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Abstract 

La2Mo2O9 nanostructured powders were synthesized by the polyol process. The effects of the nature 

of the polyol, the refluxing time, the hydrolysis ratio, the metal concentration and the addition of 

hydroxyde ions, on the purity and morphology of the powders are determined. Two main 

morphologies are observed, the particles being in the shape of platelets or spheres, with respectively 

diethylene glycol or ethylene glycol as solvent. A specific surface area of 24 m².g
-1

 was reached by 

varying the metal concentration. The conductivity measurements were recorded on pellets that 

present in some cases a closed porosity, the relative density reaching 95% without any milling step. 

According to the synthesis parameters, the grain conductivity can be slightly increased, the total 

conductivity remaining only slightly lower than that of pellets made of powders synthesized by 

solid state reaction. 
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1. Introduction 

Recently, La2Mo2O9-based oxide-ion conductors have attracted special attention as they present 

high ionic conductivity at low temperatures (400–800 °C) under a wide oxygen partial pressure 

ranging from 0.21 to 10
−15

 atm [1–5]. Pure La2Mo2O9 presents a phase transition from a monoclinic 

low temperature α-form to a cubic high temperature β-form at about 580 °C [1,2]. At this 

temperature, the ionic conductivity of La2Mo2O9 increases by two orders of magnitude and, above it 

becomes higher than that of yttria-stabilized zirconia (YSZ), which is the reference material among 

solid electrolytes for oxygen ion conductors. La2Mo2O9 is usually prepared by a conventional solid 

state reaction method [1–6], but this method does not allow to obtain directly dense ceramic 

samples, since a milling step is necessary before sintering. Indeed, even if this step leads to the 

decrease of the grain size and thus to a higher sinterability, it also leads to the apparition of 

impurities, especially when the milling balls/jar are made of zirconia [7, 8]. These impurities are 

located in the grain boundaries after sintering and increase their resistance, leading to a drop of the 

total conductivity of the material. Therefore, in order to obtain a good La2Mo2O9 conductor, we 

should synthesize a pure sample with high density. Nanocrystalline powders allow a good 

densification (when non aggregated), lower sintering temperatures, better mechanical properties of 

the electrolytes, and generally improve the electrical properties [9]. Recently, we successfully 

synthesized nanocrystalline La2Mo2O9 powders by the polyol process [10], that presents the 

advantage of inducing various microstructures [11-13] and lowering the temperature of the heat 

treatment (generally necessary as a final step when soft chemistry is used, in order to reduce the size 

of the particles obtained [14]).  

The first aim of this work was to optimize the synthesis parameters in order to extend the control of 

the morphology. The following parameters were modified in order to determine their effect on the 

structure and microstructure of the final powders: the refluxing time, the nature of polyol, the 

hydrolysis ratio (h), defined by the nominal molar ratio water/total divalent and trivalent metal ions, 

the metal concentration and the effect of addition of hydroxide ions. The second part of this work 

was devoted to the measurement of ionic conductivities and the determination of the impact of the 

morphology, by way of the synthesis process, on them. This part also included, at first, a study of 

the sinterability of the powders. 

 

2. Experimental 

2.1. Synthesis 

Precursor salts, lanthanum acetate, La(CH3CO2)3.1.5 H2O (Alfa Aesar, 99,99%), and ammonium 

molybdate, (NH4)2Mo2O7 (Alfa Aesar, Mo 56.5%), in a molar ratio (Mo:La: = 1:1), and, for a part 

of this work an appropriate volume of distilled water, were added to 30 mL of a given polyol (table 
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1). The total lanthanum and molybdenum concentration ([La+Mo]) was 0.2 mol.L
-1

, except for the 

part concerning the effect of the concentration in which the total concentration was varied from 0.05 

to 0.5 mol.L
-1

. The resulting mixture was then heated up to the boiling point of the polyol, under 

reflux and mechanical stirring, for durations ranging from 1 to 3 hours. In order to modify the pH 

and thus try to modify the morphology or the purity of the obtained powders, urea (Jeulin, 99%) 

was added to the reaction mixture just before heating, for some syntheses. After cooling, the as-

prepared precipitates were separated from the supernatant by alternating centrifugation, washing in 

ethanol and ultrasonication. Finally, the precipitates were heat treated by placing them directly, for 

5 min, in a muffle furnace preheated at 600°C and then quenched at room temperature. The aim of 

such a rapid heat treatment was to avoid an important grain growth. It's worth noting that a slightly 

higher temperature (600°C instead of 550°C) was used for this work, compared to that in our 

previous publication [10], in order to facilitate the observation of an eventual impurity. 

 

Table 1 : Nature of the different polyols and reflux temperatures. 

Solvent Purity (%) Theoretical Tbp(°C) T reflux (experimental 

boiling point ) 

Ethyleneglycol (EG) 99.9%, Alfa Aesar 197 192 

1,2-Propanediol 

(PEG) 
97%, Acros organics 188 182 

Diethyleneglycol 

(DEG) 
99.9%, Aldrich 245 227 

Tetraethyleneglycol 

(TEG) 

99.5%, Acros 

organics 
327 312 

 

2.2. Characterization techniques 

The phase purity of the obtained powders was checked by recording X-Ray powder Diffraction 

(XRD) patterns at room temperature on a PANalytical θ/θ Bragg–Brentano X’pert MPD PRO 

diffractometer (CuKα1+2 radiations) equipped with the X’Celerator detector. The diagrams were 

collected at room temperature in the [10–60°] scattering angle range, with a 0.01671° step for a 

total acquisition time of 11 min for the presented diagrams, and for a total acquisition time of 1h for 

the measurement of the full width at half maximum (FWHM) in order to determine the grain size 

according to the Scherrer equation. For clarity, only selected ranges of these diagrams are 

presented. 
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The morphology of the powders was investigated with a Carl Zeiss Supra 55 (Oberkochen, 

Germany) high resolution scanning electron microscope (SEM) equipped with EDS. The 

transmission electron microscopy (TEM) study was performed using a 200kV JEOL 2100 LaB6 

transmission electron microscope fitted with a double tilt sample holders. Specimens for TEM 

observations were prepared by crushing powdered samples in ethanol. After dispersion of the 

crystallites, a drop of the suspension is deposited and dried onto a carbon coated copper grid. The 

specific surface area measurements were realized according to the BET method with a 

Micromeritics Tristar II apparatus. The sinterability of the obtained powders was determined from 

pellets obtained by pressing the powders unidirectionally under 5000 bars with a 5 mm diameter 

die, the thickness obtained being of about 2-2.5mm. Nonisothermal sintering behavior of the green 

pellets was measured on a dilatometer (Model: Netzsch, DIL 402C) from room temperature to 950 

°C at a heating rate of 10 °C/min, followed by a cooling down at the same rate.  

