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Factorial Characters and Tokuyama’s Identity
for Classical Groups

Angèle M. Hamel1† and Ronald C. King2‡

1Dept. of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
2School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom

Abstract. In this paper we introduce factorial characters for the classical groups and derive a number of central
results. Classically, the factorial Schur function plays a fundamental role in traditional symmetric function theory and
also in Schubert polynomial theory. Here we develop a parallel theory for the classical groups, offering combinatorial
definitions of the factorial characters for the symplectic and orthogonal groups, and further establish flagged factorial
Jacobi-Trudi identities and factorial Tokuyama identities, providing proofs in the symplectic case. These identities are
established by manipulating determinants through the use of certain recurrence relations and by using lattice paths.

Résumé. Ici nous présentons des caractères factoriels pour des groupes classiques, et nous dérivons plusieurs résultats
importants. Classiquement, le fonction de Schur factoriel joue une rôle fondamentale dans la théorie traditionnelle
des fonctions symétriques et aussi dans la théorie des polynômes de Schubert. Ici nous développons une théorie
paralléle à celle des groupes classiques, offrons des définitions combinatoire des caractères factoriels pour des groupes
symplectiques et orthogonaux, et nous établissons aussi des identités de « flagged factorial Jacobi Trudi » et de
« factorial Tokyama », donnant des preuves dans le cas symplectique. Ces identités sont etablies par la manipulation
des déterminants en utilisant de certains récurrences, et en utliisant des chemins.

Keywords. factorial symmetric functions, Jacobi-Trudi identity, Tokuyama identity, classical Lie groups

1 Introduction
Factorial Schur functions—introduced by Biedenharn and Louck [1], extended by Goulden and Greene [6]
and Macdonald [12]—have a fundamental role to play in symmetric function theory, and are intimately
connected to Schubert calculus through the double Schubert polynomials. As such, they have been the
object of much active research, and numerous results and applications have been established for them
[9]. However, what are the factorial characters for other classical Lie groups? Given the character
interpretations—as ratios of determinants—can we derive the fundamental theorems of this type for them:
Jacobi-Trudi and Tokuyama identities? These are the questions we consider in this paper.

Classical group analogues of factorial Schur functions have been studied previously in the context of
double Schubert polynomials. Notably, Ikeda et al. [9] have made use of the factorial Schur P and Q
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functions (see also Ivanov [10]) to construct double Schubert polynomials in the case of classical Lie
groups (building on Billey and Haiman [2]) To the best of our knowledge we are the first to offer explicit
definitions of factorial characters themselves for the symplectic and odd orthogonal groups. Furthermore,
on the basis of these definitions, we derive both flagged Jacobi-Trudi and Tokuyama identities.

In the non-factorial case the flagged Jacobi-Trudi identities for the symplectic group appears in [5]
and for all classical groups in [14]. Currently one of the most general forms of Tokuyama’s original
identity [19] appears in Theorem 1 below, where the definitions of Qλ and sµ follow in a later section. A
brief table summarizes the history of the results.
Theorem 1 Let µ be a partition of length `(µ) ≤ n and λ = µ + δ with δ = (n, n − 1, . . . , 1). Then
for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and a = (a1, a2, . . .).

Qλ(x;y |a) =
∏

1≤i≤j≤n

(xi + yj) sµ(x |a) .

Tokuyama [19],1988 x y = tx a = 0
Okada [13], 1990 x y = tx a = 0
Hamel and King [7], 2007 x y a = 0
Brubaker, Bump, Friedberg [3], 2011 x y a = 0
Ikeda, Mihalcea, Naruse [9], 2011 x y = x a
Bump, McNamara, Nakasuji [4], 2011 x y = tx a
Hamel and King [8], 2015 x y a

Our new factorial characters are defined in Section 2. Section 3 gives lemmas leading to the flagged
factorial Jacob-Trudi identities (Theorem 6). In Section 4 we give explicit formulae appropriate to the
one-part partition case, and use them in Section 5 to provide combinatorial expressions for our factorial
characters in terms of lattice paths and then tableaux (Theorem 11) in an approach similar to that of
Ivanov’s appendix to [15]. In Section 6, on the basis of new definitions of factorialQ-functions, we derive
factorial Tokuyama type identities (Theorem 17).

