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A dual approach to structure constants for
K-theory of Grassmannians

Huilan Li1†, Jennifer Morse2‡, and Pat Shields2§

1School of Mathematical Sciences, Shandong Normal University, Jinan 250014, Shandong, China
2 Department of Mathematics, Drexel University, 15 S. 33rd Street, Philadelphia PA 19104, United States

Abstract. The problem of computing products of Schubert classes in the cohomology ring can be formulated as the
problem of expanding skew Schur polynomial into the basis of ordinary Schur polynomials. We reformulate the
problem of computing the structure constants of the Grothendieck ring of a Grassmannian variety with respect to its
basis of Schubert structure sheaves in a similar way; we address the problem of expanding the generating functions for
skew reverse-plane partitions into the basis of polynomials which are Hall-dual to stable Grothendieck polynomials.
From this point of view, we produce a chain of bijections leading to Buch’s K-theoretic Littlewood-Richardson rule.

Résumé. Le calcul des produits de classes de Schubert dans l’anneau de cohomologie correspond dans le langage
des fonctions symétriques au développement des polynômes de Schur gauches dans la base des polynômes de Schur.
Nous reformulons de façon similaire le calcul des constantes de structure de l’anneau de Grothendieck d’une variété
grassmannienne dans la base des faisceaux de structure de Schubert; nous étudions le problème du développement
des fonctions génératrices des partitions planes inversée gauches dans une base de polynômes duaux aux polynômes
de Grothendieck stables. De cette reformulation s’ensuit une séquence de bijections qui permet de redériver la règle
de Littlewood-Richardson en K-théorie obtenue par Buch.

Keywords. Grothendieck polynomial, Littlewood-Richardson rule, tabloid, sign-reversing involution, Yamanouchi
word

1 Introduction
The theory of symmetric functions supports Schubert calculus of the Grassmannian X = Gr(k, n) by
way of the Schur function basis. In particular, the Schubert cell decomposition of X is given by the
closures of Schubert varieties Xλ, for partitions λ in a k × (n − k) rectangle. The cohomology classes
corresponding to Schubert varieties form an integral basis for the cohomology ring of X , which in turn
is isomorphic to a certain quotient of the ring of symmetric polynomials in k variables. The Schur poly-
nomials sλ(x1, . . . , xk) are representatives for the Schubert classes with a critical feature that structure
constants in

[Xλ] · [Xµ] =
∑
ν

Cνλµ [Xν ]
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appear as Schur coefficients in a product of Schur polynomials:

sλ sµ =
∑
ν

Cνλµ sν .

The realization of Schur polynomials as weight generating functions of semi-standard Young tableaux
then offers combinatorial tools for the study. The development of a rich theory of tableaux ultimately
enabled the computation of the structure constants Cνλµ. The Littlewood-Richardson rule for Cνλµ dictates
a count of tableaux with certain restrictions, and its proof was settled in Schützenberger (1977) using the
RSK insertion algorithm on tableaux given by Robinson (1938); Schensted (1961); Knuth (1970).

Poincaré duality allows for an alternative way to access the Schubert structure constants. Namely, the
Poincaré dual of the product [Xλ] · [Xµ] in H∗(X) is identified by the skew Schur function sµ∨/λ, and
the Littlewood-Richardson numbers arise in its ordinary Schur expansion:

sν/λ =
∑
µ

Cνλµ sµ . (1)

This viewpoint has since given rise to many simple proofs of the Littlewood-Richardson rule (e.g. Remmel
and Shimozono (1998); Stembridge (2002)).

Developments in Schubert calculus have established the importance of combinatorics and symmetric
function theory to the more intricate setting of the Grothendieck ring K◦X of algebraic vector bundles
on X . Lascoux and Schützenberger (1983) introduced Grothendieck polynomials as representatives for
the structure sheaves of the Schubert varieties in a flag variety. Fomin and Kirillov (1994) studied the
symmetric power series resulting from a limit of Grothendieck polynomials. For the Grassmannian variety
X , Buch (2002) showed that the stable limits Gλ are generating series of set-valued tableaux and can be
applied to K◦X in a way that mirrors the Schur role in cohomology.

