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A combinatorial analysis of Severi degrees

Fu Liu1†

1University of California, Davis, CA, USA.

Abstract. Based on results by Brugallé and Mikhalkin, Fomin and Mikhalkin give formulas for computing classical
Severi degreesNd,δ using long-edge graphs. In 2012, Block, Colley and Kennedy considered the logarithmic version
of a special function associated to long-edge graphs which appeared in Fomin-Mikhalkin’s formula, and conjectured
it to be linear. They have since proved their conjecture. At the same time, motivated by their conjecture, we consider
a special multivariate function associated to long-edge graphs that generalizes their function. The main result of this
paper is that the multivariate function we define is always linear.

The first application of our linearity result is that by applying it to classical Severi degrees, we recover quadraticity
of Qd,δ and a bound δ for the threshold of polynomiality of Nd,δ. Next, in joint work with Osserman, we apply the
linearity result to a special family of toric surfaces and obtain universal polynomial results having connections to the
Göttsche-Yau-Zaslow formula. As a result, we provide combinatorial formulas for the two unidentified power series
B1(q) and B2(q) appearing in the Göttsche-Yau-Zaslow formula.

The proof of our linearity result is completely combinatorial. We define τ -graphs which generalize long-edge graphs,
and a closely related family of combinatorial objects we call (τ ,n)-words. By introducing height functions and a
concept of irreducibility, we describe ways to decompose certain families of (τ ,n)-words into irreducible words,
which leads to the desired results.

Résumé. Basé sur les travaux de Brugallé et Mikhalkin, Fomin et Mikhalkin ont donné des formules pour calculer
les degrés de Severi classiques Nd,δ en utilisant des graphes aux arêtes longues. En 2012, Block, Colley et Kennedy
ont considéré la version logarithmique d’une fonction spéciale associée aux graphes aux arêtes longues qui apparait
dans la formule de Fomin et Mikhalkin, et ont conjecturé qu’elle est linéaire. Ils ont depuis montré leur conjecture.
Au même moment, motivés par leur conjecture, nous avons considéré une fonction spéciale multivariée associée
aux graphes aux arêtes longues qui généralise leur fonction. Le résultat principal de cet article est que la fonction
multivariée que nous définissons est toujours linéaire.

La première application de notre résultat de linéarité est qu’en l’appliquant aux degrés de Severi classiques, nous
retrouvons le fait que Qd,δ est quadratique et une borne δ pour le seuil de polynomialité de Nd,δ . Ensuite, dans un
travail en commun avec Osserman, nous appliquons le résultat de linéarité pour une famille particulière de surfaces
toriques et obtenons des résultats sur les polynômes universels ayant des connexions avec la formule de Göttsche, Yau
et Zaslow. En conséquence, nous obtenons des formules combinatoires pour deux séries formelles B1(q) et B2(q)
non-identifiées apparaissant dans la formule de Göttsche, Yau et Zaslow.

La preuve de notre résultat de linéarité est purement combinatoire. Nous définissons des τ -graphes qui généralisent
les graphes aux arêtes longues, une famille étroitement liée d’objets combinatoires que nous appelons les (τ ,n)-mots.
En introduisant des fonctions de hauteur et un concept d’irreductibilité, nous décrivons des façons de décomposer
certaines familles de (τ ,n)-mots en mots irreductibles, ce qui nous conduit aux résultats souhaités.
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1 Background on Severi degrees
The classical Severi degree, denoted by Nd,δ, is the degree of the Severi variety. It counts the number of
curves of degree d with δ nodes passing through d(d+3)

2 −δ general points in the complex projective plane
CP2. If d ≥ δ + 2, the Severi degree Nd,δ coincides with the Gromov-Witten invariant N

d,
(d−1)(d−2)

2 −δ,

which counts maps from curves to the plane. The problem of studying the Severi degrees dates back to
late 19th century by Chasles, Zeuthen and Schubert. The modern study of Severi varieties was initiated
by Harris’ proof of their irreducibility [9].

