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GLn(Fq)-analogues of factorization problems
in Sn

Joel Brewster Lewis1† and Alejandro H. Morales2‡

1 School of Mathematics, University of Minnesota, Twin Cities
2 Department of Mathematics, University of California, Los Angeles

Abstract. We consider GLn(Fq)-analogues of certain factorization problems in the symmetric group Sn: rather
than counting factorizations of the long cycle (1, 2, . . . , n) given the number of cycles of each factor, we count
factorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in Sn,
the generating function counting these factorizations has attractive coefficients after an appropriate change of basis.
Our work generalizes several recent results on factorizations in GLn(Fq) and also uses a character-based approach.
We end with an asymptotic application and some questions.

Résumé. Nous considérons GLn(Fq)-analogues de certains problèmes de factorisation dans le groupe symétrique
Sn: plutôt que de compter factorisations d’un grand cycle (1, 2, . . . , n) étant donné le nombre de cycles de chaque
facteur, nous comptons factorisations de un élément elliptique régulière donné la dimension de l’espace fixe de chaque
facteur. Nous montrons que, comme dans Sn, la fonction génératrice de ces factorisations a des coefficients attirants
après un changement de base. Notre travail généralise plusieurs résultats récents sur factorisations dans GLn(Fq) et
utilise une approche basée sur les caractères. Nous terminons avec une application asymptotique et des questions.

Keywords. factorization, finite general linear group, Singer cycle, regular elliptic, fixed space dimension, q-analogue

1 Introduction
There is a rich vein in combinatorics of problems related to factorizations in the symmetric group Sn.
Frequently, the size of a certain family of factorizations is unwieldy but has an attractive generating
function, possibly after an appropriate change of basis. As a prototypical example, one might seek to
count factorizations c = u · v of the long cycle c = (1, 2, . . . , n) in Sn as a product of two permutations,
keeping track of the number of cycles or even the cycle types of the two factors. Notably, results of this
form have been given by Jackson [11, §4], [12], including the following result.

Theorem 1.1 (Jackson [12]; Morales–Vassilieva [15]). Let ar,s be the number of pairs (u, v) of elements
of Sn such that u has r cycles, v has s cycles, and c = u · v. Then

1

n!

∑
r,s≥0

ar,s · xrys =
∑
t,u≥1

(
n− 1

t− 1;u− 1;n− t− u+ 1

)(
x

t

)(
y

u

)
. (1.1)
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Moreover, for λ, µ partitions of n, let aλ,µ be the number of pairs (u, v) of elements of Sn such that u
has cycle type λ, v has cycle type µ, and c = u · v. Then

1

n!

∑
λ,µ`n

aλ,µ · pλ(x)pµ(y) =
∑
α,β

(n− `(α))!(n− `(β))!

(n− 1)!(n+ 1− `(α)− `(β))!
xαyβ , (1.2)

where pλ denotes the usual power-sum symmetric function and the sum on the right is over all weak
compositions α, β of n.

Recently, there has been interest in q-analogues of such problems, replacing Sn with the general linear
group GLn(Fq) over an arbitrary finite field Fq , the long cycle with a Singer cycle (or, more generally,
regular elliptic element) c, and the number of cycles with the fixed space dimension [14, 10]. In the present
paper, we extend this approach to give the following q-analogue of Theorem 1.1. Our theorem statement
uses the standard notations

(a; q)m = (1−a)(1−aq) · · · (1−aqm−1) and [m]!q =
(q; q)m

(1− q)m
= 1·(1+q) · · · (1+q+. . .+qm−1).

Theorem 1.2. Fix a regular elliptic element c inG = GLn(Fq). Let ar,s(q) be the number of pairs (u, v)
of elements of G such that u has fixed space dimension r, v has fixed space dimension s, and c = u · v.
Then

1

|G|
∑
r,s≥0

ar,s(q) · xrys =
(x; q−1)n

(q; q)n
+

(y; q−1)n
(q; q)n

+

∑
0≤t,u≤n−1
t+u≤n

qtu−t−u
[n− t− 1]!q · [n− u− 1]!q

[n− 1]!q · [n− t− u]!q

(qn − qt − qu + 1)

(q − 1)
· (x; q−1)t

(q; q)t

(y; q−1)u
(q; q)u

. (1.3)

More generally, in either Sn or GLn(Fq) one may consider factorizations into more than two factors.
In Sn, this gives the following result.

