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Order Filter Model for Minuscule Plücker
Relations†

David C. Lax‡

Department of Mathematics, The University of North Carolina at Chapel Hill, USA

Abstract. The Plücker relations which define the Grassmann manifolds as projective varieties are well known. Grass-
mann manifolds are examples of minuscule flag manifolds. We study the generalized Plücker relations for minuscule
flag manifolds independent of Lie type. To do this we combinatorially model the Plücker coordinates based on Wild-
berger’s construction of minuscule Lie algebra representations; it uses the colored partially ordered sets known as
minuscule posets. We obtain, uniformly across Lie type, descriptions of the Plücker relations of “extreme weight”.
We show that these are “supported” by “double-tailed diamond” sublattices of minuscule lattices. From this, we
obtain a complete set of Plücker relations for the exceptional minuscule flag manifolds. These Plücker relations are
straightening laws for their coordinate rings.

Résumé. Les relations de Plücker qui définissent les variétés de Grassmann comme variétés projectifs sont bien
connus. Les variétés de Grassmann sont des exemples de variétés de drapeaux minuscules. Nous étudions les relations
de Plücker généralisées pour variétés de drapeaux minuscules indépendantes de type. Pour ceci, nous créons une
modélisation des coordonnées de Plücker basée sur la construction de Wildberger des représentations minuscules
d’algèbres de Lie; elle utilise les ensembles ordonnés et colorés qu’on appelle “posets minuscules”. À travers ce
modèl, nous obtenons une description uniforme des relations de Plücker de “poids extrêmes”. Nous montrons que
ces relations sont supportés par un sous-réseau des réseaux minuscules . De cette façon, nous obtenons un ensemble
complet de relations de Plücker pour les cas de types exceptionnels. Ces relations de Plücker sont des “lois de
redressage” pour leurs anneaux coordonnées.

Keywords. Plücker relations, minuscule flag manifolds, minuscule posets, minuscule representations

1 Introduction
The Grassmann manifold Gr(d, n) is the complex manifold which consists of the d-dimensional complex
subspaces of the vector space Cn. It has a standard projective embedding; the homogeneous coordi-
nates for this embedding are usually indexed by the naturally ordered collection of d-element subsets of
{1, 2, . . . , n}. The quadratic relations among these coordinates have a nice combinatorial formulation
using this index set. More generally, each of the “minuscule” flag manifolds also has a standard pro-
jective embedding for which the homogeneous coordinates are indexed by a natural partially ordered set.

†This material appears as part of the author’s doctoral dissertation written under the direction of Robert A. Proctor.
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Such ordered coordinates are called Plücker coordinates; the minuscule Plücker relations are the quadratic
relations among them. The minuscule flag manifolds are the Grassmann manifolds (Lie type A), the max-
imal orthogonal Grassmannians (types B and D), the even quadrics (also type D), and two “exceptional”
manifolds: the complex Cayley plane (type E6) and the Freudenthal variety (type E7). We seek a uni-
form combinatorial description of the quadratic Plücker relations for the minuscule flag manifolds that is
independent of Lie type. Our main results can be summarized as follows:

Theorem 1 The “extreme weight” minuscule Plücker relations are “standard straightening laws” on
“double-tailed diamond sublattices” of the Plücker coordinates. These are all of the Plücker relations for
the complex Cayley plane (type E6). For the Freudenthal variety (type E7) we obtain a complete set of
Plücker relations by supplementing the extreme weight relations with seven “zero weight” relations.

This theorem describes a certain kind of minuscule Plücker relation. This is apparently the first time
that all of the Plücker relations have been produced for the two exceptional minuscule flag manifolds.
Our approach uses minuscule posets and lattices. These objects were introduced in Proctor (1984); they
encode the weights of related minuscule Lie algebra representations. The simplest nontrivial minuscule
lattices correspond to the natural representations of the even orthogonal algebras o(2n). In these cases
the Hasse diagram of the minuscule lattice is a “double-tailed diamond.” We show that the structure of
the relations found in these model cases is also possessed by the extreme Plücker relations for the other
minuscule cases.

The known properties of the coordinate ring of the standard embedding for the Grassmann manifold
inspired the following definition by Eisenbud in 1977:

Definition 2 Suppose R is a ring, A an R-algebra, and H a finite poset contained in A which generates
A as an R-algebra. A standard monomial of A is the product of a chain in H , i.e. an element of the form
a1a2 . . . ak with ai ∈ H for each 1 ≤ i ≤ k and a1 � a2 � · · · � ak.