2 Factorial characters for GL(n,C), Sp(2n,C) and SO(2n+ 1,C)
Let n ∈ N be fixed. Let x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn) with xi = x−1i for i = 1, 2, . . . , n
and let λ = (λ1, λ2, . . . , λn) be a partition of length `(λ) ≤ n. Then each of the classical groups
G = GL(n,C), Sp(2n,C) and SO(2n + 1,C) possesses a finite dimensional irreducible representation
V λG of highest weight λwhose character may be denoted by chV λG (z) where z is a suitable parametrisation
of the eigenvalues of the group elements ofG, namely x, (x,x) and (x,x, 1), respectively. We leave aside
the somewhat more complicated case of SO(2n,C). The character chV λGL(n,C)(x) is none other than the
Schur function sλ(x), and we adopt a similar notation for all our characters as follows:

chV λGL(n,C)(x)=sλ(x); chV
λ
Sp(2n,C)(x,x)=spλ(x,x) ; chV

λ
SO(2n+1,C)(x,x, 1)=soλ(x,x, 1). (1)

Setting a = (a1, a2, . . .), the transition from ordinary to factorial characters may be made through the
judicious use of the map

xm →


(x |a)m = (x+ a1)(x+ a2) · · · (x+ am) if m > 0;

1 if m = 0;

(x |a)|m| = (x+ a1)(x+ a2) · · · (x+ a|m|) if m < 0.

(2)
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To be precise we propose the following definition of factorial characters of the classical Lie groups:

Definition 2 For x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .), let

sλ(x |a) =
∣∣ (xi |a)λj+n−j ∣∣
| (xi |a)n−j |

; (3)

spλ(x,x |a) =
∣∣xi(xi |a)λj+n−j − xi(xi |a)λj+n−j ∣∣
|xi(xi |a)n−j − xi(xi |a)n−j |

; (4)

soλ(x,x, 1 |a) =

∣∣∣x1/2i (xi |a)λj+n−j − x1/2i (xi |a)λj+n−j
∣∣∣∣∣∣x1/2i (xi |a)n−j − x1/2i (xi |a)n−j

∣∣∣ . (5)

The well-known formulae for the ordinary characters of the classical Lie groups may be recovered by
setting a = (0, 0, . . .) which has the effect of reversing the map (2) and thereby reducing (xi |a)m and
(xi |a)m to xmi and x−mi , respectively, for all m ≥ 0.

3 Flagged Jacob-Trudi identities
To establish factorial Jacobi-Trudi identites we need analogues of the complete homogeneous symmetric
functions hr(x) that are appropriate not only to the case of the other group characters but also to the case
of our factorial characters. Just as is done classically for hr(x), it is convenient to define these analogues
by means of generating functions. Each generating function Fm(z; t) may be expanded as a power series
in t, and we denote the coefficient of tm in such an expansion by [tm] Fm(z; t) for all integers m.

Definition 3 Let x = (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) and a = (a1, a2, . . .). Then for any integer
m let

hm(x |a) = [tm]

n∏
i=1

1

1− txi

n+m−1∏
j=1

(1 + taj) ; (6)

hspm (x,x |a) = [tm]

n∏
i=1

1

(1− txi)(1− txi)

n+m−1∏
j=1

(1 + taj) ; (7)

hsom(x,x, 1 |a) = [tm] (1 + t)

n∏
i=1

1

(1− txi)(1− txi)

n+m−1∏
j=1

(1 + taj) . (8)

For m = 0 we have h0(x |a) = hso0 (x,x, 1 |a) = hsp0 (x,x |a) = ho0(x,x |a) = 1, while for m < 0 we
have hm(x |a) = hsom(x,x, 1 |a) = hspm (x,x |a) = 0.

