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ABSTRACT

Context. The interpretation of stellar apparent fundamental parameters (viewing-angle dependent) requires that they be treated con-
sistently with the characteristics of their surface rotation law.
Aims. We aim to develop a model to determine the distribution of the effective temperature and gravity, which explicitly depend on
the surface differential rotation law and on the concomitant stellar external geometry.
Methods. The basic assumptions in this model are: a) the external stellar layers are in radiative equilibrium; b) the emergent bolometric
flux is anti-parallel with the effective gravity; c) the angular velocity in the surface obeys relations like Ω(θ) = Ωo[1 +αΥ(θ, k)] where
Υ(θ, k) = cosk θ or sink θ, and where (α, k) are free parameters.
Results. The effective temperature varies with co-latitude θ, with amplitudes that depend on the differential-rotation law through the
surface effective gravity and the gravity-darkening function (GDF). Although the derived expressions can be treated numerically, for
some low integer values of k, analytical forms of the integral of characteristic curves, on which the determination of the GDF relies,
are obtained. The effects of the quantities (η, α, k) (η = ratio between centrifugal and gravitational accelerations at the equator) on
the determination of the V sin i parameter and on the gravity-darkening exponent are studied. Depending on the values of (η, α, k) the
velocity V in the derived V sin i may strongly deviate from the equatorial rotational velocity. It is shown that the von Zeipel’s-like
gravity-darkening exponent β1 depends on all parameters (η, α, k) and that its value also depends on the viewing-angle i. Hence, there
no unique interpretation of this exponent determined empirically in terms of (i, α).
Conclusions. We stress that the data on rotating stars should be analyzed by taking into account the rotational effects through the
GDF, by assuming k = 2 as a first approximation. Instead of the classic pair (η, β1), it would be more useful to determine the quantities
(η, α, i) to characterize stellar rotation.

Key words. stars: rotation

1. Introduction

Rotation induces a geometrical deformation to the stars charac-
terized by a polar flattening and an equatorial stretching. Since
the radiation tends to emerge isotropically from the object, the
radiation flux becomes a function of the stellar latitude known
as the gravitational-darkening effect.

According to Poincaré-Wavre’s theorem, in barotropic sys-
tems any of the following statements implies the three others
(Tassoul 1978): 1) the angular velocity depends only on the dis-
tance $ to the rotational axis, Ω = Ω($); 2) the effective gravity
is derived from a total gravitation-rotational potential, Φ; 3) the
effective gravity is normal to the isopycnic surfaces; 4) the iso-
baric and isopycnic surfaces coincide. If the stellar atmospheres
of barotropic stars are also in hydrostatic and radiative equilib-
rium, a relation holds between the bolometric radiation flux F
and the effective gravity, geff , known as von Zeipel’s theorem
(von Zeipel 1924)

F = c(Φ)gβ1
eff
, (1)

where Φ is the total gravitation-rotational potential describing
the stellar surface and c(Φ) is thus a constant. This relation holds
when the radiation flux can be written in the diffusion approxi-
mation, which is an asymptotic solution for the radiation field
valid at great depths in a semi-infinite atmosphere. In this case,
the gravity-darkening exponent takes the value β1 = 1.0.

It was recognized very early on that in rotating objects si-
multaneous hydrostatic and radiative equilibrium contradict each
other (Osaki 1966). However, if radiative equilibrium is main-
tained forcibly in baroclinic stars, meaning that their rotation
laws are non-conservative, Ω = Ω($, z) (z coordinate parallel
to the rotation axis), authors have shown that β1 = β1(θ) ≤ 1,
where θ is the co-latitude (Smith & Worley 1974; Kippenhahn
1977; Maeder 1999; Lovekin et al. 2006; Claret 2012).

For the particular case of a strict solid-body rotation,
Espinosa Lara & Rieutord (2011) have shown that Eq. (1) can
take another formal aspect. Using full two-dimensional stellar
models (e.g. Rieutord et al. 2016), they noted that, to a high
degree of approximation, the emerging radiation flux-vector F
emitted by an axially symmetric stellar atmosphere in radiative
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equilibrium is anti-parallel to the vector of the local effective
gravity geff . Thus, assuming this parallelism, they write

F = −F (r, θ)geff , (2)

where (r, θ) are the spherical coordinates. The function F (r, θ)
is hereinafter called the gravity-darkening function (GDF). We
note that before Espinosa Lara & Rieutord (2011), F (r, θ) was
simply the constant c(Φ) in Eq. (1). It entered the formulation
of the known paradox of von Zeipel, which stipulates the im-
possibility of having stable barotropic stellar models in radiative
equilibrium (e.g. Roxburgh 1966, p. 211).

To determine F (r, θ) in the case of a rigidly rotating star,
Espinosa Lara & Rieutord (2011) maintain the condition of ra-
diative equilibrium written in its general form (Mihalas 1979)
and solved the following differential equation

∇ · F = geff · ∇F + F∇ · geff = 0, (3)

and obtained that β1 depends on the co-latitude angle θ and that
it is everywhere a decreasing function of the the stellar flatten-
ing, ε = 1 − Rp/Re (Rp and Re are polar and equatorial radii,
respectively). We note that current interferometric imaging and
modelling of rapidly rotating atmospheres produce inferences
of the gravity-darkening exponent in intermediate-mass stars
βobs

1 . 1 (Monnier et al. 2007, 2012; Zhao et al. 2009; Che et al.
2011; Domiciano de Souza et al. 2014), although within the cur-
rent measurement uncertainties, these values are βobs

1 & β1(ε)
systematically, where β1(ε) is an average relation between β1 and
ε (see Eq. (40) in Sect. 7.1).

Apart from the above mentioned radiation transfer reasons,
the exponent β1 determined observationally can also be depen-
dent on: 1) the line-of-sight angle i of stars, because β1 is a func-
tion of θ; 2) the differential rotation of the stellar surface, which
introduces a stronger dependence of effective temperature with
co-latitude than in stars with solid-body rotation. In this respect,
Delaa et al. (2013) noted that differential rotation introduces ad-
ditional contrast on the brightness distribution over the stellar
disc, which increases the dependence of β1 with the line-of-sight
angle.

We can think of the surface differential rotation as the ex-
ternal imprint of the internal rotation law in baroclinic stars
(Espinosa Lara & Rieutord 2007, 2013). Statistical inferences
concerning intermediate-mass stars suggest that their atmo-
spheres may have differential rotation (Zorec & Royer 2012).
The rotational increase of the radiative gradient in the envelope
of massive rapid rotators significantly enlarges the external con-
vective zones (Clement 1979; Maeder et al. 2008). Like in the
Sun, the interaction of rotation with convection may keep driv-
ing differential rotation in these regions that in turn can be re-
sponsible for the surface differential rotation (Zorec et al. 2011,
2017).

The aim of the present work is to obtain solutions for the
function F (r, θ) by imposing the condition of radiative equi-
librium in the stellar atmosphere (cf. Eq. (3)), while the stellar
surface rotates differentially. We explore the incidence of this
rotation on the observed stellar fundamental parameters, in par-
ticular the measured V sin i parameter and the so-called gravity-
darkening exponent β1.

2. The surface differential rotation law

Having no a priori indications on a general form of the function
describing the surface differential rotation law Ω(θ), but inspired
by the simplified Maunder’s relation in the solar example (e.g.
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Fig. 1. Surface angular velocity Ω as a function of colatitude θ as given
by Eqs. (4) and (5). Panel a: Υ(θ) = cosk θ for α = +0.5 and −0.5, and
several values of k from 0.5 to 10. Panel b: Υ(θ) = sink θ for α′ = −1/3
and α′ = +1.0 [α′ = −α/(1 + α], and the same values of k as in (a).
Colours identify the values of k.

