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The heritable endosymbiont Spiroplasma infects many insects and has repeatedly evolved the ability to protect its hosts against

different parasites. Defenses do not come for free to the host, and theory predicts that more costly symbionts need to provide

stronger benefits to persist in host populations. We investigated the costs and benefits of Spiroplasma infections in pea aphids

(Acyrthosiphon pisum), testing 12 bacterial strains from three different clades. Virtually all strains decreased aphid lifespan and

reproduction, but only two had a (weak) protective effect against the parasitoid Aphidius ervi, an important natural enemy of

pea aphids. Spiroplasma-induced fitness costs were variable, with strains from the most slowly evolving clade reaching higher

titers and curtailing aphid lifespan more strongly than other strains. Some Spiroplasma strains shared their host with a second

endosymbiont, Regiella insecticola. Although the result of an unfortunate handling error, these co-infections proved instructive,

because they showed that the cost of infection with Spiroplasma may be attenuated in the presence of Regiella. These results

suggest that mechanisms other than protection against A. ervi maintain pea aphid infections with diverse strains of Spiroplasma,

and that studying them in isolation will not provide a complete picture of their effects on host fitness.
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Introduction
Microbial endosymbionts of eukaryotes are ubiquitous, and have

often become heritable through the evolution of mother-to-

offspring transmission. Large-scale screens for symbionts like

Wolbachia or Cardinium suggest that the majority of arthropod

species are likely to carry heritable infections with endosymbionts

(Zchori-Fein and Perlman 2004; Hilgenboecker et al. 2008). Mi-

crobial symbionts may provide their hosts with essential nutrients,

especially in species with very imbalanced diets such as blood

feeders like the tsetse fly (Chen et al. 1999) or phloem feeders like

aphids (Douglas 1998). Some of these symbioses are ancient and

have evolved to the point that the host is unable to survive without

its bacterial partner, which is referred to as an obligate symbiont

(Wernegreen 2002; Moran et al. 2008). Other endosymbionts are

facultative associates for the host and not strictly required for

host survival. These are referred to as secondary symbionts. A

single arthropod species can host multiple species of secondary

symbionts, but each symbiont typically infects only a part of the

host population (e.g., Chiel et al. 2007; Ferrari et al. 2012). Ad-

ditional variation may be present within symbionts. A secondary

symbiont species infecting a particular host species often com-

prises multiple distinguishable strains (Raychoudhury et al. 2009;

Ferrari et al. 2012; Russell et al. 2013). Explaining the evolution-

ary persistence and the high diversity of secondary symbionts in

host populations requires an understanding of how different sym-

bionts counterbalance the costs they impose on their host (Heath

and Stinchcombe 2014).

One way for maternally transmitted symbionts to spread in a

host population is to manipulate the host’s reproduction in a way

that favors symbiont transmission. Reproductive manipulation has



evolved repeatedly in endosymbiotic bacteria like Wolbachia, Ar-

senophonus, Cardinium, Rickettsia, or Spiroplasma (Duron et al.

2008). It can act via the induction of cytoplasmic incompatibility,

male-killing, parthenogenesis, or the feminization of genetically

male offspring (Werren et al. 2008).

In addition to reproductive manipulation, heritable symbionts

can spread if they provide their host with an evolutionary benefit.

This strategy is not mutually exclusive with reproductive manipu-

lation. An important class of evolutionary benefits that has evolved

repeatedly is protection against natural enemies, that is, defen-

sive symbiosis (Oliver and Moran 2009; McLean 2019). Multiple

species of secondary symbionts increase the resistance of aphids

against parasitoid wasps and pathogenic fungi (Oliver et al. 2003;

Scarborough et al. 2005; Vorburger et al. 2010; Łukasik et al.

2013), certain strains of Spiroplasma can protect flies against par-

asitoid wasps or parasitic nematodes (Jaenike et al. 2010; Xie et al.

2010; Paredes et al. 2016), and Wolbachia can reduce viral infec-

tion in flies and other insects (Hedges et al. 2008; Teixeira et al.

2008; Bian et al. 2010). So why do these seemingly beneficial

symbionts not go to fixation in host populations?

Most general explanations assume trade-offs between the

benefits provided by the symbiont and the costs associated with

its possession, acting in combination with environmental hetero-

geneity. For example, the secondary symbiont Hamiltonella de-

fensa (Moran and Russell 2005) can protect different aphid species

against parasitism (Oliver et al. 2003; Schmid et al. 2012; Asplen

et al. 2014), but H. defensa is selected against in the absence of

parasitoids (Oliver et al. 2008), possibly because of the reduc-

tions in host lifespan and lifetime reproduction or in nymphal

growth it induces (Vorburger and Gouskov 2011; Leybourne et al.

2018). Temporal and spatial variation in the risk of parasitism

may thus maintain coexistence between infected and uninfected

hosts. Similarly, species and strain diversity may partly be ex-

plained by unequal effects against different natural enemies. For

H. defensa, several studies have shown that protection of aphids

against parasitoid wasps can be highly specific (reviewed in Vor-

burger 2014). A given strain of H. defensa can provide effective

protection against some parasitoid species but not against others

(Asplen et al. 2014; Cayetano and Vorburger 2014; McLean and

Godfray, 2015, 2017; Martinez et al. 2016), and this specificity

can even extend to interactions within species. In black bean

aphids (Aphis fabae), particular isolates of H. defensa protect

strongly against some parasitoid genotypes but not or only weakly

against other parasitoid genotypes, leading to strong genotype-

by-genotype interactions between parasitoids and the hosts’ de-

fensive symbionts (Schmid et al. 2012; Cayetano and Vorburger

2013; Vorburger and Rouchet 2016). Similar genotype-specificity

is observed in the interaction between the fungal pathogen Pan-

dora neoaphidis and the secondary symbiont Regiella insecti-

cola, which protects pea aphids (Acyrthosiphon pisum) against

fungal infection (Parker et al. 2017). Variation in the local par-

asitoid and pathogen community may thus select for different

secondary symbionts, and genotype-by-genotype specificity may

further maintain strain variation via negative frequency-dependent

selection (Kwiatkowski et al. 2012; Heath and Stinchcombe

2014).

A promising system to investigate the evolutionary main-

tenance of symbiont strain diversity are bacteria of the genus

Spiroplasma. These helical, cell wall-less bacteria belong to

the class Mollicutes within the phylum Firmicutes (Gasparich

et al. 2004). Spiroplasma bacteria are generally associated with

arthropods, but they differ widely in their modes of transmission

and their phenotypic effects on the hosts. Some are virulent,

horizontally transmitted pathogens of insects and crustaceans

that cause problems in apiculture and aquaculture (Clark et al.

1985; Wang et al. 2005), some are damaging plant pathogens that

are vectored by phloem-feeding insects (Bové et al. 2003), and

many are vertically transmitted endosymbionts (Williamson et al.

