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Abstract. We study the relationship between rational slope Dyck paths and invariant subsets in Z, extending the
work of the first two authors in the relatively prime case. We also find a bijection between (dn, dm)–Dyck paths
and d-tuples of (n,m)-Dyck paths endowed with certain gluing data. These are first steps towards understanding the
relationship between the rational slope Catalan combinatorics in non relatively prime case and the geometry of affine
Springer fibers and representation theory.

Résumé. Nous étudions les relations entre les chemins de Dyck à pente rationnelle et des sous-ensembles invariants
en Z,, étendant le travail des deux premiers auteurs dans le cas relativement premier. On trouve aussi une bijection
entre les (dn, dm)-chemins de Dyck et des d-tuples de (n,m)-chemins de Dyck avec certaines données de collage.
Ce sont les premiers pas vers la compréhension des relations entre la combinatoire Catalan de pentes rationnelles dans
le cas non-relativement premier, et la géométrie des fibres affines de Springer et la théorie de la représentation.

Keywords. rational Dyck paths, rational Catalan combinatorics, simultaneous core partitions, invariant integer sub-
sets, semigroups

Introduction
Catalan numbers, in one of their incarnations, count the number of Dyck paths, that is, the lattice paths in
a square which never cross the diagonal. In recent years, a number of interesting results and conjectures
[3, 5, 6, 7, 8, 9, 17] about “rational Catalan combinatorics” have been formulated. An (n,m)-Dyck path
is a lattice path in the n × m rectangle which never crosses the diagonal. We will denote the set of all
(n,m)-Dyck paths by Yn,m. For coprimem and n there are a number of interesting maps involving Yn,m:

(a) J. Anderson constructed a bijection A between Yn,m and the set Coren,m of simultaneous (n,m)-
core partitions.

(b) Armstrong, Loehr and Warrington defined a “sweep” map ζ : Yn,m → Yn,m and conjectured that it
is bijective.
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(c) The first two authors defined two maps D and G between Yn,m and the set Mn,m of (+n,+m)-
invariant subsets of Z≥0. If combined with a natural bijection between Coren,m and Mn,m, the
map D coincides with A. Furthermore, one can prove that ζ = G ◦ D−1.

Remark 0.1 Recently, after the original version of this manuscript was submitted, Nathan Williams
posted a preprint [16] containing a proof of the bijectivity of the sweep map. Statements below involving
ζ should be modified appropriately.

We illustrate all these maps in Figure 1: bidirected arrows indicate bijections, and directed arrows
indicate maps for which the inverse is not known in general.

Yn,m

Mn,m

Yn,m

Coren,m

D G

ζ

A

Fig. 1: Rational Catalan maps in the coprime case

The goal of the present paper is a partial generalization of Figure 1 to the non-coprime case. Let (n,m)
be relatively prime, and d be a positive integer. LetN = dn andM = dn. The set YN,M is well defined for
all n,m, d, and the definition of ζ can be carried over with minimal changes. However, the sets CoreN,M
and MN,M become infinite. Indeed, an (+N,+M)-invariant subset of Z≥0 can be identified with a
collection of d (+n,+m)-invariant subsets in each remainder mod d. These subsets can be arbitrarily
shifted with respect to each other. More abstractly, this defines a map π : MN,M → (Mn,m)d and
different shifts correspond to different preimages under π.

To resolve this problem, we introduce a certain equivalence relation ∼ on MN,M . If ∆1 ∼ ∆2 then
π(∆1) = π(∆2), so π is well defined on MN,M/∼. The following theorem is the main result of the
paper.

Theorem 0.2 For all positive N,M one can define maps

D,G : MN,M/∼ −→ YN,M

such that the following results hold:

(a) The map D is a bijection.

(b) The “sweep” map factorizes similarly to the coprime case: ζ = G ◦ D−1.

(c) Let d = gcd(N,M), n = N/d, and m = M/d. The composition

cold := Dd ◦ π ◦ D−1 : YN,M → (Yn,m)d,
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can be described as following: the N + M steps in an (N,M)-Dyck path are colored in d colors,
i.e. by Z/dZ, such that there are n + m steps of the same color i, and these steps will form an
(n,m)-Dyck path after possibly shifting by integer multiples of

−−−−−→
(m,−n) to make them connected.