Maunder & Maunder 1905, p. 819), we propose to use the fol-
lowing relation

Ω(θ) = Ωo[1 + αΥ(θ)], (4)

where α is a free parameter called the differential rotation param-
eter. The case α = 0 corresponds to rigid rotation. Accordingly,
we adopt two exploratory forms for the function Υ(θ), namely

Υ(θ) =

{
cosk θ
sink θ,

(5)

where k is also a free quantity that takes any real positive value.
Figure 1 shows the behaviour of the assumed angular velocity
laws given by Eqs. (4) and (5) for α = +0.5 (α′=−1/3), α = 0.0
and −0.5 (α′ = 1.0), and several values of k from 0.5 to 10.0. The
higher the value of k the larger the domain sketched as nearly
a solid body rotation. This domain occurs near the equator for
Υ(θ) = cosk θ and near the pole for Υ(θ) = sink θ. When Υ(θ) =

cosk θ we have Ωo = Ωe, while for Υ(θ) = sink θ, Ωo = Ωe(1 +
α)−1. In both cases Ωe is the angular velocity at the equator.

In order to grasp the differences inherent to the use of one of
the two Υ-functions given in Eq. (5), it is necessary to compare
the effects produced by rotation laws implying the same ratio
Ωp/Ωe. Thus, for a given value of α used with Υ(θ) = cosk θ,
we have to take α′ = −α/(1 + α) associated with Υ(θ) = sink θ
so that Ω(θ) = Ωo[1 + α′ sink θ]. Obviously, when k = 2 both
Υ(θ) represent the same rotation law. Nevertheless, keeping the
reciprocity between α and α′, the functions Υ(θ) = cosk θ and
Υ(θ) = sink′ θ can produce resembling behaviours of predicted
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Fig. 2. Geometrical deformation of stellar surfaces produced by differential rotation laws given by Eqs. (4) and (5). Panel a: Stellar geometries
calculated using Υ(θ) = cosk θ, rotational ratio η = 0.8, differential rotation parameters α = −0.5, 0.0 (solid body rotation) and 0.5, and powers
k = 0.5, 2.0 and 6.0. Panel b: Calculations done with Υ(θ) = sink θ and the same values of η and powers k, but for α′ = −α/(1 + α). In all
cases the colours identify the values of the power k, while the line-styles characterize the values of the differential-rotation parameter α, and the
corresponding α′.

parameters (although not exactly the same), because

sink′ θ = 1 − cosk θ
k′ = k′(k, θ), (6)

independently of the value of α. Taking the average of the two
thirds of powers k′(k, θ) calculated in the middle points of the
θ-interval – neglecting the two halves of the remaining third
of points situated in the extremes of the interval where in any
case the predicted functions fit the right values because of the
boundary conditions, it comes, for example that Υ(θ) = cosk θ
with k = 0.5 will lead to resembling results as Υ(θ) = sink′ θ
when k′ ' 7.0, or cosk θ with k = 6.0 similar results as sink′ θ
where k′ ' 0.5 (this effect is illustrated in many figures below,
as: Figs. 4a and f, or Figs. 4c and d; Figs. 5a and f, or Figs. 5c
and d; Figs. 6a, d and 6b, d, or Figs. 7c, f and 7a, c; Figs. 12a
and f, or Figs. 12c and d).

In principle we could let −∞ < α < +∞, but we shall limit
the values of the differential rotation parameter to −1 ≤ α < ∞
so as to prevent extreme cases where the pole and the equator
rotate in opposite senses. Furthermore, according to statistical
suggestions based on a study of Be stars (Zorec et al. 2017), in
the present work we limit the values of α to the interval −0.5 <
α ≤ +0.5. We note that the solar surface differential rotation can
be sketched with α ' −0.3 and Υ(θ) = cos2 θ. On the other hand,
Espinosa Lara & Rieutord (2013) predicted α & −0.2 for stars
with masses 2 . M/M� . 4.

Instead of using Ωe/Ωc to characterize the rotational veloc-
ity at the equator, in this paper we use the ratio η between the
centrifugal and gravitational acceleration at the equator defined
as follows

η = Ω2
eR3

e/GM = (Ωe/Ωc)2 (Re/Rc)3, (7)

where M is the stellar mass, G the graviational constant; Ωc
and Rc are the critical angular velocity and the critical radius
at the equator, respectively. To make easier any comparison
of the expressions derived in the present paper with those in
Espinosa Lara & Rieutord (2011) where the ratio Ve/VK is used

as the non-dimensional parameter characterizing the stellar ro-
tation (Ve and VK are the actual and Keplerian linear equatorial
velocities, respectively), we note that η = (Ve/VK)2, so that it
holds 0 ≤ η ≤ Ve/VK ≤ Ωe/Ωc ≤ 1.

3. The stellar geometry and the surface gravity

When the rotation law is conservative, the geometry of the stellar
surface can be described with a total gravity-rotation potential.
As noted in Sect. 1, the rotation law given in Eq. (4) repre-
sents the boundary condition in the surface of an internal non-
conservative rotational law Ω = Ω(r, θ). Unlike for barotropic
models, in these baroclinic stars it is no longer possible to define
a rotational potential. According to Maeder (2009), the surface
in such objects should be the region where an arbitrary displace-
ment ds does not imply any work done by the effective grav-
ity geff , i.e. geff ds = 0. In the present paper we adopted this
approach as it was previously done also in Zorec et al. (2011).
Figure 2 shows the geometries obtained with this method when
the rotation law is given by Eqs. (4) and (5), and taking into
account several values of α and k. The rotation at the equator
is characterized by the rotational ratio η = 0.8. In all cases of
Fig. 2 the colours identify the values of the power k, while the
line-styles characterize the values of the differential-rotation pa-
rameter α (and the corresponding α′). The green curves are for
α = 0.

In Table 1 we give the radii ratios Re/Rp for η = 0.2 (Ω/Ωc =
0.69; V/Vc = 0.52) and η = 0.8 (Ω/Ωc = 0.99; V/Vc = 0.92), for
several values of k and α. In each series of parameters (η, k, α)
the radii ratios were calculated also for Υ = sink θ and α′ =
−α/(1 + α).

Zahn et al. (2010) have shown that the level surfaces of mod-
els with shellular rotation laws have the same shape as those for
solid-body rotation, including the stellar surface. Moreover, the
effect of the internal mass distribution on the surface layer at
equatorial critical rotation deviates from a genuine central gravi-
tational field by no more than some 2%. The same conclusion
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Table 1. Equatorial to polar radii ratio Re/Rp as a function of η, k and α, for Υ = cosk θ and Υ = sink θ.