The electric conductivity was measured by complex impedance spectroscopy on pellets sintered by 

placing the green pellets directly, for 30 min, in a preheated muffle furnace and then quenching 

them down to room temperature [15]. Such a heat treatment was called “rapid” and used in order to 

keep as much as possible the nonostructuration of the grains. Two probe electrical conductivity 

measurements were carried out using a Solartron 1260 frequency response analyser connected to a 

Solartron 1296 dielectric interface over the 10MHz–0.01Hz range (ac voltage of 175 mV, 40 

points/decade from 10MHz to 1Hz and few points under 1Hz). Complex impedance diagrams were 

recorded under dry air flow every 25 °C, after a thermal equilibration of 35 min and over the 

temperature range 302–700°C. Impedance diagrams plotted in the Nyquist complex plane were 

least squares fitted, using the Z-view 2.8d software, with one or a series combination of two R//CPE 

elements, assigned to the bulk and -when two elements are used- to the grain boundaries 

contributions [16]. 

3. Results and discussion 

3.1. Control of the microstructure of the particles 

3.1.1. Effect of the refluxing time 

In order to determine the effect of the refluxing time, t, reflux was maintained for 1, 2 or 3 hours, 

the DEG being used as solvent. After heat treatment of the precipitate, pure La2Mo2O9 was obtained 

with a reflux time of 3 hours. However, impurity (La2Mo3O12) was observed, by XRD, for shorter 

reflux times (figure. 1). The shorter the reflux time was, the larger the amount of impurity. 

Afterwards, the reflux time was thus fixed to 3 hours. 
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Figure 1: XRD diagrams of precipitates synthesized with DEG with a reflux time of 1, 2 or 3 hours 

and heat treated at 600°C for 5 min. 

 

3.1.2. Effect of the nature of the polyol 

As the nature of the polyol solvent can have a major influence on the particle morphology [11], 

different polyols were used in order to determine their effects on the microstructure and grain size. 

Pure La2Mo2O9 powders were obtained with DEG whereas La2Mo3O12 impurity is observed by 

XRD when EG, PEG and TEG were used as solvent (figure 2). It can be noted that the amount of 

La2Mo3O12 impurity is higher with TEG.  

 

Figure 2: XRD diagrams of precipitates synthesized with different polyols : EG, PEG and TEG and 

heat treated at 600°C for 5 min. 

 

In order to avoid the formation of the impurity, urea was added to the initial solution (before reflux) 

in order to promote the precipitation of the lanthanum acetate, as hydroxide or oxide, since the 
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impurity, La2Mo3O12, presents a lack of lanthanum. Urea was also added to synthesis with DEG, 

even if pure La2Mo2O9 powders were obtained, in order to determine if its addition can have an 

impact on the morphology of the powders. 

The addition of urea, to the synthesis realized with DEG and EG as solvent, was performed 

according to the ratios u (u = [urea]/[La+Mo]) presented in table 2. All the powders obtained with 

DEG as solvent, after heat treatment, are identified to be pure La2Mo2O9 (figure 3 a). In the case of 

EG as solvent, pure La2Mo2O9 is obtained with u = 3 whereas La2Mo3O12 and La2MoO6 impurities 

are observed by XRD for u = 2 and u = 4 respectively (figure 3 b). These results seem to confirm 

that the addition of urea, and thus the progressive production of hydroxide groups, enhanced the 

precipitation of the lanthanum acetate. On another hand, an important release of hydroxide groups 

seems to stabilize the ammonium molybdate and thus leads to a decrease of its precipitation, leading 

to the formation of an impurity poor in molybdenum, La2MoO6. 

 

Table 2: Ratios of urea, u, added to the starting solution and characterization of the powders. 

solvent [urea]/[La+Mo] impurity Size(nm) SBET (m².g
-1

) 

DEG 1 none 29 15 

DEG 2 none 43 9 

DEG 3 none 35 11 

EG 2 La2MoO6 ---  

EG 3 none 50 6 

EG 4 La2Mo3O12 ---  

PEG 3 none 46 10 

TEG 3 none 52 4 

 

 
 

Figure 3: XRD diagrams of precipitates synthesized a) with DEG (u = 1, 2 or 3) and b) with EG (u 

= 2, 3 or 4) and heat treated at 600°C for 5 min. 

 

In order to also obtain pure La2Mo2O9 powders with PEG and TEG as solvent, the addition 

of urea was tested with a ratio u = 3 as it leads to pure powders with EG as solvent (table 2). With 
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these 2 polyols, the powders obtained after heat treatment were also pure, as determined by XRD 

(figure 4). 

 
Figure 4: XRD diagrams of precipitates synthesized with PEG (u = 3) or TEG (u = 3) and heat 

treated at 600°C for 5min. 

 

It can be thus expected that, except in the case of the use of DEG as solvent which leads to pure 

powders with or without the addition of urea, it is necessary to provide hydroxide groups, through 

the decomposition of urea during heating of the starting solution, to enhance the precipitation of 

lanthanum acetate. However, the ratio of urea, u, has to be controlled since a too important value of 

u leads to a lack of the precipitation of the ammonium molybdate. 

The microstructure of the pure La2Mo2O9 powders obtained with the different polyols was 

investigated in order to determine if the nature of the polyol and, for DEG, if the addition of urea 

impact the morphology of the obtained powders. 

The crystallite size was estimated, from XRD patterns, according to the Scherrer equation (the 

contribution of the apparatus on the FWHM being deducted). From the thinnest diffraction peak at 

about 2q =24.9° when we use DEG, the crystallite size is around 29, 43 and 35 nm for u = 1, u = 2 

and u = 3 respectively. With EG and u = 3, the crystallite size is about 50 nm. 