In 1994, Di Francesco and Itzykson [6] conjectured that for fixed δ, the Severi degree Nd,δ is given
by a node polynomial Nδ(d) for sufficiently large d. In 2009, Fomin and Mikhalkin [7, Theorem 5.1]
established the polynomiality of Nd,δ using tropical geometry and floor decomposition. Since then Block
has computed the node polynomial Nδ(d) up to δ = 14 [1]. The threshold of the polynomiality of Nd,δ

is the value d∗ = d∗(δ) such that Nd,δ = Nδ(d) for all d ≥ d∗. Fomin and Mikhalkin [7] showed that
d∗ ≤ 2δ; Block [1] lowered it to d∗ ≤ δ; and most recently Kleiman and Shende [10] proved the bound
d∗ ≤ dδ/2e+ 1 conjectured by Göttsche.

Instead of restricting the attention to CP2, one can ask the same question of enumerating curves on other
surfaces. Let L be a line bundle on a complex projective smooth surface S. We denote by Nδ(S,L) the
number of δ-nodal curves in |L| passing through dim |L| − δ points in general position. When S = CP2

and L = OCP2(d), we recover the classical Severi degree Nd,δ. Hence, we can consider Nδ(S,L) to be
a generalized Severi degree. In [8, Conjecture 2.1], Göttsche conjectured that for every δ, there exists
a universal polynomial Tδ(x, y, z, w) of degree δ that computes the numbers Nδ(S,L) by evaluating
Tδ at the four topological numbers of (S,L): L2, LKS ,K

2
S and c2(S), provided that the line bundle

L is (5δ − 1)-very ample. Furthermore, inspired by the Yau-Zaslow formula, Göttsche [8, Conjecture
2.4] conjectured the closed form of the generating function of Tδ , which is known as the Göttsche-Yau-
Zaslow formula. Recently, Tzeng [15] and Kool-Shende-Thomas [11] independently proved Göttsche’s
conjectures. Note that in the case of CP2, the four topological numbers become: L2 = d2, LKS =
−3d,K2

S = 9 and c2(S) = 3. Thus,
Tδ(d

2,−3d, 9, 3) = Nδ(d). (1.1)

In [8], Göttsche discussed a consequence of the Göttsche-Yau-Zaslow’s formula.

Proposition 1.1 ([8], Proposition 2.3) There exist four universal power series A1(t), A2(t), A3(t) and
A4(t) such that

log

∑
δ≥0

Tδ(x, y, z, w)tδ

 = xA1(t) + yA2(t) + zA3(t) + wA4(t).

This means that the coefficient of tδ in the formal logarithm of
∑
δ≥0 Tδ(x, y, z, w)tδ is a linear function

in x, y, z and w, which is potentially simpler than the expression for Tδ(x, y, z, w).
Therefore, it is natural for us to consider the generating function for classical Severi degrees and its

formal logarithm:
N (d) := 1 +

∑
δ≥1

Nd,δtδ, Q(d) := log(N (d)) =
∑
δ≥1

Qd,δtδ. (1.2)
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It is straightforward to show that Qd,δ is also a polynomial in d for sufficiently large d. We denote this
polynomial by Qδ(d). It is clear that

log

∑
δ≥0

Nδ(d)tδ

 =
∑
δ≥1

Qδ(d)tδ.

Although the degree of Nδ(d) was shown to be 2δ, the polynomial Qδ(d), which is an alternating sum
of Nδ(d)’s, turns out to be quadratic, following from (1.1) and Proposition 1.1. (See Proposition 3.1 in
[13].)

Corollary 1.2 For any fixed δ, Qd,δ is a quadratic polynomial in d for sufficiently large d.

In this paper, we prove a certain function associated to long-edge graphs is linear. Using this result, we
provide another proof of Corollary 1.2 as well as a combinatorial way of computing the power series
A1(t) andA2(t) of Proposition 1.1. Further, in joint work with Osserman [12], the linearity result enables
us to obtain a universal polynomiality property of Severi degrees on families of toric surfaces.

In the next section, we give a brief introduction to the objects in our results, and state the main theorem
of the paper.

2 Long-edge graphs and the main result
Brugallé and Mikhalkin [3, 4] introduced “(marked) labeled floor diagrams” and gave an enumerative
formula for the Severi degree Nd,δ in terms of these diagrams. Fomin and Mikhalkin [7] reformulated
Brugallé and Mikhalkin’s results by introducing a “template decomposition” of labeled floor diagrams.
They first constructed a bijection between labeled floor diagrams and long-edge graphs and then gave
a natural decomposition of long-edge graphs into “templates” (Fomin and Mikhalkin did not name the
graphs they use; the terminology “long-edge graphs” was first introduced in [2].)