Υ = cosk θ Υ = sink θ Υ = sink θ
η = 0.2

k 0.5 2.0 3.0 6.0 0.5 2.0 3.0 6.0 0.5 2.0 3.0 6.0
α = 0.00 1.100 1.100 1.000 1.000 1.100 1.100 1.000 1.000 α′ = 0.0 1.100 1.100 1.000 1.000
−0.50 1.037 1.061 1.069 1.081 1.142 1.218 1.246 1.293 +1.0 1.083 1.061 1.053 1.043
−0.25 1.065 1.078 1.083 1.090 1.113 1.134 1.142 1.154 +1/3 1.091 1.078 1.074 1.068
+0.25 1.143 1.125 1.120 1.112 1.093 1.082 1.079 1.074 −1/5 1.109 1.125 1.130 1.139
+0.50 1.192 1.153 1.141 1.125 1.088 1.072 1.067 1.058 −1/3 1.120 1.153 1.165 1.185

η = 0.8
k 0.5 2.0 3.0 6.0 0.5 2.0 3.0 6.0 0.5 2.0 3.0 6.0

α = 0.00 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 α′ = 0.00 1.400 1.400 1.400 1.400
−0.50 1.159 1.274 1.306 1.347 1.515 1.719 1.794 1.918 +1.0 1.350 1.274 1.247 1.202
−0.25 1.268 1.333 1.350 1.372 1.437 1.499 1.523 1.564 +1/3 1.374 1.333 1.317 1.292
+0.25 1.545 1.474 1.455 1.431 1.379 1.346 1.333 1.312 −1/5 1.427 1.474 1.491 1.521
+0.50 1.693 1.552 1.515 1.466 1.366 1.312 1.292 1.259 −1/3 1.456 1.552 1.589 1.651

Notes. α′ = −α/(1 + α); Re(α = 0)/Rp(α = 0) = 1 + η/2 given by the Roche gravity-rotation potential that identifies the surface of rigid rotators.
The Υ = sink θ function is used first with α and then with α′.

was also put forward by Zorec et al. (2011) in models calcu-
lated using Clement’s like conservative rotation laws for kinetic-
energy parameters higher than κ = K/|W | = 0.10 (K is the kinetic
rotational energy stored by the star; W is the gravitational poten-
tial energy). Thus, we can safely use the Roche approximation
for the surface effective gravity geff and write

geff = gr êr + gθ êθ

gr = −
GM
r2 + Ω2r sin2 θ

gθ = Ω2r sin θ cos θ, (8)

where G is the gravitational constant; M is the stellar mass;
Ω = Ω(θ) is the angular velocity given by Eqs. (4) and (5); êr
and êθ are the unit vectors associated with the spherical coor-
dinates (r, θ). In what follows, we use the dimensionless radial
coordinate r = r/Re, where Re is the rotationally modified stellar
equatorial radius. To simplify notation we write geff = |−geff | and
introduce the dimensionless expression for the effective gravity
γ(r, θ) as follows

geff =
(
g2

r + g2
θ

)1/2
= 〈g〉γ(r, θ)

γ(r, θ) =
1
r2

{
1 +

[(
1 − η̃r3

)2
− 1

]
sin2 θ

}1/2

η̃ = η

[
Ω(θ)
Ωe

]2

〈g〉 = go

(
Ro

Re

)2

, (9)

where go = GM/R2
o is the surface gravity of the stellar parent

non-rotating counterpart having a spherical radius Ro and the
same mass M as the rotating object.

From Eq. (9) it follows that the extreme values of γ(r, θ) are:
γe = γ(r, π/2) = 1 − η and γp = γ(r, 0) = (Re/Rp)2, which
are functions of (η, α) and are dependent on the function Υ(θ)
adopted (see Table 1).

4. The gravity-darkening function

The gravity darkening function F (r, θ), as defined by Eq. (2),
is constrained by the boundary condition obtained when r → 0,
namely

lim
r→0

F (r, θ) = L/4πGM, (10)

where L is the stellar bolometric luminosity emitted by the
stellar core, whose physical properties depend on the total
amount and distribution of the angular momentum inside the
star (e.g. Sackmann 1970; Bodenheimer 1971; Clement 1979;
Eriguchi & Mueller 1991; Uryu & Eriguchi 1994, 1995; Maeder
& Meynet 2000; Deupree 2001; Jackson et al. 2005; Espinosa
Lara & Rieutord 2007, 2013; Ekström et al. 2008; Maeder 2009;
Fujisawa 2015). In what follows, we use the dimensionless form
of F

f (r, θ) = F (r, θ)
4πGM

L
· (11)

From Eq. (10) we have

lim
r→0

f (r, θ) = 1. (12)

Using spherical coordinates, the relation in Eq. (3) becomes the
following linear partial differential equation:

P
∂ f
∂r

+ Q
∂ f
∂θ

= 2 f , (13)

where the notations stand for

P = −
gr

Ω [Ω + (∂Ω/∂θ) sin θ cos θ]

Q = −
gθ

rΩ [Ω + (∂Ω/∂θ) sin θ cos θ]
· (14)

The integration of Eq. (13) can be reduced to the integration
of Lagrange’s system of ordinary linear differential equations,
called also method of characteristics. Let us follow Rieutord
(2016). We first eliminate the RHS of Eq. (13) by writing the
equation for ln f and setting:

ln f = ln G + A(θ). (15)

A32, page 4 of 17



J. Zorec et al.: Differential rotation and gravity darkening

After some calculations we find that

A(θ) = − ln
[
Ω2(θ) tan2 θ

]
. (16)

Now, Eq. (13) may be rewritten

P
∂G
∂r

+ Q
∂G
∂θ

= 0. (17)

The characteristic lines of G in the (r, θ)-plane, are the lines
where G is constant. On these lines ∂rGdr + ∂θGdθ = 0, so that
on these lines we have

Qdr − Pdθ = 0, (18)

which is the equation of characteristic lines. After some simpli-
fications it reads

− (gθ/r) dr + grdθ = 0. (19)

To solve (19), we need to transform it into an exact differential.
We can indeed multiply the equation by any function of (r, θ). It
turns out that if we multiply (19) by

M(r, θ) = N(θ)
Ω2(θ)r2

GM
, (20)

it can be integrated. Indeed, demanding that

∂ (−Mgθ/r)
∂θ

=
∂ (Mgr)
∂r

, (21)

leads to the following expression for N(θ):

N(θ) = A
cos2 θ

Ω4(θ) sin θ
, (22)

where A is an arbitrary constant.
Thus G is constant on the lines τ(r, θ) = Cst, if τ verifies:

∂τ

∂r
= −

Mgθ
r

=
r2Ω2

o

GM
cos3 θ

∂τ

∂θ
= Mgr =

cos θ cot θ
[1 + αΥ(θ)]2 −

r3Ω2
o

GM
sin θ cos2 θ, (23)

where we chose A = −Ω2
o. Since the RHS of the previous equa-

tions have been chosen such that dτ is an exact differential, the
integration is straightforward and gives

τ(r, θ) =
1
3
η

(
Ωo

Ωe

)2

r3 cos3 θ + T (θ). (24)

The function T (θ), here referred to as the integral of character-
istic curves, is finally given by

T (θ) =

∫ θ

π/2

cos φ cot φ[
1 + αΥ(φ)

]2 d φ (25)

that can be calculated numerically for any real positive value
of k. For some low natural number k, the integral in Eq. (25)
admits analytical expressions that are given in Appendix A.

In this work we used only numerical estimates of T (θ). The
numerical estimates of the integral in Eq. (25) were obtained
proceeding to the change of variable u = ln tan(φ/2) and using
the 16-point Gauss-Legendre quadrature rule. The function T (θ)
thus obtained was also calculated for all values of k for which we
could obtain the analytical expressions given in Appendix A. We
thus noted that the errors of the numerical estimates of Eq. (25)

are δT . 10−6 at θ ∼ 10−5 rad (θ ∼ 0◦.001), and they become
δT . 10−12 as soon as θ & 0.07 rad (θ & 8◦). The precision of
the numerical estimates increases even more as θ → π/2.

The limit expression of T (θ) for α = 0 comes directly from
Eq. (25), which is also obeyed by all analytical expressions given
in Appendix A:

lim
α→0

T (θ) = ln tan
θ

2
+ cos θ, (26)

which is the form of T (θ) obtained by Espinosa Lara & Rieutord
(2011, see their Eq. (20)).