1998; Watts et al. 2009). It is estimated that between 5% and 10%

of insects carry heritable infections with Spiroplasma (Duron

et al. 2008). Similar to other heritable endosymbionts, some

Spiroplasma have evolved the ability to defend their hosts against

other infections (Ballinger and Perlman 2018). For example, the

male killing strain MSRO of S. poulsonii protects Drosophila

melanogaster against parasitoid wasps (Xie et al. 2014; Paredes

et al. 2016), illustrating that reproductive manipulation and

protection are not mutually exclusive strategies of symbionts to

spread in host populations. In the fungus-feeding D. neotestacea,

infection with Spiroplasma induces tolerance to the parasitic

nematode Howardula aoronymphium (Jaenike et al. 2010). In

pea aphids, Spiroplasma has been shown to protect against

fungal infections (Łukasik et al. 2013a), and there is evidence for

male-killing by at least one strain (Simon et al. 2011).

Spiroplasma infecting European pea aphids are subdivided

into at least three clades that are similarly abundant in aphids feed-

ing on different host plants, but share their hosts with different

symbiont communities and have a different rate of molecular evo-

lution, suggesting their maintenance in pea aphids might rely on

different eco-evolutionary strategies (Mathé-Hubert et al. 2018).

Here, we provide insights in the ecology and evolution of these

three clades. We investigate if protection against the pea aphid’s

main parasitoid Aphidius ervi might contribute to the evolutionary

persistence of Spiroplasma in this species. Twelve Spiroplasma

strains, evenly spread across the three clades, were tested for their

ability to protect against three different lines of the parasitoid A.

ervi, and we estimated Spiroplasma density in 10- and 20-day-

old aphids, as well as Spiroplasma’s effects on aphid fitness in

the absence of parasitoids. Although two of the 12 Spiroplasma

strains reduced aphid parasitism by at least one of three parasitoid

lines, there was no global effect of Spiroplasma on the parasitism
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Figure 1. Spiroplasma phylogeny. Phylogeny modified from Mathé-Hubert et al. (2018). Strains selected for the phenotyping experiments

are followed by an arrow indicating whether they were transfected into pea aphid clone LSR1 containing R. insecticola (→ LSR1+Ri) or

not (→ LSR1). The clade to which the Spiroplasma strain belongs and the other symbionts with which strains of that clade are typically

associated (+) or not associated (–) is indicated on the right. Values close to the nodes are bootstrap values. The scale bar indicates the

substitution rates.

success. All Spiroplasma strains curtailed aphid lifespan and life-

time reproduction to various extents and the benefit provided by

the two protective Spiroplasma strains is unlikely to counterbal-

ance their cost. This suggests that Spiroplasma infection in pea

aphids is maintained by another mechanism than the protection

against A. ervi. An analysis of phylogenetic signal in the pheno-

typic data further revealed that the most slowly evolving of the

three Spiroplasma clades attains the highest titer in aphids and

reduces aphid lifespan more strongly than the other clades.

Material and Methods
INSECT LINES

To investigate phenotypic effects of Spiroplasma infections, we

used the European field survey and the phylogeny of Spiroplasma

from pea aphids reported in Mathé-Hubert et al. (2018) to select

12 strains that are well spread across the phylogeny (Fig. 1). To

control for the effect of aphid genotype, the selected Spiroplasma

strains were transfected from their original host clones (the

donors) into a common recipient clone called LSR1. This clone

was originally collected in a field of alfalfa (Medicago sativa)

near Ithaca, New York, in 1998 (Caillaud et al. 2002), and its

genome has been sequenced for the pea aphid genome project

(The International Aphid Genomics Consortium 2010). Four

Spiroplasma strains were transfected into LSR1 at the University

of Oxford, U.K., and kindly provided to us by Ailsa McLean.

The remaining transfections were carried out in our laboratory

at Eawag, Switzerland. Before transfection of Spiroplasma with

a microinjection pump (FemtoJet, Eppendorf) as described by

Vorburger et al. (2010), the donor aphids were cured from all other

secondary symbionts by feeding them on a mixture of antibiotics

as described in McLean et al. (2011). For strain S383, this protocol

failed to remove a co-infection with Hamiltonella defensa in the

donor clone. We thus merged the curing and transfection step by

injecting recipients with a small amount of a 20 mg/mL solution

of the antibiotic cefotaxime, using a needle that was immersed

into the donor’s hemolymph prior to injection. This procedure

succeeded in transmitting just Spiroplasma to the recipient clone.

Depending on the strains, the transfections happened between 10

and �150 generations before the experiments.

Although prior to transfections we had reconfirmed the geno-

types and the secondary symbiont infections of the donors and the



recipient clone with microsatellites and diagnostic PCRs, respec-

tively, a handling error must have occurred between these checks

and the actual transfections, such that we used a R. insecticola-

infected sub-line of clone LSR1 (LSR+Ri) as recipient rather than

the sub-line without any secondary symbionts. As a consequence,

seven of the 12 newly transfected sub-lines carried a co-infection

with R. insecticola in addition to the different Spiroplasma strains.

Only sub-line LSR1+S383 (presumably due to the simultaneous

injection of an antibiotic-see above), the four sub-lines provided

by the University of Oxford, and the secondary endosymbiont-

free control did not carry R. insecticola. Figure 1 summarizes the

infection status of each sub-line. That the R. insecticola-infected

sublines indeed belonged to clone LSR1 was confirmed by mi-

crosatellite genotyping, and sequencing of five bacterial genes

(accD, gyrB, murE, recJ, and rpoS; Henry et al. 2013) identified

the co-infecting R. insecticola as a strain previously shown to

provide no protection against A. ervi in pea aphids (Oliver et al.

2003; Hansen et al. 2012). Because we discovered this error only

after all phenotyping experiments had been completed, we had to

account statistically for the presence of R. insecticola during data

analysis (see below).

ACCOUNTING STATISTICALLY FOR CO-INFECTIONS

WITH R. insecticola

For the three experiments described hereafter, we handled the

presence of R. insecticola according to the following logic: We

estimated the average effect of R. insecticola on each trait we

analyzed and then used this estimate as an offset to correct for

its presence in the coinfected sublines. Specifically, we first fit

a “Regiella” model devised to estimate the average effect of R.

insecticola in the presence of a Spiroplasma strain. In addition to

the variables specific to each experiment (described in the corre-

sponding sections), this model contains two dummy variables as

fixed effects describing the presence (1) or absence (0) of Spiro-

plasma and R. insecticola (variables Si and Ri, respectively) and

a random interaction between the aphid subline (SUB) and the

fixed effect S. This random effect follows a normal distribution of

mean zero and standard deviation σ. Mathematically, this gives

Yi = Int + α × Ri + β × Si + Si × SUB

+ ei ; SUB ∼ N (0, σ) (1)

where Yi is the transformed explained variable, ei are the residuals

estimated by the models together with the coefficients of the fixed

effects (α and β) and the standard deviation (σ). Because we used

dummy variables, the intercept of the model (Int) is the mean of

the control sub-line containing neither Spiroplasma nor R. insecti-

cola. The coefficients α and β are the estimated mean effects of R.

insecticola and Spiroplasma, and the random interaction between

the sub-line and S accounts for the heterogeneity induced by the

different Spiroplasma strains. This estimation of the effect of R.

insecticola assumes that on average the Spiroplasma strains that

are alone have the same effect as the Spiroplama strains that are

with R. insecticola. The estimated effects of R. insecticola (coeffi-

cient α in eq. 1) is then used to construct an offset (Hutchinson and

Holtman 2005) for the second “Spiroplasma” model estimating

the effect of each Spiroplasma strain. This offset takes the value α

when R. insecticola is present and 0 when it is absent. The “Spiro-

plasma” model contains the aphid sub-line as a fixed effect. Thus,

for the sub-lines not containing R. insecticola, there is no offset

and each coefficient describes the effect of the sub-line’s Spiro-

plasma strain, and for the sub-lines containing R. insecticola, the

estimated effect of R. insecticola in the presence of Spiroplasma is

absorbed by the offset, and each coefficient describes the effect of

the corresponding Spiroplasma strain plus its eventual interaction

with R. insecticola.