The one variable case x = (xi) of Definition 3 allows us to rewrite our factorial characters as:

Lemma 4

sλ(x |a) =
∣∣∣hλj+n−j(xi |a) ∣∣∣ / ∣∣hn−j(xi |a) ∣∣ ; (9)

spλ(x,x |a) =
∣∣∣hspλj+n−j(xi, xi |a) ∣∣∣ / ∣∣hspn−j(xi, xi |a) ∣∣ ; (10)

soλ(x,x, 1 |a) =
∣∣∣hsoλj+n−j(xi, xi, 1 |a) ∣∣∣ / ∣∣hson−j(xi, xi, 1 |a) ∣∣ . (11)
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Proof: In the case of sλ(x |a) it suffices to note that for m ≥ 0

hm(xi |a) = [tm]
1

1− txi

m∏
j=1

(1 + taj) = [tm]
1 + tam
1− txi

m−1∏
j=1

(1 + taj)

= [tm]

(
1 +

t(xi + am)

1− txi

)m−1∏
j=1

(1 + taj) = (xi + am) [tm−1]
1

1− txi

m−1∏
j=1

(1 + taj)

= (xi + am)(xi + am−1) · · · (xi + a1) [t
0]

1

1− txi
= (xi |a)m . (12)

One then just uses this identity in (3) with m = λj + n − j and m = n − j in the numerator and
denominator, respectively. Then in the case of spλ(x,x |a) we have

hspm (xi, xi |a) = [tm]
1

(1− txi)(1− txi)

m∏
j=1

(1 + taj)

= [tm]
1

xi − xi

(
xi

1− txi
− xi

1− txi

) m∏
j=1

(1 + taj) =
1

xi − xi
(xi(xi |a)m − xi(xi |a)m) , (13)

using (12). Applying this to the numerator and denominator of (4) with m = λj + n− j and m = n− j,
the result follows from cancellation of factors xi − xi. The orthogonal case is similar. 2

Now we may transform each expression in Lemma 4 into flagged Jacobi-Trudi identities via:

Lemma 5 For 1 ≤ i < j ≤ n and all integers m:

hm(xi, . . . xj−1 |a)− hm(xi+1, . . . , xj |a)
= (xi − xj)hm−1(xi, . . . , xj |a) ; (14)

hspm (xi, xi, . . . , xj−1, xj−1 |a)− hspm (xi+1, xi+1, . . . , xj , xj , |a)
= (xi − xj)(1− xixj)hspm−1(xi, xi, . . . , xj , xj , |a); (15)

hsom(xi, xi, . . . , xj−1, xj−1, 1 |a)− hsom(xi+1, xi+1, . . . , xj , xj , 1 |a)
= (xi − xj)(1− xixj)hsom−1(xi, xi, . . . , xj , xj , 1 |a) . (16)

Proof: First note these identities are trivially true for m < 0 and m = 0 since each hm reduces to either
0 or 1, and each hm−1 to 0. For m > 0 all cases are similar and we illustrate just the symplectic case:

hspm (xi, xi, . . . , xj−1, xj−1 |a)− hspm (xi+1, xi+1, . . . , xj , xj , |a)

= [tm] ((1−txj)(1−txj)−(1−txi)(1−txi))
j∏
`=i

1

(1−tx`)(1−tx`)

m+j−i−1∏
k=1

(1 + tak)

= (xi+xi−xj−xj) [tm−1]
j∏
`=i

1

(1−tx`)(1−tx`)

(m−1)+j−i∏
k=1

(1 + tak)

= (xi−xj)(1−xixj) hspm−1(xi, xi, . . . , xj , xj , |a) . (17)
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Now we are a position to state and prove the following result (see Okada [14] and Chen et al. [5] for
the non-factorial case).