Because τ ≡ τ(r, θ), where r and θ are independent variables,
we can use instead the pairs (r, τ) or (θ, τ) as independent vari-
ables to obtain two simplified forms of Eq. (13) valid over the
τ-characteristic curves

Q
(
∂ f
∂θ

)
τ

= 2 f and P
(
∂ f
∂r

)
τ

= 2 f . (27)

The first differential equation in Eq. (27) can be easily integrated
to obtain

f (r, θ) =
Ψ(τ)

tan2 θ[1 + αΥ(θ)]2
, (28)

where the factor Ψ(τ) is an integration constant that carries the
dependence of f with r through a transcendental function ϑ(r, θ)
defined, using Eq. (24), as

T (ϑ) =
1
3
η

(
Ωo

Ωe

)2

r3 cos3 θ + T (θ), (29)

which assumes that there is a unique relation between ϑ and τ.
From Eq. (29) it appears that ϑ→ θ as r → 0. Therefore, noting
that τ(r, θ) is constant over a characteristic curve, the value of
Ψ(τ) can be specified at any point (r, θ) on the characteristic, in
particular at r = 0. Thus, making use of the boundary condition
in Eq. (12) we obtain

Ψ(τ) = tan2 ϑ [1 + αΥ(ϑ)]2 . (30)

Introduced into Eq. (28), it leads to

f (r, θ) =

(
tanϑ
tan θ

)2 [
1 + αΥ(ϑ)
1 + αΥ(θ)

]2

· (31)

Equation (31) is the generalized version of that obtained by
Espinosa Lara & Rieutord (2011), which is valid for α = 0 (their
Eq. (26)).

Equations (24) and (29), together with Eq. (25), or the forms
for T (θ) given in Appendix A, define ϑ(r, θ) for every chosen
point (r, θ), in particular for the stellar surface represented by
the function r = r(θ). To this end it is worth noting that because
ϑ , θ except at the extremes ϑ = θ = 0 and ϑ = θ = π/2, it is im-
possible to derive reliable values of ϑ = ϑ(r, θ) from Eq. (29) if
the stellar geometry, i.e. r = r(θ), is not determined consistently
with the rotation law on which depends T (θ).

We have calculated GDF numerically using Eq. (31), where
r(θ) is the radius-vector that describes the stellar surface. The
function ϑ(θ) is determined with Eqs. (24) and (29) by interpo-
lation, where T (ϑ) at a given θ is taken as a linear function of
ln θ. For values of ϑ when θ → π/2 we consider T (ϑ) as a lin-
ear function of its expression for α = 0, so that ϑ is derived by
iterating Eq. (26).

The behaviour of the function f (θ) calculated for Υ = cosk θ
η = 0.2, 0.8, and for several values of α and k is shown in Fig. 3.
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Fig. 3. Function ln f (θ) given by Eq. (11) against the colatitude θ, calculated for η = 0.2 and 0.8, with both functions Υ(θ) given in Eq. (5),
differential-rotation parameters α = −0.5, 0.0, and 0.5, and for powers k = 0.5, 2.0 and 6.0. Blocks (a) and (b) are for Υ(θ) = cosk θ. Blocks (c)
and (d) are for Υ(θ) = sink θ. Colours indicate the power k and they are the same for all blocks. The line-styles identify the values of α and they
are the same for α′ = −α/(1 + α) where α are the same as in (a) and (b).

In this figure the function f (θ) calculated with Υ = sink θ and
α′ = −α/(1 + α) is also shown. It shows that f [cosk θ, α] ,
f [sink θ, α′(α)], except for k = 2 where f (θ) is the same for both
Υ(θ) functions. The function f (θ) obtained for α = 0.0 (green
curves in Fig. 3) corresponds to the solution previously obtained
by Espinosa Lara & Rieutord (2011).

From Eq. (15) we can derive the limits of f (r, θ) when θ → 0
and θ → π/2

lim
θ→0

f = f pole = exp

2
3
η

(
Rp

Re

)3 (
Ωp

Ωe

)2
lim
θ→π/2

f = f eq = (1 − η)−2/3, (32)

where Rp and Re are the polar and equatorial radii, respectively.
Ωp is the polar angular velocity, which imply that Ωp/Ωe = 1+α

when Υ(θ) = cosk θ and Ωp/Ωe = (1 + α′)−1 = (1 + α) for
Υ(θ) = sink θ. The dependence of f pole with α and k is given
through the radii ratio Rp/Re, which is a function of them both
and on the function Υ(θ) chosen. However, f eq depends only on
the ratio η. It may be worth noting that for η = 0, it is ϑ ≡ θ so
that in Eq. (31) the GDF becomes f (r, θ) = 1. This also makes
that from Eq. (31) we have f pole = f eq = 1.

For a given ratio ηwe obtain the same value f eq whatever the
function Υ(θ). We may wonder then whether the same value for
f pole can be derived whatever the chosen function Υ(θ) provided
we use the appropriate reciprocal gravity-darkening parameter,
i.e. α or α′ = −α/(1 + α), as it is apparent form the expression
of f pole given in Eq. (32). Actually, this reciprocity is valid only
for k = 2. In the next section we show that for k , 2 this appar-
ent reciprocity does not produce the same ratio Rp/Re, and the
geometry of the stellar surface is not the same either. This is due
to the fact that Re/Rp = 1 + ηΓ, with Γ =

∫ π/2
0 [Ω(θ)/Ωe]2 . . . dθ

(see Zorec et al. 2011) where, as seen from Fig. 1, Ω(θ)/Ωe de-
pends on Υ(θ) for k , 2, even if we use α and its reciprocal α′
according to each case. Consequently, the behaviour of the re-
sulting GDF, f (θ), over the interval 0 < θ < π/2 will depend in
a strict sense on the chosen Υ(θ) function if k , 2.

5. The effective temperature as a function
of the colatitude

The magnitude of the flux-vector in Eq. (2) can be rewritten as

F(θ) = σSBT 4
eff(θ) =

L
4πGM

f (θ)geff(θ), (33)
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Fig. 4. Panels a–c: Effective temperature Teff(θ, η, α)/〈T 〉 given by Eq. (34) as a function of the co-latitude θ when Υ(θ) = cosk θ, for η = 0.8,
k = 0.5, 2.0 and 6.0, and α = −0.5, 0.0 and +0.5. Panels d–f : Same for Υ(θ) = sink θ and the same values of k as before, but for α′ = −α/(1 + α)
where α is the same as in (a) to (c). The black-dashed lines correspond to the classic von Zeipel approximation normalized in θ = 0 at the curve
corresponding to α = 0.0.

where σSB is the Štefan-Boltzmann constant. Using Eqs. (9)
and (11) this relation can be translated into

Teff(θ) = 〈T 〉
[
f (θ)γ(θ)

]1/4 , (34)

where the radial variable r = r(θ) was used as the radius-vector
representing the stellar surface, so that γ becomes a function of
θ only, apart from its dependence on (η, α). It is obvious that for
η = 0 (no rotation), f (θ) = γ(θ) = 1 and Teff(θ) = 〈T 〉. The factor
〈T 〉 is the uniform effective temperature over a sphere of radius
Re(η) radiating the luminosity L

〈T 〉4 =
L

4πR2
eσSB

· (35)

It must be understood that when interpreting observations the
quantity 〈T 〉 is a free parameter, because the bolometric luminos-
ity L depends on physical conditions that characterize the core of
rotating stars. This luminosity depends, among other factors, on
the total angular momentum stored in the star and on its internal
distribution, which are unknown. In Figs. 4a to c Teff(θ, η, α)/〈T 〉
is shown as a function of the co-latitude θ when Υ(θ) = cosk θ,
η = 0.8, k = 0.5, 2.0 and 6.0, and for several values of α ranging
from −0.5 to +0.5. Figures 4d to f show Teff(θ, η, α)/〈T 〉 against
θ for Υ(θ) = sink θ and (k, α′), where α′ = −α/(1 +α). The green
curves correspond to Teff(θ)/〈T 〉 for α = α′ = 0, previously ob-
tained for rigid rotators by Espinosa Lara & Rieutord (2011). In
Fig. 5 we plot the effective temperature ratios T eq

eff
/T p

eff
as a func-

tion of η and different values k and α, when Υ(θ) = cosk θ or
Υ(θ) = sink θ.