In this section, we first give relevant definitions for long-edge graphs, followed by the main linearity
result (Theorem 2.6) of this paper and an important result on a related function (Lemma 2.7). We start
with some basic combinatorial definitions and notation that will be used in the rest of the paper. N =
{0, 1, 2, . . . , } is the set of nonnegative integers and P = {1, 2, 3, . . . , } is the set of positive integers.
Given a positive integer `, we denote by [`] the set {1, 2, . . . , `}.
Definition 2.1 A long-edge graph G is a graph (V,E) with a weight function ρ satisfying the following
conditions:

a) The vertex set V = N = {0, 1, 2, . . . }, and the edge set E is finite.
b) Multiple edges are allowed, but loops are not.
c) The weight function ρ : E → P assigns a positive integer to each edge.
d) There are no short edges, i.e., there’s no edges connecting i and i+ 1 with weight 1.

For any long-edge graph G and any k ∈ N, we denote by G(k) the graph obtained by shifting all edges of
G to the right k units, i.e., a weighted edge {i, j} in G becomes a weighted edge {i+ k, j + k} in G(k).

We often draw the vertices 0, 1, 2, . . . of long-edge graphs from left to right and label each edge with
its weight. Since only finitely many vertices have incident edges, we often omit most of irrelevant vertices
when we draw long-edge graphs. See Figure 1 for three examples of long-edge graphs. In particular,
graph G2 is obtained by shifting graph G1. More precisely, G2 = (G1)(3).

An important family of long-edge graphs is templates.
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Fig. 1: Examples of long-edge graphs

Definition 2.2 A long-edge graph Γ is a template if for any vertex i : 1 ≤ i ≤ maxv(Γ)− 1, there exists
at least one edge {j, k} satisfying j < i < k.

We say a long-edge graph G is a shifted template if G can be obtained by shifting a template; that is, if
G = Γ(k) for some template Γ and some nonnegative integer k.

Below we define some important statistics for long-edge graphs.

Definition 2.3 Given a long-edge graph G = (V,E) equipped with weight function ρ on the edge set E,
we define the multiplicity of G to be

µ(G) :=
∏
e∈E

(ρ(e))2,

and the cogenus of G to be
δ(G) :=

∑
e∈E

(l(e)ρ(e)− 1) ,

where for any e = {i, j} ∈ E with i < j, we define l(e) := j − i. Note that any non-empty long-edge
graph has positive cogenus.

We define minv(G) (respectively, maxv(G)) to be the smallest (respectively, largest) vertex of G that
has nonzero-degree. We then define the length of G, denoted by l(G), to be maxv(G)−minv(G).

Finally, we define for all j :

λj(G) := sum of the weights of edges {i, k} with i < j ≤ k,
and λj(G) :=λj(G)−#(edges in G connecting vertices j − 1 and j).

Example 2.4 See Table 1 for µ(Γ), δ(Γ), l(Γ), λ(Γ) and λ(Γ) of templates of cogenus ≤ 2.

Definition 2.5 Given a long-edge graph G, we say an ordered tuple (G1, . . . , Gi) of (non-empty) long-
edge graphs is a partition of G if the disjoint union of the (weighted) edge sets of G1, . . . , Gi is the
(weighted) edge set of G.

Fomin and Mikhalkin associate to each long-edge graph a statistic ν(G), and then give an enumerative
formula for computing the Severi degreeNd,δ in terms of long-edge graphs using this statistic. We extend
their definition and define two closely related statistics Pβ(G) and P sβ(G) for any given finite sequence
β, where P s(0,1,...,d)(G) is the same as ν(G) defined by Fomin and Mikhalkin. (The detailed definition of
Pβ(G) and P sβ(G) is omitted.) We then consider the logarithmic versions of Pβ(G) and P sβ(G):

Φβ(G) :=
∑
i≥1

(−1)i+1

i

∑
(G1,...,Gi)

 i∏
j=1

Pβ(Gj)

 , (2.1)
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Φsβ(G) :=
∑
i≥1

(−1)i+1

i

∑
(G1,...,Gi)

 i∏
j=1

P sβ(Gj)

 , (2.2)

where both summations are over all the partitions of G.
Below is the main result of this paper.