Suppose a, b ∈ H are an incomparable pair and suppose ab =
∑s
i=1 rihi1hi2 . . . hiki is an expression

for ab as a linear combination of standard monomials. Such a relation is called a straightening law if
hi1 � a and hi1 � b for every 1 ≤ i ≤ s.
A result of Seshadri implied that the Plücker relations for all minuscule flag manifolds are determined by
straightening laws, but its proof did not explicitly produce the straightening laws:

Theorem 3 (Seshadri (1978)) In the coordinate ring for a minuscule flag manifold under its standard
embedding, the standard monomials on the Plücker coordinates form a basis. The straightening laws on
these Plücker coordinates form a basis for its quadratic minuscule Plücker relations.

The poset of standard minuscule Plücker coordinates is actually a lattice, meaning it has a meet (∧) and
a join (∨) operation. Lakshmibai and Gonciulea used the lattice structure to give relations for a certain
flat degeneration of the manifold. Let H be the set of Plücker coordinates for a minuscule flag manifold
X under its standard embedding.

Theorem 4 (Gonciulea and Lakshmibai (1996)) The minuscule flag variety X degenerates flatly to the
toric variety defined by the relations {ab = (a ∧ b)(a ∨ b)}a,b∈H .

Chirivı̀ and Maffei (2013) studied the Plücker relations for the maximal orthogonal Grassmannians by
using Pfaffians to model the Plücker coordinates. They gave a “straightening algorithm” for the coordi-
nate ring using relations among these Pfaffians. This parallels a common straightening algorithm for the
Grassmann manifolds. Since our type-independent results only give “extreme weight” Plücker relations,
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in general those straightening algorithms produce many more relations for their respective manifolds.
Chirivı̀, Littelmann, and Maffei (2009) briefly considered the Plücker relations of the Freudenthal variety.
There they gave a single relation which can in principle be used to generate all of the Plücker relations
with a Lie algebra action. Our results for this variety go much further.

The coordinate ring of a minuscule flag manifold under its standard embedding is known to be defined
by its quadratic Plücker relations, which are determined by straightening laws on its Plücker coordinates.
We describe the most accessible of these straightening laws, which are of the same form as the single
straightening law for a model o(2n) example. This straightening law is “supported” by a double-tailed
diamond lattice. In particular, the first standard monomial in our straightening law is the product of the
meet and join of the incomparable pair that appeared in Gonciulea and Lakshmibai (1996). In contrast to
that paper, we obtain all of the terms in the straightening law for the extreme weight Plücker relations.

2 Formulation of the Plücker problem
Fix a simple complex Lie algebra g of rank n with Borel subalgebra b and Cartan subalgebra h. Let
Φ ⊂ h∗ denote the set of roots. Let S denote the nodes of the Dynkin diagram as indexed in Humphreys
(1972). Let {hα}α∈Φ denote the coroots in h, and let 〈λ, α〉 := λ(hα) be the application of a weight λ
to the coroot for α. Let {αi}i∈S in Φ and {ωi}i∈S in h∗ denote the simple roots and the fundamental
weights. Let W be the Weyl group of Φ, which acts on h∗R by reflection over the root hyperplanes. It is
generated by simple reflections {si}i∈S There is a standard partial order on the set of weights: For weights
λ, µ ∈ h∗ we write µ � λ if λ−µ is a nonnegative integral sum of the simple roots. A weight λ is said to
be dominant integral if 〈λ, α〉 is a nonnegative integer for every positive root α. Given a dominant integral
weight λ, let Vλ denote an irreducible g-module of highest weight λ. Every finite dimensional irreducible
g-module is isomorphic to Vλ for some dominant integral weight λ.

Definition 5 A dominant integral weight λ ∈ h∗ is minuscule if every weight of the irreducible g-module
Vλ lies in the Weyl group orbit of λ. The following is the complete list of minuscule weights by Lie type:

An: ω1, . . . , ωr; Bn: ωn; Cn: ω1; Dn: ω1, ωn−1, ωn; E6: ω1, ω6; E7: ω7.

Given a minuscule weight λ, a module isomorphic to Vλ is called a minuscule representation of g. It
is small in the following sense: Every finite dimensional highest weight module has a non-empty weight
space for each weight in the Weyl group orbit of its highest weight. In a minuscule representation, there
are no other weights. The weights of any finite-dimensional g-module Vλ form a finite distributive lattice
which we denote Lλ. Any weight basis of a minuscule g-module is in bijection with the lattice Lλ of their
weights. Hence, we focus our study of minuscule representations on the lattice of weights Lλ.

