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A B S T R A C T

In computational fluid dynamics simulations of industrial flows, models based on the Reynolds-averaged
Navier–Stokes (RANS) equations are expected to play an important role in decades to come. However, model
uncertainties are still a major obstacle for the predictive capability of RANS simulations. This review examines
both the parametric and structural uncertainties in turbulence models. We review recent literature on data-free
(uncertainty propagation) and data-driven (statistical inference) approaches for quantifying and reducing model
uncertainties in RANS simulations. Moreover, the fundamentals of uncertainty propagation and Bayesian in-
ference are introduced in the context of RANS model uncertainty quantification. Finally, the literature on un-
certainties in scale-resolving simulations is briefly reviewed with particular emphasis on large eddy simulations.

A roadmap of this review article is provided above. The table of contents is also available as PDF bookmarks in the electronic version).

1. Introduction

Turbulence affects natural and engineered systems from sub-meter
to planetary scales yet it is among the last unsolved problems in

classical physics. Accurate predictions of turbulent flows are of vital
importance for the design, analysis, and operation of many critical
systems in aerospace engineering such as aircraft, spacecraft, and gas
turbine engines. The dynamics of fluid flows is described by the
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Nomenclature

Symbols

ensemble averaging or spatial filtering
L2 L2 norm

A 1P norm of A the inverse 1P of covariance matrix P, i.e.,
A A1P
perturbed quantities
transpose of vectors and matrices

: double dot of tensors U:ij
U
x

i
j

Hadamard (element-wise) multiplication

Roman letters

a anisotropy tensor
c1, c2, c3 barycentric coordinates
C ,1 C ,2 Cµ RANS model coefficients
Cs Smagorinsky constant

ov covariance of random variables
d discrepancy of observation and truth
D
Dt

· material derivative
D data used for inference
D dissipation of turbulent frequency

Z[ ] expectation of random variable Z
f functional mapping

( , )GP Gaussian process
h unit quaternion
H observation matrix
i j k, , indices
I second-order identity tensor
I number of scenarios
J objective function in optimization
k turbulent kinetic energy
K ( , ) kernel for Gaussian processes
K Kalman gain matrix (in EnKF)
K number of models
l length scale in covariance kernel
L linear differential operator
M , Mi set of models; model
n axis of rotation
N normal distribution
N nonlinear differential operator

( )O of the order of
p instantaneous pressure
p pressure fluctuation
p z( ) probability distribution of Z
P1, P2 two locations in wing–body juncture flow

(discrete) probability mass function
P production (of TKE, Reynolds stresses, or turbulent fre-

quency)
P covariance matrix of state vector
P mean pressure
q mean flow features
Q rotation matrix

real number space
R covariance matrix of observation error
S strain rate tensor
S source terms
S̃i scenario (in BMSA)
t time
T transport of turbulent frequency
ui, u instantaneous velocity
ui , u velocity fluctuation

Ui, U mean velocity
Zar[ ] variance of random variable Z

V eigenvectors of second order tensor
w coefficients in expansion of random field
W Wiener process (in SDEs)
xi, x spatial coordinates
y model output
z augmented state vector
Z, z random variable and its realization

Greek letters

α index for basis functions
β multiplicative discrepancy field
γ parameter in regularization term

g grid spacing/filter width in LES
δ discrepancies

ij Kronecker delta, second-order identity tensor
ϵ noise in experimental data
ε dissipation rate
ζ truth in the context of model uncertainty
θ, model parameter(s)
ϑ angle of rotation
κ von Karman constant

i eigenvalues for anisotropy tensor
diagonal matrix of eigenvalues for anisotropy tensor

μ dynamic viscosity of fluids
ν kinematic viscosity

t turbulent eddy viscosity
ξ physical state of the system
ρ fluid density

latent variables (e.g., geometry, boundary conditions in
CFD model)

σ variance (field) of random fields
k, coefficients in turbulence models

covariance matrix
Reynolds stress

t turbulent viscosity
x( )i basis functions (e.g., from Karhunen–Loeve expansion)

i Euler angles
quantities to be predicted

ω turbulent frequency
rotation-rate tensor

Abbreviations

BMSA Bayesian model–scenario averaging
CFD computational fluid dynamics
DNS direct numerical simulation
EARSM explicit algebraic Reynolds stress model
EnKF ensemble Kalman filtering
gPC generalized polynomial chaos
LES large eddy simulation
LHS Latin hypercube sampling
PCE polynomial chaos expansion
PDE partial differential equation
pdf probability density function
pmf probability mass function
MAP maximum a posteriori
QoI quantity of interest
MLMC multilevel Monte Carlo
MCMC Markov chain Monte Carlo
NS Navier–Stokes
RANS Reynolds-averaged Navier–Stokes
RSTE Reynolds stress transport equation



Navier–Stokes (NS) equations. While many applications in aerospace
engineering involve compressible flows, reacting flows, or two-phase
flows, for illustration purposes we restrict our attention to the NS
equations for incompressible flows of constant-property, Newtonian
fluids, shown below:
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where ui, p, xi and t are, respectively, the flow velocity, pressure, and
spatial and temporal coordinates. Although simpler in form than the
partial differential equations governing the above-mentioned problems,
incompressible NS equations cover a very wide variety of flow config-
urations and bear the key difficulty that leads to the turbulence mod-
eling dilemma, i.e., the nonlinear convective term in Equation (1b).
Equation (1) is normalized with respect to a reference length Lref , a
reference velocityUref , and the density ρ and viscosity μ of the fluid. The
parameter Re U L µ/ref ref= is the Reynolds number, a measure of the
relative importance of inertia to viscous forces. Because of the non-
linearity of the convection terms u u x( )/i j j, the NS equations admit
chaotic solutions when the Reynolds number is beyond some flow-de-
pendent critical value. As the Reynolds number increases, eventually
the flow reaches a state of motion characterized by strong three-di-
mensional and unsteady chaotic fluctuations of the velocity and pres-
sure fields, which is referred to as the turbulent regime.

1.1. Landscape of turbulence modeling

Turbulent flows are characterized by a wide range of spatial and
temporal scales. Consequently, performing direct numerical simulations
(DNS) by solving the NS equations and resolving all the turbulence
scales are prohibitively expensive, particularly for high Reynolds
number flows. Practically used turbulence modeling strategies range
from DNS with the highest fidelity, where all physics of spatial and
temporal scales are resolved and no modeling is involved, to Reynolds
averaged Navier–Stokes (RANS) simulations with the lowest fidelity,
where the entire range of turbulent flow scales is modeled. This model
hierarchy is illustrated in Fig. 1, with the top represented by the most
physics-resolving and computationally expensive approach (DNS) and
the bottom by the most empirical and computationally affordable ap-
proach (RANS). Lower fidelity models toward the bottom of the hier-
archy involve more flow-dependent, uncertain closures than the higher-
fidelity, scale-resolving approaches towards the top of the hierarchy.
On the other hand, high-fidelity, scale-resolving models are more sus-
ceptible to influences from numerical uncertainties as well as initial and
boundary conditions.

A compromise between DNS and RANS simulations at two ends of
the spectrum is large eddy simulation (LES), in which only the larger,
more energetic scales are resolved, while scales below a cutoff
threshold are filtered out. The filtered Navier–Stokes equations contain
a subgrid-scale (SGS) stress that is unclosed and needs to be modeled.
The SGS stress term represents the interactions between the filtered and
resolved scales, which result from the nonlinear convection term [2].
Large eddy simulations have significantly reduced computational costs
compared to DNS for shear flows far removed from wall boundaries.
Unfortunately, they remain prohibitively expensive for wall bounded
flows at high Reynolds number due to the small yet energetic scales
dominating the dynamics in the near-wall regions [3]. This challenge

has led to the development of methods combining LES in free shear
regions with RANS models or other simplified models (e.g., boundary
layer equation or law of the wall) in the under-resolved near-wall re-
gions. Such approaches include hybrid RANS/LES models [4,5] and
wall-modeled LES [6–9], among others.

While scale-resolving simulations such as DNS, LES, and hybrid
RANS/LES provide more insights of fluid flow physics, in many simu-
lations of engineering turbulent flows such as those for aerodynamic
design and optimization, the quantities of interest depend on the mean
flow only, and the instantaneous flow fields are not of concern. In these
cases it is desirable to solve for the mean flow more efficiently. For that
purpose, the instantaneous velocity ui and pressure p are decomposed
into the sum of the mean2 componentsUi and P and the fluctuations ui
and p , respectively. Substituting the decomposition into the Navier–-
Stokes equations and taking the ensemble-average leads to the RANS
equations:
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The RANS equations are similar in form to the Navier–Stokes equations
except for the term involving the tensor u ui j . As with the SGS stress
term in the filtered NS equations for LES, this term stems from the
nonlinear convection term in the NS equation and represents the cross-
component covariance among the velocity fluctuations. It is often re-
ferred to as Reynolds stress due to its formal similarity to the viscous
stresses and is denoted as

u u .ij i j= (3)

Since the velocity fluctuations are not available in RANS simulations,
one must resort to closure models to supply Reynolds stresses, which
lies at the root of most efforts of turbulence modeling.

The choice of the appropriate modeling level remains a matter of
expert judgment. In particular, it inevitably involves a compromise

RSTM Reynolds stress transport model
SA Spalart–Allmaras (turbulence model)
SDE stochastic differential equation

SGS sub-grid scale
TKE turbulent kinetic energy
UQ uncertainty quantification

Fig. 1. A schematic representation of the hierarchy of turbulence modeling
approaches based on computational costs and the amounts of resolved versus
modeled physics. Figure inspired by Sagaut et al. [1]. Abbreviations: DNS, di-
rect numerical simulations; LES, large eddy simulations; RANS, Reynolds-
averaged Navier–Stokes.

2 Note that several definitions exist for the mean or average quantities [see,
e.g., 10]. The most general one is the statistical ensemble average, which
however is rarely used in current practice due to the large number of in-
dependent flow realizations required for convergence. For statistically steady
flow, time average is used instead based on an ergodicity hypothesis. The same
is also used for unsteady flows, although its validity is still controversial.



between computational cost and predictive accuracy. Even after a given
fidelity level is selected (e.g., RANS or LES), several possible closure
models may be designed for relating the unclosed terms to the resolved
variables. These closure models differ both by their mathematical
structure and by the associated model parameters. The common prac-
tice in turbulence modeling is to leave the choice of a specific closure
model to user judgment and to treat model parameters as adjustable
coefficients that are generally calibrated to reproduce simple, canonical
flows. Both of the preceding aspects, however, represent sources of
uncertainty in the prediction of new flows. Recent development of
turbulence modeling in RANS, LES, and hybrid approaches has been
reviewed by Durbin [11]. Despite considerable progress recently made
in LES and hybrid RANS/LES models (e.g., [2–4,12,13]), RANS models
are expected to remain the workhorse in engineering practice for dec-
ades to come, due to their much lower computational costs and superior
robustness. For this reason, our review mainly focuses on the quanti-
fication and reduction of uncertainties in RANS models.

The landscape of RANS-based turbulence modeling has not changed
for decades. The stagnation is evident from two observations as illu-
strated in Fig. 2. First, the number of wind tunnel tests performed in a
typical design cycle of a commercial airplane was reduced from 75 in
the 1970s to 10 in the 1990s, but this number has been stagnant since
then, with turbulence models being the major bottleneck in predictive
accuracy [14]. Second, most of the currently used turbulence models
were developed decades ago and provide unsatisfactory performance
for many flows. Generations of researchers have labored for many
decades on dozens of turbulence models, yet none of them achieved
predictive generality. Flow-specific tuning and fudge functions are still
an indispensable part of RANS simulations [15]. Current development
of improved turbulence models faces the dilemma of conserving the low
computational costs and high robustness of RANS approaches while
incorporating as much physics as possible.

1.2. Origin of uncertainties in RANS models

A recent review on data-driven turbulence modeling strategies [16]

classified the model uncertainties in RANS simulations into four levels,
including uncertainties due to information loss in the Reynolds-aver-
aging process, uncertainties in representing the Reynolds stress as a
functional form of the mean field, uncertainties in the choice of the
specific function, and uncertainties in the parameters of a given model.
In this review, we will focus on the uncertainties due to the choice of
functional forms and parameters in the turbulence models. Fig. 3 shows
a graphical representation of different sources of model uncertainties in
typical RANS models.

The following observations about the Reynolds stress tensor have
profound implications for turbulence modeling and RANS model un-
certainty quantification. First, it is a covariance tensor of velocity
fluctuations as pointed out above, and mathematically any covariance
tensor must be symmetric positive semi-definite. This is referred to as
realizability requirement. Second, it appears in the RANS momentum
equation through its divergence . While the Reynolds stress as a
symmetric rank-two tensor has six independent components, the di-
vergence as a forcing term only has three components. The majority
of existing turbulence models use the Reynolds stress as the target of
modeling (Fig. 3). The rationale behind this choice is that the diver-
gence form makes it easier to ensure conservation of momentum. That
is, in this form the momentum is introduced into the system by the
modeled Reynolds stress only through the boundaries and not within
the volume. In contrast, directly constructing such a conservative for-
cing term is not straightforward [17]. Therefore, in the remainder of
this paper we discuss only turbulence models based on the Reynolds
stress .

Reynolds stress based turbulence models require prescribing a
constitutive relation for as a function of the mean flow fields. The
most widely used class of models, generally known as linear eddy
viscosity models, relies on the Boussinesq analogy (see, e.g., [10]). This
assumption states that the anisotropic part of behaves similarly to the
viscous stress tensor of a Newtonian fluid, i.e. it is a linear function of
the local mean flow rate-of-strain Sij:
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the turbulent kinetic energy with a summation over index i implied, ij
is the Kronecker delta (or the second order identity tensor in its vector
form I), and the eddy viscosity t is the proportionality scalar.

The limitations of the Boussinesq assumption have been widely re-
cognized in the literature, particularly for flows with separation,
streamline curvature, or strong pressure gradients (see, e.g., [10] for a
review). Since it is often not possible to know beforehand if one or more
of such flow features will be present in a new flow configuration,

Fig. 2. Stagnation of turbulence modeling in the past few decades (shaded re-
gions), showing (a) the number of wind tunnel tests required in the design cycle
of commercial aircraft in the past five decades [14] and (b) the time at which
commonly used models were developed.

Fig. 3. Stages of turbulence modeling in commonly used models with Reynolds stress transport models and linear eddy viscosity models as examples. Such a
hierarchy provides a clear map on where model uncertainties can be introduced and inferred (shown as shaded items). D

Dt
denotes material derivative.



predictions based on the RANS equations are flawed by a structural (i.e.
model-form) uncertainty [18,19]. Several attempts have been made to
overcome the weaknesses of linear eddy-viscosity models, e.g., by de-
veloping nonlinear eddy viscosity models [20], explicit algebraic Rey-
nolds stress models (EARSM) [21], and Reynolds stress transport
models (RSTM) [10,22]. All such models rely on more sophisticated
constitutive relations than Equation (4). Nevertheless, such

sophisticated models lack the robustness of the simple linear eddy
viscosity models. For example, cubic eddy viscosity models involve
many more parameters, which are difficult to calibrate with available
data [23]. As another example, the Reynolds stress transport equations
have a pressure–strain-rate that needs to be modeled, and the predictive
performance of RSTM are highly sensitive to its modeling. Conse-
quently, the lack of robustness restricts these advanced models to a

Fig. 4. Examples of uncertainties in RANS predictions of pressure coefficient Cp distribution on wings and airfoils due to (a) model form and (b) model coefficients.
Panel (a) shows the Cp profile on a CRM wing-body configuration at 4. 0 angle of attack. Results are from the 6th AIAA CFD drag prediction workshop based on
different RANS models, including k–ε model, k–ω model, SA model, SA with quadratic constitutive relation (QCR), and EARSM. The location of the presented
pressure distribution is indicated by the red/solid line on the wing (see inset; showing the port half of the fuselage and the wing only). Figure reprinted with
permission from Tinoco et al. [24]. Panel (b) shows the Cp profile on a NACA0012 airfoil in a transonic flow with freestream Mach number 0.8 and Reynolds number
9 106× , obtained from RANS simulations with the algebraic model of Baldwin and Lomax [25]. The figure shows the effect of varying Cwk, one of the seven model
parameters, from 0.25 to 1, adopted from an unpublished report of the second author [26]. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 5. Roadmap of this review with links to relevant
sections. Legend: major elements of this review;

auxiliary topics of this review; detailed topics
in RANS model-form uncertainty.



small fraction of practical turbulent flows despite their theoretical su-
periority [15], and no turbulence models are able to accurately predict
the flow physics in all circumstances. The importance of model un-
certainty is clearly illustrated in Fig. 4a, which shows the predicted
pressure distribution on the wing section of a Common Research Model
(CRM) predicted by a number of turbulence models. A large scattering
of the predictions is observed, particularly downstream of the shock
wave generated at the upper wing surface.