Theorem 1.3 (Jackson [12]; Bernardi–Morales [2]). Let ar1,r2,...,rk be the number of tuples (u1, u2, . . . , uk)
of permutations in Sn such that ui has ri cycles and u1u2 · · ·uk = c. Then

1

(n!)k−1

∑
1≤r1,r2,...,rk≤n

ar1,...,rk · x
r1
1 · · ·x

rk
k =

∑
1≤p1,...,pk≤n

Mn−1
p1−1,...,pk−1

(
x1
p1

)
· · ·
(
xk
pk

)
, (1.4)

where

Mm
r1,...,rk

:=

min(ri)∑
d=0

(−1)d
(
m

d

) k∏
i=1

(
m− d
ri − d

)
. (1.5)

Moreover, let aλ(1),...,λ(k) be the number of tuples (u1, u2, . . . , uk) of permutations in Sn such that ui has
cycle type λ(i) and u1u2 · · ·uk = c. Then

(n!)1−k
∑

λ(1),··· ,λ(k)`n

aλ(1),...,λ(k) ·pλ(1)(x1) · · · pλ(k)(xk) =
∑

α(1),...,α(k)

Mn−1
`(α(1))−1,...,`(α(k))−1∏k

i=1

(
n−1

`(α(i))−1
) (x1)α

(1)

· · · (xk)α
(k)

,

where the sum on the right is over all weak compositions α(1), . . . , α(k) of n.
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In the present paper, we prove the following q-analogue of this result. The statement uses the standard

q-binomial coefficient
[
n
k

]
q

= [n]!q
/

([k]!q · [n− k]!q).

Theorem 1.4. Fix a regular elliptic element c in G = GLn(Fq). Let ar1,...,rk(q) be the number of tuples
(u1, . . . , uk) of elements of G such that ui has fixed space dimension ri and u1 · · ·uk = c. Then

1

|G|k−1
∑

r1,...,rk

ar1,...,rk(q) · xr11 · · ·x
rk
k =

∑
p=(p1,...,pk) :

0≤pi≤n

Mn−1
p̃ (q)∏

p∈p̃

[
n− 1
p

]
q

· (x1; q−1)p1
(q; q)p1

· · · (xk; q−1)pk
(q; q)pk

,

(1.6)
where p̃ is the result of deleting all copies of n from p,

Mm
r1,...,rk

(q) :=

min(ri)∑
d=0

(−1)dq(
d+1
2 )−kd

[
m
d

]
q

k∏
i=1

[
m− d
ri − d

]
q

(1.7)

for k > 0, and Mm
∅ (q) := 0.

Remark 1.5. In viewing Theorems 1.2 and 1.4 as q-analogues of Theorems 1.1 and 1.3, it is helpful to

first observe that if x = qN is a positive integer power of q then
(x; q−1)m

(q; q)m
=
[
N
m

]
q
. Further, we have the

equality

lim
q→1

[n− t− 1]!q · [n− u− 1]!q
[n− 1]!q · [n− t− u]!q

(qn − qt − qu + 1)

(q − 1)
=

(n− (t+ 1))!(n− (u+ 1))!