In order to determine the microstructure of the powders obtained and to estimate if the crystallite 

size determined by XRD corresponds to monocristallized grains or to particles composed of 

different crystalline domains, the powders have been observed by SEM (figure 5). After a rapid heat 

treatment of 5 min at 600°C, the powder synthesized with DEG is composed of platelets of few 

hundred nanometers long and around twenty nanometers thick. It can also be observed that the 

addition of urea has no effect on the morphology of samples synthesized in DEG (figure 5.a) but the 

powder synthesis in EG is composed of almost spherical particles (figure 5.b). 
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Figure 5: SEM images of precipitates synthesized with DEG (u = 3) (a) or with EG (u = 3) (b) and 

heat treated at 600°C for 5min. 

 

A TEM micrograph of a sample prepared with EG (u = 3) and heat treated at 600°C for 5min, is 

given in figure 6. It shows that all the particles are roughly spherical, mostly agglomerated. 

 
Figure 6: TEM images of the precipitate synthesized with EG (u=3) and heat treated at 600°C for 

5min. 

 

SEM observations (figure 7) evidence a difference in morphology between syntheses with TEG and 

EG as solvent and syntheses with PEG. With EG and TEG, agglomerated spherical particles are 

observed, but with PEG porous desert-rose like agglomerates are formed.  
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PEG 

  

TEG 

  

Figure 7: SEM images of precipitates synthesized with PEG (u = 3) or TEG (u = 3) and heat treated 

at 600°C for 5min. 

 

We measured the specific surface area, according to the BET method, of the powders obtained with 

all polyols after rapid heat treatment at 600 °C for 5min, these compounds being pure according to 

XRD. The specific surface area depends on the morphology of the powders. For particles as 

platelets, the specific surface area is of 16 and 10 m
2
.g

-1
 respectively for powders synthesized with 

DEG (u = 0) or PEG (u = 3) as solvent, which is higher than the surface areas of spherical particles 

synthesized with EG or TEG as solvent with addition of urea (u = 3) (6 and 4 m
2
.g

-1
 respectively) 

(table 2). These low values result from the agglomeration of the formed particles, especially in the 

case of spherical ones. The platelets are formed of a plurality of crystallites, but this configuration, 

in the form of plates, keeps a much larger contact surface. 

The contribution of the hydroxide ion seems to lead to a slight decrease in surface area. This slight 

decrease may be related to an organization of platelets as desert roses during the addition of urea. 

For comparison, the specific surface areas presented by Kuang et al. [17] for La2Mo2O9 powders 

obtained from citrates reaches 4.8 m².g
-1

 with a heat treatment at 650°C for 4h. 

 

3.1.3. Effect of the hydrolysis ratio h  

Here we studied the effect of the hydrolysis ratio h by adding an appropriate amount of distilled 

water in DEG (u = 0) or EG (u = 3) with a concentration of metal [La
3+

 + Mo
6+

] of 0.2 mol.L
-1

. The 

hydrolysis ratio was varied between 2 and 50 (table 3). The duration of heating under reflux was 3h 

and the precipitates were heat treated for 5 min at 600 °C. 
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Table 3: Hydrolysis ratio h, added to the starting solution and characterization of the powders. 

Solvent 
hydrolysis ratio 

h 

T reflux (experimental boiling 

point ) 
Size(nm) SBET (m².g

-1
) 

DEG 0 227 41 16 

DEG 2 220 56 8 

DEG 10 203 --- --- 

DEG 20 193 --- --- 

DEG 50 172 --- --- 

EG 0 192 50 6 

EG 2 189 52 4 

EG 10 179 57 1 

EG 20 168 --- --- 

EG 50 154 --- --- 

 

When DEG is used as solvent, the formation of pure La2Mo2O9 after a heat treatment at 600 °C for 

5 min is observed only with h ≤ 2, the samples with higher values of h (h >2) containing the 

La2Mo3O12 as impurity (figure 8). With EG, La2Mo2O9 compound is pure after a heat treatment at 

600 °C for 5 min with only h ≤ 10 (figure 9), according to XRD diagrams. The increase in 

hydrolysis rate leads, on the other hand, to an increase of crystallite size. 

The addition of water seems to promote the precipitation of molybdenum and / or the stabilization 

of lanthanum acetate, an impurity rich in molybdenum (La2Mo3O12) being formed. It is possible that 

the decrease in boiling point due to the presence of water can explain the formation of this impurity. 

Indeed, we tried to promote germination at lower temperature by performing a first step at 150 °C 

for 3 h before increasing the temperature to the boiling point, but we observed the formation of the 

same impurity (La2Mo3O12). The presence of water may also makes the environment less reducing 

as the supernatant is colorless after reflux and the precipitate white, whereas they are brown and 

beige respectively in all the other cases.  
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Figure 8: XRD diagrams of the precipitate synthesized with DEG and hydrolysis ratio h equal 0, 2, 

10, 20 and 50 and heat treated at 600°C for 5min 

 

 

Figure 9: XRD diagrams of the precipitate synthesized with EG and hydrolysis ratio h equal 0, 2, 

10, 20 and 50 and heat treated at 600°C for 5min 

 

SEM observations show that the addition of water has no effect on the morphology with DEG 

(agglomerated platelets) and EG (agglomerated spherical particles) (figure 10). However, we can 

see that for values of h ≥ 2, the particles are more agglomerated. Such an increase in agglomeration 

was also observed previously, for the synthesis of ZnO, with an increase in the hydrolysis rate [18]. 

It could be due to an increase of hydrolysis and condensation kinetics which lead to more dense 

particles. 

 

20 30 40 50

h = 0

h = 2

h = 10

h = 20

h = 50

2 q ( )

*: La2Mo3O12

*

*

*

* *

* *

** *

*

*

+: La2Mo2O9

+

+

+

+

+

+

+

+
+++

In
te

n
si

ty
(a

.u
.)

+: La2Mo2O9

h = 2

h = 10

h = 50

h = 20

2 q ( )

*: La2Mo3O12

20 30 40 50

+

+

+

+

+

+

+

+
+++

*

*

**

** *

*

In
te

n
si

ty
(a

.u
.)