In addition to the structural uncertainties, parametric uncertainties
arising from the coefficients closure models also have to be accounted
for. Such coefficients are usually calibrated against experimental data
for a set of simple flows (e.g., the decay of homogeneous and isotropic
turbulence, flat plate boundary layers, and simple shear flows), which
are generally far from practical applications. Moreover, the calibration
data suffer from measurement errors, which inevitably impair the
credibility of the calibrated parameters. Finally, many of the nominal
coefficients found in the RANS modeling literature may not correspond
to best-fit of calibration dataset, but were chosen based on numerical
considerations. In practice, the closure coefficients are often empirically
re-tuned by using heuristic and trial-and-error approaches in order to fit
available data for a target class of flows. Fig. 4b illustrates the effect of
varying only one of the seven parameters in the algebraic model of
Baldwin and Lomax [25]. In particular, the location of the shock wave
at the airfoil upper surface and the post-shock pressure are very sen-
sitive to the varied coefficient [26].

Both the parametric and the structural uncertainties mentioned
above are of epistemic nature, i.e. theoretically they could be reduced
when better knowledge of turbulent flow physics and/or more abun-
dant or more accurate data become available. This is in contrast to
aleatory uncertainties, which arise from intrinsic variability of a pro-
cess, e.g., uncertainties in manufactured geometries [27,28], operation
conditions of turbines or aircraft [29] or inflow conditions [30,31]. In
practice, reducing epistemic uncertainties by leveraging additional
knowledge (e.g., by developing more advanced models to incorporate
such knowledge) is far from straightforward. Additionally, sophisti-
cated models may lack numerical robustness or incur excessive com-
putational costs. Except for a few canonical examples, it is challenging,
if not impossible, to identify the dominant source of uncertainty with
definitive evidence, even for a given flow and a specific turbulence
model. For instance, in many cases it is possible to improve the results
of a model flawed by structural inadequacy by over-tuning its closure
parameters. However, such over-tuning typically leads to poor predic-
tions when applying the model to different flows from the calibration
flows. Such a phenomenon is referred to as over-fitting in statistics and
machine learning [32].

1.3. Approaches for quantifying uncertainties in turbulence models

Empirical assessment of uncertainties in turbulence models dates
back to the early days of turbulence modeling, but rigorous treatments
of such uncertainties in a statistical framework is only a recent devel-
opment. While it is a consensus that aleatory uncertainties are best
represented in a probabilistic framework, different approaches have
been pursued for epistemic uncertainties. Because epistemic un-
certainties come from lack of knowledge, it is a philosophical question
whether to treat such uncertainties in probabilistic framework. In the
Bayesian framework, all sources of uncertainty are represented as
subjective beliefs and assigned a measure of probability. This review
primarily focuses on Bayesian approaches. However, many other non-
Bayesian or non-probabilistic approaches for treating epistemic un-
certainties exist. Examples include imprecise probability theory [33],
probability bounds analysis [34–36], Dempster–Shafer evidence theory
[37], fuzzy sets [38], and credal sets [39]. For an overview and ap-
plications of some of these approaches, see Refs. [40,41].

Current approaches for quantifying the model-form uncertainties
associated with RANS simulations can be classified into parametric and

non-parametric approaches3 depending on where the uncertainties are
introduced. In parametric approaches, uncertainties are introduced to
the closure coefficients of chosen turbulence models, based on which
the overall prediction uncertainties are assessed. Although neglecting
uncertainties in the model forms and constrained by the baseline
models, the parametric approach has the advantage of being non-in-
trusive and thus readily available to CFD practitioners. On the other
hand, non-parametric approaches directly investigate the uncertainties
on modeled terms (fields in RANS solvers), e.g., the eddy viscosity [42],
source terms in the turbulent transport equations [43], or the Reynolds
stress itself [44,45]. An advantage of these approaches is that the un-
certainties of modeled terms reveal more physical insights than the
uncertainties of the model coefficients, e.g., allowing the flow regions
more prone to model inaccuracies to be identified. However, non-
parametric approaches also introduce new challenges, since the un-
certainties are now quantified for spatial fields, which theoretically
have infinite degrees of freedom. The dimensionality (and thus the cost
of the uncertainty quantification) increases with the size of mesh used
to discretize the RANS equations. Additionally, such methods are in-
trusive by nature and thus are less friendly to industrial practitioners
who are limited to black-box CFD solvers.

In addition to the parametric/non-parametric classification, it is
possible to distinguish forward and backward methods, also referred to
as data-free and data-driven approaches as illustrated in Fig. 6. Forward
(data-free) methods consist in propagating some pre-specified prob-
ability distributions on the closure coefficients (or on the modeled
terms) through the RANS equations and investigating the uncertainty
distribution of the solution (Fig. 6a). On the other hand, backward
(data-driven) methods consist in assimilating available data to infer the
coefficient distributions or model errors (Fig. 6b). Such inferred dis-
tributions then become available for propagation through the RANS
equations in a subsequent prediction step as in the forward analysis.
The applicability of the calibrated RANS models to new flows remains
as a main concern for both parametric and non-parametric approaches.
Table 1 shows a classification of the literature based on their para-
metric/non-parametric and forward/backward characteristics. Note
that the classification omitted data-driven methods that primarily fo-
cused on developing turbulence models [e.g., 46, 47] rather than
quantifying their uncertainties. A roadmap is provided in Fig. 5 to help
the reader navigate through this review.

The rest of the paper is organized as follows. A brief review of
available techniques for uncertainty propagation, data assimilation and
statistical inference is presented in Section 2. In Section 3 we review
parametric and multi-model approaches, the latter of which partly ac-
counts for model-form uncertainties. Section 4 is dedicated to non-
parametric approaches, which target model-form uncertainties. For
completeness, an overview of uncertainties in scale-resolving ap-
proaches, and more specifically LES, are briefly reviewed in Sections 5.
Finally, conclusions, future research, and perspectives are presented in
Section 6.

2. Fundamentals of probability and statistics for uncertainty
quantification

Probability and statistics lie at the core of most of the work re-
viewed in this work. Therefore, we provide a brief overview of the
relevant methods in this section in the context of quantifying and re-
ducing RANS model uncertainties. Based on these foundations, we

3 Here we have used the terminology (“parametric” and “non-parametric”)
rather liberally, which is closely related to, but not strictly consistent with, the
standard terminology in the statistics literature. In statistics, parametric models
refer to those parameterized by a finite set of parameters, while non-parametric
models refer to those with infinite degrees of freedom (e.g., spatial random
fields).



briefly introduce the algorithms used for uncertainty propagation
(forward analysis) and Bayesian inference (backward analysis). In
particular, we discuss some commonly used methods for exact and
approximate Bayesian inferences.

2.1. Representation, sampling, and propagation of model uncertainties

In the probabilistic approach, the uncertain quantities of concern in
the RANS model, such as the model coefficients, can be represented as
random variables. A random variable Z is a scalar function that may
take a range of possible values z, referred to as realizations. A vector of
random variables Z Z Z[ , , ]n1= , indexed by integers, is a random
vector. An example is the combination of coefficients in a RANS model.
A random field Z x( ) is a field of random variables indexed by the
spatial coordinate x . It is also referred to as stochastic process when the
index is time coordinate t. Random field is a generalization of random
vectors to the continuous limit. The true Reynolds stress field x( ) and

the discrepancies in the RANS-modeled Reynolds stress x( )rans are
examples of random fields in RANS model uncertainty quantification.

A continuous random variable can be characterized by its prob-
abilistic distributions such as cumulative distribution function or
probability density function p z( ). Common quantities of interest in
uncertainty quantification are statistical moments of the random vari-
ables such as expectation Z[ ] and variance zar[ ], which can be ob-
tained via integration over all possible outcomes of Z, e.g.,

Z z p z dz[ ] ( ) ,= (5a)

Z z Z p z dzar[ ] ( [ ]) ( ) .2= (5b)

The expectations and variances of random vectors and random fields
can be obtained by applying Equation (5) to each component thereof,
recalling that random vectors and random fields are collections of
random variables indexed by integers and real numbers, respectively.
Moreover, a random vector is further characterized by its covariance
matrix K Z Zov( , )ij i j= , which represents the correlation among the
components of Z . A generalization of the covariance matrix of random
vectors to random fields leads to covariance kernel x xK ( , ), which
indicates the pair-wise covariance between the random variables xZ ( )
and xZ ( ) corresponding to locations x and x . The most commonly
used covariance kernel for the random fields representing model dis-
crepancies is the squared exponential kernel:

x x x xK
l

( , ) exp | |
2

,2
2

2=
(6)

with σ and l indicating variance and length scale, respectively. Such a
kernel implies that the correlation between two random variables de-
pends on their corresponding indexing locations. The farther apart the
two locations x and x are, the smaller the correlation between xZ ( )
and xZ ( ) is.

In this work, we consider a RANS-based CFD model M y: ( ; ) ,
which is parameterized by and maps the latent variables (e.g.,
geometry, boundary conditions) to an observable output y. The multi-
dimensional random variable can be a vector of model coefficients in
parametric approaches or a spatial field in non-parametric approaches,
e.g., Reynolds stress field x( ) or eddy viscosity field x( )t . Two types of
analyses can be performed:

• Uncertainty propagation (forward analysis): When the probability
distribution p ( ) of the model parameters is known, the prob-
ability distribution p y( ) of the output can be obtained by (i) sam-
pling the specified distribution p ( ), e.g., by using a Monte Carlo
method, (ii) evaluating the model M, and (iii) aggregating the pro-
pagated samples. A typical algorithm for plain Monte Carlo sam-
pling is presented in Appendix A.1. The probability distribution p ( )
that is known on the parameters is referred to as the prior dis-
tribution.
• Bayesian inference (backward analysis): When data D is available
on the output y, which may be noisy, biased, or incomplete, the

Fig. 6. Illustration of uncertainty propagation (forward analysis) and statistical
inference (backward analysis) in the context of RANS simulations. Uncertainty
propagation (forward analysis) involves propagating specified prior distribu-
tions on the input (e.g., angle of attack/AoA, Reynolds number, model
coefficients, or modeled terms such as Reynolds stresses) through a RANS si-
mulation code and investigate the uncertainties in the solutions (quantities of
interests/QoIs, e.g., lift and drag coefficients). Statistical inference (backward
analysis) involves assimilating available measurement data to reduce un-
certainties in the aforementioned input (e.g., AoA or Reynolds number). The
inferred input distributions can be subsequently propagated to make predic-
tions on the QoIs.

Table 1
Classification of literature of RANS model uncertainty quantification based on parametric/non-parametric approaches and data-free (forward)/data-driven (back-
ward) approaches. Works in multi-model approaches are listed along with parametric approaches.

Parametric Non-parametric

data-free (forward) (Turgeon et al. [48], 2001), (Dunn et al. [49], 2011) ((Platteeuw et al. [50],
2008) (Margheri et al. [51], 2014) (Schaefer et al. [52], 2016)

(Emory et al. [53,54], 2013) (Iaccarino et al. [55], 2017) (Mishra and
Iaccarino [56], 2017) (Edeling et al. [57], 2017) (Xiao et al. [58],
2017)Multi-model: (Poroseva et al. [59], 2006) (Edeling et al. [60,61], 2014,

2018)
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2014–2018) (Papadimitriou and Papadimitriou [67], 2015)

(Dow and Wang [42], 2011) (Singh and Duraisamy [43], 2016) (Xiao
et al. [44], 2016) (Wu et al. [68] 2016) (Wang et al. [69], 2016)
(Parish and Duraisamy [70], 2016)
(Edeling et al. [57], 2017)



input probability distribution of can be inferred. The result is the
posterior distribution p ( | )D of given data D , representing an
updated distribution from the prior distribution p ( ) after observing
the data.

2.2. Uncertainty propagation (forward analysis)

Techniques to propagate uncertainties can be classified into two
categories [see ref. 71, Chapter 1.4]: spectral methods [72] and Monte
Carlo (MC) methods [73]. Spectral methods discretize the uncertainty
space of the random variables by using orthogonal basis functions. This
is done in a similar way in which orthogonal basis functions (e.g.,
Fourier functions or orthogonal polynomials) are used for the spatial
discretization of deterministic PDEs. In uncertainty quantification,
spectral methods have faster statistical convergence but they depend on
the smoothness of the prior and the function that maps the inputs to
outputs. Another barrier for spectral methods is the “curse of di-
mensionality”: the number of function evaluations needed to accurately
describe the statistics increases exponentially with the cardinality of the
parameter space. Monte Carlo methods, on the other hand, approximate
the solution by using random samples from the input uncertainty space
and are not adversely affected by its dimensionality. However, the
convergence rate is uniformly slow at a rate of N( )1/2O , where N is the
number of samples [73].

While the Monte Carlo based uncertainty quantification seems
straightforward, the slow convergence rate poses a major challenge in
applications where the computational cost of propagating each sample
is high, as is the case for CFD simulations. Accelerating the statistical
convergence of Monte Carlo methods has been a topic of intensive re-
search, and numerous techniques for variance reduction have been
proposed. Examples include stratified sampling, Latin hypercube sam-
pling [74], importance sampling, and control variate [73]. A recent
development is multilevel Monte Carlo (MLMC) methods [75–77],
where simulations on coarser meshes are used as control variate of
those on fine meshes to reduce the variances. A generalization of MLMC
has led to multi-fidelity Monte Carlos methods [78–80], where a se-
quence of models with ascending fidelities (e.g., empirical formulas,
panel methods, RANS, LES) are combined for input uncertainty pro-
pagation, with lower-fidelity models used as control variate of higher
fidelity models as in the MLMC methods. However, so far these methods
have been primarily used for propagating input uncertainties and not
model uncertainties. One difficulty associated with multi-level and
multi-fidelity methods is the possible non-trivial interactions between

model uncertainties and numerical discretization uncertainties.
Another approach for overcoming the difficulty of expensive model

simulations are surrogate models or response surface methods. In these
methods, a surrogate of the original model, e.g., in the form of splines,
polynomial chaos, or neural networks, are first constructed based on
data obtained by evaluating the original model M at a number of design
points. The surrogate models provide an approximate functional map-
ping M y: that replaces the true mapping M for use in the sub-
sequent sample propagation. Once constructed, the surrogate models
can be evaluated at negligible computational costs. However, as with
spectral methods, a main difficulty for the surrogate model approach is
the curse of dimensionality, which makes it impractical for high di-
mensional input space.

2.3. Statistical inference (backward analysis)

Most of the works on inference of model uncertainties (referred to as
backward analysis above) are based on Bayes’ theorem:

p p p
p

( | ) ( | ) ( )
( )

,=D
D

D (7)

which states that the posterior probability p ( | )D is proportional to the
prior p ( ) and the likelihood p ( | )D . The prior p ( ) summarizes all
available knowledge about θ before observing the data D . The like-
lihood function p ( | )D represents the probability of observing the data
from a process described by the model M ( ) parameterized by θ. In the
context of RANS uncertainty quantification, evaluating p ( | )D for a
given realization of the model parameters θ involves running the CFD
code and is thus a costly operation. Finally, p ( )D is the total probability
of observing the data, which normalizes the posterior probability.

