + ǫ)−α

=
[
1− (1 + ǫ)−α

]
P(Z ∈ Ax) + [P(Z ∈ Ax)− P(π((1 + ǫ)Z) ∈ Ax)] (1 + ǫ)−α .

(6.8)
The first term converges to αP(Z ∈ Ax) when ǫ→ 0. We use (6.7) to compute the second term:

P(Z ∈ Ax)− P(π((1 + ǫ)Z) ∈ Ax) = P(Z > x)− P

(

Z >
x+ ǫ/d

1 + ǫ

)

= GZ(x)−GZ

(

x+
ǫ

1 + ǫ
(1/d− x)

)

.
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Since x is a differentiability point of GZ, we obtain

ǫ−1P(Y ∈ (1, 1 + ǫ], Z ∈ Ax) = αP(Z ∈ Ax) +
1

1 + ǫ
dGZ(x)(x− 1/d) + o(1) ,

when ǫ→ 0. This means that

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ], π

(
X

t

)

∈ Ax

∣
∣
∣
∣
|X| > t

)

converges to αP(Z ∈ Ax) + dGZ(x)(x − 1/d) when t→∞, ǫ→ 0.

For the second step, we define

(⋆) := ǫ−1

[

P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ Ax

∣
∣
∣
∣
|X| > t

)

− P

(
|X|

t
∈ (1, 1 + ǫ], π

(
X

t

)

∈ Ax

∣
∣
∣
∣
|X| > t

)]

,

and the goal is to prove that limǫ→0 lim supt→∞(⋆) = limǫ→0 lim inft→∞(⋆) = 0.
We first deal with the lim sup. Assume that |X|/t ∈ (1, 1 + ǫ]. Then (|X|/t − 1 − ǫ)/d ≤ 0.

Thus, if xj < Xj/|X|, then xj + (|X|/t − 1 − ǫ)/d < Xj/|X| < Xj/t. This implies that xj − ǫ/d <
Xj/|X| − (|X|/t − 1)/d. The left member is positive for ǫ > 0 small enough, so we proved that if
xj < Xj/|X|, then xj − ǫ/d < π(X/t).

These considerations imply that

(⋆) ≤ ǫ−1

[

P

(
|X|

t
∈ (1, 1 + ǫ], π

(
X

t

)

∈ Ax−ǫ/d

∣
∣
∣
∣
|X| > t

)

− P

(
|X|

t
∈ (1, 1 + ǫ], π

(
X

t

)

∈ Ax

∣
∣
∣
∣
|X| > t

)]

,

and thus

lim sup
t→∞

(⋆) ≤ ǫ−1[P
(
Y ∈ (1, 1 + ǫ],Z ∈ Ax−ǫ/d

)

︸ ︷︷ ︸

(1)

−P (Y ∈ (1, 1 + ǫ],Z ∈ Ax)
︸ ︷︷ ︸

(2)

] =: f+(ǫ) .

We use Proposition 4 and Equation (6.7) to compute (1) and (2). For (1), we have the following
equalities:

P(Y ∈ (1, 1 + ǫ],Z ∈ Ax−ǫ/d) = P(Z ∈ Ax−ǫ/d)− P(Z ∈ Ax−ǫ/d | Y > 1 + ǫ)P(Y > 1 + ǫ)

= P(Z > x− ǫ/d)− P(π((1 + ǫ)Z) > x− ǫ/d)(1 + ǫ)−α

= P(Z > x− ǫ/d)− P(Z > x/(1 + ǫ))(1 + ǫ)−α

= GZ(x− ǫ/d)[1 − (1 + ǫ)−α] + [GZ(x− ǫ/d)−GZ(x− ǫx/(1 + ǫ))](1 + ǫ)−α .

The first term is equal to G(x)αǫ + o(ǫ) when ǫ→ 0, whereas the second one is equal to

GZ(x−ǫ/d)−GZ(x)+GZ(x)−GZ(x−ǫx/(1+ǫ)) = dGZ(x)(−ǫ/d)−dGZ(x)(−ǫx/(d(1+ǫ)))+o(ǫ), ǫ→ 0 .

This proves that ǫ−1(1) converges to αG(x) + dG(x)(x− 1/d) when ǫ→ 0. For (2), we refer to (6.8) in
which we proved that ǫ−1(2) converges to αG(x) + dG(x)(x − 1/d) when ǫ → 0. All in all we proved
that f+(ǫ)→ 0, when ǫ→ 0.