For each minuscule weight there is a standard projective embedding of an associated minuscule flag
manifold. The Plücker coordinates are given by a weight basis of the minuscule g-module Vλ, so they
are ordered by the lattice Lλ. By a theorem of Kostant, the Plücker relation problem for the resulting
coordinate ring can be stated entirely in the language of representation theory: Let v be a highest weight
vector of Vλ. The g-module Sym2(Vλ) decomposes into a direct sum U(g).(v)2 ⊕ I of g-modules for a
unique submodule I .

Problem 6 Each Plücker relation for the coordinate ring of the flag manifold embedded by λ is given by
the vanishing of a nonzero vector of I . Find a spanning set (or basis) for I .
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3 Minuscule posets
For a simply laced Lie algebra g, Wildberger constructed its minuscule representations using “minuscule
posets”. We want to use this realization of the minuscule representations to study Problem 6. Recall that
the weights of a minuscule representation form a finite distributive lattice. Every finite distributive lattice
is isomorphic to the lattice of “order filters” on its subposet of “meet irreducible” elements, as we recall
below. In this fashion, a minuscule poset distills the lattice of weights of a minuscule representation into a
smaller poset. These smaller posets are “d-complete” and are colored by the nodes of the Dynkin diagram
so that they become “colored d-complete” posets (see Proctor (1999)).

An element of a lattice is meet irreducible if it is covered by exactly one element of the lattice. Let
L be a finite distributive lattice, and let P be its sub-poset of meet irreducible elements. An order filter
of P is a subset J ⊆ P such that if x ∈ J and x � y, then y ∈ J . The lattice L is isomorphic to the
lattice J(P ) of order filters of P ordered by reverse inclusion. The meet (∧) and join (∨) operations on
the lattice J(P ) are the union and intersection operations on filters respectively.

Definition 7 A minuscule poset Pλ is the subposet of meet irreducible elements in the distributive lattice
Lλ of weights which occur in a minuscule representation Vλ.

The Hasse diagrams of the minuscule posets are displayed in Figure 1. The following notation was
established in Proctor (1984): Let g be a simple Lie algebra of Dynkin type Xr. Let ωj be a minuscule
weight from Definition 5. The minuscule poset arising from the g-module Vωj

is denoted xr(j).

Fig. 1: Hasse diagrams of the minuscule posets an(j), dn(1), bn(n) ∼= dn(n− 1) ∼= dn(n), e6(1) ∼= e6(6), e7(7).

Fix a simple Lie algebra g and a minuscule weight λ. Use P to denote the minuscule poset Pλ ⊆ Lλ.
Let S be the set of nodes of the Dynkin diagram of g. The minuscule poset P is naturally colored by the
function κ : P → S as follows: Let µ ∈ Lλ be a meet irreducible weight of Vλ. Then µ is covered by
exactly one weight ν ∈ Lλ. The difference ν−µ is a simple root. The color κ(µ) is the index of this root.
The elements of a given color in a minuscule poset form a chain.



Minuscule Plücker Relations 735

The Weyl group acts naturally on the lattice Lλ of weights in Vλ. This action can be described combi-
natorially with the lattice J(P ) of order filters in P . We first need some definitions: Fix a filter J ⊆ P
and a color i. There is at most one element x ∈ J with κ(x) = i such that J \ {x} is a filter. We say that
such an element x (which must be minimal in J) and its color i are removable from J . Similarly, there is
at most one element y ∈ P \J with κ(y) = i such that J ∪{y} is a filter. We say that such an the element
y (which must be maximal in P \ J) and its color i are available to J . No color is both removable from
and available to a given filter.

Proposition 8 The action of a simple reflection si ∈ W on the weight in Lλ ∼= J(P ) specified by an
order filter J ⊆ P is given by the following:

si.J =


J \ {x} if there exists x removable from J with κ(x) = i

J ∪ {y} if there exists y available to J with κ(y) = i

J otherwise.

Recall that a weight basis for the minuscule representation Vλ is indexed by the elements of its finite
distributive lattice Lλ of weights and that this lattice is realized by J(P ), which consists of the order
filters in the corresponding minuscule poset. Then each vector in a weight basis of Vλ corresponds to a
filter in J(P ). Wildberger (2003) constructed the minuscule representations for simply laced Lie algebras
combinatorially from minuscule posets. We detail his construction below.