The classes of the Schubert structure sheavesOXλ form a basis for the Grothendieck ring of X and the
structure constants in

[OXλ ] · [OXµ ] =
∑
ν

cνλµ [OXν ]

appear in the product
GλGµ =

∑
ν

cνλµGν .

By generalizing the RSK insertion, Buch (2002) proved that the expansion coefficients are (−1)|ν|−|λ|−|µ|

times the number of set-valued tableaux with a Yamanouchi reading word.
In contrast to (1), the Schubert structure constant cνλµ for K◦X is not the coefficient of Gµ in Gν/λ.

However, we have found a dual approach that does give access to the constants using a set of represen-
tatives {gλ} for classes in K-homology of the ideal sheaves of the boundaries of Xλ. The combinatorial
investigations of Lam and Pylyavskyy (2007) revealed that these representatives can be realized as the
weight generating function of reverse plane partitions. Here we reach the K-theoretic structure constants
through the more general class of generating functions of reverse plane partitions on skew shapes, gν/λ.
In particular,

gν/λ =
∑
µ

cνλµ gµ . (2)
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We convert the weight generating function characterization for gν/λ into a setting that instead uses
tabloid, a classical combinatorial object going back to Young and the study of Sn-irreducibles. The
association between reverse plane partitions and tabloids requires an unconventional notion of weight
called the dilated weight. We prove a number of properties such as a dilated weight formulation for the
Yamanouchi condition. From this, a series of natural bijections leads to Buch’s K-theoretic Littlewood-
Richardson rule for cνλµ.

2 Preliminaries
Let X = Gr(k, n) denote the Grassmannian of k-dimensional subspaces of Cn. X decomposes into
Schubert cells, whose closures are the Schubert varieties

Xλ = {V ∈ Gr(k, n) : dim(V ∩ Cn−k+i−λi) ≥ i ∀1 ≤ i ≤ k} ,

for partitions λ = (λ1, . . . , λk) with k parts, none of which are larger than n − k. Here Cd denotes
the subspace of Cn where vectors have only non-zero entries in the first d components. The classes of
Schubert cells form a basis for the singular cohomology of X .

On the other hand, H∗(X) is isomorphic to a certain quotient of the ring of symmetric polynomials.
The ring of symmetric functions is Λ = Z[e1, . . . , ek] = Z[h1, . . . , hk], where

er =
∑

1≤i1<···<ir

xi1 · · ·xir and hr =
∑

1≤i1≤···≤ir

xi1 · · ·xir .

As a vector space, the bases for Λ are indexed by generic non-decreasing integer partitions λ = (λ1, λ2, . . . , λ`).
A quick example is the basis of homogenous symmetric functions, defined by hλ = hλ1 · · ·hλ` .

The combinatorial potential of Λ could not be met without the unique association of each partition λ
with its Ferrers shape, a left-and bottom-justified array of 1 × 1 square cells in the first quadrant of the
coordinate plane, with λi cells in the ith row from the bottom. Given a partition λ, its conjugate λ′ is the
partition obtained by reflecting the shape of λ about the line y = x. For partitions µ, λ, µ ⊂ λ when every
cell of µ is a cell of λ. For µ ⊂ λ, the skew shape λ/µ is defined by the cells in λ but not in µ. For any
partitions µ and λ, µ∗λ is the skew shape obtained by placing the diagram of λ southeast and caty-corner
to µ. For example,

µ = (2, 2, 1), λ = (3, 1) =⇒ µ ∗ λ = (5, 3, 2, 2, 1)/(2, 2) =

More generally, a composition is a sequence of non-negative integers α = (α1, α2, . . . , αk), and α− β is
defined by usual vector subtraction for any compositions α, β.