2.3.1. Bayesian inference based on Markov chain Monte Carlo sampling
Theoretically, evaluating the posterior can be straightforward using

the following procedure similar to the plain Monte Carlo sampling: (i)
draw samples from the prior, (ii) evaluate the likelihood for each
sample, and (iii) aggregate the samples to estimate the posterior.
However, this is much more challenging than in the forward analysis
above. In the forward analysis the probability distribution is known,
and thus one can draw more samples from the high probability regions,
e.g., by using stratified sampling [73]. In contrast, Bayesian inference
involves sampling from the posterior, the high probability regions of
which is not known a priori. For example, samples drawn from regions
with high prior probability may turn out to have very small likelihood
after an expensive model evaluation, which may lead to very small
posterior probability (see Equation (7)). Therefore, plain Monte Carlo
methods are rarely used due to its difficulty in efficiently targeting the
high posterior regions. Instead, Markov chain Monte Carlo (MCMC)
methods are commonly used, which are a class of sequential sampling
strategies in which the next sampled state only depends on the current
state. Such a strategy allows the sampling to focus on high probability
regions with occasional excursion to low probability regions (tails).
Given a target distribution, the MCMC algorithm samples from that
distribution by constructing a Markov chain whose stationary dis-
tribution coincides with the target distribution. A typical MCMC algo-
rithm with Metropolis–Hastings sampling is detailed in Appendix A.2
and illustrated graphically in Fig. 7.

While the MCMC is the golden standard of Bayesian inference and
posterior sampling, a major challenge of its application is that it re-
quires a large number of samples to achieve statistical convergence.
Typically the required number of samples range from (10 )5O to (10 )6O ,
with the specific number depending on the shape of the posterior dis-
tribution and the effectiveness of the sampling. In CFD applications,
each evaluation involves a simulation that takes hours or even weeks to
run depending on the complexity of the flow configuration. For ex-
ample, RANS simulations of a jet in crossflow, which is a geometrically
simple yet industrially relevant case, needed (10 )7O grid points and

Fig. 7. Illustration of Markov chain Monte Carlo sampling of a banana-shaped
posterior (shaded contour) in a two-dimensional state space. The sampled
distribution is illustrated with the trace of past samples (dots) and the marginal
distributions (histograms plotted on the horizontal and vertical axes). Image
obtained by using the MCMC demonstration code (https://chi-feng.github.io/
mcmc-demo/) by Chi Feng of MIT.

https://chi-feng.github.io/mcmc-demo/
https://chi-feng.github.io/mcmc-demo/


(10 )4O CPU hours to run on a high performance computing cluster
[23,65]. Clearly, it is impractical to perform a full RANS simulation for
each evaluation of likelihood in the MCMC sampling. This is not only
due to the large number of required samples but also because of the
sequential nature of traditional MCMC algorithms – the next proposed
sample depends on the evaluated posterior at the current state.

As in the uncertainty propagation discussed above, surrogate
models are commonly used for likelihood evaluation in MCMC-based
model uncertainty quantification to alleviate the high computational
cost of RANS simulations [23,65,66]. Efficient sampling of high di-
mensional spaces with MCMC is a topic of active research, with many
methods proposed in the past few years, e.g., by adaptively constructing
local approximations during the sampling and by using the likelihood to
inform the sampling [see, e.g., 81,82].

Another difficulty arises from the physical constraints among the
state variables (e.g., parameters in closure models or Reynolds stresses
at different spatial locations), which is particularly relevant for RANS
model uncertainty quantification. For example, in the parametric ap-
proach such constraints on the parameters dictates that points in some
regions in the state space may yield nonphysical solutions or fail to
converge at all. Consequently, such regions should be excluded when
using MCMC to sample the posterior. Again, this can be done by
building surrogate models from simulation data [23,65,83]. The frac-
tion of excluded regions increases exponentially with the dimension of
the sample space. Finally, it is noted that such a surrogate approach is
also restricted to state spaces with low dimensions.

2.3.2. Approximate Bayesian inference based on MAP estimation
The MCMC method provides the most accurate sampling of the

posterior but requires a large number of samples. When the exact
probability is not critical and only the low order moments such as the
mean and the variance are important, various approximate Bayesian
inference methods can be used [e.g., 84, 85]. These methods use
maximum a posteriori (MAP) probability estimate to obtain the mode
(peak) of the posterior and not the full posterior distribution.

The MAP estimate can be computed in several ways, among which
the most commonly used are variational methods and ensemble
methods. Both methods are used in data assimilation with a wide range
of applications ranging from numerical weather forecasting to subsur-
face flow characterization. Both variational methods and ensemble
methods have been adopted for parameter inferences. To this end, the
system state is first augmented to include both the observable, physical
state t( )i (e.g., velocities, pressure, and/or turbulent kinetic energy)
and parameters (e.g., model coefficients or Reynolds stress dis-
crepancies, which are not observable and need to be inferred).
Specifically, z is written as a vector formed by stacking the unknown
parameters and the physical states i:

z [ , , ; ] ,n1= (8)

where indicates vector transpose, and [ , , , ]r1 2= is a vector
of r parameters. When computing the MAP estimate, the following
objective function is to be minimized:

z z zJ y[ ] [ ]= + H
P
2

R
2

1 1 (9)

where P and R are the covariance matrices of the state z and the ob-
servation errors, respectively, with A A A11 = PP and 1R simi-
larly defined;H is the observation matrix, which maps the state space to
the observation space, typically reducing the dimension dramatically.
Its interpretation will be further detailed in the context of the ensemble
Kalman filtering algorithm (see Appendix A.3).

Obtaining the MAP estimate is equivalent to minimizing the cost
function J in Equation (9) under the constraint imposed by the models
describing the physical system (i.e., RANS equations in case of turbu-
lent flows), during which the set of parameters minimizing the dis-
crepancies between the prediction and the observation data is sought.

In variational methods the minimization problem is often solved by
using gradient descent methods, with the gradient obtained with ad-
joint methods. In contrast, ensemble methods use samples to estimate
the covariance of the state vector, which is further used to solve the
optimization problem. Variational methods have been the standard in
data assimilation and still dominate the field, while ensemble methods
such as ensemble Kalman filtering have matured in the past decades
and are making their way to operational weather forecasting. Hybrid
approaches combining both approaches are an area of intense research
and have been explored in CFD applications [84].

Recently, ensemble Kalman filtering (EnKF) [86,87] has been
widely used in inverse modeling to estimate model uncertainties
[44,85]. In EnKF-based inverse modeling, one starts with an ensemble
of model parameter values drawn from their prior distribution. The
filtering algorithm uses a Bayesian approach to assimilate observation
data (e.g., data from experiments and high-fidelity simulations) and
produces a new ensemble that represents the posterior distribution. In
parametric or field inference of concern here, the EnKF method is used
in an iterative manner to find the states that optimally fits the model
and data with uncertainties of both accounted for, which is essentially a
derivative-free optimization. As such, it is referred to as the iterative
ensemble Kalman method. This is in contrast to the EnKF-based data
assimilation as used in numerical weather forecasting, where the ob-
servation data arrive sequentially. The algorithm for the iterative en-
semble Kalman method is presented in Appendix A.3.

EnKF has some well known limitations due to its assumptions of
linear models and Gaussian distributions, and theoretically they would
perform poorly for non-Gaussian priors and highly nonlinear forward
models. However, despite the above-mentioned limitations, EnKF
methods have been successfully used in a wide range of applications.
Mathematicians have performed analyses to shed light on why they
have worked well in view of their theoretical limitations [88,89].

3. Parametric and multi-model approaches

In this review we use “parametric approaches” to refer to methods
that quantify the uncertainty associated with RANS simulations by in-
vestigating primarily the sensitivity of the results to the closure coef-
ficients. As mentioned in Section 1, we will use “forward approaches” to
refer the methods that consist of perturbing the closure coefficient ac-
cording to some probability distribution function and quantifying the
output uncertainty on the computed solution. This is in contrast to
“backward approaches”, in which observations are used to infer the
model coefficients. In both the forward and backward approaches, the
model structure is fixed and only the uncertainty on the coefficients is
quantified. This can nevertheless be used to learn about structural in-
adequacy of the model, as will be shown later. In some cases, one of the
outcomes of the inference process is an estimate of the plausibility of a
given model based on the available observations, i.e. the inference may
also provide some guidelines for model selection. Finally, we will dis-
cuss multi-model approaches in which the uncertainty on the model
choice is tackled by considering a set of alternative model structures.

3.1. Uncertainties in RANS model parameters

All RANS models have some closure coefficients. A typical example
is provided by the well-known k–ε model, initially proposed by Jones
and Launder [90]. In this model, the Reynolds stress tensor is modeled
by using the Boussinesq approximation in Equation (4), and the tur-
bulent viscosity t is computed by solving additional transport equa-
tions for the turbulent kinetic energy k and the turbulent dissipation ε:
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where kP is the production of turbulent kinetic energy through energy
extraction from the mean flow gradient:

S S: ,k ij ij=P (11)

and the double dot ":" indicates tensor contraction.
The k–ε model above involves coefficientsCµ,C 1,C 2, k, and . The

nature of these coefficients leads to ambiguity regarding their values,
and a set of flow-independent optimal values are unlikely to exist [66].
The above-mentioned coefficients are traditionally calibrated to re-
produce results of a few canonical flows. One of such canonical flows is
the decaying homogeneous isotropic turbulence. In this flow the k and ε
equations (10b) and (10c) simplify to

dk
dt

,= (12)
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These equations can be solved analytically to give
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with reference time t nk /0 0 0= and the exponent n C1/( 1)2= , the
latter of which leads to:

C n
n

1 .2 = +
(15)

The standard value for n is such that C 1.922 = . However, this is by no
means a hard requirement and other models do use different values for
C 2. For instance, the RNG k–ε model uses a modified value C̃ 1.682 = ,
and the k–τ model (essentially a k–ε model rewritten in terms of

k/= ) usesC 1.832 = [91]. Nevertheless, experimental results suggest
that most data agrees with n 1.3= , which corresponds to C 1.772 =
[92].

The coefficient Cµ is calibrated by considering the approximate
balance between production and dissipation which occurs in free shear
flows or in the inertial part of turbulent boundary layers. This balance
can be expressed as
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Here, indices 1 and 2 indicate coordinates in streamwise and wall-
normal directions, respectively. Equation (16) can be manipulated to-
gether with the turbulent-viscosity hypothesis U x/t12 1 2= to yield

U x( / )12 1 2
1= , which in turn yields
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DNS data [93] were used to show that k0.3012 (except close to the
wall), and thus C 0.09µ = is the recommended value [94]. Again,
however, different models use different values for Cµ. For example, it
was found that C 0.085µ in the case of the RNG k–ε model.

Another fundamental flow to be considered is the fully developed
plane channel flow, which implies that Dk Dt D Dt/ / 0= = . The re-
sulting simplified governing equations leads to the following constraint
among several parameters [94]:

C C C( ),µ
2 1/2

2 1= (18)

where κ is the von Karman constant. It should be noted that the nominal
coefficients in the k–ε model satisfy this constraint only approximately,
leading to 0.43, instead of the standard value of 0.41= . However,
even the “standard values” has been questioned recently, with κ de-
termined to fall in the range [0.33, 0.45] based on experimental data in
the literature [95].

The following constraint between C 1 and C 2 can be found by ma-
nipulating the governing equations of uniform (i.e., U x/ constant1 2 = )
shear flows [94]:
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Tavoularis and Karnik [96] measured /kP for several uniform shear
flows and reported values between 1.33 and 1.75, with a mean around
1.47. Note, however, that Equation (19) becomes 2.09 with the stan-
dard values for C 1 and C 2, which is significantly different from the
mentioned experimental values. Note that, regardless of the un-
certainties, the coefficients have to satisfy the constraintC C2 1> as has
been shown through numerical experiments by Ray et al. [23]. The
physical reason behind this delineation is that the ratio C C/2 1 corre-
sponds to the spreading rate of a free jet. A ratio of C C/ 12 1 < , or
equivalently C C2 1< , would lead to contracting jet, which is non-
physical [97].

The parameter k can be considered a turbulent Prandtl number and
represents the ratio of the momentum eddy diffusivity and the TKE
diffusivity. These quantities are usually close to unity, which is why the
standard value for k is assumed to be 1.0. However, no experimental
data can be found to justify this assumption [50], leading to a range of
recommended values among the different variations of the k–ε model.
For instance, the RNG k–ε model uses 0.72k = [10]. The parameter
controls the diffusion rate of ε, and its value can be determined by using
the constraint imposed by Equation (18), i.e.

C C C( )
.

µ

2

1/2
2 1

=
(20)

Fig. 8. Flow past a backward facing step at Re 50000h = . Sensitivity of the k–ε model to the closure coefficients. Plots of the skin friction and its sensitivities versus the
longitudinal position behind the step. Figures reproduced with permission from Turgeon et al. [48].



Similar uncertainties affect the coefficients of other turbulence models.
Margheri et al. [51] discuss in further detail the uncertainties in the
coefficients of the k–ε model and Menter's SST k–ω model [98] and
characterized their probability distributions by using generalized
polynomial chaos approximations of extensive literature databases.
Recently Shaefer et al. [99] also investigated the uncertainties in the
coefficients of the SA model [100], Wilcox’ k–ωmodel, and the SST k–ω
model, pointing out the large epistemic intervals on their values.

3.2. Parametric uncertainty in RANS models: forward approaches

In light of the scattering in closure coefficients of RANS models as
reviewed above, several uncertainty quantification (UQ) analyses have
focused on quantifying the effect of such uncertainties on the output
quantities of interest (QoI). Among the pionneering efforts on forward
sensitivity analysis of RANS models is the work of Turgeon et al. [48].
They investigated the effect of uncertainty in theCµ,C 1,C 2, k and of
the standard k–ε turbulence model (combined with wall functions) on
the solution output. The uncertainty analysis was based on a general-
ized sensitivity equation method [101], i.e. using sensitivity derivatives
to propagate uncertainties in the turbulence model coefficients to the
solution. In these papers, the uncertainty intervals of the turbulence
coefficients are taken arbitrarily, since finding information about the
range of uncertainty in the coefficients is not straightforward. The re-
sults presented for the flow past a flat plate and the flow over a back-
ward-facing step, which is a severe configuration for RANS models,
show that the uncertainty in the model coefficients is not sufficient to
account for the observed discrepancies between the predictions and the
measurements. An interesting by-product was the identification of the
most influential parameters based on the scaled sensitivities. For the
flow over a backward-facing step, parameters C 1 and C 2 are found to
exert the strongest influence on the wall friction coefficient Cf and thus
on the reattachment point location. Fig. 8 shows the nominal prediction
and the uncertainty range for the distribution of Cf downstream of the
step (panel a) and of its scaled sensitivities (panel b), defined as

C
C

,f
f

j
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where j is the j-th model parameter and jnom, is its nominal value. The
method was finally applied to an airfoil flow, showing the increasing
sensitivity of the solution to the RANS coefficient for larger angles of
attack.

Sensitivity-based analyses provide only an uncertainty band around
the nominal solution. To obtain more information about the uncertainty
of the solution, and specifically its full probability distribution given
some input joint probability of the model parameters, UQ techniques
(e.g., the MC method presented in Appendix A.1) can be used to pro-
pagate an assigned joint distribution on the closure coefficients across
the model. For instance, Platteeuw et al. [50] used experimental da-
tabases and DNS results, along with physical constraints on the

coefficients to construct realistic a priori approximations of the input
distributions for the different coefficients of the standard k–ε with wall
functions [102]. Their final set of uncertain coefficients includes the
model parameters Cµ, C 2, k, the wall function parameters κ (i.e. the
von Karman constant), and the log-law constant, as well as the turbu-
lence intensity imposed at the free-stream boundary. A probabilistic
collocation method was used to efficiently propagate the input joint
distribution through a zero-gradient flat plate flow configuration. Mean
flow variations as a consequence of the turbulence model uncertainty
were found to be large enough (at least compared to numerical errors)
to encompass the experimental data available for the friction coefficient
distribution along a flat plate. They also carried out a sensitivity ana-
lysis of the output QoI, showing that the solution was more sensitive to
the wall function parameters than to other model parameters. Fig. 9
shows the uncertainty range obtained by assigning a normal probability
density to the von Karman constant, (0.417, 0.0127)N , while
keeping other parameters constant. The most probable solution is in
slightly better agreement with the experimental data. On the other
hand, the predicted uncertainty interval encompasses the data.