From now on, assume that our simple Lie algebra g is simply laced. Choose simple root vectors
{ei ∈ gαi

, fi ∈ g−αi
}i∈S where each pair generates a standard sl2 subalgebra. Together, these generate

g. We realize the minuscule representation on VJ(P ), the vector space spanned by linearly independent
vectors {J | J ⊆ P an order filter}. When we invoke a filter operation on a vector J associated to the
order filter J , we are indicating the vector associated to the result of the filter operation on J .

Proposition 9 For each basis vector J ∈ VJ(P ) define the following actions:

ei.J :=

{
J \ {x} if there exists x removable in J with κ(x) = i

0 otherwise

fi.J :=

{
J ∪ {y} if there exists y available to J with κ(y) = i

0 otherwise.

These actions generate an irreducible representation of g on VJ(P ) that is isomorphic to Vλ. Moreover,
each vector J is a weight vector of VJ(P ) that has weight λ−

∑
x∈J

ακ(x).

There are two special order filters in every poset: the empty filter and the full poset. The vectors in
VJ(P )for these filters are denoted ℵ and ℵ respectively. Then ℵ is a highest weight vector for g with
weight λ. Wildberger chooses a basis of root vectors for g and gives their actions on VJ(P ) using similarly
combinatorial formulae. These actions are described by “root layers” of a minuscule poset. Root layers
will also appear in our description of Plücker relations:

Definition 10 For α ∈ Φ+, an α-layer is a convex subset R ⊆ P with color census
∑
x∈R

ακ(x) = α.

By using Wildberger’s realization of Vλ we have the following reformulation of Problem 6:
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Problem 11 The g-module Sym2(VJ(P )) decomposes into a direct sum U(g).(ℵ)2 ⊕ I for a unique sub-
module I . A Plücker relation is given by a nonzero vector in I . Find a spanning set (or basis) for I .

By Seshadri’s theorem the submodule I has a basis given by straightening laws, one for each incomparable
pair in Lλ. We want to produce the straightening law for as many of these incomparable pairs as possible.
If the poset P is a chain, then there are no incomparable pairs. So we will assume that P is not a chain.

4 Model case
The simplest family of minuscule posets which are not chains is the family dr(1) for r ≥ 3. These posets
are called “double-tailed diamonds” after the shape of their Hasse diagram. Fix such an r and let g =
o(2r). Let λ be the minuscule highest weight of the natural representation of g. We develop notation for
Wildberger’s realization of Vλ for this important family of model cases. Label dr(1)’s incomparable pair
of elements z] and z[. Then from the middle rank outward, label its tail elements y+/−, x+/−, . . . , a+/−

using + on the upper tail and − on the lower tail. Let Z]/[ denote the principal filters 〈z]/[〉. Let
Y +, X+, . . . , A+ denote the r − 2 principal filters 〈y+〉, 〈x+〉, . . . , 〈a+〉 contained in the upper tail. Let
Y −, X−, . . . , A− denote the r− 2 filters 〈y−〉 \ y−, 〈x−〉 \x−, . . . , 〈a−〉 \ a−. The remaining two filters
are ∅ and P = dr(1) itself. There is a unique Plücker relation in this case (up to scalar multiple):

Proposition 12 The submodule I ⊂ Sym2(VJ(P )) is spanned by the alternating sum:

Z]Z[ − Y+Y− + X+X− − · · ·+ (−1)r−2A+A− + (−1)r−1ℵℵ.

Hence the following quadratic Plücker relation has been obtained:

Z]Z[ = Y+Y− −X+X− + · · ·+ (−1)r−1A+A− + (−1)rℵℵ.

This Plücker relation is a straightening law, so this proposition verifies Seshadri’s theorem here. Also
note that Z] ∧ Z[ = Y− and Z] ∨ Z[ = Y+, so that the leading term on the right hand side of the
straightening law is the product of the meet and join of the incomparable pair. There are as many terms in
this expression as the rank r of the our algebra. Lastly, note that the last sign in the above relation depends
on the parity of r. This is a common phenomenon for type Dr objects.

5 Highest weight relation
First, we obtain a highest weight vector of I for g. In the model cases P = dn(1) or the small cases
a3(2) ∼= d3(1) and d4(3) ∼= d4(4) ∼= d4(1), this vector alone forms a basis. The highest weight vector we
find will give one straightening law for the corresponding coordinate ring. So in these cases we also have
an explicit presentation of the straightening law for every (the only) incomparable pair.