YN,M

MN,M/∼

YN,M

(Mn,m)
d

(Yn,m)
d

D G

ζ

π
Dd

cold

Fig. 2: Rational Catalan maps in the non-coprime case

We illustrate all these maps in Figure 2. We also give an explicit description of the “coloring map”
cold. In the “classical” case M = N we get d = N and m = n = 1, therefore cold colors a Dyck path in
n colors such that the pairs of steps of the same color form an (1, 1) Dyck path. We prove the following:

Corollary 0.3 Present a Dyck path as a regular sequence of parentheses. Then every opening and its
corresponding closing parenthesis have the same color under cold.

1 Relatively prime case
Let (n,m) be a pair of relatively prime positive integers. Consider an n×m rectangle Rn,m. Let Yn,m be
the set of Young diagrams that fit under the diagonal in Rn,m. We will often abuse notation by identifying
a diagram D ∈ Yn,m with its boundary path (sometimes also called a rational Dyck path), and with the
corresponding partition. We will also think about the rectangle Rn,m as a set of boxes, identified with a
subset in Z≥0 with the bottom-left corner box identified with (0, 0). In our convention, the boundary path
of D ⊂ Rn,m follows the boundary from top-left corner (0, n) to the bottom-right corner (m, 0). We
will refer to the direction along the boundary path from (0, n) toward (m, 0) as from higher to lower. See
Example 1.11 below.

There are two important combinatorial statistics on the set Yn,m : area and dinv .

Definition 1.1 Let D ∈ Yn,m. Then area(D) is equal to the number of whole boxes that fit between the
diagonal of Rn,m and the boundary path of D.

Note that area(D) ranges from 0 for the full diagram to δ = (m−1)(n−1)
2 for the empty diagram.

The co-area(D) = δ − area(D) is then just the number of boxes in the Young diagram D. One natural
approach to the dinv statistic is to define the map ζ : Yn,m → Yn,m and then set dinv(D) := area(ζ(D)).
In the case m = n+ 1 the map ζ was first defined by Haglund ([10]), then it was generalized by Loehr to
the case m = kn + 1 for any k ∈ Z≥0 ([11]), and to the general case of any relatively prime (n,m) by
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Gorsky and Mazin in [7]. In [3] it was put into even larger framework of so called sweep maps. Below is
one of the possible equivalent definitions.

Definition 1.2 The rank of a box (x, y) ∈ Z2 is given by the linear function

`(x, y) = mn−m− n− nx−my.

Note that the boxes of non-negative ranks are exactly those that fit under the main diagonal of Rn,m.
Let D ∈ Yn,m. One ranks the steps of the boundary path of D as follows.

Definition 1.3 The rank of a vertical step of D equals to the rank of the box immediately to the left of it.
The rank of a horizontal step equals to the rank of the box immediately above it.

In other words, the ranks of steps can be defined inductively as follows. We follow the boundary path
of D starting from the top-left corner. The first step is ranked 0. Otherwise, the rank of every horizontal
step equals the rank of the previous step minus n, and the rank of every vertical step equals the rank of
the previous step plus m.

Note that for relatively prime (n,m) all the ranks of the steps of a diagram D ∈ Yn,m are distinct.

Definition 1.4 The boundary path of the diagram ζ(D) is obtained from the boundary path of D by
rearranging the steps in the decreasing order of ranks.

The definition of the map ζ is illustrated in Example 1.11.
One can verify that the diagram ζ(D) fits under the diagonal of Rn,m (see [7] and [3]). It was conjec-

tured that the map ζ is a bijection. See Remark 0.1. Some partial progress was made by Haglund, Loehr,
Gorsky, and Mazin:

Theorem 1.5 ([10, 11, 8]) The map ζ : Yn,m → Yn,m is a bijection for m = kn± 1 for any k ∈ Z≥0.

Bijectivity of ζ in the general case has attracted a lot of attention: see [17] and [6]. Most recently,
Nathan Williams proved bijectivity of ζ for general coprime n,m ([16]). The following approach to
studying ζ was suggested in [7].

Definition 1.6 Let Mn,m be the set of subsets ∆ ⊂ Z≥0 such that ∆ + m ⊂ ∆, ∆ + n ⊂ ∆, and
min(∆) = 0. We say ∆ ∈Mn,m is (+n,+m)-invariant.

In [7] two maps D and G from the set Mn,m to Yn,m were constructed. Let ∆ ∈Mn,m.

Definition 1.7 The diagram D(∆) consists of all boxes that fit under the diagonal in Rn,m, and whose
ranks belong to ∆.