6. The V sin i parameter

V sin i is a parameter that mainly reflects the global broadening
of a spectral line. It was shown in Zorec et al. (2017) that this
broadening is produced by monochromatic contributions from
curved loci of points over the observed stellar hemisphere hav-
ing the same Doppler displacement. The shape of these curves
depend on the differential rotation law and on the inclination an-
gle, while for rigid rotation these curves are straight lines which
are independent of the inclination angle. Due to the differenti-
ated sensitivity of spectral lines to the physical formation condi-
tions (Thomas 1983; Zorec et al. 2017), according to the spectral
line, the different regions on the observed stellar hemisphere do
not contribute with the same efficiency to the rotational broaden-
ing because of the non uniform distribution of temperature and
gravity. To illustrate this effect, we have calculated He i 4471 and
Mg ii 4481 lines broadened by differential rotators with rotation
laws given by Eq. (4) and both forms of Υ(θ) given in Eq. (5). For
this exercise we used a model star with mass M = 9 M� and frac-
tional age t/tMS = 0.6 (tMS is the time a rotating star spends in the
main sequence evolutionary phase). Rotation laws are character-
ized by several parameters k, α, and different equatorial veloc-
ities parametrized according to η. Applying the classic Fourier
transform method we determined the V sin i parameters shown
in Figs. 6 and 7 where we compare the resulting Veq sin i with
the actual input Veq sin i corresponding to the given values of η
and inclination angles. We note that deviations from the iden-
tity relation (y = x line) also exist for rigid rotators. They are
due to the gravitational darkening effect, which is not taken into
account in the classic rigid-rotation broadening function GR(λ)
(Gray 1992).

Because it has become of common use today, the classic
method based on the FT was employed to determine the V sin i.
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Fig. 5. Panels a–c: Effective temperature ratios T eq
eff
/T p

eff
as a function of η and different values k and α when Υ(θ) = cosk θ. Panels d–f : Same for

Υ(θ) = sink θ and for the same values of k as before, but for α′ = −α/(1+α) where α is the same as in (a) to (c). The black-dashed lines correspond
to the classic von Zeipel approximation.

This method assumes, however, that the observed rotationally
broadened line profile F (λ) can be represented as the convo-
lution with an analytical rotation broadening-function GR(λ) of
a flux line-profile F(λ) emitted by a non-rotating star having
uniform effective temperature and gravity. The specific inten-
sity I(λ, µ) contributing to the observed line flux F(λ) is thus the
same over the entire stellar disc, which obviously does not oc-
cur in rotating stars. The derivation of an analytical expression
for GR(λ) that is independent of the inclination angle requires
that the star be spherical and behaves as a rigid rotator (Gray
1975, 1992), i.e. the monochromatic Doppler displacements are
produced over straight strips of constant radial velocities. The
V sin i is then obtained by comparing the zeros of the flux line-
profile FT F (λ) with the corresponding zeros of the FT of the
function GR(λ).

In Zorec et al. (2017) it has been shown that depending on
the spectral line and on the value of α, the FT of lines may have
unusual shapes, making the zeros difficult to identify and to in-
terpret. This difficultly is a direct consequence of the inconsis-
tency raised by the use an analytic expression GR(λ) adapted for
uniform rigid rotators, which does not take into account: a) the
actual shape of curves of constant radial velocity contributing
to the individual rotational Doppler-displacements, and b) the
non uniformity of the effective temperature and surface effective
gravity determining the local monochromatic specific intensities
I(λ, µ).

Figures 6 and 7 reveal that the V sin i obtained using the FT-
method can be overestimated when α > 0, and underestimated
for α < 0, as compared to its value for rigid rotators. We notice
that for Υ(θ) = cosk θ and a given |α| the deviations are larger
when α < 0 than for α > 0. For Υ(θ) = sink θ the deviations re-
verse according to the α-corresponding reciprocal parameter α′.
Finally, according to the spectral line used, the obtained V sin i
is not exactly the same. To apprehend what can be the possible

deviations that the current V sin i determinations may incur, let
us recall that in the Sun α ' −0.3 and Υ(θ) = cos2 θ, and that
predictions made by Espinosa Lara & Rieutord (2013) for rapid
rotators of masses 2 . M . 4 M� foresee α & −0.2. Facing
the likely possibility that stars are differential rotators, these re-
sults warn us that the current interpretations based on the rigid
rotation hypothesis could be misleading. However, detailed mod-
elling of spectral lines can be made today to account for the
noted differences in the V sin i obtained from different spectral
lines. They could help us to derive indications on the value of
the α parameter.

Needless to say that the classic method of determining V sin i
based on the FWHM (full-width at half-maximum) produces the
same type of deviations, because the comparisons are made also
with the rotational broadening of spectral lines produced by clas-
sic spherical rigid rotators.

7. The gravity-darkening exponent

The gravity-darkening exponent was introduced with the pur-
pose of representing in a simple way the distribution of the local
effective temperature Teff(θ) over a rotating stellar surface. As
noted in Sect. 1, the known von Zeipel’s relation that holds for
barotropic objects

σSBT 4
eff(θ) = CFg

β1
eff

(θ), (36)

is characterized by the constant gravity-darkening exponent β1,
and the constant CF which depends on the gravity-rotation
equipotential of the stellar surface. The notation β1 is used here
to distinguish it from the exponent β = β1/4 that is also fre-
quently employed to characterize the gravity-darkening effect.
In the following section, we will comment on some drawbacks
of using Eq. (36).
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Fig. 6. Panels a–c: Parameters V sin i determined with the FT method using the He i 4471 line produced in atmospheres having a rotation law given
by Eq. (4) with Υ = cosk θ and characterized by different values of k and α, against the actual Veq sin i in stars having M = 9 M� and t/tMS = 0.6,
and rotating with several equatorial ratios η. Panels d–f : Same for the Mg ii 4481 line.

7.1. Dependence of the gravity-darkening exponent
with colatitude

Up to now, the relation in Eq. (36) has been used to interpret
the observations of rapidly rotating stars regardless of whether
they are barotropic or baroclinic. However, β1 and CF can-
not be assumed independent of the colatitude-angle θ even in
barotropic model-stars having atmospheres in radiative equilib-
rium (Espinosa Lara & Rieutord 2011; Rieutord 2016).

To inquire on the effects that a surface differential rotation
can induce on β1 and CF, Fig. 8 shows the relation between
ln Teff(θ) calculated with Eq. (34) against ln geff(θ) using both
forms of Υ(θ) in Eq. (5). The model-stars are assumed to rotate
with η = 0.8 with several values of α and k. Obviously, similar
behaviours are noted for other values of η.

Because the curves in Fig. 8 are not straight lines, neither
CF nor β1 can be considered as genuine constants, even though
a quasi-linear relation between ln Teff(θ) and ln geff(θ) seems
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Fig. 7. Similar as Fig. 6 but for Υ = sink θ. The cases with k = 2 are omitted as they are identical to those in Fig. 6.

to exist over some intervals of θ. To emphasize more clearly the
lack of constancy of β1 and CF, we define a pseudo-exponent or
gravity-darkening slope b1(θ) as

ln T 4
eff(θ) = b1(θ) ln geff(θ) + ln [CF(θ)/σSB] , (37)

and consider that between two successive, close discrete points
θi and θi+1, b1(θ) and CF(θ) can be assumed constant; i.e.:

b1

(
θi

)
= 4

ln [Teff (θi+1) /Teff (θi)]
ln

[
geff (θi+1) /geff (θi)

] ; θi = (θi + θi+1) /2. (38)

Inserting the values b1(θi) in Eq. (37), the corresponding
ln CF(θi) can be estimated. The inferred quantities b1(θi) and
ln CF(θi) are shown in Fig. 9. They clearly demonstrate that both
b1 and CF are dependent on θ and that consequently they cannot
be used as constants in Eq. (36).