Let P := Pλ ⊂ Lλ be a minuscule poset that is not a chain. Notice that at the top of P there is a
double-tailed diamond subposet PD, i.e. an order filter that is isomorphic to the minuscule poset dr(1) for
some r ≤ n. For the type D model case of P = dn(1), we have r = n and this top double-tailed diamond
is all of P . For type A we have r = 3, for the type D spin representations we have r = 4, for type E6

we have r = 5, and for type E7 we have r = 6. Forget the usual indexing of simple roots. Use α] and
α[ to denote the simple roots of Φ which correspond to the colors of the incomparable pair of PD ⊆ P .
Use α1, . . . , αr−2 to denote the simple roots of Φ which correspond to the colors of the elements of PD
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above the incomparable pair, numbering upward. Let ΦD ⊆ Φ be the subset of roots in the span of
α], α[, α1, . . . , αr−2. Let gD ⊆ g be the subalgebra generated by the root subspaces {gα}α∈ΦD

. The
subalgebra gD is simple of type Dr.

Any g-module is naturally a gD-module, which can be decomposed into gD-irreducible components.
Let VD denote the gD-irreducible component of VJ(P ) given by U(gD).ℵ; it is isomorphic to VJ(dr(1))

as a gD-module. Use the notation established in Section 4 for VJ(dr(1)) here for VD, but use ℵ−D to
denote the full double-tailed diamond filter there. Problem 11 for the gD-submodule VD was solved in
Proposition 12; there is a single Plücker relation for gD in Sym2(VD):

Z]Z[ = Y+Y− −X+X− + · · ·+ (−1)r−1A+A− + (−1)rℵℵ−D.

The inclusion VD ⊆ VJ(P ) induces a natural inclusion Sym2(VD) ↪→ Sym2(VJ(P )). Under this inclu-
sion the model relation above is the foremost of the Plücker relations we seek:

Proposition 13 The inclusion of the above Plücker relation for gD under Sym2(VD) ↪→ Sym2(VJ(P ))
is a Plücker relation for g. Moreover, this relation is a highest weight vector for g.

Proof: These Plücker relations are calculated using Casimir operators. The computation for “the highest”
relation for g reduces to the computation for the above Plücker relation for the subalgebra gD. The
reduction uses weight calculations. 2

6 Rotation by Weyl group
Let η denote the weight of the Plücker relation from Proposition 13. Seshadri’s theorem can be used to
see that every highest weight of I is dominated by η. Hence η is the unique maximal weight of I . The
weights in the Weyl group orbit of η are also weights of I (and are weights only for the same irreducible
component as the weight η relation above). We call these extreme weights.

Definition 14 An extreme weight Plücker relation is a nonzero weight vector of I that has weight w.η for
some w ∈W .

When combined with the action of the Weyl group, the technique used in Proposition 13 to find a
highest weight Plücker relation can be used to produce extreme weight Plücker relations. We describe the
|W.η| extreme weight vectors for I in terms of the order structure of the elements of its “support” in Lλ.
In particular, we will see directly that these extreme weight relations are straightening laws.

Definition 15 A double-tailed diamond subposet of a poset P is a subset PD ⊆ P such that there are
exactly two incomparable elements of PD, half of the other elements of PD form a chain that lies above
the incomparable pair, and the remaining elements form a chain that lies below the incomparable pair.

A double-tailed diamond sublattice of a lattice L is a double-tailed diamond subposet LD ⊆ L such
that the join of its incomparable pair in L is the minimal element in the upper chain of LD, and the meet
of its incomparable pair in L is the maximal element in the lower chain of LD.

Suppose that L generates a ring over C. A double-tailed diamond sublattice LD ⊆ L is order iso-
morphic to one of the model lattices J(dr(1)). In this ring, we call a relation of the form obtained in
Proposition 12 the standard straightening law on LD. The following theorem is our foremost result:
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Theorem 16 Let λ be a minuscule weight of a simple Lie algebra g. Each extreme weight Plücker relation
is the standard straightening law on a double-tailed diamond sublattice of Lλ.

So an extreme weight Plücker relation is a straightening law for an “extreme” incomparable pair of Lλ.
The standard monomial expansion of such a pair begins with the product of their meet and join, and
continues as an alternating sum of products of comparable elements in a double-tailed diamond. These
double-tailed diamonds will all be the same size as the one found in the previous section. Hence there
are again r terms in the straightening law including the incomparable pair, where r is the rank of the
subalgebra gD defined there. For now, continue to assume that g is simply laced. Here this theorem is
obtained by combining Propositions 17 and 18 below. In addition, Corollary 19 below indicates that the
difference between the filters for two adjacent elements of this sublattice is a root layer. Section 7 extends
the theorem to non-simply laced algebras.