Forward UQ for the k–ε turbulence model with wall functions was
also carried out by using the Latin hypercube sampling method [49].
This was used to propagate distributions of the input coefficients esti-
mated from the data from Pope [94] for the flow past a backward-
facing step, and the mean values were reported for the flow output
parameters of interest along with their associated uncertainties. The
results showed that model coefficient variability had significant effects
on the streamwise velocity component in the recirculation region near
the reattachment point and turbulence intensity along the free shear
layer. The reattachment point location, pressure, and wall shear were
also significantly affected.

In the above-mentioned works, the uncertainty distributions of the
input parameters were all obtained in a largely subjective manner. The
specification of such prior distribution has an impact on the output
probability distributions. To reduce such uncertainties it is possible to
use analytical relationships allowing to express the closure coefficients
in terms of basic properties of canonical flows (e.g., the power-law
exponent of the free decay of turbulent kinetic energy in isotropic
turbulence). Following this idea, Margheri et al. [51] carried out an
extensive literature survey and collected a large amount of experi-
mental and numerical data characterizing the input coefficient dis-
tributions for the Launder–Sharma low-Reynolds number k–ε and
Wilcox k–ω models. The collected data exhibited a significant scat-
tering, which confirmed the hypothesis that the uncertainties in the
measured or computed basic flow properties leads to uncertainties in
the RANS model coefficients. Fig. 10 reports the resulting input prob-
ability density function (pdf) for the parameters of the k–ε model,
which are reconstructed by using the generalized polynomial chaos
(gPC) expansion [103]. The input distributions were propagated
through the RANS equations applied to a turbulent channel flow for two
different friction Reynolds numbers, Re 950= and Re 2000= , showing
that both models give inaccurate predictions of the intensity and peak

Fig. 9. Distribution of Cf for the flow along a semi-infinite flat plate with zero pressure gradient and 99% uncertainty interval. Sensitivity of the k–ε model to the von
Karman constant κ. Figure reproduced with permission from Platteeuw et al. [50].



location of the turbulent kinetic energy. The observed inaccuracies
were ascribed to structural uncertainties of turbulence models, which
are not accounted for by the parametric data-free approaches.

3.3. Parametric uncertainty in RANS models: backward approaches

3.3.1. Statistical inference of model parameters
Forward parametric approaches strongly rely on the availability of

reliable data for constructing the coefficient probability intervals or
joint distributions. Unfortunately this information is inevitably in-
complete and subject to errors. Additionally, it remains restricted to
rather simple flow configurations, and it is difficult to extend such data
for robust predictions of different flows. Finally, data are only available
for observable quantities (e.g., pressures and velocities) and not for the
closure coefficients themselves. However, an inverse statistical problem
can be solved to infer the input coefficients and possibly their un-
certainties. Once obtained, this information can be propagated back
through the model to estimate uncertainty intervals on the output QoIs.

The inverse statistical problem can be solved by using a determi-
nistic or probabilistic approach. In the deterministic approach, a set of
optimal closure coefficients is obtained by minimizing the model error
with respect to some reference data. For instance, Margheri et al. [51]
utilized the gPC response surfaces generated for their forward UQ
analyses to find optimal combinations of model coefficients that lead to
minimum global error on the mean and friction velocities with respect
to DNS data for the turbulent channel flow case. Their findings suggest
that the values of the model coefficients recommended in literature,
which are generally set as default in commercial and open-source CFD

codes, do not fall within the best-fit range. Note however that such
deterministic estimates do not provide information on the variability of
the optimal coefficients or their validity for a different flow case.

In order to quantify and reduce the uncertainties on model coeffi-
cients while simultaneously providing an estimate of model-form un-
certainties, it is possible to use Bayesian inference techniques as in
Section 2.3. In such an approach, a priori knowledge or assumptions
about the coefficients is updated by using available data. When data are
highly uncertain or sparse, the updated information will exhibit little
difference from the prior distribution. As more data arrive, it is possible
to further update the model, thus refining the initial estimate. In the
Bayesian calibration process, a key ingredient is the likelihood function
in Equation (7), which may carry information about observational noise
on the data and model-form uncertainty. The latter being the gap be-
tween the average model predictions and the “truth”, as will be dis-
cussed later in Section 3.3.2.

Cheung et al. [62] performed the first application of Bayesian un-
certainty quantification techniques for calibrating turbulence models
and making probabilistic predictions for new flows. They used MCMC
sampling to carry out Bayesian calibration of the Spalart-Allmaras
model from velocity and skin friction data for three boundary layers
with zero, adverse, and favorable pressure gradients. This effort en-
abled the estimation of the whole posterior joint probability distribu-
tion of the coefficients (instead of deterministic values) as well as a
comparison of competing models for the likelihood function (noted M1,
M2, and M3) relating the observed data to the model output. As an ex-
ample, Fig. 11 shows the marginal posterior distributions obtained for
the von Karman constant κ and the coefficient c ,1, along with their joint

Fig. 10. Normalized probability density function (pdf/max(pdf)) of the Launder–Sharma k–ε model coefficients recovered through gPC. Figures reproduced with
permission from Turgeon et al. [51].



scatter plot when using the stochastic model M3. Bayesian calibration is
able to discover a posterior correlation between these two parameters,
showing the importance of calibrating all parameters simultaneously.
The MCMC-based calibration process involved a large number of
boundary layer calculations (32,768 samples), each based on a full
Navier–Stokes incompressible flow solver. Ray and co-workers
[23,65,104,105] used a similar approach to infer the model coefficients
for a more complex configuration, namely, a jet-in-cross-flow. For ex-
ample, experimental data were used to calibrate the parameters in a
nonlinear eddy viscosity model [23], where surrogate models were used
to reduce the computational burden of the MCMC sampling.

Kato and Obayashi [63] used ensemble Kalman filtering [86,106] to
determine the values of the parameters of the Spalart–Allmaras turbu-
lence model for the zero-pressure gradient flat plate boundary layer at
M 0.2= and Re 5 106= × . The data were velocity profiles and wall
pressures generated by the same model using a known set of coefficients
(equal to the nominal ones). An advantage of using synthetic data is to
remove structural uncertainty, since the trained model is the same used
to generate the data. The results show the ability of the EnKF method to
identify the correct model parameters for a relatively low computa-
tional cost (ensembles of 100 function evaluations, i.e. CFD calcula-
tions). The approach has been extended to more complex flows around
airfoils [64], establishing a general framework for combining experi-
mental fluid dynamics and CFD for predictions.

An even more efficient way of finding the optimal coefficients is to
maximize the likelihood function by using gradient-based methods.
This corresponds to finding the set of closure coefficients corresponding
to the maximum probability of observing the data. The main drawback
of this approach is that only deterministic sets of coefficients are

obtained as an outcome of the calibration. Papadimitriou and
Papadimitriou [67] obtained variance estimates of the optimal coeffi-
cients by using the Hessian of the likelihood function with respect to the
parameters θ. They found that the posterior variance due to the overall
observational uncertainty (e.g. to the discrepancy between the model
output and the data) plays a dominant role. This indicates that coeffi-
cient calibration alone is not sufficient to match the data, and that the
bias introduced by the model structure is mostly responsible for the
discrepancy. Unfortunately, Hessian calculations require computing the
second sensitivity derivatives of the model with respect to the para-
meters, which is a highly intrusive and delicate task and is not com-
patible with black-box Navier–Stokes solvers.

Bayesian strategies similar to that of Cheung et al. [62] can also
provide estimates of the uncertainty associated with the model form,
grounded in uncertainties in the space of model closure coefficients.
This can be achieved by calibrating the model separately against several
sets of data. The spread in the posterior estimates of closure coefficients
across calibration scenarios provides a measure of the need for read-
justing the model coefficients to compensate for the inadequacy. An
example of such a sensitivity study is given by Edeling et al. [66], where
the Launder–Sharma model was calibrated separately against 13 sets of
flat-plate boundary layer profiles from Kline et al. [107]. The results
showed a significant variation in the most-likely closure-coefficients
values for the different pressure gradients, despite the relatively re-
stricted class of flows (flat plate boundary layers) considered for the
calibrations.

The main lessons learned from the preceding exercise are: (i) there
are no universal values for the closure parameters of the turbulence
models; (ii) the parameters need to adjust continuously when changing

Fig. 11. Calibration of the Spalart–Allmaras model from the flat plate flow data, showing (a) the posterior distributions and (b) scatter plots of the inferred
parameters κ and C 1 by using different statistical models for the inadequacy term. Figures reproduced with permission from Cheung et al. [62].



the dataset to compensate the intrinsic inadequacy (simplifying mod-
eling assumptions) of the chosen model (see, e.g., the variation of the
marginal posterior pdf for κ, reported in Fig. 12a); and (iii) as a result,
closure coefficients obtained by calibrating the model against a given
boundary layer are generally not valid for the prediction of a different
one.

The variability of closure coefficients for the observed flow can
however be used as a measure of model inaccuracy when predicting a
new flow. In Edeling et al. [66], this is done by summarizing the pos-
terior variability of the parameters within and in between calibration
datasets (called hereafter scenarios) by means of probability boxes (p-
boxes), commonly used in Bayesian statistics to summarize the joint
effect of parametric and epistemic model-form uncertainties [40]. P-
boxes are constructed as the envelope of the empirical cumulative
distribution functions of the output predicted using different posteriors
of the parameters. An example of p-box for the nondimensional velocity
u+ predicted at a non-dimensional wall distance y 46.2=+ for a pipe
flow boundary layer is given in Fig. 12b. Analogous results are obtained
at various locations across the boundary layer, thus leading to an es-
timate of the uncertainty bounds on the predicted velocity profile
(Fig. 12c). The p-box prediction is found to encompass the experimental
uncertainty intervals, leading however to an overly conservative esti-
mate of the uncertainty bounds.

3.3.2. Accounting for structural uncertainties in RANS models
A delicate step in Bayesian calibration is the construction of a sta-

tistical model relating the true (unseen) process to the data via the
model, which is directly related to the definition of the likelihood
function. This should consider at least the fact that the observed
quantities differ from the true ones by the experimental (observational)
noise, which may be expressed through the relation:

z ,= + (21)

with ζ the true value for z and ϵ a random vector representative of the
experimental noise. The experimental data noise ϵ is often assumed to
be independently distributed without spatial correlation, and it is
modeled as a Gaussian process with diagonal covariance matrix, i.e.,

(0, )N [62,66].
Theoretically, the true value for ζ could be obtained as an output of

the model y, once a suitable set of parameters θ has been identified, i.e.
y ( )= . In practice, however, no model is perfect. Even if there is no

parameter uncertainty, so that we know the true values of all the inputs
required to make a particular prediction of the process being modeled,
the predicted value will not equal the true value of the process [108].
The discrepancy is due to model inadequacy. It is even possible that the
physically true value of a calibration parameter gives a worse fit and
less accurate future prediction than other values, simply because of the
simplifying assumptions upon which the model has been built. Con-
versely, it is dangerous to interpret calibration results as estimates of

Fig. 12. Sample posterior distributions and p-box predictions of a new flow based on 13 separate calibrations of the k–ε model. Figures reproduced with permission
from Cheung et al. [66].



the true physical values of those parameters.
A general framework to include the model inadequacy term in the

stochastic model was first proposed in Ref. [19]. Model discrepancy can
be taken into account by introducing an additional error term to the
statistical model as in Equation (21), which could be of additive nature,
i.e.,

z y ( )= + = + + (22)

or of multiplicative nature:

z y ( )= + = + (23)

where the symbol denotes the Hadamard (element-wise) multi-
plication. Note that all quantities above, z, y, η, and ϵ, are spatial fields
and should be written as xz ( ), xy ( ), x( ), and x( ), respectively. The
spatial dependence is omitted for brevity. The choice of model-in-
adequacy formulation largely depends on the nature and prior knowl-
edge about the observed quantity z. In Equations (22) and (23), η is a
random field representative of the model inadequacy, i.e., of the fact
that true value is not equal to the code output but with some systematic
deviations. For instance, Cheung et al. [62] chose a multiplicative error
model for relating the measured and computed velocity profiles, so that
the no-slip boundary condition at the solid wall is satisfied by any
realization of the stochastic model.

When an additive model inadequacy term is used, it becomes dif-
ficult to separate its effect from that of the observational error. As a
consequence, both terms are often merged together. In all cases, the
random variable η may involve additional parameters proper to the
statistical model introduced for describing the error behavior, referred
to as hyperparameters. Sometimes these are known beforehand or are
estimated independently based on likelihood maximization criteria
[109], but most often they need to be calibrated from the data along
with the physical model parameters . Another important point is that η
is expected to correlate modeling errors for a QoI evaluated at different
locations in the flow field or even for various QoIs and different data-
sets. For instance, Cheung et al. [62] introduced a multiplicative term
to calibrate the Spalart–Allmaras model from velocity profiles and skin
friction distributions for three boundary layer data sets. In their work,
all the competing multiplicative statistical models describe the in-
adequacy term as Gaussian process, i.e., (1, )N . Consequently,
the observations can also be modeled as a Gaussian process, and thus
the likelihood function can be written as follows:

z d d

d z y

p ( | ) exp
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N z
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where N is the dimension of the data vector d, and the covariance
matrix of the true process is y ydiag( ) diag( )= based on the defi-
nition y ( )= in Equation (23). It can be seen that the covariance
matrix of the modeled multiplicative term has impact upon the true
process ζ and thus influences the formulation of the likelihood function
as shown in Equation (24). Different statistical models can be obtained
for different choices of the covariance matrix, and more complex
choices for the inadequacy term have also been investigated [110].
Their results showed the choice of spatial correlation structure for the
modeling inadequacy played an important role in the Bayesian model
selection.

Although the use of model inadequacy terms such as those of
Equations (22) and (23) is helpful in alleviating parameter overfitting
problems and in estimating how well the calibrated model is able to fit
the data, the approach suffers from several limitations:

• The correction terms are specific to the observed QoI and cannot be
re-used for the prediction of a different (unobserved) QoI.
• The correction often depends on the spatial distribution of observed
data for the calibration scenario, and can be hardly applied to, e.g., a
different geometry.

• Even if the same QoI and geometrical configuration are considered,
the inadequacy terms calibrated for a given dataset may not be valid
for the prediction of a different scenario (e.g., operating condition).

The non-universality of the inadequacy term is well illustrated by
the results of Edeling et al. [66], who used a statistical model involving
a multiplicative model-inadequacy term similar to the correlated model
M3 of Cheung et al. [62]. It was observed that the expected value of the
model inadequacy term, as calibrated from data, varies significantly
from case to case. Additionally, for some of the calibration datasets the
posterior values taken by the correction term are much higher than for
the other cases, indicating that parameter adjustment was not sufficient
for the model output to capture the data.

3.3.3. Accounting for multiple models: Bayesian model selection and
averaging

An interesting outcome of Bayesian calibration is the possibility of
deriving statistical criteria for model selection, i.e., for choosing the
best model in some statistical sense among a class of competing models.
This consists in providing estimates of the posterior probability of each
model in the considered set of models M M M{ , , , }I1 2=M given the
observed data. The “model” here should be interpreted in a broader
sense, including not only physical models (e.g., k–ε, k–ω, and Reynolds
stress models) with associated coefficients but also statistical models,
e.g., the covariance kernel used to construct likelihood functions
[62,110] as in Equations (22–24). Model probabilities are obtained as
an outcome of parameter calibration as introduced above. First, each
model in the setM is assigned a probability M( )j , j I1, ,= , based
on prior knowledge (e.g., from expert elicitation) or the lack thereof, in
which case a noninformative, uniform distribution is chosen. Ad-
ditionally, the prior distributions for the closure coefficients θ or sta-
tistical hyperparameters associated with each model are also specified.
If dataD are available, the prior probability mass function (pmf) can be
updated according to Bayes’ theorem, leading to the posterior pmf of
model Mj:

M
p M M

p M M
j I( | )

( | ) ( )
( | ) ( )
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j j
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i i1

= =
=

D
D
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where p M( | )jD is the evidence for model Mj that normalizes the pos-
terior pdf of the model parameters θ, as in Equation (7). The evidence
can be computed at the end of the calibration by numerically in-
tegrating the numerator of Equation (7), using the posterior samples of
θ. This can be a challenging process requiring special techniques [e.g.,
111]). The estimated pmf of the models can subsequently be used for
predictions by choosing the model with maximum posterior probability
in the case of model selection, or alternatively by weighting the various
posterior predictive distributions for the QoI with the posterior pmf in
the case of model averaging.