A semi-standard tableau of shape λ is a positive integer filling of the cells of λ such that entries do not
decrease from left to right in rows and are increasing from the bottom to top of each column. The weight
of a tableau T denoted wt(T) is the composition α = (αi)i≥1 where αi is the number of cells containing
i (it is customary to omit trailing 0’s). We use SSYT(λ) to denote the set of all semi-standard tableaux of
shape λ, and SSYT(λ, µ) to denote the set of all semi-standard tableaux of shape λ and weight µ.
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The weight generating functions of semi-standard tableaux define the Schur basis; for any partition λ,

sλ =
∑

T∈SSYT(λ)

xwt(T) ,

where xα = xα1
1 xα2

2 · · · . It is convenient to collected terms into the basis of monomials, formed by
mλ =

∑
α x

α, for all rearrangements α of partition λ. The monomial expansion of Schur functions is

sλ =
∑
µ

Kλ,µmµ , (3)

where the Kostka numbersKλ,µ enumerate semi-standard tableaux of shape λ and weight µ, for partitions
λ, µ.

The Schur basis is orthonormal with respect to the Hall-inner product 〈, 〉 on Λ, defined by

〈mλ, hµ〉 =

{
1 if λ = µ

0 otherwise.

An immediate consequence of (3) and duality is that

hµ =
∑
λ

Kλ,µsλ . (4)

Our methods rely on the fundamental operations on words and tableaux such as jeu de taquin due to
Schützenberger (1977) and RSK-insertion due to Robinson (1938); Schensted (1961); Knuth (1970). We
briefly recall several important results here and full details can be found in a variety of texts such as Las-
coux and Schützenberger (1981); Stanley (1999); Fulton (1997). The reading word w(T) = w1w2 · · ·wn

of any filling T is defined by listing elements of T starting from the top-left corner, reading across each
row, and then continuing down the rows. A word w is Yamanouchi when each factorization w = uv sat-
isfies wti(v) ≥ wti+1(v) where wti(v) is the number of times letter i appears in v. For a given partition
λ, a word w is λ-Yamanouchi if wti(v) + λi ≥ wti+1(v) + λi+1. The RSK bijection identifies a word w
with a pair of same shaped tableaux (P (w), Q(w)). For any tableau T ,

P (w(T)) = T ,

and when two words w and u have the same insertion tableau P (w) = P (u), they are Knuth equivalent,
denoted by w ∼ u.

3 K-theoretic Littlewood-Richardson coefficients
Because the open Schubert cells form a cell decomposition of the Grassmannian X , the classes of the
structure sheavesOXλ form a basis for the Grothendieck ring of X . The structure constants of K◦X with
respect to its basis of Schubert structure sheaves, appearing in

[OXλ ] · [OXµ ] =
∑
ν

cνλµ [OXν ] ,

was solved in Buch (2002). Buch’s work initiated a tableaux combinatorial framework to study K-
theoretic Schubert calculus.
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3.1 Combinatorics of K-theory classes
A set-valued tableau of shape ν/λ is a filling of each cell in the diagram of ν/λ with a non-empty set
of positive integers such that each subfilling created from the choice of a single element in each cell is a
semi-standard tableau. The weight of a set-valued tableau S is the composition α = (αi)i≥1 where αi is
the total number of times i appears in S and the excess of S is defined by

ε(S) = |wt(S)| − |shape(S)| .

A multicell refers to a cell in S that contains more than one letter. When S has no multicells, it is viewed
as a semi-standard tableau. In this case, |wt(S)| = |shape(S)| and ε(S) = 0.

The collection of all set-valued tableaux of shape ν/λ is denoted by SVT(ν/λ) and the subset of these
with weight α is SVT(ν/λ, α). For any partitions ν ⊃ λ and composition α, let

kν/λ,α =
∑

S∈SVT(ν/λ,α)

(−1)ε(S) .

Theorem 1 (Buch (2002)) For any partition λ,

Gλ =
∑

S∈SVT(λ)

(−1)ε(S)xwt(S) =
∑
µ

kλµmµ .