Let Wη ⊆ W be the parabolic subgroup which stabilizes the weight η. Each coset in W/Wη is known
to have a shortest length representative. Let W η be the set of such representatives. The set of extreme
weights is in bijection with W η . Since W η is defined in terms of coset representatives, it is a subset of
the Weyl group. We will apply elements of W η in settings where η is not a highest weight.

Fix an element w ∈W η . We now “rotate” the setup for Proposition 13 using w. Recall the root subsys-
tem ΦD ⊆ Φ defined there. Let gD,w ⊆ g be the subalgebra generated by the root subspaces {gα}α∈w.ΦD

.
Again any g-module is naturally a gD,w-module, which can be decomposed into gD,w-irreducible com-
ponents. Let VD,w denote the gD,w-irreducible component of VJ(P ) given by U(gD).(w.ℵ). It is straight-
forward to apply the techniques of Proposition 13 to VD,w ⊆ VJ(P ):

Proposition 17 Let w ∈ W η . The inclusion of the Plücker relation for gD,w under Sym2(VD,w) ↪→
Sym2(VJ(P )) is an extreme weight Plücker relation for g of weight w.η.

From this proposition we obtain an extreme weight relation which is an alternating sum of products of
pairs of filters as in Proposition 12. We want to understand the order structure of these filters to prove that
it is a standard straightening law on a double-tailed diamond sublattice of Lλ. The lattice LD of weights
of VD is a sublattice of Lλ. The corresponding extreme Plücker relation at w = id of Proposition 13 was
then the standard straightening law on this sublattice. Let LD,w denote the lattice of weights of VD,w;
again we have LD,w ⊆ Lλ. For an arbitrary w ∈ W η the lattice LD,w has the same order properties as
the sublattice LD:

Proposition 18 Let µ, ν ∈ LD, and let w ∈ W η . Then w.µ � w.ν if and only if µ � ν. Hence
LD,w = w.LD is order isomorphic to LD. Moreover, it is a double-tailed diamond sublattice of Lλ.

Proof: This is proved by induction on the length of w. 2

This proposition implies that the extreme weight Plücker relation obtained by Proposition 17 is the
standard straightening law on LD,w. The proof of Theorem 16 is now complete for simply laced algebras
g. An immediate corollary to the proof of the previous proposition describes the covering relations of
LD,w, using the language of filters:

Corollary 19 Let w ∈ W η . Let J,K be filters of the minuscule poset P such that J covers K in the
sublattice LD,w ⊆ Lλ ∼= J(P ). Then there exists a root α ∈ w.Φ+

D ⊆ Φ+ such that the subset K − J
is an α-layer. If one of J or K is one of the incomparable pair of elements of LD,w, then α = w.α] or
α = w.α[. Otherwise, moving outward along the tails from the incomparable pair, the root α takes on the
r − 2 values w.α1, . . . , w.αr−2.
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7 Exceptional cases
If I itself is also a minuscule g-module, then every weight of I is an extreme weight. In this case, the
extreme weight Plücker relations form a basis of all of the Plücker relations. Here we are presenting the
straightening law for every incomparable pair inLλ. This is the case for P = e6(1) and P = e6(6). (It can
be seen that I is also minuscule for P = an(2) and P = an(n− 1).) A “quasiminuscule” representation
is an irreducible representation in which every nonzero weight lies in the Weyl group orbit of its highest
weight. If I is quasiminuscule, then the extreme weight Plücker relations give the straightening law for
all but the zero weight incomparable pairs in Lλ. This is the case for the remaining exceptional example
P = e7(7). Here the zero weight space of I is seven dimensional. A basis for the zero weight space can
be computed by hand. In these cases we solve Problem 11 completely:

Theorem 20 For the two type E6 cases, the Plücker relations described by Theorem 16 form a basis of
Plücker relations. For the type E7 case, they combine with the seven relations of zero weight in Figure 4
to form a basis of Plücker relations.

We obtain the straightening law for every incomparable pair in Lλ for these exceptional cases. In
type E6, Theorem 16 described the straightening laws for every incomparable pair. We list these 27
straightening laws in Figure 3. In type E7, Theorem 16 described the straightening laws for 126 of the
133 incomparable pairs. We display the 7 remaining weight zero straightening laws in Figure 4. Unlike
the extreme weight straightening laws, these 7 zero weight straightening laws were computed by hand.
This involved Gaussian elimination to solve for the straightening laws using another basis for the zero
weight space of I .