Theorem 6 (Flagged Jacobi-Trudi identity) Given x = (x1, x2, . . . , xn) and x = (x1, x2, . . . , xn)
with xk = x−1k for k = 1, 2, . . . , n, let x(i) = (xi, xi+1, . . . , xn) and x(i) = (xi, xi+1, . . . , xn). Then for
any partition λ = (λ1, λ2, . . . , λn) and any a = (a1, a2, . . .) including the case a = (0, 0, . . .) we have

sλ(x |a) =
∣∣∣hλj−j+i(x(i) |a)

∣∣∣ ; (18)

spλ(x,x |a) =
∣∣∣hspλj−j+i(x(i),x(i) |a)

∣∣∣ ; (19)

soλ(x,x, 1 |a) =
∣∣∣hsoλj−j+i(x(i),x(i), 1 |a)

∣∣∣ . (20)

Proof: Focussing on the symplectic case, we proceed by manipulating the determinant in the numerator
of (10), subtracting row (i + 1) from row i for i = 1, 2, . . . , n − 1 and applying (15), then repeating the
process for i = 1, 2, . . . , n− 2, and so on. This yields∣∣∣hspλj+n−j(xi |a) ∣∣∣ = ∏

1≤i<j≤n

(xi − xj)(1− xixj)
∣∣∣hspλj−j+i(x(i),x(i) |a)

∣∣∣ . (21)

Dividing this by the same expression with λ = (0) gives (19) since in this case the right-hand determinant
of (21) is lower triangular with diagonal elements all 1. The other two results follow in the same way. 2

4 Explicit formulae in the case of one part partitions
As a consequence of Theorem 6 it should be noted that we have

Corollary 7 In the special case λ = (m, 0, . . . , 0)

s(m)(x |a) = hm(x |a) ; sp(m)(x,x |a) = hspm (x,x |a) ; so(m)(x,x, 1 |a) = hsom(x,x, 1 |a) . (22)

Proof: On setting λ = (m, 0, . . . , 0) the flagged Jacobi-Trudi determinants in Theorem 6 are reduced to
lower-triangular form since each h−j+i = 0 for i < j. Moreover for i > 1 the diagonal entries are all of
the form h0 = 1, while the (1, 1) entry is just hm with x(1) = x and x(1) = x. 2

Factorial characters in the one-part partition case may then be evaluated directly from the generat-
ing function formulae of Definition 3.In the Schur function case with x = (x1, x2, . . . , xn) and x′ =
(x1, x2, . . . , xn−1) one finds hm(x |a) = hm(x′ |a) + (xn + am+n−1)hm−1(x |a). Iterating this recur-
rence relation gives

hm(x |a) =
∑

1≤i1≤i2≤···≤im≤n

(xi1 + ai1)(xi2 + ai2+1) · · · (xim + aim+m−1) . (23)
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This result can be exploited in the symplectic case, where it might be noted first that if we introduce
dummy parameters a` = 0 for ` = 0,−1,−2, . . . we have

hspm (x,x |a) = [tm]

n∏
i=1

1

(1− txi)(1− txi)

m+2n−1−n∏
k=1−n

(1 + tak) = hm(z | τ−na) . (24)

with z = (x1, x1, x2, x2, . . . , xn, xn) and τ−na = (a−n+1, . . . , a−1, a0, a1, a2 . . .). It follows that

hspm (x,x |a) =
∑

1≤i1≤i2≤···≤im≤2n

(zi1 + ai1−n)(zi2 + ai2−n+1) · · · (zim + aim−n+m−1) . (25)

where zij + aij−n+j−1 =

{
xk + a2k−n+j−2 if ij = 2k − 1;
xk + a2k−n+j−1 if ij = 2k,

with a` = 0 if ` ≤ 0. The odd orthog-

onal case is similar but with the inclusion of a factor (1− an+j) if im = 2n+ 1.

5 Combinatorial realisation of factorial characters
The significance of these results is that they offer an immediate lattice path model of each of the relevant
one-part partition factorial characters. By making use of n-tuples of such lattice paths in the interpretation
of the flagged Jacobi-Trudi identities of Theorem 6 one arrives at a non-intersecting lattice path model of
factorial characters specified by any partition λ of length `(λ) ≤ n. This leads inexorably to a further
realisation of factorial characters in terms of certain appropriately weighted tableaux. The tableaux them-
selves are none other than those already associated with Schur functions, symplectic group characters and
odd orthogonal group characters in the classical non-factorial case.