We similarly proceed for the lim inf. Assume that |X|/t ∈ (1, 1+ǫ]. Thus, if π(X/t)j > xj(1+ǫ), then
Xj/t− (|X|/t− 1)/d > xj(1 + ǫ), and therefore Xj/t > xj(1 + ǫ). Finally we obtain that Xj/|X| > xj.
So we proved that if π(X/t)j > xj(1 + ǫ), then Xj/|X| > xj . These considerations give the following
inequality:

(⋆) ≥ ǫ−1

[

P

(
|X|

t
∈ (1, 1 + ǫ), π

(
X

t

)

∈ A(1+ǫ)x

∣
∣
∣
∣
|X| > t

)

− P

(
|X|

t
∈ (1, 1 + ǫ), π

(
X

t

)

∈ Ax

∣
∣
∣
∣
|X| > t

)]

,
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and thus

lim inf
t→∞

(⋆) ≥ ǫ−1[P
(
Y ∈ (1, 1 + ǫ),Z ∈ A(1+ǫ)x

)

︸ ︷︷ ︸

(1′)

−P (Y ∈ (1, 1 + ǫ),Z ∈ Ax)
︸ ︷︷ ︸

(2′)

] = f−(ǫ) .

We use again Proposition 4 and Equation (6.7) to compute (1′):

P(Y ∈ (1, 1 + ǫ],Z ∈ Ax−ǫ/d) = P(Z ∈ A(1+ǫ)x)− P(Z ∈ A(1+ǫ)x | Y > 1 + ǫ)P(Y > 1 + ǫ)

= P(Z > (1 + ǫ)x)− P(π((1 + ǫ)Z) > (1 + ǫ)x)(1 + ǫ)−α

= P(Z > (1 + ǫ)x)− P(Z > x+ ǫ/((1 + ǫ)d))(1 + ǫ)−α

= GZ((1 + ǫ)x)[1 − (1 + ǫ)−α] + [GZ((1 + ǫ)x)−GZ(x+ ǫ/(d(1 + ǫ)))](1 + ǫ)−α

= GZ((1 + ǫ)x)αǫ + [dGZ(x)(ǫ(x − 1/d)/(1 + ǫ))] + o(ǫ), ǫ→ 0 .

The first term is equal to GZ(x)αǫ + o(ǫ), when ǫ→ 0, whereas the second one is equal to

GZ((1 + ǫ)x)−GZ(x) +GZ(x)−GZ(x+ ǫ/(d(1 + ǫ))) = dGZ(x)(ǫ(x − 1/d)) + o(ǫ), ǫ→ 0 .

This proves that ǫ−1(1′) converges to αGZ(x) + dGZ(x)(x− 1/d) when ǫ→ 0. Note that (2′) = (2), so
that ǫ−1(2′) converges to αGZ(x) + dGZ(x)(x− 1/d) when ǫ→ 0. All in all we proved that f−(ǫ)→ 0,
when ǫ→ 0.

Gathering all these results together, we can write

f−(ǫ) ≤ lim inf
t→∞

(⋆) ≤ lim sup
t→∞

(⋆) ≤ f+(ǫ) .

Since f−(ǫ) and f+(ǫ) converge to 0 as ǫ→ 0, we proved that limǫ→0 lim inft→∞(⋆) = limǫ→0 lim supt→∞(⋆) =
0.

To conclude the proof, we write

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ Ax

∣
∣
∣
∣
|X| > t

)

= (⋆) + ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ], π

(
X

t

)

∈ Ax

∣
∣
∣
∣
|X| > t

)

,

and both steps lead to

lim
ǫ→0

lim inf
t→∞

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ Ax

∣
∣
∣
∣
|X| > t

)

= αGZ(x) + dGZ(x)(x − 1/d) ,

and

lim
ǫ→0

lim sup
t→∞

ǫ−1P

(
|X|

t
∈ (1, 1 + ǫ],

X

|X|
∈ Ax

∣
∣
∣
∣
|X| > t

)

= αGZ(x) + dGZ(x)(x − 1/d) .

Since |X| is regularly varying with tail index α, we apply Lemma 4 to conclude that X is regularly varying
with tail index α and with spectral vector Θ satisfying P(Θ ∈ Ax) = P(Z ∈ Ax)+α−1dGZ(x)(x−1/d).
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