We establish some notation for these cases. Label the Dynkin diagram ofE6 with letters {a, b, c, d, e, o}
and the diagram of E7 with letters {a, b, c, d, e, f, o}. This leads to the coloring of the minuscule posets
shown in Figure 2. Recall that elements of a minuscule poset with a given color form a chain. We will
name an element with its color and a subscript that indicates its position in this chain, counting from the
top. We name a filter by the capitalized string of its minimal elements. For example, in both posets, the
filter A2 is the top double-tailed diamond. In e7(7), the filter A2E2 also includes the elements f1 and e2.
We keep our usual convention of using calligraphic font to name a basis vector of Wildberger’s g-module
VJ(P ). Since we are using strings of letters to name filters, we place a dot between two vectors of VJ(P )

to indicate their product in Sym2(VJ(P )).
Since we are listing only the zero weight relations in the E7 case, every filter will appear paired with

the filter corresponding to the negative of its weight. We denote by J the pair of the filter J . For example
the principal filter genereated by f2 is named A2, since the weight of the vector A2 · A2 is zero. There
are 28 zero weight pairs of filters. Seven of these are the incomparable pairs, while the other 21 are the
standard monomials. Figure 4 displays a matrix which lists the 21 standard monomial cooordinates for
each of the 7 products of incomparable pairs. For legibility, negative coordinates are presented with bars.
To display the relations in matrix form, we must fix some total ordering of the monomials. We use the
following arbitrary order for the products of incomparable pairs:

A2 · F2, E3 · A2F1, D4 · A2E2, A2D3 · C3O2, B2O2 · A2C3, B3 · O2, C3 · A2O2

We order the standard monomials by the following reverse lexicographic order:
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Fig. 2: The colored Hasse diagrams for e7(7) and e6(1) (or e6(6)).

B2D3 · B2D3, B2E2 · B2E2, B2F1 · B2F1, B2 · B2, D3 · D3, C2E2 · C2E2, C2F1 · C2F1,
C2 · C2, E2 · E2, D2F1 · D2F1, D2 · D2, F1O1 · F1O1, E1O1 · E1O1, O1 · O1,

F1 · F1, E1 · E1, D1 · D1, C1 · C1, B1 · B1, A1 · A1, ℵ · ℵ

8 Non-simply laced cases
Beginning with Section 5, we assumed that our algebra g was simply laced. However, there are minuscule
weights in the non-simply laced type B and C root systems. The weight ω1 of the type Cn system is
minuscule. There a dimension calculation shows that the corresponding Plücker module I = 0, so there
are no Plücker relations in this case. The weight ωn of the typeBn system is also minuscule. For this case
we deduce results about its Plücker relations from our results for a simply laced type D case through the
strategy of “diagram folding.” This uses an embedding of a type Bn Lie algebra into one of type Dn+1.

Fix n ≥ 2. Let g be a simple Lie algebra of type Dn+1. There is an embedded type Bn subalgebra
gB ⊂ g; it can be defined as the fixed points of an automorphism of g. The subalgebra hB := h ∩ gB is a
Cartan subalgebra for gB . The minuscule weight λB of h∗B is the restriction ωn|hB

(or ωn+1|hB
) of a spin

minuscule weight of h∗. Let λ be one of these two spin weights of g. Let P := Pλ be the corresponding
minuscule poset, and construct Wildberger’s representation VJ(P ) of g. Define I ⊂ Sym2(VJ(P )) as for
Problem 11. The subalgebra gB ⊂ g acts naturally on VJ(P ). Then the gB submodule VB := U(gB).ℵ
of VJ(P ) is a minuscule representation of gB with highest weight λB . One can pose Problem 11 for
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Inc. Pair Meet · Join
D1 · O1 = C1 · D1O1 - B1 · C2 + A1 · B2 - ℵ · A2

E1 · O1 = C1 · E1O1 - B1 · C2E1 + A1 · B2E1 - ℵ · A2E1
E1 · D1O1 = D1 · E1O1 - B1 · D2 + A1 · B2D2 - ℵ · A2D2

C2 · E1 = D1 · C2E1 - C1 · D2 + A1 · C3 - ℵ · A2C3
C2 · E1O1 = D1O1 · C2E1 - O1 · D2 + A1 · O2 - ℵ · A2O2

B2 · E1 = D1 · B2E1 - C1 · B2D2 + B1 · C3 - ℵ · B3
B2 · E1O1 = D1O1 · B2E1 - O1 · B2D2 + B1 · O2 - ℵ · B3O2

A2 · E1 = D1 · A2E1 - C1 · A2D2 + B1 · A2C3 - A1 · B3
B2 · C2E1 = C2 · B2E1 - O1 · C3 + C1 · O2 - ℵ · C4
A2 · E1O1 = D1O1 · A2E1 - O1 · A2D2 + B1 · A2O2 - A1 · B3O2