The span of stable Grothendieck polynomials is a bi-algebra Γ and the Grothendieck ring K◦X is
isomorphic to Γ modulo the ideal spanned by the subset of Gλ with λ not fitting inside a k × (n − k)
rectangle. The completion mSym of Γ is a Hopf algebra, and its dual MSym of multisymmetric functions
is equipped with a distinguished basis {gλ} that is dual to {Gλ}. That is, gλ is defined by inverting the
triangular system

hµ =
∑
λ

kλ,µ gλ (5)

over all partitions µ. This basis is a set of representatives for classes in K-homology of the ideal sheaves
of the boundaries of Schubert varieties.

Alternatively, gλ can be combinatorial characterized as certain weight generating functions of reverse
plane partitions of partition shape λ. Define a reverse plane partition R of shape ν/λ to be a filling of
cells in ν/λ with positive integers which are weakly increasing in rows and columns. The weight of R
is the composition α = (αi)i≥1 where αi is the total number of columns of R in which i appears. The
collection of all reverse plane partitions of shape ν/λ will be denoted RPP(ν/λ) and the subset of these
with weight α will be RPP(ν/λ, α).

Theorem 2 (Lam and Pylyavskyy (2007)) The polynomials gλ have the expansion

gλ =
∑

R∈RPP(λ)

xwt(R) .
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Lenart (2000) had shown previously that the transition matrices between Schur functions and the func-
tions Gµ can be described using strict elegant fillings. These are skew semi-standard tableaux which
are strictly increasing in both rows and columns, and with the property that numbers in row i are not
larger than i − 1. The set of all strict elegant fillings of shape λ/µ is denoted by EF(λ/µ) and we set
Fµλ = |EF(λ/µ)|.

Theorem 3 (Lenart (2000)) For any partition λ,

Gµ =
∑
λ

(−1)|λ|−|µ|Fλµ sλ . (6)

An immediate corollary comes out of the duality relation:

sλ =
∑
µ

(−1)|λ|−|µ|Fλµ gµ . (7)

3.2 K-theoretic structure constants
Buch (2002) discovered that the structure constants for Grothendieck functions can be described by

defining a reading word on set-valued tableaux and selecting only those which are Yamanouchi. The
(column) reading word w(S) of a set-valued tableau S is defined by reading top to bottom across columns
from left to right where letters within a cell are read from smallest to largest.

Example 4

S =
5
4 57
12 2 23

=⇒ w(S) = 541257223

If w(S) is λ-Yamanouchi, we say S is a λ-Yamanouchi set-valued tableau. We sometimes say a set-
valued tableau is column Yamanouchi to emphasize that the property is determined by the column reading
word.

Theorem 5 (Buch (2002)) For partitions λ, µ,

GλGµ =
∑

|ν|≥|λ|+|µ|

cνλµGν ,

where cνλµ is equal to (−1)|ν|−|λ|−|µ| times the number of λ-Yamanouchi set-valued tableaux of shape µ
and weight ν − λ.

We instead access the coefficients by appealing to the g-expansion of skew dual functions,

gν/λ =
∑
µ

rν/λ,µmµ , (8)

where rν/λ,µ = |RPP(ν/λ, µ)|.

Lemma 6 For partitions µ ⊆ ν,
gν/µ =

∑
λ

cνµλ gλ .



Structure constants for K-theory of Grassmannians 773

4 Dilated weight
A by-product of Theorem 5 and Lemma 6 is that the coefficient of gµ in gν/λ is determined by counting
skew Yamanouchi set-valued tableaux. Our interest is in giving a direct combinatorial proof for the K-
theoretic Littlewood-Richardson rule starting from the skew reverse plane partition expansion for gν/λ.

We largely avoid working with reverse plane partitions by identifying them with tabloids, fillings with
positive integers that are not decreasing in rows. Tabloids are classical combinatorial objects, going
back to Young’s definition of the irreducible representations of Sn. However, our purposes require an
association of tabloids (and set-valued tableaux) with a less familiar weight called the dilated weight. We
start with the definition and several results establishing that the notion of this particular weight is closely
tied to the Yamanouchi property.