7.2. The observed gravity-darkening slope

7.2.1. Neglecting the viewing angle

Replacing in Eq. (37) the expressions for geff and Teff given re-
spectively by Eqs. (9) and (34), and imposing that b1 and CF do
not depend on θ, it follows that

B1(θ) = 1 +
ln

[
f (θ)/ f pole

]
ln

[
γ(θ)/γpole] , (39)

where f pole and γpole are the values of the functions f (θ) and γ(θ)
in θ = 0. The function B1(θ) behaves in a similar way as b1(θ),
so that it is needless to reproduce it graphically. Instead, we can
replace f (θ) and γ(θ) in Eq. (39) by their values at θ = π/2 (see
Eq. (32)) to obtain a kind of average 〈B1(θ)〉 that takes the form

〈B1〉 = 1 −
2
3

 ln(1 − η) + η
(
Rp/Re

)3 (
Ωp/Ωe

)2

ln
[
(1 − η) + 2 ln

(
Rp/Re

)
 , (40)

which is a generalized version of 〈B1〉 obtained by
Espinosa Lara & Rieutord (2011) for rigid rotators. In Fig. 10,
〈B1〉 is shown as a function of η for −0.5 ≤ α ≤ 0.5, k = 0.5, 2,
6, and for both functions Υ(θ). The expression of 〈B1〉 for α = 0
was sometimes used in the literature to compare the exponents
b1 derived from interferometric observations.

7.2.2. Considering the viewing angle

Any parameter describing a physical property of a rotating stel-
lar atmosphere that depends on the co-latitude θ, automatically
becomes a function of the viewing angle i when it is determined
from observational data of angularly unresolved stars. This must
also happen to the gravity-darkening slope given by Eq. (39).
Such a quantity should thus depend on the apparent average ef-
fective temperature and gravity that characterize the observed
stellar hemisphere, which are named hereafter as 〈Teff(i)〉 and
〈geff(i)〉, respectively.
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Fig. 8. Effective temperature given as ln[Teff(θ)/〈T 〉]4 against ln[geff(θ)/〈g〉] for η = 0.8. Panels a–c: are for Υ(θ) = cosk θ with k = 0.5, 2.0 and
6.0, respectively and α ranging from −0.5 to +0.5. Panels d–f : are for Υ(θ) = sink θ with k = 0.5, 2.0 and 6.0, respectively and α′(α) ranging from
−1.0 to +1.0. In all cases the left-bottom corner corresponds to the equator and the right-upper corner to the pole.

Let us define 〈Teff(i)〉 and 〈geff(i)〉 so as to obtain a slope
that might be assimilated with an empirically derived gravity-
darkening slope. The apparent effective temperature 〈Teff(i)〉 can
be written as〈
T 4

eff(i)
〉

=
L(i)

σSBS(i)
, (41)

where S(i) is the effective emitting area of the i-dependent
rotationally deformed stellar hemisphere. In this expression,
the apparent bolometric luminosity L(i) emitted by the stellar
disc projected towards the observer is given by (Collins 1965;
Maeder & Peytremann 1970; Collins 1973)

L(i) = 4πR2
e

∮
S (i)

I(µ)
(

n̂ · ι̂
n̂ · êr

)
r2(θ) sin θ dθdφ, (42)

where n̂ = −geff/geff is the unit vector normal to the stellar
surface; ι̂ is the unit vector directed towards the observer; êr
is the unit vector associated with the r-spherical coordinate;
S (i) indicates the observed region of the stellar hemisphere over
which the integration is carried out. µ is the directional cosine
cos(n̂, ι̂) = n̂ · ι̂; I(µ) is the bolometric specific intensity of the
radiation for which we use a quadratic form

I(µ) = I1

[
1 − ε1(1 − µ) − ε2

(
1 − µ2

)]
, (43)

whose limb-darkening coefficients ε1,2 have been interpolated in
the tables given by Claret (2000) for each pair of local funda-
mental parameters [Teff(θ), geff(θ)]. Knowing that for each point
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Fig. 9. Panels a–c: Gravity-darkening slope b1(θ) against θ defined in Eq. (38) for Υ(θ) = cosk θ with k = 0.5, 2.0, 6.0, and α = −0.5, −0.25, 0.0
(green lines), +0.25 and +0.5; d)–f) same, but for Υ(θ) = sinkθ and α′ = +1.0, +1/3, 0.0 (green lines), −1/5 and −1/3; g)–i) as from (a) to (c), but
for the term CF(θ); j)–l) as from (d) to (f), but for the term CF(θ).
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Fig. 10. Average gravitational-darkening slope 〈B1〉 given by Eq. (40) as function of η, calculated respectively for: a) Υ(θ) = cosk θ; b) sink θ. The
colours identify the differential rotation parameter α, while k is identified using different line-styles.

over the stellar surface we have |F| = F(θ) = 2π
∫ 1

0 I(µ)µ dµ,
the intensity I1 = I(µ = 1) can be written as

I1(θ) =
6
π

[
F(θ)

6 − 2ε1 − 3ε2

]
, (44)

which depends on f (θ) and γ(θ) through F(θ) given in Eq. (33).

Consistently with the definition of 〈Teff(i)〉, we can use
Eq. (33) to estimate 〈geff(i)〉 using the expression〈
T 4

eff(i)
〉

=
L

4πGMσSB
〈 fgeff〉i, (45)

that with Eqs. (41) and (42) leads to

〈geff(i)〉 =
〈 f geff〉i

〈 f 〉i
, (46)
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Fig. 11. Relation between the apparent 4 ln[Teff(i)/〈T 〉] and
ln[geff(i)/〉〈g〉]; a)–c) for Υ(θ) = cosk θ with α from −0.5 to
+0.5; d)–f) for sink θ and α′ = −α/(1 = α). All curves are for η = 0.8,
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upper right corner.

where 〈 f 〉i is given by

〈 f 〉i =

∮
S (i)

f (θ)φ(µ)
(

n̂ · ι̂
n̂ · êr

)
r2(θ) sin θ dθdφ

/
S(i)

φ(µ) = π−1
[
1 − ε1(1 − µ) − ε2

(
1 − µ2

)]
/ (1 − ε1/3 − ε2/2) .

(47)

For the numerical estimates of the apparent 〈Teff(i)〉 and 〈geff(i)〉
the knowledge of absolute values of Teff(θ) and geff(θ) are re-
quired. To get a rough insight on their amplitude variation, we
have assumed model-stars with mass M = 9 M� and fractional
age t/tMS = 0.6 (tMS is the time spent by a rotating star in the
main sequence phase). The bolometric luminosity L was cal-
culated with the rotationally induced mass-compensation effect
parametrized as in Frémat et al. (2005), where it is assumed that
the stellar core rotates rigidly. The equatorial radii ratio Re/Ro
(Ro is the equatorial radius of a parent non-rotating object hav-
ing the same mass) is given by the models of Zorec et al. (2011).

The relations between ln[〈Teff(i)〉/〈T 〉] and ln[〈geff(i)〉/〈g〉]
shown in Fig. 11 are calculated using Υ(θ) = cosk θ and sink θ,
for η = 0.8, k = 0.5, 2.0, 6.0, and −0.5 ≤ α ≤ −0.5. While
Fig. 8 represents the variation of Teff against geff over the stel-
lar surface, Fig. 11 represents these parameters integrated over
a stellar surface seen according to different viewing angles. The

upper right corner corresponds to pole-on seeing directions and
the lower left corners to the equator-on directions. For a given
geometrical deformation of stars parameterized here with the ra-
tio η, it turns out that the resolution among these curves accord-
ing to the differential parameter α is a strong function of the
power k used in Υ(θ).