Restricting our attention to fixed n and partitions λ = (λ1, λ2, . . . , λn) of length `(λ) ≤ n, each such
partition defines a Young diagram Fλ consisting of |λ| = λ1+λ2+ · · ·+λn boxes arranged in `(λ) rows
of lengths λi. For i = 1, 2, . . . , `(λ). Let (i, j) signify the box in the ith row and jth column of Fλ.

Definition 8 Let Tλ be the set of all semistandard Young tableaux T of shape λ that are obtained by
filling each box (i, j) of Fλ with an entry Tij from the alphabet {1 < 2 < · · · < n} in all possible ways
such that: (T1) entries weakly increase across rows from left to right; (T2) entries strictly increase down
columns from top to bottom.

Definition 9 [11] Let T spλ be the set of all symplectic tableau T of shape λ that are obtained by filling
each box (i, j) of Fλ with an entry Tij from the alphabet {1 < 1 < 2 < 2 < · · · < n < n} in all possible
ways such that: (Sp1) entries weakly increase across each row from left to right; (Sp2) entries strictly
increase down each column from top to bottom; (Sp3) neither k nor k appear lower than the kth row.

Definition 10 [18] [ Let T soλ be the set of all odd orthogonal tableaux T of shape λ obtained by filling
each box (i, j) of Fλ with an entry Tij from the alphabet {1 < 1 < 2 < 2 < · · · < n < n < 0} in
all possible ways such that: (O1) entries weakly increase across each row from left to right; (O2) entries
weakly increase down each column from top to bottom; (O3) neither k nor k appear lower than the kth
row; (O4) no two non-zero entries in any column are equal; (O5) in any row 0 appears at most once.

These definitions allow combinatorial expressions of our factorial characters as follows:
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Theorem 11 For each g and z as tabulated below,

gλ(z |a) =
∑
T∈T gλ

∏
(i,j)∈Fλ

wgt(Tij), where (26)

gλ(z |a) Tij wgt(Tij)
sλ(x |a) k xk + ak+j−i
spλ(x,x |a) k xk + a2k−1−n+j−i am = 0 for m ≤ 0

k xk + a2k−n+j−i
soλ(x,x, 1 |a) k xk + a2k−n+j−i am = 0 for m ≤ 0

k xk + a2k+1−n+j−i
0 1− an+1+j−i

(27)

Proof: In the Schur function case, as in [8], we adopt matrix coordinates (k, `) for lattice points with
k = 1, 2, . . . , n specifying row labels from top to bottom, and ` = 1, 2, . . . , λ1 + n specifying column
labels from left to right. Each lattice path that we are interested in is a continuous path from some
Pi = (i, n− i+ 1) to some Qj = (n, n− j + 1 + λj). Such a path consists of a sequence of horizontal
or vertical edges and is associated with a contribution to hλj−j+i(x

(i) |a) in the form of a summand
of (23) with m = λj − j + i and x replaced by x(i). Taking into account the restriction of alphabet
from x to x(i), the weight assigned to a horizontal edge from (k, ` − 1) to (k, `) is xk + ak+`−n−1.
Thanks to the Lindström-Gessel-Viennot theorem the only surviving contributions to the determinantal
expression for sλ(x |a) in the flagged Jacobi-Trudi identity (18) are those correspnding to an n-tuple of
non-intersecting lattice paths from Pi to Qi for i = 1, 2, . . . , n. Such n-tuples are easily seen to be in
bijective correspondence with semistandard Young tableaux T of shape λ as in Definition 8, with the jth
horizontal edge at level k on the path from Pi to Qi giving an entry Tij = k in T for i = 1, 2, . . . , n and
j = 1, 2, . . . , λi. To complete the proof of Theorem 11 in the factorial Schur function case it only remains
to note that the weight wgt(Tij) to be assigned to Tij is that of the edge from (k, `− 1) to (k, `) given by
xk+ak+`−n−1 = xk+ak+j−i with j = `− (n− i+1) since this is the number of horizontal steps from
Pi to column ` on the lattice path from Pi to Qi. This is exemplified in Fig. 1 of [8].