In particular, one gets that D(Γn,m) = ∅, where Γn,m := {an + bm | a, b ∈ Z≥0} is the semigroup
generated by m and n, and D(Z≥0) is the full diagram containing all the boxes below the diagonal. Note
that the (+n,+m)-invariance of ∆ implies that D(∆) is indeed a Young diagram. Note also that D is a
bijection. Indeed, it is not hard to see that rank provides a bijection between the boxes below the diagonal
in Rn,m and the integers in Z≥0 \ Γn,m.

Definition 1.8 The numbers 0 = a0 < a1 < . . . < an−1, such that

{a0, . . . , an−1} = ∆ \ (∆ + n)
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0
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9 4

7 2 −3

D = ζ(D) =

Fig. 3: Here n = 5 and m = 3. On the left is the diagram D = D({0, 3, 5, 6, 7, 8, . . . }), and on the right is the
diagram ζ(D).

are called the n-generators of ∆. The numbers {b0 < b1 < . . . < bm−1} such that

{b0, . . . , bm−1} = (∆−m) \∆

are called the m-cogenerators of ∆.

Remark 1.9 Let D = D(∆). Note that the ranks of the vertical steps of D are exactly the n-generators
of ∆, and the ranks of the horizontal steps of D are exactly the m-cogenerators of ∆.

Definition 1.10 The diagram G(∆) has row lengths g0, . . . , gn−1 given by the following formula:

gk = ]{bi | bi > ak}.

Equivalently, the boundary path of G(∆) is obtained by arranging the set {a0, . . . , an−1, b0, . . . , bm−1}
in decreasing order and replacing n-generators by vertical steps andm-cogenerators by horizontal steps.

It is not hard to conclude from the above definitions that

ζ(D) = G ◦ D−1(D).

Example 1.11 For example, if m = 3, n = 5, and ∆ = {0, 3, 5, 6, 7, 8, . . . } then the 5-generators are
0, 3, 6, 7, 9 and 3-cogenerators are −3, 2, 4. (Note that the diagram D(∆) consists of just one box, whose
rank is 7.) The ranked boundary path of D is

v v v v h v h h

0 3 6 9 4 7 2 −3

which we sort to the boundary path of ζ(D)

v v v h v h v h

9 7 6 4 3 2 0 −3

See Figure 3 for the diagrams D and ζ(D). Note, that if one takes the union of the 5-generators and 3-
cogenerators and reads them in decreasing order, then one gets 9, 7, 6, 4, 3, 2, 0,−3. Replacing generators
by “v” and cogenerators by “h”, one gets vvvhvhvh, which is the boundary path of ζ(D).

The approach with invariant subsets allows one to relate the dinv statistic to certain varieties that appear
in algebraic geometry as local versions of compactified Jacobians (see Beauville [4] and Piontkowski
[15]), and in representation theory as homogeneous affine Springer fibers, where they were first considered
by Lusztig and Smelt in [13] and then by Piontkowski [15].
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2 Non-relatively prime case.
The notion of a rational Dyck path naturally generalizes to the non relatively prime case. Let (n,m) be
relatively prime, and d be a positive integer. Let N = dn and M = dn. Consider an N ×M rectangle
RN,M and the set YN,M of Young diagrams that fit under the diagonal in RN,M . The area statistic can be
generalized directly. The dinv statistic and the map ζ are a bit more tricky. It is convenient to adjust the
rank function on the boxes in the following way:

`(x, y) = dmn−m− n− nx−my.

The steps of the boundary path of a diagramD ∈ YN,M are ranked as before. However, for d > 1 some
distinct steps might have the same rank, therefore rearranging the steps of the path according to their rank
is problematic. The following idea for overcoming this difficulty was suggested by François Bergeron. It
also can be found in [3].

Definition 2.1 Let D ∈ YN,M . The boundary path of the diagram ζ(D) is obtained from the boundary
path of D by rearranging the steps so their ranks are weakly decreasing. If two steps have the same rank,
then they are ordered in the reversed order of appearance in the boundary path of D.

Example 2.2 Consider the diagramD ∈ Y9,6 with the boundary path vvvvvhvhhhvvhvh (see Figure 4).
The ranked boundary path of D is

v v v v v h v h h h v v h v h

0 2 4 6 8 5 7 4 1 −2 0 2 −1 1 −2

which we sort to the boundary path of ζ(D)

v v v h h v v v v h v v h h h

8 7 6 5 4 4 2 2 1 1 0 0 −1 −2 −2
.