B2 · D2 = C2 · B2D2 - O1D1 · C3 + D1 · O2 - ℵ · D3

A2 · C2E1 = C2 · A2E1 - O1 · A2C3 + C1 · A2O2 - A1 · C4
A2 · B2E1 = B2 · A2E1 - O1 · B3 + C1 · B3O2 - B1 · C4
B2E1 · D2 = C2E1 · B2D2 - O1E1 · C3 + E1 · O2 - ℵ · ℵ
A2 · D2 = C2 · A2D2 - O1D1 · A2C3 + D1 · A2O2 - A1 · D3

A2 · B2D2 = B2 · A2D2 - O1D1 · B3 + D1 · B3O2 - B1 · D3

A2E1 · D2 = C2E1 · A2D2 - O1E1 · A2C3 + E1 · A2O2 - A1 · ℵ
A2E1 · B2D2 = B2E1 · A2D2 - O1E1 · B3 + E1 · B3O2 - B1 · ℵ
A2 · C3 = B2 · A2C3 - C2 · B3 + D1 · C4 - C1 · D3

A2 · O2 = B2 · A2O2 - C2 · B3O2 + D1O1 · C4 - O1 · D3

A2E1 · C3 = B2E1 · A2C3 - C2E1 · B3 + E1 · C4 - C1 · ℵ
A2D2 · C3 = B2D2 · A2C3 - D2 · B3 + E1 · D3 - D1 · ℵ
A2E1 · O2 = B2E1 · A2O2 - C2E1 · B3O2 + E1O1 · C4 - O1 · ℵ
A2D2 · O2 = B2D2 · A2O2 - D2 · B3O2 + E1O1 · D3 - D1O1 · ℵ
A2C3 · O2 = C3 · A2O2 - D2 · C4 + C2E1 · D3 - C2 · ℵ
B3 · O2 = C3 · B3O2 - B2D2 · C4 + B2E1 · D3 - B2 · ℵ
B3 · A2O2 = A2C3 · B3O2 - A2D2 · C4 + A2E1 · D3 - A2 · ℵ

Fig. 3: The 27 straightening laws for the complex Cayley plane on its Plücker coordinates.

the gB-module VB : The gB-module Sym2(VB) decomposes into a direct sum U(gB).(ℵ)2 ⊕ IB of gB-
submodules for some submodule IB . Find a spanning set (or basis) for IB .

Proposition 21 The gB-modules VB and VJ(P ) are equal. Moreover, the subspaces I and IB of
Sym2(VJ(P )) = Sym2(VB) are equal.

This proposition allows us to obtain some Plücker relations for gB by first applying Section 6 with
the simply laced algebra g to obtain extreme weight relations in I , and then recognizing those as Plücker
relations in IB . We know these are standard straightening laws on double-tailed diamond sublattices of
Lλ. By checking their order structure in LλB

, we obtain the final ingredient for Theorem 16:

Corollary 22 Each extreme weight Plücker relation for gB is the standard straightening law on a double-
tailed diamond sublattice of LλB

. Moreover, Corollary 19 also holds here.
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0 0 0 1 0 0 0 1̄ 0 0 1 0 1̄ 1 0 1 1̄ 1 1̄ 1 1̄
0 0 1 0 0 0 1̄ 0 0 1 0 1̄ 0 1̄ 1 0 1 1̄ 1 1̄ 1
0 1 0 0 0 1̄ 0 0 1 0 0 1 1̄ 0 1̄ 1 0 1 1̄ 1 1̄
1 0 0 0 1̄ 0 0 0 1̄ 1 1̄ 0 0 0 1 1̄ 1 0 1 1̄ 1
0 0 0 0 1 1̄ 1 1̄ 1 1̄ 1 1 1̄ 1 1̄ 1 1̄ 1 1̄ 2 2̄
1 1̄ 1 1̄ 0 0 0 0 1̄ 1 1̄ 1̄ 1 1̄ 1 1̄ 1 1̄ 2 1̄ 2
1 1̄ 1 1̄ 1̄ 1 1̄ 1 1̄ 1 1̄ 1̄ 1 1̄ 2 2̄ 2 2̄ 2 2̄ 3


Fig. 4: The matrix which lists the 21 standard monomial coordinates of the 7 products of weight zero incomparable
pairs of Plücker coordinates for the Freudenthal variety, in the total order of Section 7.
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