13 
 

DEG 

 

EG 

 
 

Figure 10: SEM images of the precipitate synthesized with DEG or EG (u = 3) and hydrolysis ratio 

h = 2, then heat treated at 600°C for 5min. 

 

The addition of water results in a decrease of the specific surface area, as with both EG (4 and 1 

m
2
.g

-1
 for h equal 2 and 10 respectively) and DEG (8 m

2
.g

-1 
for h = 2). The decrease of the specific 

surface area with EG, despite a decrease in crystallite size, shows that the particles are 

agglomerated and made of several crystallites. 

 

3.1.4. Effect of the concentration of metal  

In the literature, the concentration of dissolved salts is used to control the particle size, the size of 

particles increasing with concentration [19]. Therefore, we varied the metal concentration [La + 

Mo] from 0.05 to 0.5 mol L
-1 

(table 4). The different concentrations were tested with DEG (u=0) 

and EG (u = 3), no water being added. The refluxing time was fixed to 3 hours. The precipitates 

were heat treated for 5 min at 600 °C. 

 

Table 4: Precipitates synthesized with different concentrations of metal [La + Mb] with DEG or EG 

and heat treated for 5 min at 600 °C. 
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Solvent [La + Mo](mol .L
-1

) u= [urea]/[La+Mo] Size(nm) SBET (m².g
-1

) 

DEG 0.05 0 21 24 

DEG 0.1 0 42 11 

DEG 0.2 0 41 16 

DEG 0.3 0 44 12 

DEG 0.4 0 48 7 

DEG 0.5 0 43 16 

EG 0.05 3 29 6 

EG 0.1 3 46 3 

EG 0.2 3 50 6 

EG 0.3 3 53 5 

EG 0.4 3 53 3 

EG 0.5 3 57 5 

 

All the powders synthesized with DEG or EG, after a heat treatment at 600°C for 5 min are 

identified to be pure La2Mo2O9 by XRD. The crystallite size was estimated, from XRD patterns 

(figure 11 and 12), according to the Scherrer equation. From the thinnest diffraction peak at about 

2q=24.9 °, the crystallite size is between 21-48nm with DEG and 29-57nm with EG. 

Particles synthesized with concentration of 0.05mol.L
-1

 have the smallest average size, as observed 

directly on XRD diagrams, but for other concentrations, larger average size remains constant. A 

synthesis with concentration of metal [La+Mo] of 0.025 mol. L
-1

 in DEG was carried out to see if it 

is possible to reduce the particle size. However, it was impossible to separate particles even by 

increasing speed centrifugation at 14,000 rpm
-1

. This is probably due to the very fine particle size or 

even to a too low concentration, which is then below the critical concentration for nucleus 

formation or insufficient for their growth [20]. 
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Figure 11: XRD diagrams of precipitates synthesized with DEG, with metal concentrations of 0.05, 

0.1, 0.2, 0.3, 0.4 or 0.5 mol.L
-1

 (u = 0) and heat treated at 600°C for 5min 

 
Figure 12: XRD diagrams of precipitates synthesized with EG, with metal concentrations of 0.05, 

0.1, 0.2,0.3,0.4 or 0.5 mol.L
-1

 (u = 3) and heat treated at 600°C for 5min. 

 

Whatever the [La + Mo] concentration, SEM observations show generally similar morphologies as 

platelets or agglomerates of spherical particles, with DEG and EG, respectively (figure 13). 

However, as shown by XRD, elementary particles (platelets or spheres) have slightly smaller sizes 

with a [La + Mo] concentration of 0.05 mol.L
-1

. With this low concentration, the agglomeration of 

powders also seems less important in the case of DEG; platelets are more likely to organize 

themselves to form desert roses. 
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DEG 

 

[La + Mo] = 0.05 

 

[La + Mo] = 0.5 

 

EG 

 

[La + Mo] = 0.05 

 

[La + Mo] = 0.5 

 

Figure 13: SEM images of precipitates synthesized with metal concentrations [La + Mo] of 0.05 

and 0.5 mol.L
-1

 with DEG (u = 0) and EG (u = 3), then heat treated for 5 min at 600 °C. 

 

When the concentration is lowered to [La + Mo] = 0.05 mol.L
-1

, the crystallite sizes and the 

agglomerates formed are smaller. This suggests that the decrease in concentration [La + Mo] below 

a value of 0.1 mol.L
-1

 leads to a decrease in size of the particles formed, as well as their 

agglomeration. 

We measured the specific surface area according to the BET method for all the powders heat treated 

at 600 °C for 5min (table 4). As expected, in the case of DEG, its evolution is inverse of that of the 

crystallite size. Indeed, platelets formed by crystallites with smaller sizes have the highest specific 

surface area. Thus, the surface area of the powder synthesized with a metal concentration [La + Mo] 

= 0.05 mol.L
-1

 is 24 m
2
.g

-1
 when the crystallite size is 21 nm. For higher [La + Mo] concentrations, 

the specific surface is lower (between 7 and 16 m
2
.g

-1
), with a crystallite size of about 40 nm. When 

EG is used as a solvent, the surface area remains substantially the same (between 3 and 6 m².g
-1

), 

although the crystallite size is significantly smaller than the others (30 nm instead of about 50 nm) 

with a [La + Mo] concentration of 0.05 mol.L
-1

. Lowering the [La + Mo] concentration to 0.05 

mol.L
-1

 therefore allowed us to obtain, using DEG as solvent, the largest surface area using the 

conventional polyol method and heat treating the precipitate 5 min at 600 °C. 



17 
 

 

3.2. Conduction properties 

In order to measure the ionic conductivity of our samples and thus estimate the impact of the 

microstructure, with optimal conditions, it was necessary to determine the sintering parameters that 

allow to increase the density (in order to decrease grain boundary contribution) while maintaining 

the grain size as small as possible. The determination of the sintering conditions of powders is thus 

described before presenting the conductivity properties. 