There are two steps of rank 1 (also of rank 4) marked in bold type to highlight the necessary reordering
of their corresponding vh.

Now the statistic dinv can be defined as

dinv(D) := area(ζ(D)).

Note that in [5] a different definition of dinv for non relatively prime case is used:

dinv′(D) := ]

{
� ∈ D :

leg(�)

arm(�) + 1
<

n

m
≤ leg(�) + 1

arm(�)

}
Lemma 2.3 One has

dinv(D) = dinv′(D)

for any D ∈ YN,M .
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Fig. 4: Here n = 9 and m = 6. On the left is the diagram D with the boundary path vvvvvhvhhhvvhvh, and on the
right is the diagram ζ(D).

This result follows from Corollary 1 on page 8 in [14].
The set MN,M of subsets 0 ∈ ∆ ⊂ Z≥0 that are invariant under addition of M and N is infinite

for gcd(N,M) = d > 1. Therefore, there is no hope to construct a bijection between the set of such
subsets and YN,M . On the other hand, the the map G : MN,M → YN,M is still well defined. We instead
define an equivalence relation on the invariant subsets, so that the relative order of N -generators and
M -cogenerators is the same within an equivalence class, and then construct a bijection D between the
equivalent classes MN,M/∼ and YN,M , so that one gets ζ = G ◦ D−1 as in the d = 1 case.

Given an (+N,+M)-invariant subset ∆ one can extract dmany (+n,+m)-invariant subsets from it by
the following procedure: for each r ∈ {0, 1 . . . , d− 1} consider the subset in ∆ consisting of all integers
congruent to r modulo d, subtract r from all these elements and then divide by d. In other words one has

∆r = [(∆ ∩ (dZ + r))− r] /d. (1)

Note that the subsets ∆r for r > 0 might be not 0-normalized. Note also that ∆ can be uniquely
reconstructed from ∆0, . . . ,∆d−1, so we have a bijection between 0-normalized (+N,+M)-invariant
subsets and (ordered or Z/dZ-colored) collections of d many (+n,+m)-invariant subsets, such that ∆0

is zero normalized and ∆i ⊂ Z≥0 for all i.
Let us first describe this in an example. The idea of the equivalence relation is that one should fix

the collection ∆0, . . . ,∆d−1 up to shifts, but allow them to shift with respect to each other if it does
not change the total relative order of N -generators and M -cogenerators of ∆. By a shift of ∆, we mean
replacing ∆ with ∆ + k for some k ∈ Z.

Example 2.4 Let (M,N) = (4, 6). The following two elements of YN,M are equivalent. Let ∆1 be given
by:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
× ◦ � ◦ × � • ◦ × × • � • × • . . .

and ∆2 :
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
× ◦ � ◦ × ◦ • � × ◦ • × • � • . . .

Here×’s are 6-generators, �’s are the 4-cogenerators, •’s are other elements of the subset, and ◦’s are
the other elements of the complement. Note that not all 6 generators and 4 cogenerators fit in the pictures.
It is more illustrative to split ∆1 into its even and odd parts:

r = 0 0 2 4 6 8 10 12 14 . . .
× � × • × • • . . .

r = 1 1 3 5 7 9 11 13 . . .
◦ ◦ � ◦ × � . . .

It is more compact to then stack them as

r = 0 −4 −2 0 2 4 6 8 10 12 14 16 18 . . .
� ◦ × � × • × • • • • . . .

r = 1 −3 −1 1 3 5 7 9 11 13 15 17 19 . . .
◦ ◦ ◦ ◦ � ◦ × � × • × . . .

Then we just record ∆1
0 and ∆1

1:

−2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
∆1

0 � ◦ × � × • × • • • • . . .
∆1

1 ◦ ◦ ◦ ◦ � ◦ × � × • × . . .

To restore ∆1 one should multiply both ∆1
0 and ∆1

1 by two, add one to ∆1
1, and merge them together.

In other words, ∆1 = 2∆1
0 ∪ (1 + 2∆1

1).
Similarly, for ∆2 one gets

−2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
∆2

0 � ◦ × � × • × • • • • • . . .
∆2

1 ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × . . .

Note that the sequences of N -generators and M -cogenerators are the same for ∆1 and ∆2, even if we
take into account the remainder modulo 2. In both cases one gets

� × � × � × × � × ×
where red is for even generators and cogenerators (r = 0), and blue is for odd (r = 1). The reason we
set ∆1 ∼ ∆2 is that in this example the odd part can be shifted by 1 with respect to the even part without
changing the sequence or parity of generators and cogenerators. Note that one cannot shift further: in
∆1 one cannot shift the odd part to the left, and in ∆2 one cannot shift the odd part to the right. Also note
that while ∆1

0 = ∆2
0, ∆1

1 = −1+∆2
1.