EXPERIMENT 1: EFFECT OF SPIROPLASMA ON A. ervi

PARASITISM

We investigated the effect of the 12 Spiroplasma strains on the

parasitism success of three different lines of the parasitoid wasp

A. ervi (lines “B,” “D,” and “K”). We established the line “D” us-

ing wasps sampled in July 2015 at two sites in southern Germany

during the field survey reported in Mathé-Hubert et al. (2018).

This wasp line has been maintained in the laboratory for approx-

imately 40 generations prior to the experiment. The two other

A. ervi lines “K” and “B” were commercially supplied by the

biocontrol companies Koppert (Berkel en Rodenrijs, the Nether-

lands) and Biobest (Westerlo, Belgium), and were reared in the

laboratory for one and two generations before the experiment, re-

spectively. We used three different lines of parasitoids to increase

our chances of detecting any protective effects of Spiroplasma,

since previous studies on another bacterial endosymbiont, H. de-

fensa, have shown that the protection afforded by the symbiont

can depend on the parasitoid’s genotype (e.g., Schmid et al. 2012;

Cayetano and Vorburger 2013). All wasps were bred on the same

pea aphid clone (lab ID A06-01) that was free of protective en-

dosymbionts and different from the clone used in experiments

(LSR1).

Parasitism success was measured using a factorial design in

which the 13 aphid sub-lines (12 Spiroplasma-infected sub-lines

plus uninfected control) were exposed to all three parasitoid lines

in six randomized complete blocks. To prevent maternal effects

carried over from the aphid stock cultures influencing our results,

each of the 234 replicates (13 aphid sub-lines × 3 wasp lines

× 6 replicates) was reared independently on seedlings of broad

bean (Vicia faba) for one generation before individuals of the

second generation were tested. To start the test generation, five

adults from each replicate were used to obtain age-synchronized

offspring born within 24 h. At the age of 2–3 days, 20 nymphs



per replicate were placed on a new plant and exposed to a

single female wasp (�2 days old) for 5 h. Because a few aphid

nymphs were harmed during the exposure to wasps, the number

of nymphs alive one day after the exposure was recorded. The

proportion of these surviving nymphs that were successfully

parasitized and transformed into mummies (parasitoid pupae

within the dead aphid’s exoskeleton) was recorded 11 days after

exposure to parasitoids. The proportion of mummies from which

adult wasps had emerged successfully (proportion emerged) was

recorded 20 days after exposure. We conducted this experiment

at 22°C under a 16-h photoperiod.

For each of the two variables, proportion mummified and

proportion emerged, we fitted the “Regiella” and “Spiroplasma”

models as described above. Both models additionally contained

the wasp line as a fixed effect as well as its interaction with the

dummy variables “R” and “S” for the model “Regiella” and with

the aphid sub-line for the model “Spiroplasma.” Both models also

contained the random variable “Block.”

If for the “Spiroplasma” model the wasp line × aphid

sub-line interaction was significant, we re-fitted one model per

wasp line to test for overall variation among aphid sub-lines and

to assess the effect of each Spiroplasma strain using a Student’s

t-test. These tests compare each Spiroplasma-infected sub-line

to the uninfected control sub-line by assessing the significance

of the coefficients of the variable “aphid sub-line.” We then used

the package “multcomp” (Hothorn et al. 2008) to assess for each

of the models fitted to one wasp line that Spiroplasma strains had

a significant effect after accounting for multiple testing. When

the wasp line × aphid sub-line interaction was not significant,

we refitted the model without the interaction to test for the effect

of each Spiroplasma strain.

Since the explained variables were proportions, we first fit-

ted them using binomial GLMMs (“lme4” R package; Bates et al.

2014), which were strongly overdispersed. The attempt to miti-

gate overdispersion with the “observation level random effect” ap-

proach (Harrison 2015) resulted in severe underdispersion. Thus,

we fitted LMMs to the logit transformed proportions (Warton

and Hui 2011). To assess the significance of the main effects,

we used the “mixed” function of the “afex” R package (version

0.18) to perform an F-test with the Kenward–Roger approxi-

mation for degrees of freedom (Halekoh and Højsgaard 2014).

All statistical analyses were performed using the software R

(version 3.5.2).

EXPERIMENT 2: FITNESS COST OF SPIROPLASMA

We assessed the fitness cost of Spiroplasma strains by measuring

their effects on several life-history traits of their host using the

surplus of nymphs produced in experiment 1: For three of the six

blocks, each containing three replicates of every aphid sub-line,

we kept all leftover nymphs until they were 6 days old. Then, for

each of the 117 replicates (13 aphid sub-lines × 9 replicates or-

ganized into 3 blocks), we selected two young aphids for the life

table experiment. In 40% of the cases, one of the two aphids de-

veloped wings. They were excluded from the experiment. The 199

wingless aphids were raised individually on broad bean seedlings

until their death. Every week, we moved the aphids to a new

9-day-old plant, and recorded the number of offspring they had

produced on the former plant. We recorded the survival of the

monitored aphids three times a week. The experiment was carried

out at 18°C and under a 16-h photoperiod.

We used the life table data to estimate four fitness-related

life history traits. The first two are lifetime reproduction (total

number of offspring) and lifespan. We also computed the mean

reproductive age of each aphid (age of mother at each birth, av-

eraged across all offspring births). In comparison to the lifetime

reproduction, the mean reproductive age accounts for the fact that

two genotypes with the same lifetime reproduction could have

different fitness if one of them produced its offspring earlier than

the other. The fourth variable was the intrinsic growth rate, that is,

the constant r in the equation describing population growth in an

unlimited environment: Nt = N0 ert . The procedure to calculate

it is described in Birch (1948). This variable combines the infor-

mation of the number of offspring and of the age of the mother

when the offspring are produced.

To each of these four fitness-related variables, we fitted the

‘Regiella’ and ‘Spiroplasma’ models. Both models also included

the random variables block and replicate, the latter accounting for

the non-independence of the two individuals taken from the same

colony of experiment 1. The test procedure for these four variables

is the same as described for experiment 1, except that a box-cox

transformation was used to achieve normality of residuals and

homoscedasticity instead of the logit function. For the survival

data, we used the “coxme” R package (version 2.2-5) to fit a cox

model (Therneau 2015a). For this survival analysis, we checked

the assumption of proportional hazard using the “cox.zph” func-

tion of the package “survival” (Therneau 2015b; version 2.43-3)

and the “survplot” function of the package “rms” (Harrell 2017;

version 5.1-2), with the argument “loglog” set to true. As in ex-

periment 1, this model assessed the overall variation among aphid

sub-lines and compared each Spiroplasma-infected sub-line to the

uninfected control.