(n− 1)!(n+ 1− (t+ 1)− (u+ 1))!

between the limit of a coefficient in (1.3) and a coefficient on the right side of (1.2), and more generally
the equality limq→1M

m
r1,...,rk

(q) = Mm
r1,...,rk

.
Note that the generating function (1.6) is (in its definition) analogous to the less-refined generating

function (1.4), while the coefficient

Mn−1
p̃ (q)

/∏
p∈p̃

[
n− 1
p

]
q

is analogous (in the q → 1 sense) to a coefficient in the more refined half of Theorem 1.3. This phe-
nomenon is mysterious. A similar phenomenon was observed in the discussion following Theorem 4.2 in
[10], namely, that the counting formula qe(α)(qn−1)k−1 for factorizations of a regular elliptic element in
GLn(Fq) into k factors with fixed space codimensions given by the composition α of n is a q-analogue
of the counting formula nk−1 for factorizations of an n-cycle as a genus-0 product of k cycles of specified
lengths.

On the other hand, we can give a heuristic explanation for the fact that the lower indices in the M -
coefficients in Theorem 1.4 are shifted by 1 compared with those in Theorem 1.3: the matrix group Sn

does not act irreducibly in its standard representation, as every permutation fixes the all-ones vector. Thus,
morally, the subtraction of 1 should correct for the irrelevant dimension of fixed space.

Our approach is to follow a well-worn path, based on character-theoretic techniques that go back to
Frobenius. In the case of the symmetric group, this approach has been extensively developed in the ’80s
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and ’90s, notably in work of Stanley [19], Jackson [11, 12], and Goupil–Schaeffer [7]. In GLn(Fq), the
necessary character theory was worked out by Green [8]. This approach has been used recently by the
first-named author and coauthors to count factorizations of Singer cycles into reflections [14] and to count
genus-0 factorizations (that is, those in which the codimensions of the fixed spaces of the factors sum to
the codimension of the fixed space of the product) of regular elliptic elements [10]. The current work
subsumes these previous results while requiring no new character values. (See Remarks 3.2 and 3.3 for
derivations of these earlier results from Theorem 1.4.)

The plan of the paper is as follows. In Section 2, we provide background, including an overview of
the character-theoretic approach to problems of this sort and a quick introduction to the character theory
of GLn(Fq) necessary for our purposes. Proofs of Theorems 1.2 and 1.4 are sketched in Section 3.
The genus of a factorization counted in ar,s(q) is n − r − s. In Section 4, we give an application of
Theorem 1.2 to asymptotic enumeration, giving the precise growth rate Θ(q(n+g)

2/2/|GLg(Fq)|) of the
number of factorizations of fixed genus g of a regular elliptic element in GLn(Fq) as a product of two
factors, as n→∞. Finally, in Section 5 we give a few additional remarks and open questions.

The full-length version of this extended abstract is available as [13].

Acknowledgements
We are grateful to Olivier Bernardi, Valentin Féray, and Vic Reiner for helpful comments and suggestions
during the preparation of this paper. We are deeply indebted to Dennis Stanton for his help and guidance
in dealing with q-series manipulations at the core of Section 3.

2 Regular elliptics, character theory, and the symmetric group ap-
proach

2.1 Singer cycles and regular elliptic elements
The field Fqn is an n-dimensional vector space over Fq , and multiplication by a fixed element in the
larger field is a linear transformation. Thus, any choice of basis for Fqn over Fq gives a natural inclusion
F×qn ↪→ Gn := GLn(Fq). The image of any cyclic generator c for F×qn under this inclusion is called a
Singer cycle. A strong analogy between Singer cycles in Gn and n-cycles in Sn has been established
over the past decade or so, notably in work of Reiner, Stanton, and collaborators [17, 16, 14, 10]. As
one elementary example of this analogy, the Singer cycles act transitively on the lines of Fnq , just as the
n-cycles act transitively on the points {1, . . . , n}.

A more general class of elements of Gn, containing the Singer cycles, is the set of images (under the
same inclusion) of field generators σ for Fqn over Fq . (That is, one should have Fq[σ] = Fqn but not
necessarily {σm | m ∈ Z} = F×qn .) Such elements are called regular elliptic elements. They may be
characterized in several other ways; see [14, Prop. 4.4].