4.1 Dilated weight characterization for Yamanouchi objects
The dilated weight δwt(T ) of a tabloid T is defined iteratively from its rows T1, T2, . . . , T`, read from
bottom to top. With r = 2 and T̂ = T1, modify Tr ∗ T̂ by moving the last letter e in Tr to the rightmost
empty cell of row r that has no entry e′ ≥ e below it in any row r′ ≤ r − 1. If no such cell exists,
e remains in place. Ignoring e, repeat with the last letter in row r. Once all letters in row r have been
addressed, iterate by setting the resulting filling to T̂ and r = r + 1. When r = `, the process terminates
with a column-strict filling T̂ called the dilated weight tableau of T . The dilated weight is the conjugate
of the partition rearrangement of the list of (uncovered) entries at the top of each column in T̂ .

Example 7

T =
1
2 3 6
1 2 4 5 7

→
1

2 3 6
1 2 4 5 7

→ T̂ =
1

2 3 6
1 2 4 5 7

implying that δwt(T ) = (7, 6, 4, 3, 2, 1)′ = (6, 5, 4, 3, 2, 2, 1)

A more general notion of skew dilated weight is defined on tabloid T . We say δwt(T ) = ν/λ when
δwt(T ∗ Tλ) = ν for the unique tableau Tλ of shape and weight λ. Our work involves the set T (ν/λ) of
tabloids of shape ν/λ and its restriction to the subset T (ν/λ, α) of tabloid with weight α and the subset
T (ν/λ, δwt = α) with dilated weight α.

Example 8 The tabloid T = 1
1 2

has skew dilated weight δwt(T ) = (5, 2)/(3, 1) since

T ∗ T(31) =
1
1 2

2
1 1 1

→
1

1 2
2

1 1 1

→
1

1 2
2

1 1 1

=⇒ δwt(T ∗ T(31)) = (2, 2, 1, 1, 1)′ .

Note in this example that the weight of T ∗ T(31) equals its dilated weight. In fact, this happens only
when T ∗ Tλ is Yamanouchi – that is, it has a Yamanouchi reading word.

Proposition 9 For any tabloid T and partition λ,

T ∗ Tλ is Yamanouchi ⇐⇒ δwt(T ∗ Tλ) = wt(T ∗ Tλ).

Definition 10 The dilated weight of a set-valued tableau S is defined iteratively from its rows S1, S2, . . . , S`,
read from bottom to top. With r = 2 and Ŝ = S1, starting from the last cell c in Sr, modify Sr ∗ Ŝ as
follows:
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1. move the largest entry e in cell c to the rightmost empty cell (r, j) such that all entries in cells (r′, j)
for all r′ < r are smaller than e. If no such cell exists, e remains in place.

2. move the next largest entry e2 in cell c to the rightmost cell (r, ĵ), where ĵ ≤ j, such that all entries
in cells (r′, ĵ) for all r′ < r are less than e2. Let j = ĵ and repeat this step on all remaining entries
in cell c.

3. repeat from step 1 on the cell ĉ just west of cell c.

When all cells in row r have been addressed, iterate by setting the resulting filling to Ŝ and r = r+1. The
process terminates when r = `, with a column-strict set-valued filling Ŝ called the dilated weight tableau
of S. The dilated weight is the conjugate of the partition rearrangement of the list of maximal entries in
uncovered cells of Ŝ.