Theorem 2.6 Suppose G is a long-edge graph satisfying maxv(G) ≤ M + 1. Then for any β =
(β1, . . . , βM+1) satisfying βj ≥ λj(G) for all j, the values of Φβ (G) are given by a linear multivariate
function Φ(G,β) in β.

In addition to Theorem 2.6, which is a result on Φβ(G), we also have a fundamental result on Φsβ(G),
generalizing Proposition 4.4 of [2].

Lemma 2.7 Suppose G is not a shifted template. Then Φsβ(G) = 0.

Because the restriction of the length of this extended abstract, we are not able to include the complete
proof of our main linearity result (Theorem 2.6) and Lemma 2.7. Instead, we give a sketch of proof below.

Sketch of proof: The first part of the proof consists of a reformulation of our main results and two
reduction steps. We start by introducing τ -graphs, a generalization of long-edge graphs, and restate and
generalize Theorem 2.6 and Lemma 2.7 to versions using the language of τ -graphs. The description of τ -
graphs enables us to consider generating functions of functions Φsβ and Φβ in certain forms, which is used
both to prove the generalized version of Lemma 2.7 and to reduce the problem of proving the generalized
version of Theorem 2.6 to a result on generating functions. Next, we introduce another combinatorial
object: (τ ,n)-words, a special family of which, denoted by Sτ (n, t), has a reciprocity connection to
τ -graphs. Using this connection, we reduce our problem further to proving a result on the generating
function of Sτ (n, t) (See Theorem 4.9).

In order to give a proof for Theorem 4.9, we introduce a height function and a concept of irreducibility
for (τ ,n)-words. Using the height function, we describe an algorithm of finding the unique irreducible
initial subword of a (τ ,n)-word of prescribed height, which provides the main ingredient for proving a
decomposition result on words in Sτ (n, t) and finishing the proof of Theorem 4.9, and thus finish the
proof of our main linearity result (Theorem 2.6.) 2.

In Section 4, we will introduce the two important families of combinatorial objects mentioned above:
τ -graphs and (τ ,n)-words, and discuss how to obtain the linearity function asserted by Theorem 2.6.
Before that, we discuss applications of our results.

3 Applications of main results
The proof of Theorem 2.6 is purely combinatorial and provides combinatorial objects to compute the
coefficients of the linear function described in the theorem. We note that in 2012, the special case of
Theorem 2.6 when β = (0, 1, 2, . . . , d) was conjectured by Block, Colley and Kennedy. They have since
given in [2] an independent proof of their conjecture. In fact, the original motivation of this paper was to
prove their conjecture. However, the author noticed that the combinatorial approaches presented in this
paper can be easily extended to prove our main result, leading to many more applications.

The first application of our theorem is that, as in [2], we can provide another proof for Corollary 1.2 by
applying it to the logarithmic version of Fomin-Mikhalkin’s formula for classical Severi degrees.
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3.1 Analyzing Fomin-Mikhalkin’s formula
For the classical Severi degree, we only need to use β = (0, 1, 2, . . . , d). Therefore, we give the following
notation:

v(d) := (0, 1, 2, . . . , d), ∀d ∈ P. (3.1)

Below is Fomin-Mikhalkin’s formula for classical Severi degrees [7].

Theorem 3.1 (Fomin-Mikhalkin) The Severi degree Nd,δ is given by

Nd,δ =
∑
G

µ(G)P sv(d)(G), (3.2)

where the summation is over all the long-edge graphs of cogenus δ.

Recall thatN (d) andQ(d) are defined as in (1.2). Thus, Qd,δ is the logrithmic version of Nd,δ. Hence,
with calculation, one obtains the logrithmic version of the above theorem:

Qd,δ =
∑
G

µ(G)Φsv(d)(G), (3.3)

where the summation is over all the long-edge graphs of cogenus δ. This is the reason why we consider
Φsβ(G) (respectively, Φβ(G)) the logarithmic version of P sβ(G) (respectively, Pβ(G)).

One benefit of computing Qd,δ instead of Nd,δ is that a lot of terms in (3.3) vanish. We have the
following corollary to Lemma 2.7.

Corollary 3.2 For δ ≥ 1,

Qd,δ =
∑

Γ

µ(Γ)
∑
k∈N

Φsv(d)

(
Γ(k)

)
, (3.4)

where the first summation is over all the templates of cogenus δ.