In the factorial symplectic case the lattice path proof proceeds exactly as in the Schur function case with
the alphabet extended to include both xk and xk, with a replaced by τ−na as dictated by (24) and with
the starting points Pi = (i, n− i+1) replaced by Pi = (2i−1, n− i+1) to ensure that condition (Sp3) is
satisfied. Once again it is only the n-tuples of non-intersecting lattice paths from Pi to Qi that contribute
to spλ(x,x |a) and these are in bijective correspondence with the symplectic tableaux T of shape λ with
entries from {1 < 1 < · · · < n < n}. This is exemplified in Figure 1 for n = 4 and λ = (4, 3, 3).

The argument in the odd orthogonal factorial case proceeds very much as before but this time diagonal
rather than horizontal edges appear at level 2k + 1. 2

6 Tokuyama type identities
A partition is said to be strict if its non-zero parts are distinct. Each such strict partition λ of length `(λ) ≤
n specifies a shifted Young diagram SFλ consisting of rows of boxes of lengths λi for i = 1, 2, . . . , `(λ)
left adjusted to a diagonal line. This allows us to define various primed shifted tableaux.
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a1a2a3 a0

a1

a2

a3

a4

a5

a6

a7

P1

P2

P3

P4

Q4 Q3 Q2 Q1

x1+a3

x1+a1

x2+a1

x4+a7

x3+a1

x4+a3 x4+a4x4+a1

x4+a3 x4+a4

• • • • •

• • • • •

• • • • • •

• • • • • •

• • • • • • •

• • • • • • •

• • • • • • • •

• • • • • • • •

1 1 2 4

3 4 4

4 4 4

x1 x1 x2 + a1 x4 + a7

x3 + a1 x4 + a3 x4 + a4

x4 + a1 x4 + a3 x4 + a4

Fig. 1: Example of non-intersecting lattice paths and a corresponding symplectic tableau and its factorial weights.

Definition 12 [16, 20] Let Pglλ be the set of all primed shifted tableaux P of shape λ that are obtained
by filling each box of SFλ with an entry Pij from the alphabet {1′ < 1 < 2′ < 2 < · · · < n′ < n} with
one entry in each box, in such a way that: (Q1) entries weakly increase from left to right across rows;
(Q2) entries weakly increase from top to bottom down columns; (Q3) no two identical unprimed entries
appear in any column; (Q4) no two identical primed entries appear in any row;

Definition 13 [7] Let Pspλ be the set of all primed shifted tableaux P of shape λ that are obtained by
filling each box of SFλ with an entry Pij from the alphabet {1′< 1 < 1

′
< 1< 2′< 2< 2

′
< 2 < · · · <

n′ < n < n′ < n} with one entry in each box, in such a way that the conditions (Q1)-(Q4) are satisfied
together with: (Q5) at most one of {k′, k, k′, k} appears on the main diagonal for each k = 1, 2, . . . , n.

Definition 14 Let P so

λ be the set of all primed shifted tableaux P of shape λ that are obtained by filling
each box of SFλ with an entry Pij from the alphabet {1′ < 1 < 1

′
< 1 < 2′ < 2 < 2

′
< 2 < · · · < n′ <

n < n′ < n < 0′} with one entry in each box, in such a way that the conditions (Q1)-(Q5) are satisfied.
together with: (Q6) the entry 0′ does not appear on the main diagonal.