From Fig. 11 it seems legitimate to assume relations of the
type

ln〈T 4
eff(i)〉 = [(i) ln〈geff(i)〉 + 〈A(i)〉 (48)

for each [Υ, k, α] so as to represent the dependence of the slope
[(i) with the stellar inclination, as we did for b1(θ) with θ, i.e. by
taking here [(i) and 〈A(i)〉 as constants between two successive
inclinations i j and i j+1 in a given discretization of this variable
in 0◦ ≤ i ≤ 90◦. The values of [(i) obtained for three inclination
angles: i = 0◦, 45◦ and 90◦ against the ratio η are shown in
Fig. 12. Figures 12a–c are for Υ = cosk θ with k = 0.5, 2 and 6,
while Figs. 12d–f are for Υ = sink θ and the same exponents k. In
these figures we note that the [(i) curves have a global behaviour
that is similar to 〈B1〉 in Fig. 10, except for their spread as a
function of i.

In Fig. 13 we show the values of bobs
1 determined with inter-

ferometric data (see Domiciano de Souza et al. 2014), where the
interpretation of observations was done using Eq. (36). These
points have been originally given as a function of the stellar flat-
tening ε = 1 − Rp/Re. We have converted ε into η considering,
as the authors themselves did, that stars are rigid rotators, i.e.
Re/Rp = 1 + η/2, which imply that η = 2ε/(1 − ε). In this dia-
gram the curves [1(i) are reproduced for Υ(θ) = cosk θ with k = 2
and different values of α, in particular those suited for rigid ro-
tators, i.e. α = 0 (green curves). In Sect. 8 we discuss the reason
of using k = 2. Taking into account the observational uncertain-
ties, we can conclude that half of the observed points are located
outside the zone limited by [1(i = 0) and [1(i = π/2) of rigid
rotators. Two of them are likely situated in the region of α > 0,
while there is one in the zone of α < 0, which indicates that other
solutions than rigid rotation might also suit these objects.

However, according to the diagrams in Fig. 12 it clearly ap-
pears that there is not a unique way to characterize the studied
stars with β1 as rotators, since many solutions can be envisioned
in terms of [Υ, k, α]. On the other hand, there is a strong concern
with the interpretation of the observed values [obs

1 , because β1
and CF were considered as constants in the reduction of data.
Due to these ambiguities, it would perhaps be wiser to abandon
the parameter β1 to model fluxes and rather concentrate on deter-
mining them using the differential rotation parameter α and the
inclination angle i (Domiciano de Souza et al. 2004).

8. Discussion and conclusion

Continuing the work initiated by Espinosa Lara & Rieutord
(2011) to represent the distribution of the effective temperature
in rotating stars, where the only requirement is that the outer-
most layers of the envelope be in radiative equilibrium and the
radiation flux vector be dominantly anti-parallel to the effective
surface gravity, we have discussed the case where these layers
are in differential rotation. We have studied the particular case
where the angular velocity is given by Eqs. (4) and (5), and ob-
tained relationships that generalize those previously derived by
Espinosa Lara & Rieutord (2011) for rigid rotators. As a further
step, we have studied the effects of the surface differential rota-
tion on the determination of the V sin i parameter and concluded
that strong deviations can be expected. They seem to be large
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Fig. 12. Gravitational-darkening slope [1(i) against the rotational ratio η. The colours identify the values of the differential parameter α, and the
line-styles are for the inclination angles. In a) to c) the slope [1(i) was calculated with Υ(θ) = cosk θ and from d) to f) b1(i) was obtained with
Υ(θ) = sink θ. As throughout in this work, rigid rotation (α = 0) is identified with green lines.

enough to be exploited empirically. We also find that a con-
stant gravity-darkening exponent is inappropriate for describing
stars as rotators. In fact, as this exponent is a function of the
stellar co-latitude (Rieutord 2016), it becomes a function of the
viewing angle that induces ambiguities in the interpretation of
observations. The modelling of observed parameters of rotating
stars must then be done directly through the gravity-darkening-
function (GDF), f (θ), which describes the distribution of the ef-
fective temperature as indicated by Eqs. (34), (31), (29) and (25),
for which the stellar geometry must be calculated consistently.
According to discussions carried out in this work, the interpreta-
tion of observations would then require one to determine the set
of quantities (η, α,Υ) instead of the simple pair (η, β1).

In the approach where differential rotation is considered, a
significant uncertainty remains in the choice of the function Υ(θ).
Indeed, up to now, and except for the Sun, no empirical indica-
tion exists on the actual nature of Υ(θ) in stars. The quantity
that needs to be inferred first is a parameter related to the av-
erage surface gradient 〈d Ω/d θ〉. To this end, the simplest ex-
pression for Υ(θ) could be 2θ/π. This makes α the unique free
parameter characterizing the surface differential rotation, but in
this case the calculation of the integral T (θ) (Eq. (25)) has
some annoying numerical subtleties. However, we have shown
in Sect. 2 that for the same ratio Ωp/Ωe, no significant differ-
ences in the prediction or analysis of observed parameters may
arise if we use only Υ(θ) = cosk θ or sink′ θ, because reliable
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Fig. 13. Comparison of the empirical gravitational-darkening slope [obs
1

(see reference in Domiciano de Souza et al. 2014) with the curves rep-
resenting the [1(i) of rotators with k = 2, Υ(θ) = cos θ, α = −0.5, 0.0
(green curves) and α = +0.5, and inclination angles i = 0◦, 45◦ and 90◦
(dentified with different line styles). The dashed black dashed line is for
[1(i) = 1.

correspondences can be established between (α, k) and (α′, k′).
According to this finding, we can adopt Υ(θ) = cosk θ and show
easily that the weighted average gradient over the stellar surface

〈d (Ω/Ωo) /dθ〉 =

∫ π/2

0
[d (Ω/Ωo) /dθ] sin θd θ (49)

is equal to 〈d(Ω/Ωo)/dθ〉 = 2α/π if k = 2.55. Although noth-
ing prevents us from making numerical models with k = 2.55,
the results for Teff(θ), V sin i and other parameters, show that no
significant differences occur on the predicted or analyzed pa-
rameters if we simply adopt k = 2. Moreover, the representa-
tion Υ(θ) = cos2 θ of Maunder & Maunder (1905) accounts for
the solar surface differential rotation. Two first order indications
could then be reliably drawn from observations: a) whether the
surface differential rotation in stars is significant or not; b) what
is its character: accelerated towards the pole or accelerated to-
wards the equator. We note that for some forms of Υ(θ, k), in
particular for k = 2, analytical expressions of T (θ) exist and
can help to proceed in a similar way as for rigid rotators with the
formulas developed by Espinosa Lara & Rieutord (2011).
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Appendix A: The functions T (θ)
The analytical expressions obtained of the function T (θ) with Υ(θ) = cosk(θ) by integrating Eq. (23) for the natural numbers k = 1,
2, 3 and 4 are:

k = 1

T (θ) =
1

(1 − α2)2

{
(1 + α2) ln tan

θ

2
+ 2α ln

∣∣∣∣∣1 + α cos θ
sin θ

∣∣∣∣∣ + (1 − α2)
( cos θ
1 + α cos θ

)}
∀α (A.1)

k = 2

T (θ) =


1

(1 + α)2

[
ln tan

θ

2
+ (1 − α)

arctan(
√
α cos θ)

2
√
α

+
(1 + α)

