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Kraskiewicz-Pragacz modules and Pieri and
dual Pieri rules for Schubert polynomials

Masaki Watanabeff

L Graduate School of Mathematics, the University of Tokyo

Abstract. In their 1987 paper Kraskiewicz and Pragacz defined certain modules, which we call KP modules, over the
upper triangular Lie algebra whose characters are Schubert polynomials. In a previous work the author showed that
the tensor product of Kraskiewicz-Pragacz modules always has KP filtration, i.e. a filtration whose each successive
quotients are isomorphic to KP modules. In this paper we explicitly construct such filtrations for certain special cases
of these tensor product modules, namely S,, ® S%(K*) and S,, ® A“(K?), corresponding to Pieri and dual Pieri
rules for Schubert polynomials.

Résumé. Dans leur étude en 1987 Kraskiewicz et Pragacz ont defini certains modules, que nous appelons modules
KP, sur les algébres de Lie des matrices triangulaires supérieures, dont les caractéres sont les polynomes de Schubert.
Dans une étude récente 1’ auteur a prouvé que les produits tensoriels de deux modules KP ont des filtrations KP, ¢’est-4-
dire des filtrations dont les quotients successifs sont des modules KP. Dans cet article nous construisons explicitement
telles filtrations pour certains cas de ces produits tensoriels, 4 savoir S, @ S¢(K*) et S,y ® A*(K*), correspondant
aux formules de Pieri et de Pieri double pour les polynomes de Schubert.

Keywords. Schubert polynomials, Schubert functors, Kraskiewicz-Pragacz modules, Schubert calculus

1 Introduction

Schubert polynomials are one of the main subjects in algebraic combinatorics. One of the tools for
studying Schubert polynomials is the modules introduced by Kraskiewicz and Pragacz. These modules,
which here we call KP modules, are modules over the upper triangular Lie algebra and have the property
that their characters with respect to the diagonal matrices are Schubert polynomials.

It is known that a product of Schubert polynomials is always a positive sum of Schubert polynomials.
The previously known proof of this positivity property uses the geometry of the flag variety. In [Watl5a]
the author showed that the tensor product of two KP modules always has a filtration by KP modules
and thus gave a representation theoretic proof for this positivity. Although the proof there does not give
explicit construction for the KP filtrations, it may provide a new viewpoint for the notorious Schubert-
LR problem, i.e. finding a combinatorial positive rule for the coefficient in the expansion of products of
Schubert polynomials into a sum of Schubert polynomials.
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There are some cases where the expansions of products of Schubert polynomials are explicitly known.
Examples of such cases are the Pieri and the dual Pieri rules for Schubert polynomials conjectured in
[BB93] and proved in [Win98|| (also appearing with different formulations in [Las82] and [Sot96]]). They
are the cases where one of the Schubert polynomials is a complete symmetric function hy(x1, ..., x;) or
an elementary symmetric function eq(z1, . .., ;). The purpose of this paper is to investigate the structure
of tensor product modules corresponding to these products and to give an explicit construction of KP
filtrations for these modules.

The structure of this paper is as follows. In Section [2| we prepare some definitions and results on
Schubert polynomials and KP modules. In Section 3| we review the Pieri and dual Pieri rules for Schubert
polynomials. In Section[d] we give an explicit construction for KP filrartions of the corresponding tensor
product modules S, ® S%(K*) and S, ® A\*(K?). In Sectionwe sketch the proof of the main result.

2 Preliminary

Let N be the set of all positive integers. By a permutation w we mean a bijection from N to itself which
fixes all but finitely many points. The graph of a permutation w is the set {(i,w(i)) : i € N} C N2. For
i < 7, let t;; denote the permutation which exchanges i and j and fixes all other points. Let s; = #;;11.
For a permutation w, let f(w) = #{i < j : w(i) > w(j)}. For a permutation w and p < g, if
L(wtpg) = L(w) + 1 we write wt,, > w. It is well known that this condition is equivalent to saying that
w(p) < w(q) and there exists no p < r < ¢ satisfying w(p) < w(r) < w(q). For a permutation w let

I(w) = {(i,j) + i < j,w(i) >w(j)}.

For a polynomial f = f(x1,29,...) and i € N define 9, f = % For a permutation w we can
assign its Schubert polynomial &, € Z[x1, x2, . ..] which is recursively defined by
e Gy =2 %,y ifwl) =n,w?2) =n—1,...,w(n) =1and w(i) = i (i > n), and

o Sy, = 0,6, if l(ws;) < L(w).