The approach above has been used for Bayesian model selection and
calibration in RANS simulations. It was found difficult to identify a
single best model for a range of flows. Consequently, predicting new
(unobserved) flow scenarios based on a single closure model calibrated
on a limited dataset may lead to biased results, and thus Bayesian
model selection is insufficient. Oliver and Moser [110] calibrated the
combination of four eddy viscosity models and three statistical models
by using DNS data of plane channel flows and compared the posterior
probabilities and predictive capabilities. The results showed that the
considered data slightly favored Chien's k–ε model [112] with an in-
homogeneous stochastic model for the inadequacy, but no clear winner
emerged with a dominantly high posterior probability. Edeling et al.
[60] systematically demonstrated the difficulty of identifying a single
best model without ambiguity. They used Bayesian inference to com-
pute the posterior probabilities of five turbulence models ranging from
simple algebraic eddy viscosity models to sophisticated Reynolds stress
models by using DNS data of 13 boundary layer flows of various



configurations. The posterior pmf for each dataset are presented in
Fig. 13, which suggests that none of the models has a consistently
higher probability than other models for all datasets, and the prob-
abilities of all models are highly flow-dependent. As a consequence, it
was not possible to select a single best model valid for all flow con-
figurations. Moreover, somewhat surprisingly, the Reynolds stress
model was not the most plausible one for all flows despite its theoretical
superiority; on the other hand, after calibration the algebraic model
performed rather well over a wide range of flow configurations.

The difficulty of making predictions with a single calibrated model
clearly calls for a framework based on multi-model ensembles. Multi-
model approaches have been used in aerodynamics [59] and many
other applications [113–115]. Bayesian modeling averaging is among
the most widely used multi-model approaches, where the posterior of
the predicted quantity is [18,116]:

p
I

p M M( | , ) ( | ) ( | ),
i

i i
1

=
=

D M D
(26)

given calibration data D and a set of modelsM . In this framework the
posterior of is an average of I posterior predictive distributions cor-
responding to I competing models weighted by their respective pos-
terior model probabilities as computed from Equation (25).

A significant recent development is the Bayesian model–scenario
averaging (BMSA), which is an extension of the classical Bayesian
model averaging as shown in Equations (25) and (26) above. BMSA
accounts for uncertainties on the choice of the calibration flow con-
figuration (referred to as scenario). It predicts the QoI for a new scenario
S̃ (not used for model calibration) as a weighted average of the pre-
dictions provided by a set of models M{ }i i

I
1= =M , each model being

previously calibrated against a set of scenarios S{ }k k
K

1= =S with cor-
responding datasets { }k k

K
1= =D D . Specifically, BMSA yields the pos-

terior distribution of as follows:
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K I
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which is an average of the I K· posterior predictive distributions
p S M S( | ˜; , , )i k kD , each corresponding to the forward propagation of

the parameter posterior obtained by calibration of model I against
scenario K through the new prediction scenario S̃. The average is
weighted by the corresponding posterior model probability

M S( | , )i k kD and prior scenario probability S( )k . It is important to
stress here that, for nonlinear systems, averaging the posterior pre-
dictive distributions of the QoI obtained by propagating the posterior
pdf of the parameters for various scenarios through each model, as in
Equation (27), is radically different from creating a mixture of the K
pdfs for the closure coefficients and propagating it through the model.
Specifically, Ray et al. [105] showed that latter provided unsatisfactory
predictions, albeit being less expensive computationally.

In the BMSA prediction, the posterior probability of model Mi is the
outcome of the multiple calibration process after application of
Equation (25). On the other hand, the scenario probability S( )k needs
to be specified a priori and represents the user's belief about the simi-
larity between calibration scenario Sk to prediction scenario S̃ as far as
the prediction of is concerned. When a physically justified prior is not
available, a non-informative, uniform pmf can be used, implying equal
probabilities for all scenarios. However, this may overestimate the
posterior variance for , which leads to an overly pessimistic estimate
of the prediction uncertainty [60]. To address this issue, Edeling et al.
[66] proposed an empirical scheme for choosing the scenario prior,
with S( )k being inversely proportional to the scattering of all models
trained on scenario Sk when predicting the QoI for S̃. The rationale is
that if a calibration scenario Sk is similar to the prediction scenario S̃,
the models would give similar predictions of the QoI.

A major drawback of BMSA is its high computational cost, since it
requires I K· stochastic calculations, each requiring forward propaga-
tion of a posterior parameter pdf (corresponding to a model/scenario
combination) through the CFD model. The computational cost can be
drastically reduced to I K· deterministic CFD simulations by propa-
gating though S̃ only the set of parameters with maximum posterior
probability for each model and calibration scenario [61], instead of
propagating the full pdf. With this simplification, the BMSA approach
was applied to complex flow configurations such as the transonic three-
dimensional flow around the ONERA M6 wing.

As noted by Draper [18], multi-model approaches still introduce
biases in the prediction because of the subjective selection of a finite set
of models. However, they play a useful role in reducing the bias com-
pared to predictions based on a single model. An averaged model is a
way of obtaining a conservative prediction for an unseen configuration.
Indeed, the result will not be as good as the a priori unknown best model
but will not be as bad as the worst one. Additionally, BMSA provides an
estimate of the solution variance based on the solution variability
among the competing models.

4. Non-parametric approaches

4.1. Motivation and overview

The parametric and multi-model approaches introduced in Section 3
explore the uncertainties in the model coefficients and in the model
choices. However, it is possible that the true solution lies outside the
region in the solution space reachable by the parametric approaches.
For example, it is well-known that linear eddy viscosity models are
intrinsically not capable of predicting the secondary flows in a square
duct. Such a feature is driven by the anisotropy of the Reynolds stresses,
but the Boussinesq assumption that is inherent to linear eddy viscosity
models excludes this part of the solution space. This intrinsic deficiency
cannot be remedied by the calibration of coefficients. An ensemble or
averaging of linear eddy viscosity models would not be able to predict
such a feature either, because all the models would strongly agree on
the wrong solution. A larger portion of the solution space could be
covered by introducing a wider variety of models (namely, non-Bous-
sinesq) in the multi-model ensemble. However, the choice of the set of
models remains subjective and the selection of a finite set of models

Fig. 13. Posterior probabilities M( | )i kD of five turbulence models for 13 ca-
libration datasets (boundary layers of various external pressure gradients). The
set of models includes a simple algebraic model (Baldwin and Lomax [25]),
one-equation and two-equation eddy viscosity models (SA model [100], k–ε
model, and k–ω model [10]), and a Reynolds stress model (stress–ω model
[10]). Numbers on the horizontal axis denote identification codes for datasets
(flow configurations). Figure reproduced with permission from Edeling et al.
[60].



prevents the approach from exploring the entire solution space, limiting
it to only the portion spanned by the chosen model ensemble. In order
to go beyond these limitations, an intriguing possibility is to introduce
uncertainties directly into the turbulent transport equations or the
modeled terms such as the Reynolds stress or eddy viscosity. Such non-
parametric approaches allow for more general estimates of the model
inadequacy than the parametric approaches. As illustrated conceptually
in Fig. 14, the solution space explored by parametric approaches is a
subspace of that explored by nonparametric approaches, and the true
solution may lie outside the former space.

We use the wing–body juncture flow as an example to motivate the
use of nonparametric approaches in exploring solution spaces for RANS
model uncertainty quantification. This configuration consists of an
airfoil attached to a flat plate, which is representative of the flows at the
wing–fuselage connection of fixed-wing aircraft and blade–hub as-
sembly in turbomachinery. This flow features an abrupt stagnation of
the mean flow at the leading edge and a horseshoe vortex around the
juncture of the wing and the body as shown in Fig. 15. Due to the high
non-equilibrium turbulence, the Reynolds stress and strain rate S at
the leading edge region are not aligned with each other, and thus the
Boussinesq assumption fails. Fig. 16 shows clearly the misalignment
between orientations of RANS-modeled Reynolds stress (with SST k–ω
model [118]) and the experimentally measured Reynolds stress [119]
at two locations, particularly at the near-wall point P2 (see Fig. 15).
Consequently, when exploring uncertainties in the RANS simulations
for this flow, the velocity samples obtained with parametric approaches
(gray lines in Fig. 17a) based on the Boussinesq assumption, are not
able to encompass the truth (× symbols). This is because such a para-
metric approach is not able to account for the different eigen-directions

Fig. 14. A conceptual illustration of the merit of the non-parametric approach
in RANS model uncertainty quantification, i.e., the ability to explore the solu-
tion space more thoroughly. Figure inspired by Soize [117].

Fig. 15. Configuration of the wing–body junction flow, illustrating the points
where orientations of the Reynolds stress tensors (Fig. 16) are presented and
three lines where the velocity profiles (Fig. 17) are presented.

Fig. 16. Comparison of orientations (as indicated by two eigenvectors v1 and v2) of Reynolds stresses tensor from RANS modeling (with SST k–ω model) and
experimental measurement of [119] at freestream locations P1 (panels a and b) and near-wall location P2 (panels c and d). Grey arrows indicate the perturbations on
the eigenvectors for exploring uncertainties in RANS-predicted Reynolds stresses, which is a non-parametric approach. The third eigenvector v3 of and S can be
uniquely determined from v v v3 1 2= × and are thus omitted, where × indicates cross product between two vectors. Figures reproduced from Wu et al. [118]
(unpublished manuscript).



of the RANS-modeled and the true Reynolds stresses. In contrast, a
nonparametric approach that perturbs the RANS-modeled Reynolds
stresses, including their eigen-directions (see gray arrows in Fig. 16), can
effectively span a range covering the true solution [118], which is il-
lustrated in Fig. 17b.

A number of nonparametric approaches have been proposed to
quantify model uncertainties in RANS simulations, which can be
broadly classified into two categories:

(1) those introducing uncertainties into the model forms, e.g., turbulent
transport equations (for fields k, ω, or ) [43,70], and

(2) those introducing uncertainties into the model outputs, e.g., the
turbulent viscosity field [42] or the Reynolds stress field
[44,45,53,54].

At the algorithmic level, the different parametric and nonparametric
approaches outlined above target different stages of the algorithms in
turbulence modeling, i.e., the parametric level, the PDE level, and the
intermediate field level. This is illustrated in Fig. 3 previously by using
linear eddy viscosity models and Reynolds stress transport models as
examples. The intermediate fields and PDEs where uncertainties are
introduced are highlighted in shaded (orange) boxes in Fig. 3. At a
fundamental level, however, they differ from each other in their re-
spective assumptions on where the RANS model uncertainties originate
from: the coefficients, the model form of the transport equations, the
eddy viscosity field, or the Reynolds stress itself. As reviewed above,
even for a specific flow it is difficult to identify the exact source of the
model uncertainty (see Section 1.2) due to the coupling among various
levels of uncertainties. As such, any such statements on the relative
importance of different sources of uncertainties are likely to be not only
flow-specific but also weak and inconclusive [105]. Consequently, the
relative advantages of various approaches are far from clear as of now.

Concerning the comparison between parametric and nonparametric
approaches, the parametric approaches allow straightforward extra-
polation of the calibrated coefficients to additional flow configurations
that are not in the calibration dataset. However, naive extrapolation
may lead to an over-fitted model with reduced predictive capability,
particularly when the generalization of the coefficients cannot be jus-
tified. On the other hand, extrapolating a calibrated field from non-
parametric approaches (generally dependent on space and time co-
ordinates) is a much more delicate task. As to the comparison between
model-form-based and model-output-based UQ approaches, research so
far suggests that model-form based approaches are more robust as they
involve only mild perturbations of equations in the original models

[43]. On the other hand, model-output perturbation approaches make it
easier to utilize benchmark (DNS, LES, or experimental) data for the
Reynolds stress or turbulent viscosity, because the quantities being
perturbed or inferred have better physical anchoring. Both categories of
approaches will be reviewed and compared below.

4.2. Introducing uncertainties in turbulent transport equations

The parametric and multi-model approaches are restricted to the
chosen baseline models. An immediate extension of these approaches is
to perturb the model forms in a non-parametric way, i.e., by modifying
the source terms in the turbulent transport equations (e.g., for k, ω, and
). This choice is based on the assumption that errors in the turbulent
transport equations rather than the structural uncertainties, e.g., those
associated with the Boussinesq assumption, are the dominant source of
the prediction errors in RANS simulations. The uncertainties introduced
in this approach depend on the specific form of the baseline turbulence
model. Taking the k–ω equation for example, a multiplicative dis-
crepancy field x( ) is introduced to the source terms of the ω transport
equation by Singh and Duraisamy [43]:

xD
Dt

k U D k U T k U( ) ( , , ) ( , , ) ( , , )i i i= +P (28)

where ω is the turbulent frequency;P , D , and T indicate production,
dissipation, and transport, respectively, of ω. This formulation is
equivalent to introducing an additive discrepancy x( ( ) 1)= P

but has better conditioning than the latter [43]. The discrepancy field
x( ) can be inferred by using DNS or experimental data of velocities or

other quantities of interest, e.g., drag, lift, pressure coefficient, and
surface friction. Assuming the velocity is the data to be used, the in-
ference can be cast as the following optimization problem:

J J U Uargmin , with ( )
L

opt dns 2
2= =

(29)

where L2 indicates L2 norm. In cases where other derived quantities g
(e.g., drag and lift) are used in the optimization, an observation op-
erator H is needed to map the solution to these quantities, i.e.,
g U[ ]= H , and the cost function would be g gJ ( ) L

dns 2= . The in-
ferred discrepancy x( )opt is a correction that allows the baseline k–ω
model to agree with the data. The discrepancy field β resides in a space
of very high dimensions with a dimension equal to the number of cells
in the CFD mesh, and thus the optimal solution is not unique. In the
terminology of inverse modeling, this problem is ill-posed and needs to
be regularized. The deviation of β from 1 is used as a penalty to reg-
ularize the problem, which leads to the following cost function [43]:

Fig. 17. Comparison of parametric and nonparametric approaches for model-form uncertainty by using RANS simulations (with SST k–ω model) of a wing–body
junction flow as an example. This figure compares the mean velocities at three locations (shown in Fig. 15) in front of the leading edge of a wing–body juncture
obtained by (a) perturbing turbulent kinetic energy only and (b) perturbing the full Reynolds stress, corresponding to parametric and nonparametric approaches,
respectively. Figures reproduced from Wu et al. [118] (unpublished manuscript).
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where γ is a regularization parameter. The second term, x( ) 1,
prevents the corrected model from deviating too much from the base-
line model. With such a regularization, the corrected model is con-
strained to explore only the vicinity of the baseline solution, which
greatly reduces the dimension of the search in the high-dimensional
space of possible discrepancy fields β. The inferred discrepancy field
can be subsequently used to guide the improvement of the baseline
model and to develop data-driven correction schemes. Singh and Dur-
aisamy [43] used velocities from DNS databases to infer the dis-
crepancy field in plane channel flows at frictional Reynolds numbers
ranging from Re 395= to 4200. The results are shown in Fig. 18. It can
be seen that the profiles of discrepancies β for different Reynolds
numbers are qualitatively similar. This a priori study suggests that the
knowledge gained in one flow can be extended to other flows of similar
configurations where data are not available. The end product is a data-
driven correction function q( ) for the baseline model obtained by
posing the discrepancy term β as a function of non-dimensionalized
mean flow variables (e.g., S and , both properly normalized with local
quantities [120], as well as the ratio D/P between production and
dissipation [121]). Choosing flow variables q rather than spatial co-
ordinates x as the input of the regression enables generalization of the
learned function in different flows, possibly at different spatial scales.
Singh et al. [121] showed predicted pressure coefficient of the S809
airfoil at Re 2 106= × by using the SA model augmented by the cor-
rection function, which was trained with the inferred discrepancy field
by using the data from the S814 airfoil at Reynolds numbers

Re 1 106= × and Re 2 106= × .
Although the correction scheme is applied on a few specific models

(k–ω or SA model), generalization to additional models (e.g., k–ε model
or Reynolds stress transport model) is straightforward. On the other
hand, since the corrected model is obtained by perturbing the transport
equations in the baseline model, it is still constrained by the limitation
of the latter. For example, if a linear eddy viscosity model is chosen as
baseline, the corrected model would still be limited by the Boussinesq
assumption.