2

( cos θ
1 + α cos2 θ

)]
for α ≥ 0

1
(1 − |α|)2

[
ln tan

θ

2
+

(
1 + |α|

4
√
|α|

)
ln

(
1 +
√
|α| cos θ

1 −
√
|α| cos θ

)
+

(
1 − |α|

2

) (
cos θ

1 − |α| cos2 θ

)]
for α < 0

(A.2)

k = 3

T (θ) =



1
(1 − α2)2

{
(1 + α2) ln tan

θ

2
− 2α ln sin θ +

2
3
α ln(1 ± u3) +

2
3

[1 + 2α2 + |α|2/3(2 + α2)]
(

A
|α|1/3

)
+

2
3

[1 + 2α2 − |α|2/3(2 + α2)]
(

B
|α|1/3

)
+

1
3

cos θ
(1 ± u3)

[1 − α cos θ(1 − α cos θ)]
}

u = |α|1/3 cos θ; A =
1
6

ln
[

(1 ± u)2

1 − (±)u + u2

]
; B =

1
√

3

[
arctan

(
2u − (±)1
√

3

)
±
π

6

]
;

“ + ” for α ≥ 0 and “ − ” for α < 0

(A.3)

k = 4

T (θ) =



1
(1 + α)2

ln tan
θ

2
+

[
3 − α +

√
α(5 + α)

]
16
√

2α1/4
ln

1 + α1/4 cos θ(
√
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+
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α(5 + α)

]
8
√

2α1/4
arctan

 √2α1/4 cos θ
1 − α1/2 cos2 θ
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(1 + α)

4
cos θ

(
1 − α cos3 θ

1 + α cos4 θ

) for α ≥ 0

1
(1 − |α|)2

ln tan
θ

2
+

[
3 + |α| +

√
|α|(5 − |α|)

]
16|α|1/4

ln

∣∣∣∣∣∣1 + |α|1/4 cos θ
1 − |α|1/4 cos θ

∣∣∣∣∣∣
+

[
3 + |α| −

√
|α|(5 − |α|)

]
8|α|1/4

arctan
(
|α|1/4 cos θ

)
+

(1 − |α|)
4

cos θ
(

1 + |α| cos3 θ

1 − |α| cos4 θ

) for α < 0.

(A.4)

The corresponding analytical expressions of T (θ) with Υ(θ) = sink(θ) by integrating Eq. (23) for the natural numbers k = 1 and 2,
are:

k = 1

T (θ) = ln tan
θ

2
+

cos θ
1 + α sin θ

−
2α

(1 − α2)1/2

arctan
 tan θ

2 + α

1 − α2)1/2

 − arctan
(

1 + α

1 − α

)1/2
 ; for α2 < 1 (A.5)

k = 2

T (θ) = ln tan
θ

2
+



1
2

(
cos θ

1 + α sin2 θ

)
−

1
4

(1 + 2α)
[α(1 + α)]1/2 ln

(
1 − u
1 + u

)
; u =

(
α

1 + α

)1/2
cos θ; for α ≥ 0

1
2

(
cos θ

1 − |α| sin2 θ
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1
2

(1 + 2|α|)
[|α|(1 − |α|)]1/2 arctan

( |α|)1 − |α|

)1/2

cos θ

 for α < 0.

(A.6)

In spite of the formal difference between Eqs. (A.2) and (A.6), they are equivalent. They can be converted to each other knowing
that sin2 θ + cosk θ = 1, making the transformation α into −α/(1 + α) and considering the sign of α.

A32, page 16 of 17



J. Zorec et al.: Differential rotation and gravity darkening

Appendix B: Limit forms of f (r, θ)
Integrating Eq. (25) by parts, we obtain the following expression equivalent to Eq. (24)

ln
[
tan(ϑ/2)
tan(θ/2

]
+ cosϑ − cosϑ

[
1 + αΥ(ϑ)
1 + αΥ(θ)

]2

− 2α[1 + αΥ(ϑ)]I (ϑ, θ) = 1
3

Ω2
oR3

GM cos3 θ[1 + αΥ(ϑ)]

I (ϑ, θ) =
∫ ϑ

θ
sin−1 x cos2 x
[1+αΥ(x)]2

(
dΥ
dx

)
dx.

(B.1)

As θ → 0 and θ → π/2, also ϑ → 0 and ϑ → π/2, respectively. Moreover, θ → 0 both θ and ϑ are infinitesimals of the same order,
so that we can write ϑ = pθ where p is constant. Expanding the function tan x for small values of x and knowing that αΥ < 1, we
derive

ln
(

pθ/2
θ/2

)
+ cos(pθ) − cos θ − α[Υ(pθ) − Υ(θ)](1 + ...) − 2α[1 + Υ(pθ)]I (pθ, θ) = 1

3η
(

Ωo
Ωe

)2
r3cos3 θ[1 + αΥ(pθ)]2. (B.2)

Taking the limit of this expression for θ → 0, and identifying r(θ = 0 with stellar surface it comes that

ln
ϑ

θ
=

1
3
η

(
Rp

Re

)3 (
Ωp

Ωc

)2

(B.3)

which introduced into Eq. (31) leads to

lim
ϑ→0
θ→0

f (r, θ) = f pole = exp

2
3
η

(
Rp

Re

)3 (
Ωp

Ωc

)2 (B.4)

where Ωp is the polar angulat velocity, which carries that Ωp/Ωe = 1 + α when Υ(θ) = cosk(θ) and Ωp/Ωe = (1 + α)−1 for
Υ(θ) = sink(θ). We note that the dependence of f pole with α and k is given through the radii ratio Rp/Re.

To calculate the limit of f (r, θ) as θ → π/2 we make the change of variables ϑ→ π/2 − εϑ and θ → π/2 − εθ, where εϑ → 0 and
εθ → 0 are infinitesimals of the same order. This operation implies the following changes of functions

tan θ = cot εθ
cos θ = sin εθ = εθ − ε

3
θ /3! + ...

sin θ = cos εθ = 1 − ε2
θ /2 + ...

ln tan
θ

2
= ln(1 − tan εθ/2) − ln(1 + tan εθ/2)

= −2 tan
εθ
2
−

2
3

tan3 εθ
2

= −εθ −
1
6
ε3
θ

(B.5)

and similar expressions for the functions dependent on ϑ. Introducing this terms into Eq. (B.1), it is obtained

1
3

(ε3
θ − ε

3
ϑ) − (εθ −

1
6
ε3
θ + ...)[α(Υθ − Υϑ) + ...] − 2α(1 + αΥϑ)2

∫ π/2−εϑ

π/2−εθ
...d x =

1
3
η

(
Ωo

Ωe

)2

[1 + αΥ(pεθ)]2 (B.6)

which for εθ → 0 reduces to

1
3

1 − ε3
ϑ

ε3
θ

 =
1
3
η

(
Ωo

Ωe

)2

[1 + α lim
εθ→0

Υ(pεθ)]2 (B.7)

where

lim
θ→0

Υ(pεθ) =

{
1; for Υ(θ) = cosk(θ)
0; for Υ(θ) = sink(θ)

(B.8)

and Ωo/Ωe = 1 when Υ(θ) = cosk(θ), or Ωo/Ωe = 1/(1 + α) if Υ(θ) = sink(θ).
Finally, with Eqs. (B.7) and (31) we obtain

lim
ϑ→π/2
θ→π/2

f (r, θ) = f eq = (1 − ηr3)−2/3
(B.9)

which is independent of α and k, and where for the stellar surface it is limθ→π/2 r = 1.
The forms Eqs. (B.4) and (B.9) can also be derived using the analytical expressions from Eqs. (A.1) to (A.6) by using series

expansions for ln tan x, arctan x and ln(1 ± x) valid for x < 1 and relations in Eq. (B.5).
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