3.2.1. Sinterability and pellets microstructure 

In order to estimate the more suitable sintering conditions, we studied the sinterability of the 

powders. It was first investigated by dilatometry on pellets made of powders obtained by polyol 

process after a heat treatment at 600 °C for 5 min of the precipitates obtained with DEG (h and u = 

0) and EG (h = 0, u = 3), these powders being constituted respectively of platelets and agglomerated 

spheres. Comparison was made with the sinterability of powder synthesized by conventional solid 

state reaction (SSR). The powders were compacted in the shape of pellets of 5 mm diameter, by 

uniaxial pressing under 5000 bar and then isostatic pressing also under 5000 bar. The linear 

shrinkage of these three samples, under air, from room temperature up to 950 °C with a speed of 5 

°C.min
-1

 is presented in figure 14. Comparison of curves evidences a difference of behavior 

between the two powders synthesized by polyol process. 

For the powder obtained with DEG as solvent, a significant linear shrinkage of about 13% is 

observed beyond 550 °C. This shrinkage is related to the removal of much of the porosity initially 

present in the pellets. Two mechanisms of shrinkage seem to proceed, as a slight change of the 

slope can be observed around 650 °C (figure 14). This could be due to a preferential welding of 

platelets stuck together, in the first step. For the powders obtained with EG, a significant linear 

shrinkage, of about 11%, proceeds above 620 °C. In this case, two very different regimes of 

sintering are observable, with an important lowering of the speed about 720 °C. This is probably 

due to a differential sintering. First, agglomerates, which consist in spherical particles, sinter. This 

leads to large grains with a large porosity between them. In the second step, the porosity inter-

agglomerate decreases with time but far more slowly, leading to a lower densification.  
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Figure 14: Linear shrinkage as a function of temperature, with a heating and cooling rate of 

5°C.min
-1

, under air, of powders synthesized with DEG (u = 0) or EG (u = 3) and a heat treatment at 

600 °C for 5 min, and by solid state reaction (SSR). 

 

According to these results, short sintering times and sintering temperatures of 650 and 750 °C, for 

the pellets prepared with powders obtained with DEG or EG, respectively, were chosen. 

Additionally, the pellets were directly placed in a muffle furnace preheated at the desired 

temperature and, after a heat treatment of 30 min, quenched at room temperature, such a sintering 

being qualified as rapid sintering in this paper. These conditions seem to be the more appropriate to 

avoid an important grain growth while obtaining a density as satisfactory as possible for ionic 

conductivity measurements. In order to favor the electric measurements by increasing the density, 

rapid heat treatments at 925°C were also done. 

The microstructures of the pellets obtained with such rapid heat treatments are then presented. 

 

 - Pellets made of powders obtained with DEG (platelets). 

Pellets made of the powders obtained with DEG were densified by a rapid sintering at 650 or 925 

°C for 30 min, under air. The relative densities reached are of 79 and 95% respectively. A high 

relative density is thus obtained with these powders after a rapid sintering at 925 °C, the porosity 

being then closed. 

SEM images of pellets sintered at 650 or 925°C and then fractured are presented in figure 15. They 

evidence the transition from open to closed porosity when increasing the sintering temperature from 

650°C (figure 15 a) to 925°C (figure 15 b) as well as the increase in density. For pellet sintered at 

650 °C, we can observe the presence of relatively large, interconnected pores (few hundred 

nanometers) located at grain boundaries, the grain size being in the order of microns. For pellet 
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sintered at 925°C, the porosity is greatly decreased and closed. Therefore, its relative density is very 

high. 

 

  

Figure 15: SEM images of pellets, made of a powder obtained after heat treatment for 5 min at 600 

°C of the precipitate synthesized in DEG, then sintered at a) 650 °C and b) 925 °C for 30 min. 

 

- Pellets made of powders obtained with EG (spheres). 

Pellets made of powders obtained after heat treatment at 600 °C for 5 min of the precipitate 

synthesized with EG were densified by a quick sintering at 750 or 925 °C for 30 min, under air. 

Their relative densities are of 78 and 82% respectively. The relative density increases with the 

sintering temperature, but is still substantially lower than the one reached with the powders 

prepared with DEG, with a sintering temperature of 925°C. This is in agreement with the 

dilatometric curves which highlight a lower sinterability of the powders obtained with EG. 

SEM images of the pellets sintered at 750 or 925°C for 30 min and then fractured are presented in 

figure 16. The slight decrease of the relative porosity of pellets with increasing sintering 

temperature is evidenced. The porosity is highly connected after a sintering at 750 °C and still 

remains connected after a sintering at 925 °C, even if the grains are more weld together. The size of 

the grains, that are relatively spherical, remains slightly the same and is in the order of few hundred 

nanometers.  
 

 
1µm 1µm
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Figure 16: SEM images of pellets, made of a powder synthesized with EG and heat treated at 600 

°C for 5 min, then sintered at a) 750 °C and b) 925 °C for 30 min. 

 

 

- Pellets made of powders obtained by solid state reaction. 

In order to determine the impact of the powder synthesis process, a reference pellet was prepared 

with a powder synthesized by solid state reaction [2]. As evidenced by dilatometry (figure 14), the 

sinterability of these powders is significantly lower than that of the powders obtained by the polyol 

process. It was thus necessary to treat these powders by high energy ball milling to increase the 

relative density as it strongly influences the conductivity [3]. This step allowed to reach a relative 

density of 98% after a rapid sintering at 925°C. As in the case of pellets made of powders prepared 

by the polyol process, the relative density of the pellets made from powder synthesized by solid 

state reaction is higher after a rapid sintering at 925°C than after dilatometry, the relative density 

being in the last case of 94%. This may be due to the fact that rapid sintering allows to reduce grain 

growth during the increase in temperature before reaching the sintering temperature. 

 

 

 - Conclusion on sintering of the powders 

In conclusion, according to the dilatometric study and the microstructural characterization, a strong 

difference is observed between the sinterings of spherical particles (obtained with EG) and of 

platelets (obtained with DEG). Indeed, after a rapid sintering at 925°C, the relative density is 

markedly higher for the pellets made of platelets, the closure of the porosity being even reached. 