4.3. Introducing uncertainties in turbulent viscosity

Most of the widely used turbulence models (e.g., k–ε, k–ω, and SA
models [100]) are linear eddy viscosity models, which model the
Reynolds stress in the form I S2k

t
2
3 = as in Equation (4a), where

t is the turbulent eddy viscosity. It can thus be assumed that the model
uncertainty in RANS simulations can be attributed to the discrepancies
in the predicted eddy viscosity field and subsequently introduce un-
certainties thereon. For flows with ground truth of mean velocities (e.g.,
Udns from DNS data), one can define an optimal eddy viscosity field t

opt

that minimizes the discrepancy between the computed velocity u and
the ground truth velocity. Finding the optimal viscosity t

opt amounts to
solving the following optimization problem [42]:

J J U Uargmin , with ( )t t L
opt dns 2

t
2= =

(31)

where U( )t indicates the dependence of the velocity field on the eddy
viscosity field through the RANS equations. The optimization is further
constrained by the positivity and smoothness of t , which can be built
into the cost function or enforced in the optimization procedure. For
example, Dow and Wang [42] used the following cost function:

J U U( )t L t L
dns 2 2

2 2= + (32)

where a regularization term with t is incorporated to promote
smoothness of the viscosity field with parameter γ controlling the de-
sired smoothness. The optimization problem can be solved with gra-
dient descent methods, where the gradient J/ t of the cost function
with respect to the control variable x( )t can be obtained very effi-
ciently by using adjoint methods. Alternatively, the optimization pro-
blem in Equation (31) can also be solved by the iterative ensemble
Kalman method [85], which can be considered a derivative-free opti-
mization that uses the state covariance, estimated from Monte Carlo
samples, instead of the Jacobian. The iterative Ensemble Kalman
method has been used to infer the Reynolds stresses discrepancies by
using sparse observation data of velocities [44] (see Section 4.4).

The viscosity obtained by using optimization methods can be

Fig. 18. Profiles of the inferred correction function β in plane channel flows at
Reynolds numbers Re ranging from 180 to 4200. Figure reproduced with
permission from Singh and Duraisamy [43].

Fig. 19. (a) Realizations of true eddy viscosity field with samples drawn from the Gaussian processes for the discrepancy for plane channel flow at frictional Reynolds
number Re 180= . The logarithmic discrepancy log( / )t tlog

opt rans of the k–ω model is inferred by minimizing velocity discrepancies with the DNS data. (b)
Velocities propagated from the sampled eddy viscosity, indicating the uncertainties in the predicted velocities. Horizontal axis is the wall-normal distance normalized
by half channel width δ. Figure reproduced with permission from Dow and Wang [42].



potentially used in two ways for flows whose configurations are similar
to that from which data is available:

(1) to improve predictions and reduce uncertainties, or
(2) to quantify uncertainties by building statistical models for the dis-

crepancies in the RANS-modeled eddy viscosity.

The first approach would involve building a functional mapping from
the mean flow field to the eddy viscosity or its discrepancies. However,
as of the writing of this review, the authors are not aware of any
published research pursuing this approach. A machine-learning based
approach to predict discrepancies of RANS-modeled Reynolds stresses
has been investigated [122,123](see Section 4.4), and one can envision
a similar approach to be used on the eddy viscosity. On the other hand,
the second approach has been pursued by Ref. [42], which is detailed
below.

Dow and Wang [42] first used DNS data from plane channel flows to
infer an optimal eddy viscosity field t

opt. They further constructed a
zero-mean Gaussian process for the logarithmic discrepancy

log( / )t tlog
rans= . Equivalently, the field of true eddy viscosity x( )t is

modeled as a random field as follows:

x xKlog log with (0, ( , ))t t
rans

log log= + GP (33)

where the covariance kernel K was chosen as a squared exponential
function with its hyperparameters including variance σ and length scale
l (see Equation (6)). These hyperparameters were determined by using
maximum likelihood estimation with the optimal eddy viscosity field
used as data. After the hyperparameters were determined, they sampled
the Gaussian processes to obtain realizations of possible eddy viscosity
fields (Fig. 19a) in similar yet slightly different geometries, e.g., plane
channel with wavy walls. This slight extrapolation is based on the as-
sumption that the eddy viscosity discrepancies x( )log in a class of si-
milar flows conform to the same statistical distribution. Such realiza-
tions of the eddy viscosity obtained from the Gaussian process were
used to solve the RANS equations and to obtain an ensemble of velocity
predictions as shown in Fig. 19b. The obtained ensemble represents the
uncertainties in RANS-predicted velocities, which can be further pro-
cessed to obtain uncertainties for other quantities of interests. This
methodology has recently been extended to more complex flows in a U-
bend channel [124]. As with the UQ approach based on transport
equations [43], all the predictions in the ensemble are still constrained
by the Boussinesq assumption originating from the baseline model.

4.4. Introducing uncertainties in Reynolds stresses

Reynolds stress plays a unique and particularly important role in
RANS modeling – it is the term through which most turbulence models
enter the RANS momentum equations, as can be seen from Fig. 3. In the
derivation of the RANS equations there is a closure problem. That is, the
Reynolds stress term in the obtained averaged-equations needs to be
modeled. While a Reynolds stress transport equation (RSTE) can be
derived from the NS equations, the RSTE itself contains even more
unclosed terms. On the other hand, if the true Reynolds stress field is
supplied to the RANS equation, theoretically the true velocity and all
other quantities can also be obtained, provided that the numerical
uncertainties are negligible and that the RANS equations are well-
conditioned. As the Reynolds stress is the only modeled term in the
RANS equations, inaccuracy in its modeling is the source of model-form
uncertainty for RANS simulations, at least for single phase, fully tur-
bulent flows without transition [94]. Transition modeling is an im-
portant topic [125] but it is beyond the scope of this review. The insight
on the importance of Reynolds stress in turbulence modeling was ab-
stracted as composite model theory [126], which is detailed in
Appendix B.

Based on the observations above, it is natural to introduce un-
certainties to the Reynolds stresses. So far, two distinct approaches have

been proposed to characterize the uncertainties in the Reynolds
stresses:

• formulating a stochastic differential equation (SDE) for the Reynolds
stress discrepancy tensor driven by a Wiener process (random
walk forcing model) [127], and
• using realizability constraints to guide the perturbations of single-
point Reynolds stresses.

In both approaches the Reynolds stress discrepancy is considered a
random tensor field characterized by physical constraints (e.g., con-
servation laws or realizability). Both approaches are introduced below.

4.4.1. Stochastic differential equation of Reynolds stress discrepancy
In the first approach, several forms of SDEs were explored for the

Reynolds discrepancy field in a plane channel flow, a typical one of
which reads as follows [127]:

C dU
dx

d
dx

C d
dx

C C dU
dx

dW
dx

( ) ( )pr t t
2 2 2

5/4

2

7/4

2
+ = +

(34)

with the three terms indicating production, diffusion, and residual,
respectively; x2 is the wall-normal coordinate and U is the horizontal
velocity;W indicates a Wiener process;Cpr ,C , andC are coefficients to
be calibrated from data. The SDE has a form that is similar to, but
simpler than, the Reynolds stress transport equations. Specifically, the
SDE shares the same convection-diffusion-production form4 as the
RSTE, but the SDE has a stochastic residual term on the right hand side
of the SDE in place of the unclosed terms (e.g., triple velocity correla-
tion and pressure–rate-of-strain) in the exact RSTE. The solution to the
SDE provides an indication of the uncertainties in the Reynolds stresses,
which can be propagated to the velocities and other quantities of in-
terests. The SDE-based approach yields uncertainties for the entire field

x( ), which is in contrast to the single-point realizability constraints
examined in Section 4.4.2. If one considers the discrepancy x( ) a
tensorial random field, the cross-component and spatial correlations are
both accounted for through the SDE. Unfortunately, the construction of
the SDE heavily relies on physical insights and modeling heuristics.
Consequently, it is not straightforward to extend the formulation above
to more complex flows beyond plane channel flows.

4.4.2. Estimating uncertainty bounds guided by realizability maps
In the second approach, perturbations are introduced directly to the

modeled Reynolds stresses, based on which uncertainty propagation
and statistical inferences are performed. A common starting point of
these methods is the following decomposition of the Reynolds stress
tensor:

k kI a I V V2 1
3

2 1
3

= + = +
(35)

where k is the turbulent kinetic energy, which indicates the magnitude
of ; I is the second-order identity tensor; a is the anisotropy tensor;
V v v v[ , , ]1 2 3= and diag[ , , ]1 2 3= where 01 2 3+ + = are the
orthonormal eigenvectors and eigenvalues of a, respectively, indicating
the shape (aspect ratio) and orientation of , if the latter is visualized as
an ellipsoid [128].

Transformation of the eigenvalues leads to invariants that can be
mapped to the well-known Lumley triangle [129] or the recently pro-
posed barycentric triangle [130], both of which provide a map for all
realizable states of turbulence. Any realizable turbulence state can be
mapped to a point within or on the edge of the triangles after the re-
spective transformations. In the case of the barycentric map, the

4 The convection term disappears in mean equations of the plane channel
flow.



following linear transformation from eigenvalues ( , , )1 2 3 of the
anisotropy a to the barycentric coordinates c c c( , , )1 2 3 is adopted:

c1 1 2= (36a)

c 2( )2 2 3= (36b)

c 3 1 .3 3= + (36c)

The barycentric triangle and the mapping above are similar to the
Lumley triangle but overcomes several shortcomings of the latter, in-
cluding (i) the tendency to cluster towards the isotropic state and (ii)
the nonlinearity in the mapping from the eigenvalues to tensor in-
variants. Like the Lumley triangle, the barycentric triangle has clear
physical interpretation in that it indicates the componentality of the
turbulence [131,132]. For example, the upper corner (c 13 = ) corre-
sponds to three-component isotropic turbulence while the lower left
corner (c 12 = ) corresponds to two-component axisymmetric turbu-
lence, which occurs in flows close to a solid wall (e.g., point P2 in
Fig. 15).

The realizability requirements on Reynolds stresses have been stu-
dies extensively in the early years of turbulence model development.
Efforts from Schumann [129], Lumley [133], and Pope [134], among
others, have led to a class of realizable Reynolds stress models [135].
However, in the context of quantifying model-form uncertainties in
RANS simulations, Emory et al. [53,54] pioneered the use of realiz-
ability maps to guide the exploration of Reynolds stress uncertainties.
They proposed introducing separate perturbations to k, , and V re-
sulting from the decomposition above to obtain a few representative
limiting states:

k I V V2 1
3

,= +
(37)

where indicates perturbed states from the RANS-predicted baseline,
e.g., rans= + . The initial focus was placed on the eigenvalues, as
the realizability map provides a straightforward and rigorous bound on
how they can be perturbed. One possibility of perturbing the anisotropy
is to perturb it towards one-component (1C), two-component (2C), and
three-component (3C) limiting states of realizable turbulence, re-
presented by the three corresponding vertices of the barycentric tri-
angle (see Fig. 20a).

Nevertheless, the realizability map does not provide a direct bound
on the magnitude k and the eigenvectors V . In order to utilize the
realizability map to bound k and V , it is important to recognize that k,
, and V are not independent but intimately coupled. They are dif-

ferent characteristics of the same Reynolds stress tensor, which is
governed by a coupled Reynolds stress transport equation (RSTE). In
fact, with some algebra the RSTE can be transformed to three individual
transport equations for the turbulent kinetic energy(TKE) k, eigenvalues
, and eigenvectors V as well as their discrepancies [94,136], although

only the TKE transport equation (10b) is commonly used in turbulence

modeling. The coupling among the three variables can be utilized in
many ways. For example, the anisotropy bounds obtained from the
realizability map [54] can be used to estimate the bounds on the TKE
production S:k =P , which is further substituted into transport
equation (10b) to obtain the TKE corresponding to the limiting states
[137]. The obtained TKE fields can be used to estimate their un-
certainties. Similarly, Thompson et al. [136] exploited the coupling to
estimate the uncertainties in the eigenvectors by using the realizability
bounds of the eigenvalues. Unfortunately, a large number of unclosed
terms in the Reynolds stress transport equation makes it much more
difficult than estimating the uncertainties in the TKE. Recently, the
eigenvectors perturbation has also been investigated [55,56]. Two ex-
treme bounding cases of the perturbation for Reynolds stress eigen-
vectors are considered. In one case the semi-major axis of the Reynolds
stress ellipsoid is aligned with the stretching eigen-direction of the
mean rate of strain tensor; in another case the semi-major axis of the
Reynolds stress ellipsoid is aligned with the compressive eigen-direc-
tion of the mean rate-of-strain tensor. The two limiting states are chosen
to explore the possible extreme scenarios of turbulent production.

In summary, the above-mentioned studies by Iaccarino and co-
workers [53–55,136,137] used barycentric triangle as guide to com-
prehensively explore the limiting states of Reynolds stresses. They form
an efficient, physics-based scheme to estimate RANS model uncertainty
by using only five simulations. Moreover, the parameterization scheme
of Reynolds stress perturbations becomes the foundation of more so-
phisticated methods that use statistical inference and machine learning
to quantify and reduce the RANS model uncertainties [44,122,123].

4.4.3. Systematic sampling of Reynolds stress uncertainty within
realizability constraints

In statistical inference for quantifying and reducing model-form
uncertainties, it is insufficient to merely perturb Reynolds stresses to-
wards limiting states [44]. Rather, statistical sampling and inference
requires a systematic scheme for parameterizing the perturbations to
the TKE, the eigenvalues, and particularly the eigenvectors. Perturba-
tions on k and can be represented as random fields, albeit with rea-
lizability constraints. To this end, the uncertainties associated with
RANS modeled TKE krans can be represented in terms of its logarithmic
discrepancy, in a similar way to that for the eddy viscosity [138] in
Equation (33). However, parameterizing the perturbations on the ei-
genvectors is more challenging due to the need to maintain their or-
thonormal property, which is necessary to ensure that the perturbed
Reynolds stresses remain symmetric positive semidefinite tensors. To
this end, it is most convenient to represent the perturbation from V to
V as a rigid-body rotation, i.e., QV V= with Q being an ortho-
normal rotation matrix representing the perturbation. In fact, a rotation
can be represented more compactly by using a set of Euler angles
( , ,1 2 3). That is, any rigid-body rotation in a three-dimensional
space (with a few rare exceptions) can be achieved by the following

Fig. 20. Model-form uncertainty quantifi-
cation through perturbation of Reynolds
stresses within the physically realizable
limit enclosed by the Barycentric triangle.
(a) Comparison between the perturbation
schemes of Emory et al. [54] and Xiao et al.
[44]. (b) Perturbation scheme based on
random matrix theory [58], which is com-
pared with the physics-based perturbations
Xiao et al. [44] shown in (a). Legend in
Panel (b): baseline RANS prediction ; DNS
data ; sample mean ; perturbed states
. Figure reproduced with permission from
Xiao et al. [58].



three consecutive intrinsic rotations about the axes of the local co-
ordinate system (x–y–z) of the rigid body [139]: (i) a rotation about the
z axis by angle 1, (ii) a rotation about the x axis by 2, followed by (iii)
another rotation about its z axis by 3. The Euler-angle based re-
presentation has been used for quantifying RANS model-form un-
certainties [138]. Alternatively, the same transformation can be re-
presented as a unit quaternion. Euler's rotation theorem states there
exists a unique axis of unit vector n n nn [ , , ]1 2 3 passing through the
origin and an angle ϑ such that V can be obtained via rotating V by ϑ
about an axis n, and thus the rigid-body rotation can be represented by
a unit quaternion [140]:

n n nh cos
2

, sin
2

, sin
2

, sin
21 2 3=

(38)

where h =1. In uncertainty quantification and machine learning for
RANS modeling, the two representations of Reynolds stress perturba-
tion based on Euler angle and unit quaternion have been compared, and
the latter was found to be superior [141].