2.2 The character-theoretic approach to factorization problems
Given a finite group G, let Irr(G) be the collection of its irreducible (finite-dimensional, complex) rep-
resentations V . For each V in Irr(G), denote by deg(V ) := dimC V its degree, by χV (g) := Tr(g :
V → V ) its character value at g, and by χ̃V (g) := χV (g)/ deg(V ) its normalized character value.
The functions χV (−) and χ̃V (−) on G extend by C-linearity to functionals on the group algebra C[G].
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The following result allows one to express every factorization problem of the form we consider as a
computation in terms of group characters.

Proposition 2.1 (Frobenius [4]). Let G be a finite group, and A1, . . . , A` ⊆ G unions of conjugacy
classes in G. Then for g in G, the number of ordered factorizations (t1, . . . , t`) with g = t1 · · · t` and ti
in Ai for i = 1, 2, . . . , ` is

1

|G|
∑

V ∈Irr(G)

deg(V )χV (g−1) · χ̃V (z1) · · · χ̃V (z`), (2.1)

where zi :=
∑
t∈Ai

t in C[G].

In practice, it is often the case that one does not need the full set of character values that appear in
(2.1) in order to evaluate the sum. As an example of this phenomenon, we show how to derive Theo-
rem 1.1 without needing access to the full character table for the symmetric group Sn. This argument
also provides a template for our work in GLn(Fq).

Let c be the long cycle c = (1, 2, . . . , n) in Sn. Consider the generating function

F (x, y) =
∑

1≤r,s≤n

ar,s · xrys (2.2)

for the number ar,s of factorizations c = u · v in which u, v have r, s cycles, respectively. By Proposi-
tion 2.1, we have that

ar,s =
1

n!

∑
V ∈Irr(Sn)

deg(V )χV (c−1) · χ̃V (zr)χ̃
V (zs),

where zi is the formal sum in C[Sn] of all elements with i cycles. Substituting this in (2.2) gives

F (x, y) =
1

n!

∑
1≤r,s≤n

∑
V ∈Irr(Sn)

deg(V )χV (c−1) · χ̃V (zr)χ̃
V (zs) · xrys

=
1

n!

∑
V ∈Irr(Sn)

deg(V )χV (c−1) · fV (x)fV (y),

where fV (x) :=
∑n
r=1 χ̃

V (zr)x
r. The irreducible representations of Sn are indexed by partitions λ of

n, and we write χV = χλ if V is indexed by λ. The degree of a character is given by the hook-length
formula. It follows from the Murnaghan–Nakayama rule that the character value χλ(c−1) on the n-cycle
c−1 is equal to 0 unless λ =

〈
n− d, 1d

〉
is a hook shape, in which case χ〈n−d,1

d〉(c−1) = (−1)d. Thus
it suffices to understand fλ(x) for hooks λ. One can show that

f〈n−d,1d〉(x) = (x− d)n := (x− d) · (x− d+ 1) · · · (x− d+ n− 1) = n! ·
n∑

k=d+1

(
n− 1− d
k − 1− d

)
·
(
x

k

)
,

and the result follows by identities for binomial coefficients after extracting the coefficient of
(
x
t

)(
y
u

)
.
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2.3 Character theory of the finite general linear group
In this section, we give a (very) brief overview of the character theory of Gn = GLn(Fq), including
the specific character values necessary to prove the main results in this paper. For a proper treatment,
see [21, Ch. 3] or [9, §4]. Throughout this section, we freely conflate the (complex, finite-dimensional)
representation V for GLn(Fq) with its character χV .

The basic building-block of the character theory of Gn is parabolic (or Harish-Chandra) induction,
defined as follows. For nonnegative integers a, b, let Pa,b be the parabolic subgroup

Pa,b =

{[
A C
0 B

]
: A ∈ Ga, B ∈ Gb, and C ∈ Fa×bq

}
of Ga+b. Given characters χ1 and χ2 for Ga and Gb, respectively, one obtains a character χ1 ∗ χ2 for
Ga+b by the formula

(χ1 ∗ χ2)(g) =
1

|Pa,b|
∑

h∈Ga+b :

hgh−1∈Pa,b

χ1(A)χ2(B),

where A and B are the diagonal blocks of hgh−1 as above.
Many irreducible characters for Gn may be obtained as irreducible components of induction products

of characters on smaller general linear groups. A character C for Gn that cannot be so-obtained is called
cuspidal, of weight wt(C) = n. The set of cuspidals forGn is denoted Cuspn, and the set of all cuspidals
for all general linear groups is denoted Cusp = tn≥1Cuspn. (Though we will not need this, we note
that cuspidals may be indexed by irreducible polynomials over Fq , or equivalently by primitive q-colored
necklaces.)