The formal definition of the equivalence classes is as follows:

Definition 2.5 Let ∆1,∆2 ∈ MN,M . Let {∆1
0, . . . ,∆

1
d−1} ⊆ Mn,m and {∆2

0, . . . ,∆
2
d−1} ⊆ Mn,m

be the corresponding collections of (+n,+m)-invariant subsets as in (1). We say that ∆1 and ∆2 are
equivalent or ∆1 ∼ ∆2 if there exist a permutation σ ∈ Sd such that for each i there exists an integer
ki such that ∆1

i = ki + ∆2
σ(i) and the following condition is satisfied. The sequence of Z/dZ-colored

N -generators and M -cogenerators of ∆1 agrees with the sequence of σ-twisted colored N -generators
and M -cogenerators of ∆2.
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Remark 2.6 Note that one always has σ(0) = 0, because the minimal N -generator is 0 for both ∆1 and
∆2.

Obviously, the order of N -generators and M -cogenerators is preserved within an equivalence class.
The bijection to YM,N is constructed in two steps. First, we choose the “minimal” representative in each
class, and second, we construct a Young diagram for each minimal representative. Bijectivity is evident
from the construction.

Definition 2.7 The skeleton of an (+N,+M)-invariant subset ∆ is the set consisting of itsN -generators
and M -cogenerators.

Note that one can uniquely reconstruct the invariant subset ∆ from its skeleton. Indeed, the skeleton
contains all the N -generators of ∆, and to distinguish the N -generators from the M -cogenerators one
should simply choose the biggest elements in each congruence class mod N.

Example 2.8 The skeleton of ∆1 from Example 2.4 above is {−4, 0, 2, 4, 5, 8, 9, 11, 13, 17}.
Definition 2.9 Let ∆ be a 0-normalized (+N,+M)-invariant subset and let ∆0, . . . ,∆d−1 be the cor-
responding collection of (+n,+m)-invariant subsets as in (1). We say that ∆ is minimal if the following
conditions are satisfied:

1. For every 0 < i < d there exists j < i such that the intersection of the skeletons of ∆i and ∆j is
nonempty;

2. If the skeleton of ∆i has empty intersection with the skeleton of ∆i+1 then min(∆i) < min(∆i+1).

Theorem 2.10 Every equivalence class of (+N,+M)-invariant subsets contains a unique minimal ele-
ment.

Sketch of the proof. Let ∆ ∈ MN,M . Consider its skeleton colored with respect to the remainders
modulo d. Let us allow the parts of the skeleton of different colors to shift with respect to each other while
preserving the distances between elements of the skeleton of the same color and not changing the total
relative order of generators and co-generators. Let us fix the part of the skeleton with remainder 0 and
shift the other colors to the left as much as possible.

Note that as parts of the skeleton of ∆ shift, the correspondence between colors and remainders change.
Moreover, it might happen that we will get two different colors in the same remainder. Let S0, . . . , Sd−1 ⊂
Z be the parts of the shifted skeleton of different colors. Let ri be the remainder of Si modulo d. We can
require the indices i and the remainders ri to satisfy the following conditions.

1. If ri < rj , then i < j;

2. If ri = rj and min(Si) < min(Sj), then i < j.

Note that these conditions determine the order on colors uniquely. Now, let

S′ =
⋃
d

⌊
Si
d

⌋
+ i.

Then the subset ∆′ ∈ MN,M is the unique invariant subset with skeleton S′. In other words, we
reassign remainders to colors according to the refined order, while preserving the sets

⌊
Si

d

⌋
for each color.

By construction, we have ∆ ∼ ∆′. It is also not hard to see that ∆′ is minimal. One can also see that if ∆
is minimal, then ∆′ = ∆.
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Example 2.11 Let (M,N) = (6, 9), so that d = 3. Let ∆ be such that ∆1,∆2, and ∆3 are given by

−2 −1 0 1 2 3 4 5 6 7 8 . . .
∆0 � ◦ × � × • × • • • • . . .
∆1 � � × × × • • • • • • . . .
∆2 ◦ ◦ ◦ ◦ ◦ ◦ � � × × × . . .