Example 11

S =
48 9

1 5

7→ 48 9

1 5

=⇒ δwt(S) = (9, 8)′ = (2, 2, 2, 2, 2, 2, 2, 2, 1)

S =
478 9

1 5 6

7→ 478 9

1 5 6

7→ 4 78 9

1 5 6

=⇒ δwt(S) = (9, 8, 4)′ = (3, 3, 3, 3, 2, 2, 2, 2, 1)

Remark 12 The dilated weight of a set-valued tableau could also have been defined as an iterative pro-
cess on its columns. Reading the columns S1, S2, . . . , Sλ1

from left to right, first consider just the sub-
diagram with columns Sλ1−1 and Sλ1

. Perform the moves described above starting with the lowest cell
of Sλ1−1 and working upwards. Repeat this process with the cells of Sλ1−2 and proceed in this fashion
until all columns are exhausted. Note that any cell c = (r, j) in a set-valued tableau has entries which
are strictly larger than the entries in cell (r′, j′) for r′ ≤ r, j′ ≤ j. If we instead construct the dilated
tableau by rows, all entries of c necessarily move further to the right than the entries in (r′, j′). With this
in mind one can see the resulting dilated weights to be equal.

Our result characterizing Yamanouchi tabloids by the property that dilated weight equals to weight
extends to the set-valued framework as well.

Lemma 13 For partition λ and set-valued tableau S, if S∗Tλ is (column) Yamanouchi then wt(S∗Tλ) =
δwt(S ∗ Tλ) and the columns of the dilated weight tableau of S ∗ Tλ are interval valued.

4.2 Reverse plane partitions and tabloids
Dilated weight exposes a correspondence between tabloids and reverse plane partitions.

Proposition 14 (Kaliszewski and Morse) For any skew partition ν/λ and composition α, there is a bi-
jection

RPP(ν/λ, α) ←→ T (α, δwt = ν/λ) .

The jeu de taquin operation induces a crystal graph on the set of tabloids with fixed dilated weight. The
highest weights are simply tabloid with strictly increasing columns.

Lemma 15 (Kaliszewski and Morse) For each skew partition ν/λ, a crystal graph supports gν/λ by
taking vertices to be the set of tabloids T (·, δwt = ν/λ). The highest weights are semi-standard tableaux
of partition shape and dilated weight ν/λ.
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A different perspective is studied by Galashin (2014) where a crystal graph on reverse plane partition
is introduced. We use the tabloid point of view as it is amenable to a bijection φ of Bandlow and Morse
(2012) associating set-valued tableaux to strict elegant fillings. This route gives us access to the K-
theoretic Littlewood-Richardson structure constants.

The map φ on set-valued tableaux is defined by iteratively eliminating multicells through a process
called dilation. Given a set-valued tableau S, let row(S) be the highest row containing a multicell. Let
S>i denote the subtableau formed by taking only rows of S above row i. For the rightmost multicell c in
row(S), define x = x(S) to be the largest entry in c. The dilation of S, di(S), is constructed from S by
removing x from c and RSK-inserting x into S>row(S).

Example 16 Since row(S) = 2 and x(S) = 6,

di


7

6 7

34 456 8

1 12 23 5

 =

7 7

6 6

34 45 8

1 12 23 5

It was proven (Bandlow and Morse, 2012, Property 4.4) that dilation preserves Knuth equivalence.
More precisely, for any set-valued tableau S,

sw(S) ∼ sw(di(S)) , (9)

where the set-valued reading word sw(S) is the word obtained by listing the entries from rows of S as
follows (starting in the highest row): first ignore the smallest entry in each cell and record the remaining
entries in the row from right to left and from largest to smallest within each cell, then record the smallest
entry of each cell from left to right.

Example 17

S =
3 456

12 23 3

=⇒ sw(S) = 653432123 .

Dilation expands a set-valued tableau by reducing the number of entries in a given multicell by one.
The iteration of this process produces a semi-standard tableau from a set-valued tableau.

Definition 18 The map φ acts on a set valued tableau S by constructing the sequence of set-valued
tableaux

S = S0 → di(S) = S1 → di(S1) = S2 → · · · → Sr (10)

and defining φ(S) to be the filling of sh(Sr)/sh(S) where cell sh(Si)/sh(Si−1) contains the difference
between the row index of this cell and row(Si−1). The sequence (10) is defined to terminate at the first
set-valued tableau Sr with no multicell.