Let Par denote the set of all integer partitions. The set of all irreducible characters for Gn is indexed by
functions λ : Cusp→ Par such that ∑

C∈Cusp

wt(C) · |λ(C)| = n.

(In particular, λ(C) must be equal to the empty partition for all but finitely many choices of C.) A par-
ticular representation of interest is the trivial representation 1 for GL1(Fq). (The trivial representation
for GLn(Fq) is indexed by the function associating to 1 the partition 〈n〉.) If V is indexed by λ having
support on a single cuspidal representation C, we call V primary and denote it by the pair (C, λ) where
λ = λ(C).

A priori, in order to use Proposition 2.1 in our setting, we require the degrees and certain other values
of all irreducible characters for Gn. In fact, however, we will only need a very small selection of them.
The character degrees were worked out by Steinberg [20] and Green [8], and the special case relevant to
our work is

deg
(
χ1,〈n−d,1d〉

)
= q(

d+1
2 )
[
n− 1
d

]
q

. (2.3)

The relevant character values on regular elliptic elements were computed by Lewis–Reiner–Stanton.

Proposition 2.2 ([14, Prop. 4.7]). Suppose c is a regular elliptic element and χλ an irreducible character
of Gn.
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(i) One has χλ(c) = 0 unless χλ is a primary irreducible character χU,λ for some s dividing n and
some cuspidal character U in Cusps, and λ =

〈
n
s − d, 1

d
〉

is a hook-shaped partition of n/s.

(ii) If U = 1 is the trivial character then χ1,〈n−d,1d〉(c) = (−1)d.

Finally, denote by zk the formal sum (in C[Gn]) of all elements of Gn having fixed space dimension
equal to k. Huang–Lewis–Reiner computed the relevant character values on the zk.

Proposition 2.3 ([10, Prop. 4.10]). (i) For any s dividing n, any cuspidal representation U in Cusps

other than 1, and any partition λ of ns , we have χ̃U,λ(zr) = (−1)n−rq(
n−r
2 )
[
n
r

]
q

.

(ii) For U = 1 and λ =
〈
n− d, 1d

〉
a hook, we have

χ̃1,〈n−d,1d〉(zr) =

(−1)n−rq(
n−r
2 )
([n

r

]
q

+
(1− q)[n]q

[r]!q
·
n−max(r,d)∑

j=1

qjr−d · [n− j]!q
[n− r − j]!q

· (qn−d−j+1; q)j−1

)
.

3 Proofs of main theorems
3.1 Proof sketch of Theorem 1.2
In this section, we prove Theorem 1.2 by following the approach for Sn sketched in Section 2.2. Let c
be a regular elliptic element in G = GLn(Fq), and let ar,s(q) be the number of pairs (u, v) of elements
of G such that u · v = c and u, v have fixed space dimensions r, s, resprectively. Define the generating
function F (x, y) :=

∑
r,s≥0 ar,s(q)x

rys. Our goal is to rewrite this generating function in the basis
(x;q−1)t
(q;q)t

(y;q−1)u
(q;q)u

of polynomials q-analogous to the binomial coefficients.
By Proposition 2.1, we may write

ar,s(q) =
1

|G|
∑

V ∈Irr(G)

deg(V )χV (c−1) · χ̃V (zr) · χ̃V (zs) (3.1)

where zk is defined (as above) to be the element of the group algebra C[G] equal to the sum of all elements
of fixed space dimension k. Thus, our generating function is given by

F (x, y) =
1

|G|
∑

V ∈Irr(G)

deg(V )χV (c−1) · fV (x) · fV (y), (3.2)

where fV (x) :=
∑n
r=0 χ̃

V (zr) · xr.
By Proposition 2.2, the character value χV (c−1) is typically 0, and so in order to prove Theorem 1.2 it

suffices to compute fV for only a few select choices of V . We do this now.