EXPERIMENT 3: VARIATION IN SPIROPLASMA

DENSITY

The density of Spiroplasma within its host may influence both

the cost Spiroplasma inflicts on the aphid and the parasitism

by A. ervi. Thus, we measured the density of Spiroplasma in

10- and 20-day-old aphids using quantitative PCR (qPCR). For

each combination of age and strain, we measured five biological

replicates, each consisting of a pool of three aphids that were



reared on a 9-day-old plant, a different plant being used for each

biological replicate. The biological replicates were reared within

a single tray on randomized positions. DNA was extracted using

either the Qiagen “DNeasy 96 Blood & Tissue Kit” (extraction in

plates; N = 104 samples) or the Qiagen “DNeasy Blood & Tissue

Kit” (extraction in tubes; N = 16 samples) after the aphids had

been crushed by shaking them 30 times per second for 40 sec

with two glass marbles of 2 mm Ø on a bead mill (TissueLyser II,

Qiagen). These extractions typically yield approximately 5 μg of

DNA in 200 μL.

For each pool of three aphids, the number of Spiroplasma and

aphid gene copies were estimated using a Roche LightCycler 480

2.0. Each 12.5 μL of qPCR reaction included 6.25 μL of GoTaq R�

qPCR Master Mix, 1.25 μl Dnase free Water, 2.5 μl of DNA tem-

plate and 1.25 μL each of the 4.5 μM forward and reverse primers.

Primers for the Spiroplasma dnaA gene were DnaA F 5�-AAT

GCT TGG ATC ATA ATT TAA AGA C-3� and DnaA R 5�-GTT

TTG AAG AAA GAA ATG TTT CAA G-3�. Primers for the A.

pisum Ef1a gene were Ef1a F 5�-TAG CAG TTA CAT CAA GAA

AAT CGG-3� and Ef1a R 5�-ATG TTG TCT CCA TTC CAT

CCA G-3�. Cycling conditions are described in Table S2. Gene

copy numbers were estimated with reference to a standard curve

generated with serial dilutions of a synthetic standard. We did not

standardize the overall DNA concentrations among samples be-

cause we were mainly interested in the Spiroplasma titers (number

of Spiroplasma gene copies relative to aphid gene copies), and

because the randomization of biological replicates safeguarded us

against any unwanted biases. However, to improve the precision

of the measurements, samples with a very high concentration

were re-run after a dilution devised to yield an expected Cp

around 20. For each sample, the number of gene copies per aphid

individual was calculated from the average of triplicate qPCR

reactions.

Because the format of the extraction kit (DNeasy 96 Blood

& Tissue Kit [plate format] vs. DNeasy Blood & Tissue Kit

[individual tubes]) had a strong effect on the estimated number

of aphid gene copies and a minor effect on the estimated number

of Spiroplasma gene copies (Fig. S1), we removed the estimated

effect of the extraction kit using the function “removeBatchEf-

fect” of the package “limma” (Smyth 2005, version 3.38.3) prior

to further analyses. These corrected numbers of Spiroplasma and

aphid gene copies per individual are indicated as #Spiroplasma

dnaA and #aphid EF1a, respectively. The number of Spiro-

plasma gene copies per aphid gene copy is defined as

#Spiroplasma dnaA/#aphid EF1a.

We fitted the “Regiella” and “Spiroplasma” models to each of

the three variables #Spiroplasma dnaA, #aphid EF1a, and #Spiro-

plasma dnaA/#aphid EF1a. Since the uninfected sub-line was not

included in this part of the study, the “Regiella” model did not

contain the dummy variable “S” (i.e., all the investigated sub-

lines carried Spiroplasma). The “Regiella” and “Spiroplasma”

models additionally contained the aphid age (10 or 20 days) as

a fixed effect as well as its interaction with the dummy variables

“R” for the model “Regiella” and with the aphid sub-line for the

model “Spiroplasma.” The test procedure is the same a described

for experiment 1, except that since there is no random effect

in the “Spiroplasma” model, the main effects were tested using

F-tests, and we additionally fitted a model separately for each

aphid age to assess differences between sub-lines using Tukey’s

tests.

PHYLOGENETIC ANALYSES

We performed two analyses using the phylogeny of Spiroplasma

strains inferred by Mathé-Hubert et al. (2018). This phylogeny

(Fig. 1) showed that Spiroplasma of pea aphids are divided into

at least three clades. The first analysis tested if the Spiroplasma

induced phenotypes correlate with the phylogeny (phylogenetic

inertia), which is expected if these phenotypes evolve slowly in

comparison to the sequences used to discriminate Spiroplasma

strains. Such phylogenetic inertia would mean that in pea aphids,

different clades of Spiroplasma have different effects on their host.

Then we tested if clade 3, which appears to have short branches

in the phylogeny, has a lower rate of molecular evolution than the

two other clades.

To test for phylogenetic inertia and to investigate the links

among the Spiroplasma induced phenotypes, we characterized

the variation in the effects of Spiroplasma strains on the pheno-

type of their host by the coefficients of the “Spiroplasma” models

from the three experiments. These coefficients were used rather

than the raw data because they represent the estimated effect of

Spiroplasma after accounting for Regiella. A PCA was used to

summarize this phenotypic variation. In this PCA, individuals

(rows) are the Spiroplasma strains that are characterized by the

coefficients of the “Spiroplasma” models on the different traits

(i.e., one column per trait). These traits (columns) were weighted

to ensure that the three experiments had the same weight whatever

the number of traits we measured during the experiment. Since

the intrinsic growth rate is a composite variable of other variables,

it was included in the PCA as a supplementary variable: it was

projected onto the PCA after the PCA was inferred. We tested

for phylogenetic inertia on the first two PCA axes that jointly

explained 57.03% of the phenotypic variation. Two measures of

phylogenetic inertia are generally recommended, the lambda in-

dex and Abouheif’s Cmean index (Münkemüller et al. 2012). For

our phylogeny, the latter has more power (Fig. S2). Hence, we

used Cmean to measure phylogenetic inertia and tested its signif-

icance by performing 10 000 randomizations using the package

“phylosignal” (Keck et al. 2016).

For the Spiroplasma strains that share their host with R.

insecticola, the coefficients used in the analysis describe the



Table 1. Analyses of parasitism by the parasitoid wasp Aphidius ervi.