The lower relative density of the pellets made of spherical particles may be due to a strong 

agglomeration of the particles that lead to a differential sintering. However, it has to be pointed out 

that a relative density of about 80%, reached after a rapid sintering at 650 or 750°C for the platelets 

or spherical particles respectively, is already satisfactory to realize conductivity measurements by 

impedance spectroscopy in suitable conditions when the grain growth has to be limited as much as 

possible. 

Moreover, it has to be noted that, when sintered pellets are prepared from the powders obtained by 

the polyol process, a very high relative density (95%) can be reached, without any milling step that 

would lead to the introduction of impurities, contrarily to the powders obtained by solid state 

reaction. This is thus an important advantage offered by the powders prepared by the polyol process 

with DEG, that can be very useful in many applications. 
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3.2.2. Conductivity measurements 

Our aim was to determinate if the grain size and the morphology of the starting powders impact the 

ionic conduction properties of the La2Mo2O9 compound. This part of the work is thus dedicated to 

the determination of the transport properties of the pellets made of pure La2Mo2O9 powders 

prepared by the polyol process with DEG and sintered at 650 or 925°C or with EG and sintered at 

750 or 925°C. The results are compared with those of a reference pellet made of powder prepared 

by the solid state reaction. The relative densities of the different pellets are of 79, 95, 78, 82 and 

98% respectively.  

The data were collected in the temperature range 302 - 700°C. The impedance diagram acquired at 

327, 352 and 377 °C are presented in figure 17 for the pellets made of powders prepared by polyol 

process with DEG (u=0) and sintered at 650 (a) or 925 °C (b), and with EG (u = 3) and sintered at 

750 (c) or 925 °C (d), and of powder prepared by solid state reaction and sintered at 925°C (e).  

The resistance of all the samples decreases with increasing temperature. Up to three contributions 

can be distinguished. The first contribution (at high frequencies), that is represented as a semicircle 

and modeled by a parallel circuit R-CPE, can be assigned to the grain contribution. The phenomena 

observed at intermediate frequencies, called as grain boundaries contributions, correspond to all the 

phenomena that happen at the grain interfaces. At low frequency, the electrode polarization is 

observed in some cases, in the form of a straight line or sometimes of an arc of circle. The presence 

of several relaxations, which can be assigned to the grain and grain boundaries contributions, was 

already observed for the La2Mo2O9 compound synthesized by freeze-drying [22-23] or spray 

pyrolysis [24]. In the case of the La2Mo2O9 powders obtained by solid state reaction and then ball 

milled and sintering at 925°C, the grain boundaries contribution is very low and cannot generally be 

distinguished from grain contribution. It is the same for our reference pellet (figure 17 e)). 

A significant difference is observed in the case of the pellet made of powder synthesized in DEG 

and sintered at 650 °C (figure 17 a)). Indeed, the contribution of the grain is characterized by a far 

lower resistance and therefore a significantly greater conductivity than for the other pellets. 

However, despite the high conductivity of the grain, the resistance at grain interfaces is very 

important, leading to a lower total conductivity (σ = 6.8 10
-7

 S.cm
-1

) than for other pellets made of 

powders synthesized by polyol process (σ closed to 2 10
-6

 S.cm
-1

) at 377 °C, despite a higher 

compactness than for the pellets made of powders obtained with EG.  

We also observed, for all the pellets, a decrease of the resistance of grains and grain boundaries and 

a shift of the characteristic frequencies to the high frequencies with increasing temperature, until the 

second semicircle relative to the grain boundaries contribution completely disappears at higher 

temperature.  
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a)  

 

b) 

 

c) 

 

d) 

 

e) 

 

 

Figure 17: Complex impedance diagram recorded at 327, 352 and 377 °C for pellets made of 

powders synthesized with DEG and sintered at 650 (a) or 925 °C (b), and with EG (u = 3) and 
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sintered at 750 (c) or 925 °C (d), and of the powder synthesized by solid state reaction and sintered 

at 925°C (e). 

 

The modeling of diagram (Z-view software) was thus realized by using several theoretical models 

that accounted for the evolution of the aspect of the diagram according to the temperature and the 

sample. Refinements were realized by modeling either with two parallel equivalent circuits R-CPE 

for the grain and grain boundaries contribution and a CPE for the polarization at electrodes, or with 

only one parallel equivalent circuit R-CPE (and a CPE) when there is an overlapping of the grain 

and grain boundaries contributions. In the last case, this is thus the total resistance and conductivity 

which are determined globally. At high temperature, for all the pellets, no more semicircle 

corresponding to the migration phenomena is observable and positive values of the imaginary part 

are even measured. The resistance of the material is then assimilated to the abscissa of the first point 

for which Z” becomes negative.  

The values of the grain, grain boundaries and total conductivities are listed in table 5. For the 

powder synthesized with DEG and sintered at 650 °C, the grain conductivity is slightly higher but 

the grain boundaries conductivity is lower, resulting in a total conductivity slightly lower than that 

of the others pellets. For the same powder but sintered at 925 °C, the ratio between the 

conductivities of the grains and grain boundaries, σg / σgb at 327 °C is significantly lower (1.6 

instead of 16.4) and the total conductivity is very closed to that measured in the case of the powder 

synthesized with EG and sintered at 925 °C. However, the ratio σg / σgb remains higher than in the 

case of the powders obtained with EG, for which it is of 0.6 and 0.5 respectively after sintering at 

750 or 925 °C. 

The expected decrease of the contribution of the grain boundaries, with the increase of the sintering 

temperature, has also been observed for powders of La2Mo2O9 synthesized by freeze drying [23].  
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Table 5 : Grains (σg), grain boundaries (σgb) and total (σt) conductivities at 327, 352 and 377°C, 

determined by using the software ZView, of pellets made from powders synthesized with DEG and 

sintered at 650 or 925 °C or with EG (u = 3) and sintered at 750 or 925 °C or of a pellet made from 

the powder obtained by solid state reaction and sintered at 925°C. 