It is an easy fact that for any fixed δ, there are finitely many templates of cogenus δ. Hence, the first
summation in (3.4) is finite. It is not hard to see that the second summation in (3.4) has finitely many
non-zero terms as well. Moreover, the linear function described in Theorem 2.6 is used for computing the
second summation. Hence, we obtain another proof for Corollary 1.2.

However, our techniques go further, providing a new method for computingQd,δ andNd,δ . We are also
able to recover the threshold bound d∗ ≤ δ given by Block. We omit the details of these two results from
this extended abstract. Furthermore, in the process of proving Corollary 1.2, we discover combinatorial
formulas involving the coefficients of the linear function described in Theorem 2.6 for computing the
power series A1(t) and A2(t) of Proposition 1.1.

3.2 Determining A1(t) and A2(t)

For any power series F (x), we denote by [xδ]F (x) the coefficient of xδ in F (x).

Definition 3.3 Suppose Γ is a template of length `, and Φ(Γ,β) = a0 +
∑`
j=1 ajβj be the polynomial

assumed by Theorem 2.6 for Γ. We define

ζi(Γ) :=
∑̀
j=1

(
j − 1

i

)
aj for i = 0, 1, and η0(Γ) := a0.
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See Table 1 for Φ(Γ,β), ζ0(Γ), ζ1(Γ) and η0(Γ) of templates of cogenus ≤ 2.

Corollary 3.4 The power series A1(t) and A2(t) of Proposition 1.1 are given by

A1(t) =
1

2

∑
δ≥1

 ∑
Γ:δ(Γ)=δ

µ(Γ)ζ0(Γ)

 tδ

A2(t) =
1

3

∑
δ≥1

 ∑
Γ:δ(Γ)=δ

µ(Γ)

(
1

2
(l(Γ)− ε0(Γ)− ε1(Γ))ζ0(Γ)− η0(Γ)

) tδ.

(We omitted the definitions of ε0(Γ) and ε1(Γ), which were not very important.)

Remark 3.5 In [12, Lemma 7.1], the authors show that

−
∑

Γ

µ(Γ)(l(Γ)− ε0(Γ)− ε1(Γ))ζ0(Γ) =
∑

Γ

µ(Γ)η0(Γ).

Applying this result, we obtain a simpler formula for the power series A2(t):

A2(t) = −1

2

∑
δ≥1

 ∑
Γ:δ(Γ)=δ

µ(Γ)η0(Γ)

 tδ,

which only involves the constant term η0(Γ) in Φ(Γ,β).

Example 3.6 Applying Corollary 3.4 and using the data for ζ0(Γ) in Table 1, we obtain the two lowest
degree terms in A1(t):

[t]A1(t) =
1

2
(4 · 1 + 1 · 2) = 3,[

t2
]
A1(t) =

1

2

(
9 · 1 + 16 ·

(
−3

2

)
+ 1 · (−3) + 4 · (−3) + 4 · (−3) + 1 · 3 + 1 · (−3)

)
= −21.

Thus, A1(t) = 3t− 21t2 + · · · .
Similarly, applying Corollary 3.4 and/or Remark 3.5, we can obtain the two lowest degree terms in

A2(t). (Detailed calculation is omitted.)

[t]A2(t) = 2,
[
t2
]
A2(t) = −39

2
.

Hence, A2(t) = 2t− 39

2
t2 + · · · .

3.3 More applications
We finish this section with additional (and more important) application of our linearity result. The enu-
merative formula using labeled floor diagrams for Severi degrees introduced by Brugallé and Mikhalkin
in [3, 4] works not only for complex projective planes CP2, but also for a more general family of (not
necessarily smooth) toric surfaces coming from “h-transverse” polygons. In joint work with Osserman
[12], we apply Theorem 2.6 to this family of toric surfaces and obtain universal polynomial results having
a close connection to the Göttsche-Yau-Zaslow formula. Furthermore, results in [12] provide a simpler
combinatorial formula for computing A2(t) (as in Remark 3.5) as well as a combinatorial formula for
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computing A3(t) − A4(t) (where Ai(t)’s are the power series described in Proposition 1.1). There are
four power series involved in the Göttsche-Yau-Zaslow formula. Although two of the four power series,
which are often referred to as B1(q) and B2(q), are not explicitly identified, their terms can be computed
by using the recursive formula of [5] for the classical Severi degrees Nd,δ and applying interpolation
methods as soon as the threshold d∗ of the polynomiality of Nd,δ is known. Assuming the threshold
bound d∗ ≤ dδ/2e+ 1, Göttsche [8, Remark 2.5] has calculated B1(q) and B2(q) up to degree 28. Since
A2(t) and A3(t)−A4(t) determine B2(q) and B1(q) respectively, the paper [12] provides combinatorial
methods for computing B1(q) and B2(q) directly without using interpolation.