Proposition 3.1. If V = (U, λ) for U 6= 1 we have

fU,λ(x) = |G| · (x; q−1)n
(q; q)n

, (3.3)
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while if V = (1,
〈
n− d, 1d

〉
) we have

f1,〈n−d,1d〉(x) = |G| ·

(
(x; q−1)n

(q; q)n
+ q−d ·

n−1∑
m=d

[m]!q · [n− d− 1]!q
[m− d]!q · [n− 1]!q

· (x; q−1)m
(q; q)m

)
. (3.4)

The proof is a straightforward computation using Proposition 2.3, the q-binomial theorem [6, §1.3]

(x; q−1)m
(q; q)m

=
1

(q; q)mq
(m

2 )

m∑
k=0

(−1)kq(
m−k

2 )
[
m
k

]
q

· xk (3.5)

and its inverse

xk =

k∑
m=0

(−1)mq(
m
2 )(qk; q−1)m ·

(x; q−1)m
(q; q)m

. (3.6)

We continue studying the factorization generating function F (x, y). We split the sum (3.2) according
to whether V is a primary irreducible over the cuspidal 1 of hook shape:

|G| · F (x, y) =
∑

V 6=(1,〈n−d,1d〉)

deg(V )χV (c−1) · fV (x) · fV (y) +

n−1∑
d=0

deg(1,
〈
n− d, 1d

〉
)χ1,〈n−d,1d〉(c−1) · f1,〈n−d,1d〉(x) · f1,〈n−d,1d〉(y). (3.7)

We use Proposition 2.2(i) and (3.3) to rewrite the first sum on the right side of (3.7) as∑
V 6=(1,〈n−d,1d〉)

deg(V )χV (c−1) · fV (x)fV (y) = |G|2 (x; q−1)n
(q; q)n

(y; q−1)n
(q; q)n

∑
V 6=(1,〈n−d,1d〉)

deg(V )χV (c−1).

Observe (following the same idea as in [10, §4.3]) that
∑
V ∈Irr(G) deg(V )χV is the character of the

regular representation for G. It follows that
∑
V ∈Irr(G) deg(V )χV (c−1) = 0 and so one can show that∑

V 6=(1,〈n−d,1d〉)

deg(V )χV (c−1) · fV (x)fV (y) = −(q; q)n−1 · |G|2 ·
(x; q−1)n

(q; q)n

(y; q−1)n
(q; q)n

. (3.8)

Substituting from (2.3), (3.8) and Proposition 2.2 into (3.7) yields that F (x, y)/|G| equals

−(q; q)n−1
(x; q−1)n

(q; q)n

(y; q−1)n
(q; q)n

+
1

|G|2
n−1∑
d=0

(−1)dq(
d+1
2 )
[
n− 1
d

]
q

·f1,〈n−d,1d〉(x)·f1,〈n−d,1d〉(y). (3.9)

In order to finish the proof of Theorem 1.2, we must extract the coefficient of (x;q−1)t
(q;q)t

(y;q−1)u
(q;q)u

from the
right side of this equation. By (3.4), this extraction reduces to a computation involving q-series. The key
step is the basic hypergeometric function identity [6, (III.7)]

2φ1(q−k, B; C; z) =
(C/B; q)k

(C; q)k
· 3φ2(q−k, B, Bzq−k/C; Bq1−k/C, 0; q).
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3.2 Proof sketch of Theorem 1.4
We follow the same framework as in Section 3.1. Let ar1,...,rk(q) be the number of tuples (g1, . . . , gk) of
elements of G = GLn(Fq) such that gi has fixed space dimension ri for all i and g1 · · · gk = c. Define
the generating function

F (x1, . . . , xk) =
∑

r1,...,rk

ar1,...,rk(q)xr11 · · ·x
rk
k .