Synthesis 

method 

Sintering 

temperature (◦C) 

Relative density 

(%) 
T (°C) 

σg 

(S.cm
-1

) 

σgb 

(S.cm
-1

) 

σt 

(S.cm
-1

) 

polyol 

DEG 

650 79 

327 1.8 10
-6

 1.1 10
-7

 1.0 10
-7

 

352 3.8 10
-6

 3.0 10
-7

 2.8 10
-7

 

377 9.3 10
-6

 7.3 10
-7

 6.8 10
-7

 

925 95 

327 6.8 10
-7

 4.2 10
-7

 2.6 10
-7

 

352 1.7 10
-6

 1.1 10
-6

 6.6 10
-7

 

377 4.3 10
-6

 2.2 10
-6

 1.5 10
-6

 

polyol 

EG 

750 78 

327 4.2 10
-7

 6.8 10
-7

 2.6 10
-7

 

352 1.1 10
-6

 2.0 10
-6

 7.0 10
-7

 

377 2.8 10
-6

 4.1 10
-6

 1.7 10
-6

 

925 82 

327 4.8 10
-7

 9.7 10
-7

 3.2 10
-7

 

352 1.1 10
-6

 2.8 10
-6

 8.0 10
-7

 

377 2.4 10
-6

 6.7 10
-6

 1.8 10
-6

 

solid 925 98 

327 4.9 10
-7

 4.3 10
-6

 4.4 10
-7

 

352 1.2 10
-6

 1.4 10
-5

 1.1 10
-6

 

377 2.7 10
-6

 3.9 10
-5

 2.5 10
-6

 

 

 The Arrhenius plots (          
    

 
 ) of all the samples are reported in figure 18. For all 

curves, an abrupt break is observed around of 600 °C. This abrupt change in the anionic 

conductivity is due to the first order phase transition α / β, the β-form presenting the higher 

conductivity. On both sides of this break, Arrhenius law is followed. It is interesting to note that the 

jump in conduction occurs at a slightly lower temperature (between 25 and 50 °C lower) in the case 

of the pellet made of the powder synthesized with DEG and sintered at 650 °C. Its total 

conductivity, is always the lowest, except at 602 °C. It can be also observed that the jump in 

conductivity seems to be less important in the case of powders sintered at 650 °C (prepared from 

DEG) or 750 °C (prepared with EG). As sintering of the powders was carried out at temperatures as 

low as possible and for relatively short times (30 min) in order to limit grain growth, the 

densification of the pellets still proceed at high measurement temperatures. The relative density 

increased from 79% to 93% and from 78% to 81% for pellets made of the powders synthesized with 

DEG and EG respectively. However, the evolution of the sample dimensions does not affect 

significantly the shape factors and the conductivities that are deduced from it. For example, at 702 

°C, total conductivities calculated with the new shape factor, are only slightly higher (5.98 10
-3

 

instead of 5.58 10
-3

 S.cm
-1

 or 7.57 10
-3

 instead of 7.45 10
-3

 S.cm
-1

 with respectively DEG or EG). 

Nevertheless, for the pellet made of the powder synthesized with EG and sintered at 750 °C, the 

carrying out of sintering during the measurements (at the highest temperatures), can explain the 
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slight breaking of the conductivity beyond 652 °C. In the case of the pellet made of the powder 

synthesized with DEG and sintered at 650 °C, we probably do not observe this small breaking of 

the conductivity as the sintering temperature of the powder is lower (beginning between 550 and 

600 °C) and coincides with the one of the αβ phase transition, this transition leading to an 

increase of the conductivity.  

It can be noted that, except at 602 °C, the conductivity of the pellet made of the powder synthesized 

by solid state reaction is always slightly higher than the ones of the pellets made of the powders 

synthesized by the polyol process. This can be explained by the amount of grain boundaries which 

is lower in the samples prepared from powders synthesized by solid state reaction. In this case, the 

total conductivity is quite not affected by the grain boundaries resistance as their contribution is 

weaker. 

 

Figure 18 : Arrhenius plot of the ionic conductivity of the pellets made of powders synthesized with 

DEG and sintered at 650 °C or 925 °C or with EG (u = 3) and sintered at 750 or 925 °C or prepared 

by solid state reaction and sintered at 925 °C. 

 

 The activation energies, estimated from the slope of the segments between 300 and 600 °C 

and between 625 °C and 725 °C of the Arrhenius plot, are presented in table 6. All the samples 

present very similar activation energies, around 1.3 eV, for the first segment. However, this value is 

slightly higher in the case of the pellet made of the powder synthesized with DEG and sintered at 

650 °C. For the second segment, the value of the activation energy is lower, between 0.61 and 1.03 

eV. However, this variation is not really representative, as some shape factors evolved during 

measurements at the highest temperatures (above 600 °C). 
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Table 6 : Activation energies between 300 and 600 °C and between 625 and 725 °C for the pellets 

made of powders synthesized with DEG and sintered at 650 or 925 °C or with EG (u = 3) and 

sintered at 750 or 925 °C or synthesized by solid state reaction (SSR) and sintered at 925 °C. 

Synthesis method 
Sintering temperature 

(◦C) 

Ea (eV) between 

300°C and 600°C 

Ea (eV) between 

625°C and 725°C 

SSR 925 1.26 1.01 

DEG 650 1.42 1.03 

DEG 925 1.27 0.73 

EG 750 1.33 0.61 

EG 925 1.31 0.81 

  

According to all these results, we can establish that the evolution of the conductivity of the samples 

synthesized by polyol process is similar to that of the samples synthesized by solid state reaction. 

However, the values are slightly lower. This can be attributed to the high amount of grain 

boundaries that create an effect of "blocking" in our case, leading to their higher contribution in the 

resistance to ion migration. Therefore, the measured total conductivity is lower than that determined 

when the initial powder is synthesized by solid state reaction as the ratio of grain boundaries is very 

low in this case.  

The same behavior was observed for the La2Mo2O9 compound synthesized by freeze drying and 

sintered at temperatures lowers than 925°C, the relative density being less than 92% [23]. As in 

many cases, it is difficult to completely benefit of conduction properties probably improved by 

nanometric particles.  

 

4. Conclusion 

Nanostructured La2Mo2O9 powders were synthesized by the polyol process, with two different 

morphologies (platelets or spheres) according to the nature of the solvent. Obtaining crystallized 

nanodomains can be achieved by the polyol process as it presents the advantage of a relatively low 

temperature thermal treatment (around 550-600°C). In order to determine the effect of the main 

synthesis parameters on the powder microstructure and purity, we varied also the refluxing time, the 

hydrolysis ratio, the metal concentration and we had hydroxide ions by the means of urea.  