4.4.4. Random matrix approach for quantifying Reynolds stress uncertainty
The realizability constraint of Reynolds stresses plays a critical role

in all the RANS model-form uncertainty quantification methods out-
lined above. However, physics-based decomposition as in Equation (35)
is only one of the possible ways to guarantee realizability. Xiao et al.
[58] proposed an alternative approach where the Reynolds stress tensor
is modeled as a 3 3× random matrix that conforms to a maximum

entropy distribution defined on the set of positive semi-definite ma-
trices. Reynolds stress uncertainty can thus be estimated by directly
sampling from the defined distribution, with the realizability of all
samples guaranteed without using the realizability maps. The validity
of the random matrix approach can be clearly seen from the equiva-
lence among the following three interpretations of the Reynolds stress
realizability. That is, a Reynolds stress tensor is physically realizable if
and only if it satisfies one of the following conditions:

(1) it is the covariance matrix of a real-valued vector (i.e., the velocity),
(2) it resides within or on the edge of the barycentric triangle (or

Lumley triangle) after transformations (e.g., Equation (36) for the
former), or

(3) it is symmetric and positive semi-definite.

The three conditions are, respectively, (i) the origin of the realizability
constraint, (ii) the foundation for the physics-based approach, and (iii)
the basis for the random matrix approach. All three conditions above
are equivalent [58].

The random matrix approach and the physics-based approach are
compared in detail in Wang et al. [138]. It was concluded that both
approaches yield qualitatively similar results, particularly when the
perturbations are small and far away from the limiting states (edges of
the barycentric triangle). When the perturbations are large, physics-
based perturbations may result in samples falling outside the bary-
centric triangle, which must be capped and result in a slightly distorted
distribution. In contrast, the random matrix approach does not have
this issue. Another important difference is that the physics-based ap-
proach perturbs the three components (magnitude, shape, and or-
ientation) separately, while the random matrix approach perturbs all
three components simultaneously, with k, , and V implicitly con-
strained by the maximum entropy principle.

4.4.5. Quantifying and reducing Reynolds stress uncertainties with data
The works reviewed above all involved forward analysis, i.e., pro-

pagation of uncertainties introduced in the Reynolds stresses to velo-
cities or derived quantities of interest. As with the parametric ap-
proaches and other non-parametric approaches introducing
uncertainties in viscosity (Section 4.3) and turbulent transport equa-
tions (Section 4.2), backward analysis (statistical inference) can also be
performed on Reynolds stresses to quantify and reduce uncertainties in
RANS model predictions. The objective is to find a Reynolds stress field
that yields the best agreement with the data (e.g., sparse observations of
velocities) accounting for the state covariance and the error covariance.
Both variational methods and ensemble methods introduced in Section
2.3 can be used. Xiao et al. [44] used the ensemble Kalman method to
infer the Reynolds stress and full-field velocities from sparse velocity
data. Constraints and empirical prior knowledge about the Reynolds
stress field and its discrepancies are built into the inference, specifically
including:

(1) realizability at any point,
(2) smoothness of the Reynolds stress field and its discrepancy for in-

compressible flows, and
(3) empirical knowledge on the regions where Reynolds stress dis-

crepancies are large.

Fig. 21. Inference of full-field in-plane mean velocity of the fully developed turbulent flow in a square duct, showing the lower left quadrant. (a) Prior velocity
ensemble and (b) posterior velocity ensemble at four spanwise locations with comparison to baseline and benchmark results. The velocity profiles in the prior
ensemble are scaled by a factor of 0.3 for clarity. The upper half of the domain is omitted due to diagonal symmetry. Figure reprinted with permission from Xiao et al.
[44].



Utilizing these constraints and prior knowledge greatly reduces the
dimension of the inverse problem, which has the same effects as the
regularization terms in the full-field inversion and optimization pro-
blems as in Equations (29) and (32). The realizability is ensured by
parameterizing the Reynolds stress in terms of the physics-based de-
composition as in Equation (35). The smoothness is ensured by re-
presenting the random fields in terms of its Karhunen–Loeve expansion,
truncated to the first n terms:

x xw( ) ( )
n

1
=

= (39)

where w are random variables to be inferred, and x{ ( )}n
1= are a set of

orthogonal basis functions corresponding to the covariance kernel of
the random field . The basis functions can be computed from the
Fredholm integral equation by solving an eigenvalue problem for the
kernel and embody the empirical knowledge on Reynolds stress dis-
crepancy as mentioned above. Fig. 21 shows representative results from
a fully developed square duct flow, presenting the in-plane velocities
before and after incorporating the data, i.e., prior and posterior of ve-
locity distributions. It clearly shows that the velocity predictions at all
cross-sections are markedly improved, even in locations where velocity
observations are not available. The calibrated discrepancy can even be
used to correct square duct flows at a higher Reynolds number or flows
in different geometries such as a rectangular duct [68]. Furthermore, it
was demonstrated that incorporating empirical knowledge is clearly
valuable and has similar effects as increasing the amount of observation
data [69].

Among the prior knowledge used for the statistical inference, the
regions where Reynolds stress discrepancies are large have primarily
depended on input from users based on their empirical knowledge.
However, the combination of physical and modeling insights with
modern data science has opened new opportunities. Gorlé et al. [142]
proposed an analytical marker function based on the deviation from
parallel shear flow and used it to predict discrepancies in RANS-mod-
eled Reynolds stress. Their ideas are based on the insightful observation
that commonly used eddy viscosity models were developed and tuned
for parallel shear flows (boundary layers). A departure from such flows
typically leads to violations of assumptions in these models. Moreover,
emerging machine learning techniques have made it possible to provide
more accurate maps of where large discrepancies exist. Ling and
Templeton [120] developed a machine learning method to evaluate
potential inadequacy of RANS models by using DNS databases. This
approach has been recently applied to more complex flows (e.g., jet-in-
crossflow [143]). The results include several fields of binary labels
(whether the specified model assumption is violated), which could be
further processed to obtain a variance of Reynolds stress discrepancy
that can be incorporated into the covariance kernel field.

The same decomposition scheme in Equation (35), which has been
used for Reynolds-stress-based uncertainty quantification and statistical
inferences, can be used as a parameterization scheme for correcting

RANS-predicted Reynolds stresses by using machine learning and
training data. Tracey et al. [144] represented discrepancies in bary-
centric coordinates as a function of local mean-flow variables and le-
veraged machine learning to train the function. Wang et al. [122] and
Wu et al. [123] developed a more systematic strategy to predict dis-
crepancies in the magnitude, anisotropy, and orientation of the Rey-
nolds stress tensor in terms of an invariant feature set for a set of tensor
variables of the mean flow (e.g., S, , p, k), referred to as the in-
tegrity basis [145]. They showed improved results in the prediction of
Reynolds stresses and mean velocities [123] for two canonical flows,
i.e., separated flows over periodic hills and secondary flows in a square
duct. As an alternative, Ling et al. [45] proposed a neural network ar-
chitecture with embedded invariance properties to learn and predict the
coefficients of an objective formulation for the tensorial function

f S( , )= . These works illustrated how physical constraints can be
embedded in machine learning. Nevertheless, a unique challenge for
directly correcting or predicting the Reynolds stress tensors with data-
driven models is the possible ill-conditioning of the RANS equations.
For example, small errors in the machine-learning-predicted Reynolds
stresses can lead to large errors in the propagated velocities [146]. In
order to overcome this difficulty, Wu et al. [123] proposed a scheme of
learning the linear and nonlinear parts of the Reynolds stress sepa-
rately, with the linear part treated implicitly to improve model con-
ditioning. Numerous other approaches have been proposed for aug-
menting and improving turbulence models based on machine learning
[16]. Finally, data-driven, machine-learning based methods have also
been used in improving CFD models of thermal fluids flow with focus
on boiling flows in nuclear reactor thermo hydraulics [e.g., 147–150]
and in high-Mach number flows [151].

4.5. Spatial correlations in Reynolds stress discrepancy

Most of the approaches for RANS uncertainty quantification re-
viewed above have focused on the uncertainty bounds of the Reynolds
stress at a single point. This is partly because the mathematical rigor of
such a bound can only be maintained by the realizability constraint.
However, an equally important source of uncertainty comes from the
spatial variation of the Reynolds stress discrepancy. After all, it is the
divergence of the Reynolds stress field that appears in the RANS mo-
mentum equations. When quantifying uncertainties in RANS-based
predictions, Emory et al. [54] specified a spatial field for the eigenvalue
perturbations based on the empirical understanding on the performance
of the RANS model for the particular problem. Xiao et al. [44,58] used
the same argument to define a non-stationary Gaussian process model
for the Reynolds stress discrepancies. They used Karhunen–Loeve (KL)
expansions [71] to approximately represent the perturbation field with
leading modes in KL expansion (see Equation (39)). Specification of
such spatial distribution is probably the weakest link in the entire
process of Reynolds stress-based uncertainty quantification.

Since the true Reynolds stress and the RANS modeled counterpart
are described by their respective transport equations, the model

Fig. 22. Comparison of modes (eigen-functions) obtained from a purely statistical kernel (squared exponential function) and a PDE-informed kernel as in Equation
(42). Panels (a) and (b) reproduced from Xiao et al. [44] and Wu et al. [152], respectively.



discrepancies should conform to a transport equation of the same
structure. Building upon such insight, Edeling et al. [57] proposed a
“return-to-eddy-viscosity” model, which is a transport equation with a
source term describing the deviation of the turbulence state from
equilibrium state assumed by the linear eddy viscosity models:
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where c1
rans is the barycentric coordinates corresponding to the baseline

RANS modeled Reynolds stress tensor; a c1 and c1 are model coefficients
to be calibrated. A similar PDE is formulated for c2. These heuristically
justified, physics-inspired PDEs provide a bound for the Reynolds stress
field. Moreover, the model coefficients in the PDEs above can be cali-
brated by using data and Bayesian inference, and the calibrated equa-
tions are further used for predictions [57].

More recently, Wu et al. [152] utilized the fundamental connection
between PDEs and covariance to provide a physically anchored covar-
iance structure, which has a clear advantages over purely statistical
covariance structures previously used for model discrepancies [44,58].
Specifically, they constructed an approximate, linearized PDE for the
model discrepancy:

D
Dt x x

or more compactly ( )
i

T

i
+ = =S L S

(41)

where δ denotes the field of model discrepancy such as the discrepancy
in the RANS-modeled Reynolds stresses, andS indicates the unclosed
source terms. Equation (41) can be generalized as ( ) =L S , whereL
corresponds to the linearized differential operator on the left-hand side.
In previous works [44,58], purely statistical covariance structures such
as the squared exponential kernel in Gaussian processes were specified
for the model discrepancy δ. The physics-inspired transport equation
(41) requires the specification of a kernel of the source term S and
provides a physical covariance structure of the error term δ by trans-
forming the covariance with the differential operator as follows:

( ) ,S
1 1= L L (42)

where 1L is the inverse operator of the linearized PDE (41), and
denotes covariance. Wu et al. [152] showed that such a physics-inspired
covariance structure better accounts for the spatial correlation of the
discrepancy term δ than the squared exponential covariance kernel.
Sample results for flow over periodic hills are presented in Fig. 22,
which shows the first three modes (i.e., x{ ( )} 1

3
= as in Equation (39))

obtained by using a squared exponential kernel (Fig. 22a) and a phy-
sics-informed kernel (Fig. 22b), e.g., from Equation (42). In this geo-
metry, the general flow direction is from left to right. The streamline-
aligned covariance structure endowed by the convection is evident,
while the modes obtained from the squared exponential kernel exhibits
nonphysical, spatially isotropic structures.

5. Uncertainties in large eddy simulations

Large eddy simulation (LES) is a turbulence simulation method that
resolves larger scale turbulence and models sub-grid scales [2]. For LES
performed on an adequate mesh, most of the important turbulence
scales are resolved except in near-wall regions of wall-bounded flows.
Consequently, uncertainties associated with the subgrid scale (SGS)
model no longer dominate. Instead, LES are influenced by uncertainties
of a number of sources that are of comparable order of magnitude,
including:

(1) uncertainties due to SGS models, including their parameters,
(2) uncertainties associated with initial and boundary conditions,
(3) uncertainties in the numerical discretization (mesh and numerical

scheme).

Note that items 2–3 are not model uncertainties but input uncertainties
and numerical uncertainties, respectively. This is in stark contrast to
RANS simulations, where the model uncertainty clearly dominates
other uncertainties. The literature on prediction accuracies of LES is
vast and is mostly from deterministic perspectives. In such frameworks,
the problem of concern should be more precisely referred to as errors
and not uncertainties. Nevertheless, some studies have tackled the
problem from an uncertainty quantification point of view, which are
shortly reviewed here. Due to the much higher computational cost of
LES as compared to RANS simulations, most studies are limited to un-
certainty propagation and sensitivity analysis, i.e., propagation of as-
sumed probability distributions through an LES solver to investigate the
sensitivity of the output quantities with respect to the input. In order to
reduce the number of samples and overall computational costs for un-
certainty propagation, many of the studies reviewed below built sur-
rogate models by using different methods, e.g., polynomial chaos ex-
pansion [71,153], probabilistic collocation method [154], or sparse
grid method [155].

A review of recent work about quantification and reduction of un-
certainties arising in LES is presented in the following of this section.
We point out here that high-fidelity simulations such as LES and DNS
generally have smaller uncertainties than RANS simulations. However,
even DNS have their own uncertainties, e.g., due to statistical averaging
and numerical methods, which must be considered in many situations
when using DNS data for RANS model development and calibration.
While an in-depth discussion of DNS uncertainties is beyond the scope
of the current review, in Appendix C we survey a few aspects that are
most relevant for RANS modeling.

5.1. Uncertainties in SGS models

Traditional LES computations rely on the explicit introduction of a
closure model for the subgrid-scale terms arising from the filtering of
the Navier–Stokes equations. A large number of SGS models have been
developed over years, almost all of which require specification of model
constants, although some (e.g. dynamic Smagorinsky model) allow for a
dynamic computation of the parameters from a test filter [156]. The
most widely used SGS model is the algebraic Smagorinsky model, which
models the SGS viscosity as:

C S SS S( ) |¯| with |¯| 2 ¯ ¯ ,s g ij ijsgs
2= (43)

where S̄ is the rate-of-strain based on the filtered velocity field, g is the
grid size, and Cs is a coefficient that needs to be specified (referred to as
Smagorinsky constant, usually chosen to be in the range from 0.1 to
0.2) and has the effect of determining the strength of SGS dissipation.
Meyers and Sagaut [157] derived the exact expression of the Smagor-
insky constant Cs by using Pope's formulation for the turbulent kinetic
energy spectrum. The derivation demonstrate that Cs depends both on
the specific flow and on the filter, indicating that it should be treated as
an uncertain quantity. The dependence of Cs on the filter size deserves
special attention for LES with implicit filtering, where the filter size is
not explicitly specified but determined by the local grid size (see further
discussions on numerical uncertainties in Section 5.3). Lucor et al.
[158] performed LES for decaying homogeneous isotropic turbulence
and propagated the uncertainties associated with the Smagorinsky
constant. Specifically, they reconstructed accurately the solution sta-
tistics with a typical number of 22 samples. They carried out un-
certainty propagation corresponding to different grid resolutions and
found that an optimal value of the constant can be found for each level
of grid refinement [157]. This finding confirmed the close interactions
between the SGS model and the numerical discretization.

Meldi et al. [159] investigated the sensitivity of the Cs constant to
the algebraic function and its parameters used to describe the initial
energy spectrum. Khalil et al. [160] performed LES for turbulent bluff-
body stabilized flame and studied the uncertainties associated with



Smagorinsky constant, Prandtl number, and Schmidt number. Safta
et al. [161] investigated LES of channel flow and studied uncertainties
associated with model coefficients Cµ and C in the ksgs model [162].
Unlike previous uncertainty propagation studies for LES, Templeton
et al. [163] first used Bayesian inference to calibrate the model coef-
ficients Cµ and C based on a DNS database of forced isotropic turbu-
lence in a periodic box [164]. The quantified uncertainties in the cali-
brated model coefficients were then propagated to predictions in LES of
turbulent channel flows. Tran et al. [165] also used Bayesian inference
to quantify the uncertainties associated with the Smagorinsky constant,
the filter length, and the exponent in van Driest damping function.