Our proposed definition of factorial Q-functions then takes the form

Definition 15 For a = (a1, a2, . . .), a0 = 0 and any strict partition λ of length `(λ) ≤ n, let

Qgλ(z;w |a) =
∑
P∈Pgλ

∏
(i,j)∈SFλ

wgt(Pij) where

g Qgλ(z;w |a)
gl Qλ(x;y |a)
sp Qspλ (x,x;y,y |a)
so Qsoλ (x,x;y,y, 1 |a)

and

Pij wgt(Pij) Pij wgt(Pij)
k xk + aj−i k′ yk − aj−i
k xk + aj−i k

′
yk − aj−i

0′ 1− aj−i
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This definition includes the case Qλ(x;y | a) introduced previously [8] and that is here the subject of
Theorem 1. To prove factorial versions of Tokuyama’s identity for these Q-functions for `(λ) = n we
need an intermediate result that exploits lattice paths to express each Q-function as a single determinant.

(i, i) i xi •
• (i, i) i′ yi •

•

(i, i) i xi
•
• (i, i) i

′
yi

•
•

(i, j) i < j k xk + aj−i • • (i, j) i < j k′ yk − aj−i
•

•

(i, j) i < j k xk + aj−i • • (i, j) i < j k
′
yk − aj−i

•

•

Fig. 2: Edges and their weights in the factorial symplectic Q-function case.

Lemma 16 For any strict partition λ of length `(λ) = n,

Qλ(x;y |a) =
∣∣∣ (xi + yi) q

gl
λj−1(x

(i);y(i+1) |a)
∣∣∣ ; (28)

Qspλ (x,x;y,y |a) =
∣∣∣ (xi + yi + xi + yi) q

sp
λj−1(x

(i),x(i);y(i+1),y(i+1) |a)
∣∣∣ ; (29)

Qsoλ (x,x;y,y, 1 |a) =
∣∣∣ (xi + yi + xi + yi) q

so
λj−1(x

(i),x(i);y(i+1),y(i+1), 1 |a)
∣∣∣ , (30)

with qgm(x(i);y(i+1) |a) =
∑

1≤i1≤i2≤···≤im≤n

∑
z

(zi1±a1)(zi2±a2) · · · (zim±am) , (31)

where the sum over z allows factors (zk ± a`) = (xk + a`), (yk − a`) or (1 − a`) to appear according
as zk = xk, yk, or 1, with several factors of the form (xk + a`)(xk + a`+1) · · · allowed for any k with
i ≤ k ≤ n but at most one factor (yk−a`) for any k with i+1 ≤ k ≤ n, and at most one factor (1−a`).

Proof: Each primed symplectic shifted tableau P ∈ Pspλ defines an n-tuple of non-intersecting lattice
paths. The entries Pij in the ith row of P define a path from Pi = (2i − 1

2 , 0) to Qi = (2n, λi).
Since `(λ) = n we have Pii ∈ {i′, i, i

′
, i} and these entries are curved edges from Pi = (2i − 1

2 , 0) to
(2i − 1, 1) and (2i, 1) according as Pii is unbarred or barred, respectively, with the curve concave down
or up according as Pii is unprimed or primed, respectively. For j > i the (j − i)th edge of the path PiQi
is determined by the value of Pij ∈ {k′, k, k

′
, k} for some k ≥ i and is horizontal or diagonal according

as Pij is unprimed or primed, respectively, and terminates at (2k − 1, j − i) or (2k, j − i) according as
Pij is unbarred or barred. See Fig. 2 for the edges and their weights (vertical edges have wgt 1). It is easy
to see that the symplectic primed shifted tableaux P ∈ Pspλ are in bijective correspondence with n-tuples
of non-intersecting lattice paths of the type described with start points Pi and end points Qi. See Fig. 3.
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1 1 2′ 2
′ 3 3 4′ 4

′
5

2′ 2 2 3
′ 4 4 4

′

3 4 4
′

4 4 4

4 4

5

a1 a2 a3 a4 a5 a6 a7 a8

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

x1, y1

x2, y2

x3, y3

x4, y4

x5, y5

P1

P2

P3

P4

P5

Q5 Q4 Q3 Q2 Q1

x1

x1
y2

y2

x3 x3

y4

y4

x5

y2
x2

x2

y3

x4 x4

y4

y3
x4

y4 x4 x4 x4x4
x4

x5

•

•

•

•

•

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

Fig. 3: A symplectic primed shifted tableau and the corresponding n-tuple of non-interesecting lattice paths.