The ionic conduction properties were determined. First of all, the sinterability of the powders was 

evaluated in order to determine the more appropriate sintering temperature that allows obtaining 

relatively dense pellets while preserving as much as possible the grain size. It was established that 

the powders synthesized with DEG as solvent present a very high sinterability, relative densities of 

95% being reached without any intermediate step as milling, contrarily to the solid state reaction for 
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example. The values of the ionic conductivity are close to the ones of the powders synthesized by 

solid state reaction but always lower, except at 602°C, for the powder synthesized with DEG and 

rapidly sintered at 600°C. The lower values of the total conductivity can be explained by the high 

amount of grain boundaries in the pellets made from the powders synthesized by the polyol process. 

In our case, they lead to a contribution of grain boundaries to the total resistance of the pellets that 

can be very important. However, despite slightly lower conduction properties, the efficient sintering 

of such nanoparticles, with no milling step could be of great interest for further applications (better 

long term stability and performances of the material). 
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Figure captions 

 

Figure 1: XRD diagrams of precipitates synthesized with DEG with a reflux time of 1, 2 or 3 hours 

and heat treated at 600°C for 5 min. 

 

Figure 2: XRD diagrams of precipitates synthesized with different polyols : EG, PEG and TEG and 

heat treated at 600°C for 5 min. 

 

Figure 3: XRD diagrams of precipitates synthesized a) with DEG (u = 1, 2 or 3) and b) with EG (u 

= 2, 3 or 4) and heat treated at 600°C for 5 min. 

 

Figure 4: XRD diagrams of precipitates synthesized with PEG (u = 3) or TEG (u = 3) and heat 

treated at 600°C for 5min. 

 

Figure 5: SEM images of precipitates synthesized with DEG (u = 3) (a) or with EG (u = 3) (b) and 

heat treated at 600°C for 5min. 

 

Figure 6: TEM images of the precipitate synthesized with EG (u=3) and heat treated at 600°C for 

5min. 

 

Figure 7: SEM images of precipitates synthesized with PEG (u = 3) or TEG (u = 3) and heat treated 

at 600°C for 5min. 

 

Figure 8: XRD diagrams of the precipitate synthesized with DEG and hydrolysis ratio h equal 0, 2, 

10, 20 and 50 and heat treated at 600°C for 5min 

 

Figure 9: XRD diagrams of the precipitate synthesized with EG and hydrolysis ratio h equal 0, 2, 

10, 20 and 50 and heat treated at 600°C for 5min 

 

Figure 10: SEM images of the precipitate synthesized with DEG or EG (u = 3) and hydrolysis ratio 

h = 2, then heat treated at 600°C for 5min. 

 

Figure 11: XRD diagrams of precipitates synthesized with DEG, with metal concentrations of 0.05, 

0.1, 0.2, 0.3, 0.4 or 0.5 mol.L
-1

 (u = 0) and heat treated at 600°C for 5min 

 

 

Figure 12: XRD diagrams of precipitates synthesized with EG, with metal concentrations of 0.05, 

0.1, 0.2,0.3,0.4 or 0.5 mol.L
-1

 (u = 3) and heat treated at 600°C for 5min. 

 

Figure 13: SEM images of precipitates synthesized with metal concentrations [La + Mo] of 0.05 

and 0.5 mol.L
-1

 with DEG (u = 0) and EG (u = 3), then heat treated for 5 min at 600 °C. 
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Figure 14 : XRD diagrams of precipitates synthesized with DEG, and DDAB concentrations of 0.5, 

1, 2, 3, 4 and 5 mmol.L
-1

 and heat treated at 600°C for 5min. 

 

 

Figure 15: XRD diagrams of precipitates synthesized with EG, and DDAB concentrations of 0.5, 1, 

2, 3, 4 and 5 mmol.L
-1

 and heat treated at 600°C for 5min. 

 

Figure 16: SEM images of precipitates synthesized with concentrations of DDAB of 0.5 mmol.L
-1

 

with DEG and 2 or 5 mmol.L
-1

 with EG, then heat treated for 5 min at 600 °C. 

 

Figure 17: TEM image of a) the precipitate synthesized with DEG with a concentration of DDAB 

of 0.5 mmol.L
-1

 and b) the precipitate synthesized with EG with a concentration of DDAB of 5 

mmol.L
-1

, and heat treated at 600 °C for 5 min. 

 

Figure 18: XRD diagrams of precipitates synthesized with DEG, and PVP concentrations of 2 or 4 

mmol.L
-1

and heat treated at 600°C for 5min. 

 

Figure 19: XRD diagrams of the precipitates synthesized with EG, and PVP concentrations of 2 or 

4 mmol.L
-1

and heat treated at 600°C for 5min. 

 

Figure 20: Linear shrinkage as a function of temperature, with a heating and cooling rate of 

5°C.min
-1

, under air, of powders synthesized with DEG (u = 0) or EG (u = 3) and a heat treatment at 

600 °C for 5 min, and by solid state reaction (SSR). 

 

Figure 21: SEM images of pellets, made of a powder obtained after heat treatment for 5 min at 600 

°C of the precipitate synthesized in DEG, then sintered at a) 650 °C and b) 925 °C for 30 min. 

 

Figure 22: SEM images of pellets, made of a powder synthesized with EG and heat treated at 600 

°C for 5 min, then sintered at a) 750 °C and b) 925 °C for 30 min. 

 

Figure 23: Complex impedance diagram recorded at 327, 352 and 377 °C for pellets made of 

powders synthesized with DEG and sintered at 650 (a) or 925 °C (b), and with EG (u = 3) and 

sintered at 750 (c) or 925 °C (d), and of the powder synthesized by solid state reaction and sintered 

at 925°C (e). 
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Figure 24 : Arrhenius plot of the ionic conductivity of the pellets made of powders synthesized with 

DEG and sintered at 650 °C or 925 °C or with EG (u = 3) and sintered at 750 or 925 °C or prepared 

by solid state reaction and sintered at 925 °C. 

 

 