Hereafter let us fix a positive integer n. Let S = {w : permutation, w(n + 1) < w(n +2) < --- }.
Note that if w € S then I(w) C {1,...,n} x N. Let K be a field of characteristic zero. Let
b = b, denote the Lie algebra of all n X n upper triangular matrices over K. For a U(b)-module M
and A = (A\q,...,\,) € Z™ let My = {m € M : hm = (\,h)m (Vh = diag(hi,...,h,))} where
(A, h) = >, Aih;. If M is a direct sum of these M), then we say that M is a weight module and we define
ch(M) =Y, dim Mz where z* = 2}t - ad. For1 <i < j<nlete;; € bbe the matrix with 1 at
the (4, j)-th position and all other coordinates 0.

Let V be a vector space spanned by a basis {u;; : 1 < i < n,j € N}. Let T = A*V. The Lie
algebra b acts on V' by e,quij = diqu,; and thus on 7. For w € S™ let u,, = N jyerw) wij € T- The
Kraskiewicz-Pragacz module S,, (or the KP module for short) associated with w is the b-submodule of T’
generated by u,,. In [KP04|] Kraskiewicz and Pragacz showed the following:

Theorem 2.1 ([KP04, Remark 1.6 and Theorem 4.1]) S,, is a weight module and ch(S,,) = &,,.
Example 2.2 If w = s;, then uy,, = u;;+1 and thus S,, = @1<j<7,’ Kujiq = @1<j<iKuj = K?
where b acts by epqu; = 84Uy o o

A KP filtration of a b-module M is a filtration 0 = My C --- C M, = M such that each M, /M;_ is
isomorphic to some KP module.
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3 Pieri and dual Pieri rules for Schubert polynomials
Definition 3.1 For w € So, ¢ > 1l and d > 0, let

Xi,d(w) = {tplqltpzw tpaqe 1P S 4 Q >t wy <we << - ywi(p1) < wa(pz) <---}

and

Yia(w) = {tpaitpags ** tpagy 1 5 < @5 > dwr <wz < -+, wi(pr) > wa(p2) > -}
where wi = w, wy = Wiy, q,, W3 = Wy, g, tpogs =

Note that the condition above for X; 4(w) (resp. Y; q4(w)) also implies wi(q1) < wa(gz) < --- (resp.
wi(q1) > wa(ga) > - - ). Also note that the condition for X; 4(w) (resp. Y; q(w)) implies that ¢1, . .., g4
(resp. p1, ..., Dpq) are all different.

Theorem 3.2 (conjectured in [BB93] and proved in [Win98] ) m We have

G- ha(zr,..,m) = > Guc

C€Xia(w)
and
6w~ed(m1,...,xi) = Z GWC'
CEYi,a(w)
where hy and ey denote the complete and elementary symmetric functions respectively. O

Note here that the sums above are multiplicity-free: that is, the permutation ¢ actually determines
uniquely its decomposition into transpositions satisfying the conditions in Definition[3.1] So we can write
without ambiguity, for example “for ¢ = tp,4, - - - tpyq, € Xi,a(w) define (something) as (some formula
involving p; and ¢;)”. Hereafter if we write such we will always assume the conditions in Deﬁnition@

4 Explicit Pieri and dual Pieri rules for KP modules

The author showed in [Watl5a] that the tensor product of KP modules always has a KP filtration. Since
S9(K7) and A*(K*) are special cases of KP modules forany 1 < i < nandd > 1, S, ® S%(K*) and
Sw ® /\d(K ) (w € S™) have KP filtrations. In this section we give an explicit construction of these
filtrations.

For integers p < ¢ we define an operator e;, acting on 7" as €}, (Ua, b, A Uaspy A -++) = D (- A
SpbyUagg A -+ ). Let these operators act on 7 ® S¢(K') and T ® A%(K?) by applying them on the
left-hand side tensor component. We also define operators j; on T ® @*(K') — T ® @' (K) by
U (V1 Q@ua®---) = (4(v1) Au) @ (v2 ® vg ® - - - ) where ¢ : uy, — u,;. We denote the restrictions
of pjto T ® S*(K%) and T ® \“(K") by the same symbol. Note that e, and y; give b-endomorphisms
onT®S* (K and T ® \°*(K*).

® Also appears with different formulations in [Las82] and [Sot96].
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For a permutation z and p < q let mp,(2) = #{r > q : z(p) < 2(r) < z(q)} and mg,(2) = #{r <
p:z(p) < z(r) < z(q)}. For ¢ =tp,q, -+ tpags € Xia(w) (resp. Y; 4(w)) define

ve=([Teri” ™ ®Hu,,]

J
= [Teri=™ u) & < S @-® u,,(,(d)> € Sy ® SUKT)
J oESy

(resp.