Explained variable Model Wasp lines Effect df F p.value

Proportion mummified 1 “Regiella” All Wasp 2, 210 5.98 0.003∗∗

Spiro. (0/1) 1, 78.73 0.09 0.763
Regi. (0/1) 1, 10 1.83 0.206
Wasp × Spiro. 2, 210 0.44 0.646
Wasp × Regi. 2, 210 0.18 0.836

2 “Spiroplasma” All Wasp 2, 190 58.82 <0.001∗∗∗

Sub-line 12, 190 2.17 0.009∗∗

Wasp × Sub-line 24, 190 1.57 0.050.
3 “Spiroplasma” B Sub-line 12, 60 4.91 <0.001∗∗∗

4 “Spiroplasma” D Sub-line 12, 60 0.73 0.72
5 “Spiroplasma” K Sub-line 12, 60 1.25 0.273

Proportion emerged 6 “Regiella” All Wasp 2, 185.32 0.64 0.528
Spiro. (0/1) 1, 160.60 0.28 0.594
Regi. (0/1) 1, 10.53 3.08 0.108
Wasp × Spiro. 2, 186.07 0.27 0.758
Wasp × Regi. 2, 186.91 0.26 0.770

7 “Spiroplasma” All Wasp 2, 164.64 5.63 0.004∗∗

Sub-line 12, 164.70 0.55 0.880
Wasp × Sub-line 24, 164.65 0.87 0.638

Models 1–5 explain the proportion of the sets of 20 nymphs exposed to one wasp that were mummified. Models 6 and 7 explain the proportion of mummies

from which a wasp emerged. Models 1 and 6 estimate the effect of R. insecticola and were used to build the offsets correcting for the presence of R.

insecticola in the other models. Models 3–5 investigate the interaction between wasp line × aphid sub-line that is significant in model 2.

effect of the strain plus its potential interaction with R. insecti-

cola. However, because strains with and without R. insecticola

are similarly distributed in the phylogeny, potential interac-

tions would only add noise to the analysis. This would de-

crease statistical power and thus should not create any false

positives.

In the Spiroplasma phylogeny, clade 3 appears to have a

lower rate of molecular evolution than clades 1 and 2. We used

the local-clock permutation test developed by Lanfear (2010) to

assess whether this difference was significant. This test is inde-

pendent of the above mentioned experiments and only concerns

the molecular phylogeny. It uses the ratio between the likelihood

of two models that are fitted to the phylogeny and its underlying

sequences (GenBank IDs MG288511 to MG288588). The first

model assumes a strict clock, meaning that all strains are evolv-

ing equally fast, while in the second model (local clocks), strains

of clade 3 are allowed to evolve at a different rate than other

strains. The P-value is obtained by comparing the observed ratio

between the likelihoods of the two models to the null distribution

of this ratio, which is estimated by refitting the strict and the local

clock models to 10,000 permutations of the sequences. This test

has been shown to be more conservative than the usual likelihood

ratio-test (Lanfear 2010). The local clocks model applied to the

real data was also used to estimate the effect size of the difference

of rates of molecular evolution.

Results
EXPERIMENT 1: EFFECT OF SPIROPLASMA ON A. ervi

PARASITISM

The “Regiella” model detected highly significant variation among

wasp lines in the proportion of aphids that were mummified (i.e.,

parasitized successfully), but no overall effects of the presence

of either Regiella or Spiroplasma (Table 1). The “Spiroplasma”

model also recovered the strong differences among wasp lines,

with line B being the most and line D the least virulent line (Fig. 2),

as well as significant variation among aphid sub-lines, also in in-

teraction with the wasp line (Table 1). Separate analyses for each

wasp line showed that this was mostly due to variation in suscep-

tibility to the most virulent wasp line B (Table 1), for which the

presence of Spiroplasma strains S227 and S385(+Ri) reduced par-

asitism significantly (Table S3). In the case of wasp line K, aphids

infected with strain S161 were more likely to be successfully para-

sitized than the uninfected control sub-line (Table S3). Wasp lines

also differed in proportion emerged, line K having the highest and

line D the lowest emergence rate. However, this difference was

detected by model “Spiroplasma” but not by model “Regiella,”

likely because of the higher complexity of the latter model.

EXPERIMENT 2: FITNESS COST OF SPIROPLASMA

The overall effect of the symbionts Spiroplasma and R. insecticola

on the fitness of their host is summarized by the intrinsic growth
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Figure 2. Mummification rates. Mean proportion of nymphs

mummified (±S.E. indicated with error bars) for the three wasp

lines and each aphid sub-line. On each panel, S– corresponds to

the uninfected subline, and S+ to the mean of all Spiroplasma in-

fected sub-lines. Error bars indicate the standard error. Sub-lines

also containing R. insecticola are hatched. The significance of the

comparisons between the Spiroplasma infected sub-lines and the

uninfected control sub-lines performed from the ‘Spiroplasma’

models is indicated below the strains names (•: only significant

before adjusting for multiple comparisons; �: still significant after

adjusting for multiple comparisons).

rate. We repeat the caveat that the interpretation of these effects

hinges on strong assumptions, namely that the average effect of

Spiroplasma strains that are alone is comparable to that of strains

that are sharing their host with R. insecticola, and that there are

no interactive effects of Spiroplasma and R. insecticola on aphid

phenotypes. Under these—admittedly untested—assumptions, it

appears that Spiroplasma reduced the intrinsic growth rate signif-

icantly while R. insecticola increased it or at least counteracted

the negative effect of Spiroplasma (Table 2 and Fig. 3A). Correct-

ing for the estimated effect of R. insecticola, the “Spiroplasma”

model shows that all Spiroplasma strains except S322, S383, and

S237 decreased the intrinsic growth rate significantly. This was

still significant for more than half of the strains after correcting

for multiple testing (Table S3).

Infection by R. insecticola did not affect aphid lifespan,

but all Spiroplasma-infected sub-lines had shorter lifespans than

the Spiroplasma-free sub-line, on average by about eight days

(Table 2, Fig. 3B). Only the effect of strains S27 and S385(+Ri)

on host survival was no longer significant after accounting for

multiple testing (Table S3). Spiroplasma also reduced lifetime

reproduction while R. insecticola—with the caveat mentioned

above—appeared to increase it or at least to counteract the

negative effect of Spiroplasma (Table 2 and Fig. 3C). Neither

infection with R. insecticola nor infection with Spiroplasma had

a significant overall effect on the mean reproductive age of the

aphid host (Tables 2 and S3).

EXPERIMENT 3: VARIATION IN SPIROPLASMA

DENSITY

Infection by R. insecticola did not have any detectable effect on

#Spiroplasma dnaA, #aphid EF1a, or their ratio in either 10- or

20-day-old aphids (Table 3). The #aphid EF1a did not change

significantly from age 10 to 20, but #Spiroplasma dnaA increased

strongly (Table 3, Fig. 4B and C), on average by a factor of

4.86, which corresponds to an average doubling time of 4.38 days

for Spiroplasma. Accordingly, the ratio of Spiroplasma to aphid

gene copies increased as well and reached very high values (ap-

proximately 40–130) in 20-day-old aphids. There was substantial

variation in the densities and growth achieved by different Spiro-

plasma strains, reflected in the highly significant sub-line and age

× sub-line effects on #Spiroplasma dnaA (Table 3). This varia-

tion appeared to have a limited effect on aphid gene copy number,

as the differences among sub-lines for #aphid EF1a were not

statistically significant (P = 0.08, Table 3). Spiroplasma strain

S227 was notable, however, because this sub-line showed very

low #aphid EF1a in 10-day-old aphids, resulting in a high ratio of

#Spiroplasma dnaA/#aphid EF1a (Fig. 4A). This is the sub-line

that exhibited the lowest susceptibility to parasitoids but also high

costs of infection by Spiroplasma (Figs. 2 and 3).