This subset ∆ ∈M9,6 is minimal according to the definition. The skeletons of the (+2,+3)-invariant
subsets ∆r, r = 0, 1, 2 are {−2, 0, 1, 2, 4}, {−2,−1, 0, 1, 2}, {4, 5, 6, 7, 8}, respectively. Indeed, the
skeleton of ∆0 intersects both the skeleton of ∆1 and the skeleton of ∆2, while the skeletons of ∆1 and
∆2 do not intersect; one has min(∆1) = 0 < min(∆2) = 6. However, if we let corresponding parts of
the skeleton of ∆ shift as far left as possible, then both blue and green parts will end up in remainder 1.

The last step in proving the main result is to construct the Young diagram D(∆) ∈ YN,M from a
minimal (+N,+M)-invariant subset ∆. The construction goes as follows. Consider the (+n,+m)-
invariant subsets ∆0, . . . ,∆d−1. For each (+n,+m)-invariant subset there is a unique way to organize
its skeleton into a cycle, so that on each edge as we go along the cycle we either add m or subtract n
(basically, one should simply follow the boundary of the corresponding Young diagram). Consider the
cycle corresponding to ∆0. We know that 0 = min(∆0) is an n-generator and −m is an m-cogenerator.
Let us remove the (+m)-edge −m → 0 from the cycle, so that we get a simple path which starts from 0
and ends at −m. We will start from this path and then insert the cycles corresponding to ∆1, . . . ,∆d−1
into it, so that in the end we get a path from 0 to −m which traverses M (−n)-edges and N − 1 (+m)-
edges. The rule is very simple: on kth move we insert the cycle corresponding to ∆k in the last possible
position, i.e. we go along the path constructed so far till its last intersection with the cycle corresponding
to ∆k, then go around the cycle, and then finish the rest of the path.

The resulting path encodes the boundary of the diagram D(∆) : the (+m)-edges correspond to vertical
steps, while (−n)-edges correspond to horizontal steps, plus there is an extra vertical step in the very
beginning. In fact, as we see in the example below, this path gives us the corresponding ranks of the steps
in the boundary path.

Example 2.12 Consider Example 2.11. The skeleton of ∆0 is −2, 0, 1, 2, 4. The corresponding path is

0→ 2→ 4→ 1→ −2.

The cycle corresponding to ∆1 is

0→ 2→ −1→ 1→ −2→ 0.

The last intersection of the path with this cycle is at −2, so after merging one gets the path

0→ 2→ 4→ 1→ −2→ 0→ 2→ −1→ 1→ −2.

The cycle corresponding to ∆2 is
6→ 8→ 5→ 7→ 4→ 6.

The last intersection of the new path with this cycle is at 4, so the resulting path is

0→ 2→ 4→ 6→ 8→ 5→ 7→ 4→ 1→ −2→ 0→ 2→ −1→ 1→ −2.

Finally, the boundary path of D(∆) is vvvvvhvhhhvvhvh (see Figure 5). Note that in this example one
could first merge ∆2 and then ∆1 with the same result. This is because their skeletons do not intersect.
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Similar to the d = 1 case, the steps of the boundary path correspond to the N -generators and M -
cogenerators of ∆. However, the correspondence is a bit trickier. The label in the box above a horizontal
step (correspondingly, to the left of a vertical step) is equal to bxd c, where x is the M -cogenerator (N -
generator).

Theorem 2.13 The map D : MN,M/∼ −→ YN,M is a bijection.

Sketch of the proof. Given a diagram D ∈ YN,M , all we need to do to recover the corresponding
minimal (+N,+M)-invariant subset is to assign the remainders modulo d to the steps of the boundary
path of D. This is done by reverting the gluing procedure as follows. Find the lowest m+ n consecutive
steps in the boundary path ofD, whose endpoints differ by

−−−−−→
(m,−n). Color these steps d−1. Then remove

this part of the path, and shift the upper part of the remaining steps by
−−−−−→
(m,−n) to make the remaining

path connected. Repeat this procedure, using the color d − k at the k-th iteration (see Figure 5 for an
example).

0

2

4

6

8 5

7 4 1 −2

0

2 −1

1 −216

18

14

12

10

15 12 9 6 3 0

Fig. 5: Z/3Z-coloring of a (9, 6) Dyck path

The following theorem now follows from the construction.

Theorem 2.14 The sweep map ζ : YN,M → YN,M factorizes according to Figure 2:

ζ = G ◦ D−1

for all positive N,M .
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