A determinantal expression for Qspλ (x,x;y,y |a) is obtained by considering n-tuples of paths from Pi
to Qj with j = π(i) for all permutations π ∈ Sn. In this determinant the (i, j)th element takes the form:

(xi + yi) q
gl
λj−1(x

(i), x(i); y(i+1), y(i) |a) + (xi + yi) q
gl
λj−1(x

(i+1), x(i); y(i+1), y(i+1) |a)

= (xi + yi + xi + yi) q
sp
λj−1(x

(i), x(i); y(i+1), y(i+1) |a) (32)

Factors (xi + yi) and (xi + yi) arise since a path from Pi starts with a curved edge of Fig. 2. The sum
over all possible successive edges is then given by qglλj−1 restricted to {i < i

′
< i < (i + 1)′ < · · · , n}

and {i < (i+1)′, (i+1), i+ 1
′
< · · · < n} (unprimed but not primed repetitions are allowed). The final

identity is from the corresponding generating functions, but space does not allow its derivation. 2

At this point, for all p and q such that 1 ≤ p ≤ q ≤ n, it is convenient to introduce

gm;p,q,n(x,x;y,y |a) = [tm]

∏n
j=q+1(1 + tyj)(1 + tyj)∏n
i=p(1− txi)(1− txi)

m+q−p∏
k=1

(1 + tak) . (33)

This definition is such that:

gm;i,i,n(x,x;y,y |a) = qspm (x(i), x(i); y(i+1), y(i+1) |a) ; (34)
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gm;i,n,n(x,x;y,y |a) = hspm (x(i), x(i) |a) ; (35)
gm,p,q−1,n(x, x; y, y |a)−gm,p+1,q,n(x, x; y, y |a)

= (xp+yq+xp+yq) gm−1,p,q,n(x, x; y, y |a) if p < q . (36)

Theorem 17 (Factorial Tokuyama Identities) Let λ = µ+δ with δ = (n, n−1, . . . , 1) and µ a partition
of length `(µ) ≤ n. Then

Qλ(x;y |a) =
∏

1≤i≤j≤n

(xi + yj) sµ(x |a) ; (37)

Qspλ (x,x;y,y |a) =
∏

1≤i≤j≤n

(xi + yj + xi + yj) spµ(x,x |a) ; (38)

Qsoλ (x,x;y,y, 1 |a) =
∏

1≤i≤j≤n

(xi + yj + xi + yj) soµ(x,x, 1 |a) . (39)

Proof: Again we focus on the symplectic case and start by using (34). By subtracting successive rows as
in the proof of Theorem 6 and using (36) with m = λj − 1 we extract factors (xi + yj + xi + yj) to give

Qλ(x,x;y,y |a) =
n∏
i=1

(xi+yi+xi+yi)
∣∣ gλj−1;i,i,n(x,x;y,y |a) ∣∣

=
∏

1≤i≤j≤n

(xi+yj+xi+yj)
∣∣ gλj−1−n+i;i,n,n(x,x;y,y |a) ∣∣

=
∏

1≤i≤j≤n

(xi+yj+xi+yj)
∣∣∣hλj−(n−i+1)(x

(i),x(i) |a)
∣∣∣

=
∏

1≤i≤j≤n

(xi+yj+xi+yj)
∣∣∣hµj−j+i(x(i),x(i) |a)

∣∣∣ = ∏
1≤i≤j≤n

(xi+yj+xi+yj) spµ(x,x |a) .(40)

Here we have used (35) and the fact that λ = µ + δ so that λj = µj + n − j + 1 for j = 1, 2, . . . , n, as
well as the symplectic factorial flagged Jacobi-Trudi identity of Theorem 6. 2
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