Example 19

φ

 4

2 23

1 1 1234

 =
2 3

2
1
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is constructed by recording the sequence of dilations

4

2 23

1 1 1234

→

4

3

2 2

1 1 1234

→

4

3

2 2 4

1 1 123

→

4

3 4

2 2 3

1 1 12

→

4 4

3 3

2 2 2

1 1 1

2 2

1

2
2

1

2 3
2

1

The restriction of φ to an action on a subset of set-valued tableaux determined by their set-valued
reading words and a tableau T is a bijection φT between these set-valued tableaux and elegant fillings. In
particular this gives a bijective proof of Lenart’s formula (Lenart, 2000, Theorem 3.2).

Proposition 20 (Bandlow and Morse (2012), Proposition 5.6) For any fixed tableau T and partition
η ⊂ shape(T ),

φT : {S ∈ SVT(η) : sw(S) ∼ w(T)} ↔ EF(shape(T)/η)

is a bijection.

Our purposes require a refinement of this result which identifies strict elegant fillings with subsets of
set-valued tableaux characterized by dilated weight.

Proposition 21 For each T ∈ SSYT(µ, δwt = α) and partition η ⊂ µ,

φT : {S ∈ SVT(η, δwt = α) : sw(S) ∼ w(T)} ↔ EF(shape(T)/η)

is a bijection.

5 Dual approach to the K-theoretic LR rule
Lemma 22 For partitions η, ν, and λ ⊂ ν, there is a sign-reversing involution on SVT(η, δwt = ν/λ)
where the λ-Yamanouchi set-valued tableaux are fixed points.

We produce such a map τ which is shape preserving and is defined to fix set-valued tableaux which are
λ-Yamanouchi. A similar involution was given independently by (Ikeda and Shimazaki, 2014, Lemma 3).
Let S≥j denoted the set-valued tableau obtained by considering only those cells which are weakly right
of column j. When S ∈ SVT(η, δwt = ν/λ) is not λ-Yamanouchi, define c to be the rightmost column
such that S≥c is not λ-Yamanouchi. Let y be the rightmost letter in the reading word w(S≥c)w(Tλ) with
the property that there are more y’s than y − 1’s and take r to be the row of the cell (r, c) in S containing
this y. Denote by cellmin the leftmost cell in row r containing y. The image Ŝ = τ(S) is defined by
deleting y − 1 if it is present in cellmin and otherwise Ŝ is obtained by adding y − 1 to cellmin.

S ∗ T(2,1) =

57 7

2

1 1

w(S≥c)w(T(21)) = 577211

↔ Ŝ ∗ T(2,1) =

567 7

2

1 1

w(Ŝ≥c)w(T(21)) = 5677211

Theorem 23 For partitions µ and λ ⊂ ν, the coefficient of gµ in gν/λ is (−1)|ν|−|λ|−|µ| times the number
of λ-Yamanouchi set-valued tableaux of shape µ and weight ν/λ.
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6 Related Work
A recent breakthrough in modern Schubert calculus concerns the Grothendieck ringKT (X) of T -equivariant
vector bundles over X = Gr(a, n). There is a natural KT (pt)-module structure and an additive basis
given by the classes of Schubert structure sheaves. The structure constants are now Laurent polynomials
cνλµ(t) ∈ Z[t±11 , . . . , t±1n ] ' KT (pt) appearing in

[OXλ ] · [OXµ ] =
∑

ν∈k×(n−k)

cνλµ(t)[OXν ] .

The family of cνλµ(t) includes both the set of K-theoretic and equivariant structure constants on X .
Groundbreaking work of Pechenik and Yong (2015) identified cνλµ(t) by a new class of ballot genomic
tableaux using a deep generalization of jeu de taquin. A special case of their work yields an alternate rule
for the (non-equivariant) K-theory structure constants.

Additionally, Ikeda and Shimazaki (2014) provided a description of the structure constants for ex-
panding the product Gλ(β)Gµ/η(β) in terms of the basis given by Gν(β). The Gν(β) are obtained by
replacing the (−1) in Theorem 1 by a parameter β. This provides a rule which when specialized reduces
to that of Buch’s for the K-theory structure constants.
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