4 Computing the linear function
In Subsection 3.2, we have described how to use coefficients of the linear function Φ(G,β) asserted by
Theorem 2.6 to compute the power series A1(t) and A2(t) of Proposition 1.1. Therefore, it is important
to understand how one can obtain these coefficients. In this section, we will introduce the combinatorial
objects mentioned in the sketch of proof for Theorem 2.6 at the end of Section 2, and discuss results that
are relevant for obtaining Φ(G,β). All the results given here will be stated without proofs.

We start by giving more notation that will be useful for the rest of the paper. We use 0 and 1 to denote
vectors of all zeros and all ones respectively. Sometimes, we won’t specify the dimensions of the vectors,
which the readers should be able to figure out from the context. We define (Nm)∗ := Nm \ 0 to be the set
of all vectors of m nonnegative integers except the zero vector 0. For any n = (n1, . . . , nm) ∈ Nm, we
define

xn := xn1
1 xn2

2 · · ·xnm
m , (−1)n := (−1)

∑m
i=1 ni .

Hence, we can write (−x)n for (−1)nxn.

4.1 τ -graphs: an alternative way of defining (long-edge) graphs
Each edge e of a (long-edge) graph G contains two pieces of information: its weight ρ(e) and its adjacent
vertices. We use the set I(e) = {a+ 1, a+ 2, . . . , b} to represent the edge {a, b} with a < b. In this case,
we say e is of type (I(e), ρ(e)). We will generalize this representation of describing an edge by a set and
a number, and use it to define an abstract structure, which we call τ -graph.

Definition 4.1 A (generalized) edge of type τ = (I, ρ) consists of a finite subset I of N and a positive
integer ρ. We call I the support of the edge, and ρ is called its weight. An ordinary edge is one in which I
is a set of consecutive integers {a+ 1, a+ 2, . . . , b}.

Note that we have the concept of “head” and “tail” for an ordinary edge. However, we do not have this
concept for a generalized edge.

Definition 4.2 Fixing a positive integer m, let I1, . . . , Im be subsets of N and ρ1, . . . , ρm ∈ P. For each
1 ≤ i ≤ m, let τi = (Ii, ρi). We may assume τ1, . . . , τm are distinct. Let τ = (τ1, . . . , τm).

For any n = (n1, . . . , nm) ∈ Nm, we denote by Gτ (n) the abstract structure that contains the follow-
ing information:

• vertex set: N;

• generalized edge set that consists of ni edges of type τi for each 1 ≤ i ≤ m.

We call such an abstract structure a τ -graph.
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Remark 4.3 Note that if we require τ = (τ1, . . . , τm) to satisfy that for each 1 ≤ i ≤ m,

1. the set Ii is a set of consecutive integers, and
2. the product ρi|Ii| is greater than 1,

we can consider Gτ (n) a long-edge graph. Hence, τ -graphs generalize long-edge graphs.
Strictly speaking, without condition (1), a τ -graph is not a graph in the usual sense. In fact, we do not

want to treat τ -graphs as graphs. The readers should just consider τ -graphs as abstract structures with
prescribed data.

Example 4.4 1. Suppose m = 1 and τ = (τ1) = ((I, ρ)), where I = {1} and ρ ∈ P. Then Gτ (n) is
the graph with n edges of weight ρ connecting vertices 0 and 1.

2. Suppose m = 2 and τ = (τ1, τ2) = ((I1, ρ1), (I2, ρ2)), where I1 = {1}, I2 = {1, 2} and
ρ1, ρ2 ∈ P. Then Gτ (n1, n2) is the graph with n1 edges of weight ρ1 connecting 0 and 1 and n2

edges of weight ρ2 connecting vertices 0 and 2.