_ Mpjaj (w;)
v = (H €p;d; ® /\UP7

J

m (wj) d .
= ( epj?f]q] ’ uw)® (Z Sgna-upa(1)®~-~®upa(d)> ESw®/\(K1)
J oESy

) where w; = wty 4, - tp,_,q,_, as in Definition @ (note that these are also well-defined if some g;
are greater than n, since in such case My q; (wj) = 0). Also, for such (, define a b-homomorphism

d Z ! . . j
TR ® (K ) — Tby ¢C = gy """ Hqr Hj(egjpj)'rnquj (UJJ).
Proposition 4.1 For ¢,(’ € X; 4(w) (resp. Y; a(w)),

o ¢ (ve) is a nonzero multiple of u,,c € T, and
o Geu) =0 (wQ)~! < (W)~ (resp. (1)~ < (wg')!

A sketched proof for this proposition is given in the next section.
For a b-module M and elements x,y, ...,z € M let (z,y, ..., z) denote the submodule generated by
these elements. Consider the sequence of submodules

0 C (ve,) C{vgy,v¢,) C o C (e : ¢ € X a(w) (resp. Y a(w)))

inside S, ® S%(K*) (resp. Sy, ®/\d(Ki)), where (1, (2, ... € X; 4(w) (resp Y; q(w)) are all the elements
ordered so that (w¢;)™? < (w¢) ™t <o (resp. (w¢p)~! < (w¢) ™t < -). From the proposition

rlex
we see that there is a surjection (ve,,- -+ ,v¢;) /(e s+ v¢,_,) = Swe; induced from ¢¢,. Thus we

have

dim(S,, ® SY(K")) > dim(ve : ¢ € X a(w)) > Y dimSye = dim(S,, @ S/(K"))

(X a(w)
and
d ) d )
dim(S, @ A\(K") > dim(ve : € Vig(w)) > Y dimSyue = dim(S, @ /\(KY))
CEYi,a(w)

respectively, where the last equalities are by Theorem[3.2} So the equality must hold everywhere, and thus
the surjection above is in fact an isomorphism. So we get:
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Theorem 4.2 Let M = S, @ S4(K?) (resp. Sp @ N'(K?)). Define ve and ¢¢ as above. Then M is
generated by {v¢ : ¢ € X; g(w) (resp. Y; q(w))} as a b-module and

0C {ve,) C (g, 0¢) -+ C (g € € Xia(w) (resp. Vi a(w)))

gives a KP filtration of M, where (1,(a,... € X; 4(w) (resp. Y; q(w)) are all the elements ordered
increasingly by the lexicographic (resp. reverse lexicographic) ordering on (w()~1. The explicit isomor-
phism (ve,, - ,v¢) [(vey, -+, ve_ ) = Swe, is given by ¢, defined above.

Remark 4.3 In [Watl5b] we related KP modules with the notion of highest weight categories ([[CPS88])
as follows. For N C Z™ let Cyp/ be the category of weight b,-modules whose weights are all in A
Then if ' is an order ideal with respect to a certain ordering on 7" then Cy: has a structure of highest
weight category whose standard objects are KP modules. One of the axioms required for a highest weight
category states that the projective objects should have filtrations by standard objects.

It can be shown that the projective cover of the one dimensional b,-module K, with weight A =
(A1, .-+ An) € ZY in the category Czx  is given by SM(KY)@---®S* (K™). Thus Theorem gives
a proof to the fact that the indecomposable projective modules in Czx , have KP filtrations, which leads
to a different proof from the one in [Watl5hl §3] for the axiom mentioned above (we do not need these
results about highest weight structure for b-modules in the proof of Theorem[.2).

5 Skeched Proof of Proposition

Lemma 5.1 ( Implicit in [Wat15b, Proof of Theorem 5.1] ) Let we S™ andi > 1. For p,p <
i and q,q" > i such that L(wt,g) = lwtyy) = Lw) + 1 (e tpg,tpy € Xii(w)), if upgy A
e;,nq”‘Z(w)(e’q,p,)m;’p’(w)uw # 0 then w(p’) > w(p) and w(q') > w(q), and if (p,q) = (p',¢) itis a
nonzero multiple of Uy, . O
Lemma 5.2 Let w be a permutation, i > 1 and d > 0. Let ¢ = tp,q, " tpyqs € Xialw) (resp.
Yia(w)) and 1 < a < d. Suppose that there exists no b < a satisfying p, = pq (resp. @y = qo). Then

My, g0 (Wa) = Mp, q, (W) and m;apa (wg) = mfhpa (w) where wg, = Wiy, q, -+ tp, 1q,_, a4 in Definition
O

Proof of Proposition [d.1; The proofs for the cases of X; 4(w) and Y; 4(w) are similar. Here we give a
proof for the case of X; 4(w).
We assume (w¢) ™! < (w¢’)~! (resp. (w¢)™' < (w¢’)~!) and show that ¢¢/ (ve) = 0 unless ¢’ =
1

rlex

ex
and ¢¢(v¢) is a nonzero multiple of wy,¢. Let ¢ = tp, 4, < tp,q, and " =ty &
We write wo, = wtp, g, tp, 1ga o AN W = Wty gr -ty g
For { = Hj tp;q; and ¢’ = Hj tp.q, in X; 4(w) we have