The statement we wish to prove asserts a formula for this generating function when expressed in another
basis. Applying Proposition 2.1, one has (as in (3.2)) that

|G| · F (x) =
∑

V ∈Irr(G)

deg(V )χV (c−1)fV (x1) · · · fV (xk).

The same regular representation trick that leads from (3.7) to (3.9) works with more variables; it yields

|G| · F (x) = −(q; q)n−1|G|k ·
(x1; q−1)n

(q; q)n
· · · (xk; q−1)n

(q; q)n
+

n−1∑
d=0

(−1)dq(
d+1
2 )
[
n− 1
d

]
q

f1,〈n−d,1d〉(x1) · · · f1,〈n−d,1d〉(xk). (3.10)

To finish the proof of Theorem 1.4, we must extract from this expression the coefficient of
∏
i
(xi;q

−1)pi
(q;q)pi

.
Because of the form (3.4) of the polynomial f1,〈n−d,1d〉(x), it is convenient to introduce a new pa-

rameter j, marking the number of indices pi not equal to n. Then substituting from (3.4) into (3.10) and
extracting coefficients yields the desired result.

3.3 Additional remarks on Theorem 1.4
The following remarks sketch how to recover the main theorems of [14, 10] as special cases of Theo-
rem 1.4. Incidentally, the first remark also settles a conjecture of Lewis–Reiner–Stanton.

Remark 3.2. In [14, Thm. 1.2], Lewis–Reiner–Stanton gave a formula for the number of factorizations of
a Singer cycle c as a product of ` reflections (that is, elements with fixed space dimension n−1). One can
derive such a formula from Theorem 1.4 by extracting the coefficient of xn−11 · · ·xn−1` in (1.6) applying
the binomial and q-binomial theorem. It was conjectured [14, Conj. 6.3] that this formula should count
factorizations of any regular elliptic element, not just a Singer cycle; since the derivation sketched here is
valid for all regular elliptic elements, it settles the conjecture.

Remark 3.3. In the genus-0 case r1 + . . .+ rk = (k − 1)n, there is a simple formula [10, Thm. 4.2] for
ar1,...,rk(q) with 0 ≤ ri < n. This formula follows from Theorem 1.4 by the triangularity of the change
of basis (3.5), (3.6) and a q-analogue of the Karlsson–Minton formulas (see [6, §1.9]).

4 Application to asymptotic enumeration of factorizations by genus
In the spirit of (e.g.) [5] and [7, §4.2], one may ask to study the asymptotic enumeration of factorizations.
Here, we compute the asymptotic growth of the number of fixed-genus factorizations of a regular elliptic
element in G = GLn(Fq) as n→∞.
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Theorem 4.1. Let g ≥ 0 and q be fixed. As n → ∞, the number of genus-g factorizations of a regular
elliptic element in GLn(Fq) into two factors has growth rate Θ

(
q(n+g)

2/2 / |GLg(Fq)|
)

, where the
implicit constants depend on q but not g.

Remark 4.2. For the sake of comparison, we include the analogous asymptotics in Sn. Goupil and
Schaeffer showed [7, Cor. 4.3] that for fixed g ≥ 0, as n → ∞ the number of genus-g factorizations of a
fixed long cycle in Sn into two factors is asymptotic to n3(g−

1
2 )4n/(g!48g

√
π).

It is interesting to observe that in both results we see that the constant depends on the size (|Sg| or
|GLg(Fq)|) of a related group. Is there an explanation for this phenomenon?