PHYLOGENETIC SIGNAL IN SPIROPLASMA

PHENOTYPES AND RATE OF MOLECULAR EVOLUTION

The first two axes of the PCA that were tested for a phyloge-

netic signal summarized 57.03% of the phenotypic variation in

the 12 Spiroplasma-infected pea aphid sub-lines. The first axis



Table 2. Analyses of the fitness costs of Spiroplasma.

Explained variable Model Effect df F (or χ²)# p-value

Lifetime reproduction 1 “Regiella” Spiro. (0/1) 1, 41.86 9.27 0.004∗∗

Regi. (0/1) 1, 10.06 6.61 0.028∗

2 “Spiroplasma” Sub-line 12, 90.21 5.46 <0.001∗∗∗

Lifespan 3 “Regiella” Spiro. (0/1) 1, 173.99 11.46 <0.001∗∗∗

Regi. (0/1) 1, 173.99 0.73 0.392
4 “Spiroplasma” Sub-line 12, 172.99 95.61 <0.001∗∗∗

Mean reproductive age 5 “Regiella” Spiro. (0/1) 1, 81.66 0.18 0.673
Regi. (0/1) 1, 10.07 1.65 0.227

6 “Spiroplasma” Sub-line 12, 141.42 4.58 <0.001∗∗∗

Intrinsic growth rate 7 “Regiella” Spiro. (0/1) 1, 51.57 8.84 0.004∗∗

Regi. (0/1) 1, 10.01 10.61 0.009∗∗

8 “Spiroplasma” Sub-line 12, 85.97 4.19 <0.001∗∗∗

Models 1, 3, 5, and 7 estimate the effect of R. insecticola on four variables related to fitness. They were used to build the offsets correcting for the presence

of R. insecticola in the other models estimating the effect of each Spiroplasma strain (models 2, 4, 6, and 8).
#For lifespan, we used a Cox model, for which fixed effect were tested with LRT. In this case, we report the χ² statistics.

Table 3. Analyses of the qPCR estimates of the number of gene copies in 10 and 20 days old aphids.

Explained variable Model Aphid age Effect df F P-value

#Spiro. dnaA/#aphid EF1a 1 “Regiella” Both Regi. (0/1) 1, 10.01 121.34 0.765
Age 1, 106.05 0.25 <0.001∗∗∗

Age × Regi. 1, 106.20 2.12 0.148
2 “Spiroplasma” Both Age 1, 96 314.95 <0.001∗∗∗

Sub-line 11, 96 8.07 <0.001∗∗∗

Age × Sub-line 11, 96 1.96 0.041∗

3 “Spiroplasma” 10 days Sub-line 11, 49 4.50 <0.001∗∗∗

4 “Spiroplasma” 20 days Sub-line 11, 47 5.38 <0.001∗∗∗

#Spiro. dnaA 5 “Regiella” Both Regi. (0/1) 1, 10.01 0.00 0.993
Age 1, 106.04 262.80 <0.001∗∗∗

Age × Regi. 1, 106.14 0.00 0.985
6 “Spiroplasma” Both Age 1, 96 728.20 <0.001∗∗∗

Sub-line 11, 96 12.31 <0.001∗∗∗

Age × Sub-line 11, 96 2.63 0.006∗∗

7 “Spiroplasma” 10 days Sub-line 11, 49 5.66 <0.001∗∗∗

8 “Spiroplasma” 20 days Sub-line 11, 47 10.02 <0.001∗∗∗

#aphid EF1a 9 “Regiella” Both Regi. (0/1) 1, 10.05 1.31 0.278
Age 1, 106.22 0.25 0.618
Age × Regi. 1, 106.83 4.00 0.048∗

10 “Spiroplasma” Both Age 1, 96 0.68 0.412
Sub-line 11, 96 1.70 0.084.
Age × Sub-line 11, 96 1.16 0.325

Models 1, 5, and 9 estimate the effect of R. insecticola on #Spiroplasma dnaA/#aphid EF1a, #Spiroplasma dnaA, and #aphid EF1a. They were used to build

the offsets correcting for the presence of R. insecticola in the other models estimating the effect of each Spiroplasma strain (models 2, 6, and 10). When

there was a significant interaction between aphid age and sub-line, separate models were fitted for each age group to investigate the interaction (models

3, 4, 7, and 8).

mainly summarized the negative effect that Spiroplasma strains

with a high density had on the lifespan of their host (Fig. 5A).

This negative effect on lifespan had little effect on the aphids’

intrinsic growth rate because this first axis has only a low cor-

relation with the lifetime reproduction and a negative correlation

with the mean reproductive age (i.e., short-lived aphids produced

offspring earlier in life). The second axis encompasses variation

related to aphid health and suitability for parasitoids. This axis

was positively correlated to #aphid EF1a, the aphid growth rate,

the lifetime reproduction, and negatively correlated to the mean
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Figure 3. Spiroplasma effects on aphid fitness. Bar plots depict-

ing the average intrinsic growth rate (A), lifespan (B), lifetime

reproduction (C), and mean reproductive age (D) for all aphid sub-

lines. On each panel, S– corresponds to the uninfected sub-line,

and S+ to the mean of all Spiroplasma infected sub-lines. Error

bars indicate the standard error. Sub-lines also containing R. insec-

ticola are hatched. The significance of the comparisons between

the Spiroplasma infected sub-lines and the uninfected control sub-

lines performed from the “Spiroplasma” models is indicated below

the strains’ names (•: only significant before adjusting for multi-

ple comparisons; �: still significant after adjusting for multiple

comparisons).
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Figure 4. Spiroplasma density. The number of Spiroplasma gene

copies #per aphid gene copy (#Spiroplasma dnaA/# aphid EF1a) as

well as the raw numbers of Spiroplasma and aphid gene copies per

aphid individual (# Spiroplasma dnaA and # aphid EF1a) are shown

on panels (A–C). Because # Spiroplasma dnaA is much higher in

20 days old aphids (dark grey) than in 10 days old aphids (light

grey), panels (A) and (B) have two y-axes with different scales. To

help the comparison, red dots indicate the same values on the left

and right axes. Different letters above bars indicate significant

pairwise differences in Tukey–HSD tests. Error bars indicate the

standard errors.

reproductive age. Sub-lines with a higher score on this axis (i.e.,

more fecund sub-lines) also showed higher rates of mummifi-

cation by parasitoids and parasitoid emergence (Fig. 5B). The

variation in the reproductive fitness of the sublines was not a

function of Spiroplasma titers, as the variation in #Spiroplasma

dnaA was only weakly correlated with this axis.
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These two axes were used to investigate the correlation

between the Spiroplasma-induced phenotypic variation and the

Spiroplasma phylogeny using the Abouheif’s Cmean statistic. Only

the first axis was significantly correlated (PC1: Cmean = 0.34, P =
0.02; PC2: Cmean = –0.01, P = 0.29), with most strains of clade

3 having a high score on the first axis (Fig. 5A).

The local clock model estimated that the sequences of clade

3 are evolving 5.6 times more slowly than those of clades 1 and

2. The local-clock permutation test revealed that this difference

was marginally significant (P = 0.043).

Discussion
In the absence of reproductive manipulation or frequent horizontal

spread, heritable endosymbionts must provide a net fitness benefit

to persist in host populations (Oliver et al. 2014). We investigated

protection against the parasitoid wasp A. ervi as a potential benefit

provided by 12 different strains of Spiroplasma in pea aphids,

and we estimated their costs to the host in terms of life-history

traits.