While the above-mentioned studies used parametric approaches to
address uncertainties associated with model coefficients, non-para-
metric UQ approaches for LES recently started drawing attention. Jofre
et al. [166] estimated the structural uncertainties in the SGS stress
model in LES of the canonical plane channel flows. They perturbed the
SGS stresses obtained from baseline model in a similar way as in the
RANS simulations [53,54,167]. By directly introducing perturbation
into the SGS stresses, the explored uncertainty space is no longer con-
strained by the baseline SGS model.

5.2. Uncertainties in the boundary conditions for LES

Boundary conditions are a crucial ingredient of the overall model in
LES, as they may influence the development of shear and boundary
layers and transition to turbulence. Congedo et al. [168] investigated
the sensitivity of LES to uncertainties in the numerical inlet conditions
by studying the turbulent flow in a pipe with an axisymmetric expan-
sion. The study focused on the effect of the inlet bulk velocity, swirl
ratio, and turbulent intensity on the resulting mean flow fields. The
results were compared with experimental data, for which an estimate of
the observational uncertainty was available. On the other hand, Car-
nevale et al. [169] studied the heat transfer in a channel with pins and
used uncertainty propagation to investigate the flow sensitivity to the
Reynolds number, which is representative of the uncertainties asso-
ciated with inlet mean velocity, fluid density, or geometrical variations.
They compared the results to those of RANS simulations, showing that
the epistemic uncertainty due to the modeling, i.e., RANS model versus
LES model, dominates the aleatoric uncertainties such as the solution
sensitivity to the Reynolds number. However, compared to RANS si-
mulations, the LES results are more sensitive to the inlet Reynolds
number.

5.3. Uncertainties due to the numerical discretization

As has been pointed out above, LES suffer from strong interactions
between modeling and numerical errors. This is particularly true for
LES with implicit filtering, which is dominant in practical LES, where
the mesh is part of the model in that it provides the local filtering
bandwidth, as is evident from Equation (43). In theory, only the dy-
namics of the large scales is computed and the smaller scales are
modeled. In practice, scale separation in LES is difficult to establish,
since the low-pass filtering arises from a complex combination of im-
plicit filtering by the grid and the discretization schemes. Even when
explicit filters are applied, the approximations introduced by the dis-
cretization methods modify the actual shape of the filter function. The
intricate interactions between SGS modeling errors and numerical er-
rors (and the ill-defined filter resulted therefrom) have attracted at-
tention (e.g., [170–172]]). Here we mention a few studies that analyzed
the numerical parameters from a probabilistic perspective. For ex-
ample, Meldi et al. [173] performed LES for a spatially evolving mixing
layer and studied the uncertainty propagation for grid stretching ratio
in the turbulent and transitional regions. Mariotti et al. [174] studied
the flow around a 5:1 rectangular cylinder and propagated the un-
certainties associated with grid resolution in the spanwise direction and
the weight of the explicit low-pass filter.

With the increasing availability of computational resources and the
increasing use of LES in industrial simulations, uncertainty quantifica-
tion in LES is expected follow a similar development path as for RANS
but with equal emphasis on all the above-mentioned sources of un-
certainties. It will evolve from the current data-free, parametric ap-
proaches to more sophisticated, data-driven, non-parametric ap-
proaches, and from the current proof-of-concept studies to gradual
deployment in industrial simulations.

6. Conclusions and future research

This review summarized techniques for quantifying uncertainties
associated with turbulence models in computational fluid dynamics
simulations. We focused on uncertainty quantification in RANS models,
because they are expected to remain the workhorse tool for industrial
CFD simulations in decades to come, thanks to their lower computa-
tional costs and better robustness than scale-resolving methods.
Quantifying uncertainties in RANS predictions are of strategic im-
portance towards the goal of certified numerical simulations of fluid
flows.

The literature survey shows that RANS uncertainty quantification
has been a rapidly evolving field in the past decade. Most of the recent
research focused on statistical approaches to estimate prediction un-
certainties due to turbulence models and on data-driven methods to
reduce such uncertainties. Development of such statistically rigorous
techniques for quantifying and reducing RANS model uncertainties has
been fostered by:

(1) the considerable increase of computer resources,
(2) the ever-increasing mass of high fidelity experimental and numer-

ical data, and
(3) the development of statistical sampling and inference methods

guided by physical constraints and prior knowledge in turbulence
modeling.

This review classifies existing literature of model uncertainty
quantification into parametric and non-parametric approaches, which
are discussed separately. In the parametric approaches, uncertainties
are introduced into the coefficients in RANS closure models. That is, the
coefficients are modeled as random variables, whose prior distributions
are then propagated to the predictions through RANS simulations or
updated by incorporating observation data within the Bayesian in-
ference framework. Extensions of the parametric approaches are multi-
model approaches such as Bayesian model averaging and Bayesian
model–scenario averaging methods. In these methods, predictions of
new flow configurations (scenarios) are formulated as an average of
predictions from an ensemble of competing models, weighted by their
respective posterior probabilities and the similarity of respective cali-
bration scenarios to the prediction scenario. Parametric and multi-
model ensemble methods are robust, non-intrusive, and relatively ma-
ture. When combined with surrogate models that replace RANS models
to allow for efficient sampling, they can be used in uncertainty quan-
tification involving complex, three-dimensional engineering flows.

A drawback of parametric approaches is that any calibration and
inference of the parameters are inevitably based on, and will influence,
the entire flow field. However, a turbulent flow may simultaneously
contain regions ranging from equilibrium regions that are well pre-
dicted by simple models to highly non-equilibrium regions (e.g., se-
paration, shock waves, streamline curvature, rotation) where even ad-
vanced models may fail. Non-parametric approaches provide an
attractive alternative to tackle turbulence modeling uncertainties while
accounting for locality of turbulent flows. These approaches rely on
random fields to represent the RANS model discrepancy, which are
estimated from physical bounds and further propagated to predictions
or inferred from observation data. However, the unique challenge here
is that the uncertainty propagation and statistical inference involve



random fields of much higher dimensions. Sampling and inference in
such a high-dimensional space remain an active field of research with
many open challenges and opportunities.

Another thrilling subject for future research is the application of
non-parametric approaches for predictions. Data assimilation and ma-
chine learning algorithms have been recently applied to extrapolating
estimated discrepancy fields to configurations that are relatively close
to the ones contained in the training flows [123]. However, using the
estimated uncertainties to drastically different configurations remains a
delicate and possibly dangerous task. Introducing sound physical con-
straints in the representation of the discrepancy and using physics-
based transport equations for describing its spatial correlation structure
seems to be a promising approach [152]. Bridging uncertainty quanti-
fication and data-driven modeling, such a physics-informed approach
has the potential of yielding RANS models that can predict turbulent
flows with quantified uncertainties, paving the way toward certified

CFD simulations [16].
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Appendix A. Algorithms in uncertainty quantification

Appendix A.1. Plain Monte Carlo sampling

The algorithms for plain Monte Carlo sampling is rather straightforward. Given the probability distribution p ( )of the model parameters, Monte
Carlo simulations can be used to obtain the distributions of the output. Specifically, the procedure of uncertainty propagation based on plain Monte
Carlo simulation is as follows:

(1) Sampling. Draw a number of samples { , , , }n1 2 from the specified prior probability distribution p ( ).
(2) Propagation. For each of the sample, the model is evaluated to obtain the outputs y y y{ , , , }N1 2 .
(3) Aggregation. The distribution of the QoI is estimated from the propagated samples.

This procedure is illustrated pictorially in Fig. 6a earlier.

Appendix A.2. Exact Bayesian inference with Markov chain Monte Carlo sampling

Much like the ergodicity assumption for the ensemble averaging to obtain the RANS equations, the MCMC sampling requires the ergodicity
assumption. That is, any set within the state space can be reached from any other set with nonzero probability within finite steps. The MCMC
procedure with Metropolis–Hastings sampling algorithm is as follows:

(1) Initialize the state (0).
(2) Based on the current state z i( ), make a proposal of next state (e.g., a random walk), i.e., sample z z zq ( | )i( ) .
(3) Evaluate the posterior density zp ( ) and the ratio z zp p( )/ ( )i( )= .
(4) Accept the proposal (i.e., move to z ) if 1; otherwise accept the proposal with probability χ.
(5) Repeat steps 2–4.

This procedure is illustrated in Fig. 7. Intuitively, the sampler always accepts to go to a more likely state, which increases samples in high posterior
probability regions. On the other hand, it also allows for the possibility of going to less likely states which allows for exploring the tails (rare events
regions in the state space) and increase mixing (traveling back and forth in different regions).

Appendix A.3. Approximate Bayesian inference with iterative Ensemble Kalman method

In the example below, we assume the velocity at some locations is the observed physical state for notation simplicity. The augmented system state
z x( ) is written as a vector formed by stacking the unknown parameters and the physical states x( ):

z [ , , ; ] ,n1= (A.1)

in which indicates vector transpose, and [ , , , ]r1 2= is a vector of r parameters.
Given the prior distributions for parameters ( ) to be inferred and the covariance matrix R of the observations yobs, the EnKF based inversion

algorithm proceeds as follows:

(1) Sampling of prior distribution. From the prior distributions of the parameters, M samples are drawn. Each sample consists of a combination of
values for .

(2) Propagation. The output ŷi are computed by using the updated parameters from the previous analysis step (or from the initial sampling if this
is the first propagation step). The propagation is performed until next converged results are obtained. The ˆ indicates predicted quantities that
will be corrected in the analysis step below. The propagation is performed for each sample in the ensemble, leading to the propagated ensemble
z{ ˆ }j j

M
1= . Each sample ẑj is a vector containing a realization of the velocity field and the parameters (see Equation (8)). The mean z̄ and

covariance P of the propagated ensemble are estimated from the samples.
(3) Analysis/Correction. The computed physical fields (velocities) î in the whole field are compared and sampled to compare with observations

i
obs. The ensemble covariance P and the error covariance Rare used to compute the Kalman gain matrix K as follows:



( )n n n( 1) ( 1) ( 1) 1= ++ + +K P H HP H R (A.2)

Each sample is then corrected as follows by using the Kalman gain matrix:

z z zˆ ( ˆ ),j j j j= + K H (A.3)

where superscript zjis the corrected system state; [ , , ]n1= are the velocity, the part of the system state vector that can be observed;His the
observation matrix. After the correction, the analyzed state contains updated velocities and parameters.

(4) Repeat propagation and analysis Steps 2–3 for next iteration step until convergence is achieved. The corrected state obtained in Step 3 is a linear
combination of the prediction and observations, with the Kalman gain matrix Kbeing the weight of the observations.

The observation matrix : m r n+H has a size of n m r( )× + , which maps a vector in the m dimensional state space to a vector in the n
dimensional observation space. While point measurements of velocities are used as observations, other derived quantities such as lift, drag, pressure
coefficients, surface coefficients, or velocities along a line of sight can be also used by choosing appropriate observation operators. For all forms of
experimental data, the observation matrixHin the filtering techniques relates the simulated system states to the observed quantities, i.e., y = zH . It is
a mapping from system state space to the observation space. Example of observation operator is shown here. Consider the simple system shown in
Fig. 23 to illustrate the principle. The simulation domain is discretized with 6 cells and the quantity of concern is the horizontal velocity only. Hence,
the state vector has a dimension of 6 by 1. Three quantities are observed, a volumetric measurement of the velocity at cell 1, a velocity measurement
at point B (which is the average of cells 2, 3, 5, 6), and an integrated measurement of the velocity along the line C, with weight factors of 1/2, 1/3, 1/6
for cells 4, 5, 6, respectively. The mapping y = zH can be written as:

y
y
y

z

z

1 0 0 0 0 0
0 1/4 1/4 0 1/4 1/4
0 0 0 1/2 1/3 1/6

.
a

b

c

1

6
=

(A.4)

Figure A.23. A simple domain with 6 CFD cells and three observations used to illustrate the observation matrix, which defines the mapping from the system state to
the observations.

Appendix B. Composite model theory and openbox treatment of model inadequacy

Introducing uncertainties into Reynolds stresses, in both parametric and non-parametric approaches, is motivated by a key consensus in the
turbulence modeling community: Reynolds stress is the source of uncertainty in the RANS equations. This consensus is formulated officially as
“composite model theory” by Oliver et al. [126]. That is, RANS simulations are based on reliable theories describing the conservation laws of mass,
momentum, and energy, but contain approximate embedded models to account for the unresolved or unknown physics, i.e., the Reynolds stresses,
leading to a composite model. This theory clearly separates the numerical model (simulator) into two components, i.e., rigorous equations and
approximate closure models, and states that uncertainties should be introduced where they originate physically. This insight resulted in open-box
approaches for uncertainty quantification and statistical inference. This is a major advance in model uncertainty quantification in RANS simulations
compared to the earlier framework of Kennedy and O'Hagan [19], where model inadequacy are introduced directly to the quantities of interest or the
observed quantities and the numerical model (simulator) is treated as a blackbox. The open-box and blackbox approaches are compared schema-
tically in Fig. 24.

Figure B.24. Schematic illustration of the difference between (a) the traditional physics-neutral approach and (b) the recently developed open-box, physics-informed
approach for uncertainty quantification and model calibration.



Composite models are ubiquitous in various disciplines of science and engineering. For example, in multiphase flow simulations, models are used
to describe interphase mass and momentum exchanges in averaged equations [175,176]; in climate and weather modeling, parameterization are
used to account for unresolved or unknown physics including radiation, cloud, and boundary layer processes [177–179]. In all these examples, the
conservation laws are all expressed in well-grounded PDEs, albeit containing unclosed terms.

Appendix C. Uncertainties in DNS and their impact on RANS modeling

DNS data has long been considered the golden standard for evaluating the merits of turbulence models [180,181]. Evaluation of turbulence
models can be done either a priori by comparing RANS-predicted Reynolds stresses with DNS data or a posteriori by comparing the fields solved by
using the model of concern with mean fields from DNS. However, DNS are, like experimental observations, affected by more or less large un-
certainties that may affect the comparisons: these mainly consist of sampling errors and discretization errors.

Although it is the instantaneous quantities such as velocities and pressure that are solved for in DNS, their statistical moments (e.g., means and
covariance) are usually the quantities of interest, obtained by averaging a sufficiently large number of temporally uncorrelated samples of in-
stantaneous fields. Sampling errors are caused by the fact that the samples may be correlated, and that the number of samples may not be sufficient
to achieve statistical convergence, see Hoyas and Jiménez [182] for a discussion.

For a properly performed DNS, the mesh must resolve all relevant flow scales and the sampling error is generally considered dominant. However,
the mesh usually has to be chosen based on empirical judgment and sampling and discretization errors may be coupled. A Bayesian approach to
account for sampling errors when estimating discretization errors is proposed in Oliver et al. [183].

Recently, evaluations of emerging data-driven turbulence models motivated an exercise that involves solving the RANS equations with specified
Reynolds stresses, which is referred to as propagation. It has long been assumed that propagating accurate Reynolds stresses would lead to accurate
velocities. However, numerous authors [123,136,184,185,186] found significant discrepancies between the propagated velocities and the DNS
velocities. On the other hand, Wang et al. [186] performed the same propagation for fully developed turbulent flows in square ducts at various
Reynolds numbers and found that the propagated velocities agree with DNS data satisfactorily. Such apparently conflicting findings were explained
by different model conditioning in various flows, i.e., different sensitivity levels of the mean velocities to Reynolds stresses [146].

In addition to the preceding sources of uncertainty, DNS also suffers from uncertainties associated with the specification of the boundary
conditions in a similar way as LES does. Among studies based on probabilistic approaches we mention Ko et al. [187], who examined the sensitivity
in the DNS of two-dimensional plane mixing layers to uncertainties in the inflow boundary conditions.
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