The rest of this section is a sketch of the proof of Theorem 4.1. To begin, we use Theorem 1.2 to give
an explicit formula for ar,s(q). For every positive integer g, let Pg(x, y, z, q) be the following Laurent
polynomial of four variables:

Pg(x, y, z, q) := (−1)gq−g

(
y−gzg

g∏
i=1

(yqi − 1) + ygz−g
g∏
i=1

(zqi − 1)

)
+

∑
0≤t′,u′≤g−1
0≤t′+u′≤g

(−1)t
′+u′ ×

[
g

t′;u′; g − t′ − u′
]
q

· yu
′−t′zt

′−u′qt
′u′−t′−u′(x− yqt

′
− zqu

′
+ 1)

g−t′−1∏
i=1

(zqi − 1)

g−u′−1∏
i=1

(yqi − 1).

Proposition 4.3. If g, r, s > 0 satisfy r + s = n− g then

ar,s(q) = q2rs+(g−1)n−(g
2)(qn − 1)(q − 1)−g · Pg(qn, qr, qs, q) / [g]!q.

Proof sketch: Extracting the coefficient of xrys from (1.3) using (3.5) gives

ar,s(q)

|G|
= (−1)n−gq(

r+1
2 )+(s+1

2 ) ×∑
r≤t, s≤u,
t+u≤n

qtu−t−u−rt−su

(q; q)t(q; q)u

[
t
r

]
q

[
u
s

]
q

[n− t− 1]!q · [n− u− 1]!q
[n− 1]!q · [n− t− u]!q

(qn − qt − qu + 1)

(q − 1)
. (4.1)

The rest of the proof is a long but totally unenlightening calculation: expanding the q-binomials, making
the change of variables t = r + t′, u = s + u′ with 0 ≤ t′ + u′ ≤ g, separating the (t′, u′) = (g, 0)
and (0, g) terms, rearranging various factors, and doing some basic arithmetic. In particular, no nontrivial
q-identities are required.

Proof sketch of Theorem 4.1: The case g = 0 is straightforward from [10]. For g > 0, Proposition 4.3
provides an explicit polynomial formula for ar,s(q). Notably, the number of terms in this formula does not
depend on n. It is not difficult to compute the asymptotics for the sum (over r, s such that r+ s = n− g)
of a single monomial from this polynomial; the behavior includes a constant factor that oscillates between
two evaluations of the convergent Jacobi theta function ϑ(w, t) :=

∑∞
r=−∞ tr

2 · w2r. In turns out that
the contribution of the single monomial xyg−1zg−1 dominates all others. To finish, one extracts the
coefficient of this monomial in Pg and does some arithmetic.
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5 Closing remarks
5.1 Combinatorial proofs
Theorems 1.1 and 1.3 were originally proved in [12] by character methods (as in the outline in Sec-
tion 2.2), but these are not the only known proofs. The first result (the case of two factors in Sn) has
several combinatorial proofs, by Schaeffer–Vassilieva [18], Bernardi [1], and Chapuy–Féray–Fusy [3].
The second result (the case of k factors) has an intricate combinatorial proof [2]. It would be of interest
to find combinatorial proofs of our q-analogous Theorems 1.2 and 1.4.

5.2 Other asymptotic questions
By studying the generating function in (1.3) one can show that the expected genus of a random factoriza-
tion of a regular elliptic element in GLn(Fq) into two factors is exactly

n− 2

n∑
t=1

(−1)tq−(t
2)(1− qt)−1. (5.1)

Since the sum in (5.1) converges as n→∞, the vast majority of factorizations of a regular elliptic element
c ∈ GLn(Fq) into two factors have large genus. Unfortunately, the techniques used to prove Theorem 4.1
are not sufficient to compute asymptotics for the number of genus-g factorizations if g grows with n. This
leads to several natural questions.

Question 5.1. What is the asymptotic growth rate of the number of genus-g factorizations of a regular
elliptic element in GLn(Fq) into two factors if g grows with n? For example, if g = αn for α ∈ (0, 1)?

Question 5.2. Can one compute the limiting distribution of the genus of a random factorization of a
regular elliptic element c ∈ GLn(Fq) into two factors when n is large? That is, choose u uniformly at
random in GLn(Fq) and let v = u−1c; what is the distribution of the genus of the factorization c = u · v?
As a first step, can one compute any higher moments of this distribution?
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