Evidence for protection was very limited and restricted to

one of the three lines of A. ervi we used. Only Spiroplasma strains

S227 and S385 reduced parasitism by the most virulent wasp line

B significantly. In the case of S227, however, this was associated

with very low reproductive fitness of the aphids in the absence of

parasitoids, suggesting that S227-infected aphids were generally

of poor health. On the other hand, when the aphids were exposed

to wasp line K, one strain of Spiroplasma (S161) even seemed to

represent a significant liability and made aphids more susceptible

to parasitism. The effects of some Spiroplasma strains tended to

be unequal across the three parasitoid lines, which resulted in a

near-significant genotype-by-genotype interaction (Table 1). In

principle, such interactions could contribute to the maintenance

of strain diversity in parasites as well as symbionts (Kwiatkowski

and Vorburger 2012; Ford et al. 2017; Vorburger and Perlman

2018), although their importance is questionable here, because

the majority of Spiroplasma strains had no detectable effects

on parasitism. We do not know why the three wasp lines varied

so strongly in their parasitism efficacy. The conspicuously low

success of line D could be related to the long time it has been

reared in our laboratory at relatively small population size,

which might have resulted in negative effects of inbreeding. The

difference between the two commercially available lines may be

related to their long-term rearing conditions in the production

and/or their genetic background. Genetic variation in parasitism

success is commonplace in parasitoids (Kraaijeveld and Godfray

1999; Colinet et al. 2010; Sandrock et al. 2010) and likely

related to variation in the cocktail of virulence factors parasitoids

employ. For example, parasitoid wasp venom is a major source of

virulence factors and generally shows a high level of intraspecific

variation (Colinet et al. 2013; Mathé-Hubert et al. 2015), also

in A. ervi (Colinet et al. 2014). Interactions between parasitoid

virulence factors and Spiroplasma in the aphid hosts could

potentially explain the somewhat uneven effects of the different

Spiroplasma strains in the three parasitoid treatments.

Even though we find little evidence for protection against A.

ervi in the present study, it should be added that Spiroplasma

may still reduce the risk of parasitism indirectly via a plant-

mediated effect, because A. ervi is more attracted to volatiles from

plants infested by Spiroplasma-free aphids than from plants with

Spiroplasma-infected aphids, as recently shown by Frago et al.

(2017). Such an effect would have been missed by our non-choice

assays.

Due to an unfortunate handling error in the preparation of our

experimental lines, about half of the Spiroplasma strains shared

their hosts with a coinfection of R. insecticola. However, the

presence of R. insecticola did not have any detectable effects on

susceptibility to A. ervi. This outcome is consistent with earlier

studies that tested the same strain of R. insecticola deliberately

and reported no significant effects on parasitism by A. ervi (Oliver

et al. 2003; Hansen et al. 2012).

In contrast to the potential benefits we investigated, the

costs of infection with Spiroplasma were rather clear. All strains

curtailed aphid lifespan significantly, on average by more than

8 days. A reduction of host lifespan is also characteristic of Spiro-

plasma infection in Drosophila melanogaster (Herren et al. 2014).

Because old aphids are less fecund than young adults (e.g., Zeng

et al. 1993; Vorburger and Ramsauer 2008), and because offspring

produced early in life are more important for a clone’s growth rate

than offspring produced late (Lenski and Service 1982), the strong

negative effect on lifespan did not translate into equally strong

effects on lifetime reproduction and the intrinsic rate of increase

(Fig. 3). Nevertheless, two of the five sub-lines infected only by

Spiroplasma showed significantly lower intrinsic rates of increase

than the uninfected control. The sub-lines in which Spiroplasma

co-occurred with R. insecticola showed similar trait values to the

uninfected sub-line. This would suggest that the presence of R. in-

secticola counterbalanced the costs imposed by Spiroplasma. The

“Regiella” models indeed showed a positive overall effect of R.

insecticola on lifetime reproduction as well as the intrinsic rate of

increase. This interpretation of the results is, however, conditional

on the validity of the assumption that Spiroplasma strains associ-

ated with R. insecticola have the same average effect as those that

are not. A positive effect of R. insecticola on host fitness has also

been reported by Tsuchida et al. (2004) for pea aphids feeding

on clover, but this does not seem to be a general property of this

symbiont (Leonardo 2004; Ferrari et al. 2007), and other studies

reported negative fitness effects of this symbiont, for example,

in the grain aphid, Sitobion avenae (Wang et al. 2016; Luo et al.

2017). Nonetheless, it has been observed before that one heritable



endosymbiont can compensate the costs imposed by another.

Doremus and Oliver (2017) found that the large costs associated

with the possession of X-type endosymbionts in pea aphids were

ameliorated by coinfection with H. defensa. When the influence

of R. insecticola was corrected for statistically in the present

data, the majority of Spiroplasma strains were inferred to reduce

lifetime reproduction and intrinsic rate of increase significantly

(Table S3). Thus we conclude that under laboratory conditions and

in the absence of any other selective forces, infection with Spiro-

plasma generally has a negative effect on pea aphid reproductive

fitness.

To some extent, the Spiroplasma-induced fitness costs were

related to the symbionts’ densities in the host. The Spiroplasma

titers in pea aphids increased strongly from the age of 10 days

to the age of 20 days, suggesting that the host has limited con-

trol over the proliferation of Spiroplasma. This is also observed in

D. melanogaster, and it may be related to the fact that cell wall-less

bacteria like Spiroplasma can escape the attention of the insect

immune system (Herren and Lemaitre 2011; Herren et al. 2014).

However, not all strains were equally prolific. Spiroplasma titers

varied substantially among aphid sub-lines, and there was no in-

dication that they were influenced by coinfecting R. insecticola.

The links among the estimated effects of the different Spiroplasma

strains on the various traits we measured was investigated with a

PCA on the coefficients estimated by the models analyzing these

traits. In this PCA, the first PC was chiefly associated with high

Spiroplasma densities and short aphid lifespan, providing correl-

ative evidence that higher Spiroplasma titers are more harmful

to the host. Interestingly, there was a weak but significant phylo-

genetic signal in the variation along this axis (Fig. 5). This was

mostly because strains from clade 3 showed higher scores for

PC1 on average, i.e., these strains achieved higher densities and

tended to be associated with shorter host lifespans. High Spiro-

plasma densities have also been shown to curtail host lifespan

in flies (Herren and Lemaitre 2011). Clade 3 also exhibited a

lower rate of molecular evolution than the other two clades, and

it is tempting to speculate about a causal link with the seemingly

more parasitic lifestyle of these Spiroplasma strains. Endosymbi-

otic bacteria generally exhibit increased rates of sequence evolu-

tion than their free-living relatives, which is attributed to the lower

effective population size that comes with maternal transmission

and the associated bottlenecks between host generations (Moran

1996; Woolfit and Bromham 2003; Boscaro et al. 2013). Long-

term vertical transmission is also expected to reduce the costs

that symbionts impose on their hosts. Endosymbionts are thus a

good model of how organisms can move along the parasitism–

mutualism continuum (Ewald 1987; King 2019). It might seem

that Spiroplasma strains from clade 3 occupy a space further to-

ward the parasitic end of this continuum than the other clades.