J

.-+t . asin Definition
Pgdq

b (UC) = Z Upo(ayda) ARRRRA Upg1yq) A (H E; HE§ Uy (*)
o€Sq J J
M5 (W5) ( ™, Q(w})

— [ / q.P
where E; = €4, and E} = ey, ;) J

() In a revised version (in preparation) of [WatI5b] this will appear as a separate lemma.
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If w(pr) < w(p}), then (w¢) = (w(p1)) = q1 > p1 = (W)~ (w(p1)) and (w¢)~'(j) = w™'(j) =
(w¢’)~1(4) for all j < w(p1), and this contradicts the assumption (w¢)~! < (w¢’)~!. Thus w(p;) >

lex
w(ph)-
Fix 0 € S4. Let 1 < a < d be minimal such that p, = py(1). Then we have

Upyay N Np, g AT E T B - ww)
i i

’ /
= Up,(ayq) ASERRA Up, (2yqh A H E; H Ej ’ (U;Da(n(/l A EaEluw)

ita J#1
! ’
. / Mpgaa(Wa) [ 1 m’, , (w})
= Upyayd ARERNA Upg(2)dh A H E; H Ej ) (u;naq’l N €pada (eqipll) 9171 Uy
ita J#1
’
_ . . /o, Mpgqq (W) (1 Mot (w)
= p, iy N Ntpy gy N T Es T EG - (apaa At ™ (elyp) 47 )
j#a  j#1

where the last equality is by Lemma (note that wj = w by definition).
First consider the case w(p1) > w(p}). We show that the summand in (x) vanishes for all o. It suffices
Uy = 0. We have w(p,) = wq(pa) = w(pr) > w(p)). Thus

’
m w m, s (w)
to show w4 A epﬁj;"“( )( ;ipi) a7

’
m w m (w)
by Lemmawe see Uy, g1 A\ epa’iﬁqa( )(6’ )Py, = 0.

1 1P}
Next consider the case w(p;) = w(p}). Here (w¢) " (w(p1)) = q1, (w¢) Y (w(p1)) = ¢, and
(w¢)7(j) = w™l(j) = (w¢)7L(j) for all j < w(p1), and thus g1 < ¢} by the hypothesis. First
consider the case g1 < gj. Then since wty, 4, , Wty o > w it follows that w(q;) < w(q1). So w(q}) <

w(q1) < w(qa) and again by Lemmal5.1|we see u, ¢/ A ep. 5" (w) (e;ip’l ) "ol (w)uw =0.
Now consider the case w(p;) = w(p}) and ¢ = ¢|. Thenif a > 1 we see

!’
Mpgqe (W) 1 m, , (w)
Up,q; N eplgs " ( 4 ’1) an

by Lemma 5.1]since w(q}) = w(q1) < w(q,) in such case. So the only remaining summands in (x) are
the ones with a = 1, i.e. p,(1) = p1. Itis easy to see that the sum of such summands is a nonzero multiple
of the sum of terms with o(1) = 1. If o(1) = 1 we have, by the latter part of Lemma/5.1}

Up, (ayd, ASERRA Up,1yd; A (H Ej HE; ’ uw)
J J

My q. (w;) ’ m/ ) (w}) m (w), 4 ’
= upa(d)q:i ARRENA upa(z)% A H equJj ! H(eq;p;.) Gri (upllh A eplzllql (equh)mqlpl (w)uw)
i#1 i#1
mp'q~(’u’j) ’ m, ! p. (w;)
= (;é 0 const.) “Up,ayd, VARERWA Up, (24} N H €pid; H(eq;-p;) 5P Ut 4, -
j#1 j#1
So, working inductively on d (using wtp, g, tpygy ***tpage a0d g0 -+ o/ in places for w, ¢ and ¢’ re-
spectively: note that if (p1, ¢1) = (p}, ¢}) then (w¢) ™" lg (w¢") =" implies (Wtpyq,) tpags = tpaga) "+ =
ex

(O™ < (W)™ = (tprgs) ~typay +~tygy) ") we see that
ex



Kraskiewicz-Pragacz modules and Pieri and dual Pieri rules for Schubert polynomials 1201

’ ’

My . q. (W;5) m’, o (w}) . . _ _
® (Up,ayay N Nup,yap) M e, Hj(e:z;.p;) 75" " uy, vanishes if (w¢)~* s (w¢)~1,
orif ' = ¢ and o # id, and
e if (' = ( and o = id then it is a nonzero multiple of w,..

This finishes the proof. g
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