Whether this reflects a shorter association with the host, which

would be consistent with the slower rate of molecular evolution,

or whether other selective forces have created this situation, is

currently unknown. In this context it could be relevant that the

different clades of Spiroplasma tend to be associated with differ-

ent communities of co-infecting symbionts in natural populations

of pea aphids. For example, clade 3 Spiroplasma are positively

associated in the field with the X-type symbiont and negatively

with H. defensa, while those from clade 2 tend to be positively

associated with Rickettsia, and this seems to be unrelated to the

host plants from which pea aphids were collected (Mathé-Hubert

et al. 2018). Regular coinfections with other bacteria certainly

have the potential to affect the evolution of endosymbionts and

possibly their virulence (Vorburger and Perlman 2018). Interac-

tions with other species of endosymbiotic bacteria thus clearly

deserve attention to better understand Spiroplasma’s influence on

host ecology and evolution.

In conclusion, our experiment showed that infections with

various strains of the heritable endosymbiont Spiroplasma are

rather costly to their pea aphid hosts, and that protection against

A. ervi is unlikely to compensate for these costs. We tested for

protection against A. ervi because it is the pea aphid’s most com-

mon parasitoid, but multiple parasitoids include pea aphids in

their host range and we cannot exclude that Spiroplasma may be

protective against other species. Already demonstrated is a pro-

tective effect of certain strains of Spiroplasma, including strain

S161 used here, against the entomopathogenic fungus Pandora

neoaphidis (Łukasik et al. 2013), but also this is not a general

property of all Spiroplasma found in pea aphids. Once a symbiont

has evolved maternal transmission, it is under strong selection to

keep its host alive until reproduction. This can be achieved via pro-

tection against natural enemies or by providing other ecological

benefits, for example, by increasing tolerance to abiotic stres-

sors (Oliver et al. 2010). The specific mechanisms may well vary

among different strains of the same symbiont species, and with

the high diversity of strains structured into at least three clades,

Spiroplasma of pea aphids is an attractive model to investigate

this variation further.

AUTHOR CONTRIBUTIONS
H.K., P.G., C.V., and H.M.H. performed the experiments; P.G., H.M.H.,
and H.K. carried out the molecular analysis; H.M.H. was responsible for
the data analysis; H.M.H., H.K., and C.V. wrote the paper.

ACKNOWLEDGMENTS
The authors are very grateful to Paula Rodriguez for her help with in-
sect rearing. The authors also thank Ailsa McLean for sharing several
Spiroplasma-infected aphid lines. The handling editor and the review-
ers provided very helpful comments to improve the manuscript. This
work was supported by a Sinergia grant from the Swiss National Science
Foundation (grant nr. CRSII3 154396 to C.V.).



DATA ARCHIVING
The DNA sequences used in this study are available in Genbank (acces-
sion numbers: MG288511 to MG288588). The main dataset is deposited
in the Dryad Digital Repository: Literature cited

LITERATURE CITED
Asplen, M. K., N. Bano, C. M. Brady, N. Desneux, K. R. Hopper, C. Mal-

ouines, K. M. Oliver, J. A. White, and G. E. Heimpel. 2014. Speciali-
sation of bacterial endosymbionts that protect aphids from parasitoids.
Ecol. Entomol. 39:736–739.

Ballinger, M. J., and S. J. Perlman. 2018. The defensive spiroplasma. Curr.
Opin. Insect Sci. 32:1–6.

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. lme4: Linear mixed-
effects models using Eigen and S4. R package version 1.1-8.

Bian, G., Y. Xu, P. Lu, Y. Xie, and Z. Xi. 2010. The endosymbiotic bacterium
Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS
One 6:e1000833.

Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population.
J. Anim. Ecol. 17:15–26.

Boscaro, V., M. Felletti, C. Vannini, M. S. Ackerman, P. S. G. Chain, S. Mal-
fatti, L. M. Vergez, M. Shin, T. G. Doak, M. Lynch, et al. 2013. Polynu-

cleobacter necessarius, a model for genome reduction in both free-living
and symbiotic bacteria. Proc. Natl. Acad. Sci. USA 110:18590–5.
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Kwiatkowski, M., J. Engelstädter, and C. Vorburger. 2012. On genetic speci-
ficity in symbiont-mediated host-parasite coevolution. PLoS Comput.
Biol. 8:e1002633.

Kwiatkowski, M., and C. Vorburger. 2012. Modeling the ecology of symbiont-
mediated protection against parasites. Am. Nat. 179:595–605.

Lanfear, R. 2010. The local-clock permutation test: a simple test to compare
rates of molecular evolution on phylogenetic trees. Evolution 65:606–
611.

Lenski, R. E., and P. M. Service. 1982. The statistical analysis of population
growth rates calculated from schedules of survivorship and fecunidity.
Ecology 63:655–662.

Leonardo, T. E. 2004. Removal of a specialization-associated symbiont does
not affect aphid fitness. Ecol. Lett. 7:461–468.

Leybourne, D. J., J. I. Bos, T. A. Valentine, and A. J. Karley. 2018. The price
of protection: a defensive endosymbiont impairs nymph growth in the
bird cherry-oat aphid, Rhopalosiphum padi. Insect Science.

Łukasik, P., H. Guo, M. Van Asch, J. Ferrari, and H. C. J. Godfray. 2013.
Protection against a fungal pathogen conferred by the aphid facultative
endosymbionts Rickettsia and Spiroplasma is expressed in multiple host
genotypes and species and is not influenced by co-infection with another
symbiont. J. Evol. Biol. 26:2654–2661.

Luo, C., K. Luo, L. Meng, B. Wan, H. Zhao, and Z. Hu. 2017. Ecological
impact of a secondary bacterial symbiont on the clones of Sitobion

avenae (Fabricius) (Hemiptera: Aphididae). Nat. Publ. Gr. 7:1–8.
Martinez, A. J., K. L. Kim, J. P. Harmon, and K. M. Oliver. 2016. Specificity

of multi-modal aphid defenses against two rival parasitoids. PLoS One
11:e0154670.
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Figure S1: Effect of the extraction protocol on the estimated number of aphid gene 
copies per aphid 

The left and right panels show the absence of effect of the extraction kit on the estimated number 
of Spiroplasma genomes copy per aphid (y-axis), and the strong effect on the estimated number 
of aphid genomes copy per aphid (x-axis), estimations being much lower with the QIAGENE 
“DNeasy Blood & Tissue Kit” (triangles) than with the QIAGENE “DNeasy 96 Blood & Tissue 
Kit” (circles). 
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Figure S2: Statistical power of phylogeny in Figure 5 for detecting phylogenetic signal. 
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Figure S3: Rate of emergence of the three wasp lines. 
For each aphid sub-line, mean proportion of mummies from which the wasp succeeded their 
development, and emerged (±S.E. indicated with error bars). Here, only the average over the 
three wasp lines is shown since the interaction wasp line × aphid sub-line is not significant. The
bar S- corresponds to the control uninfected sub-line, and the bar S+ corresponds to the mean of
all Spiroplasma infected sub-lines. Sub-lines also containing R. insecticola are hatched.
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