4.2 (τ ,n)-words
For this part, we fix τ = (τ1, . . . , τm), where τi = (Ii, ρi), and fix a positive integer ` such that ` is
(greater than or) equal to the largest integer appearing in I1, . . . , Im.

Definition 4.5 Fix n ∈ Nm. A (τ ,n)-word is an ordered tuple of ` words (w1, . . . , w`) satisfying the
following conditions:

a) Each wj is a sequence of letters chosen from s0, s1, . . . , sm where repetition is allowed.
b) For each 1 ≤ i ≤ m, the total number of si appearing in all the words is ni.
c) For each 1 ≤ i ≤ m, the letter si can only occur in words wj if j ∈ Ii.

Definition 4.6 Given a (τ ,n)-word w = (w1, . . . , w`), we define its height to be h(w) = (h1, . . . , h`)
= (h1(w), . . . , h`(w)), where hj = hj(w) is defined by

hj = hj(w) = (−1) ·#(letter s0’s in wj) +
∑
i:j∈Ii

(ρi − 1) ·#(letter si’s in wj)

+
∑
i:j∈Ii

ρi ·#(letter si’s appearing in words other than wj)

= (−1) ·#(letter s0’s in wj) +
∑
i:j∈Ii

(ρi ·#(letter si’s in w)−#(letter si’s in wj)) .

We refer to h as the height function.

We now consider a special family of (τ ,n)-words.

Definition 4.7 Fixing n ∈ Nm, for any t ∈ N`, we denote by Sτ (n, t) the set of all the (τ ,n)-words w
with h(w) = −t.

We need the following concept of irreducibility.

Definition 4.8 Let t ∈ N` and h = −t. (So h ∈ (Z≤0)
`
.) Suppose the wordw has height h. (This means

thatw ∈ Sτ (n, t) for some n ∈ Nm.) We sayw is irreducible if it does not have a proper initial subword
that also has height h.

We denote by Sirr
τ (n, t) the set of all (τ ,n)-words that have height h = −t and are irreducible.
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Fixing n ∈ Nm, we define the generating function of for |Sτ (n, t)| and |Sirr
τ (n, t)| :

Sτ ,t(x) :=
∑
n∈Nm

|Sτ (n, t)|xn = 1 +
∑

n∈(Nm)∗

|Sτ (n, t)|xn,

S irr
τ ,t(x) :=

∑
n∈Nm

|Sirr
τ (n, t)|xn = 1 +

∑
n∈(Nm)∗

|Sirr
τ (n, t)|xn.

The following is the key result for (τ ,n)-words.

Theorem 4.9 Let ej denotes the jth elementary vector of R`. Then for any t ∈ Z`, we have

Sτ ,t(x) =
(
S irr
τ ,e1(x)

)t1 · · · (S irr
τ ,e`

(x)
)t` · Sτ ,0(x).

4.3 Determining Φ(G,β)

Finally, we will describe how to use the results presented above to compute Φ(G,β).

Lemma 4.10 Suppose G is a long-edge graph that can be described as Gτ (n), a τ -graph. Assume

logS irr
τ ,ej (x) =

∑
n∈(Nm)∗

f (j)(n)xn ∀j, and logSτ ,0(x) =
∑

n∈(Nm)∗

h(n)xn.

Then the linear function of G asserted by Theorem 2.6 is

Φ(G,β) = (−1)n

−∑̀
j=1

f (j)(n)βj +

h(n)−
∑̀
j=1

f (j)(n)

 ,

Example 4.11 We consider the simplest situation: m = 1 and τ = (τ1) = (({1}, r)) where r ∈ P. For
any n ∈ P, Gτ (n) is the graph with n edges connecting vertices 0 and 1, each of weight r.

We let ` = 1 and consider the corresponding (τ, n)-words. (Note that we are in 1-dimensional space,
so e1 = 1 and 0 = 0.) In order to apply Lemma 4.10, we need to find |Sirr

τ (n, 1)| and |Sτ (n, 0)|.
Clearly, Sτ (n, 0) is the collection of all words w that consists of n copies of s1 and n(r − 1) copies
of s0. Hence, |Sτ (n, 0)| =

(
rn
n

)
. On the other hands, one can show that words in Sirr

τ (n, 1) are in
one-to-one correspondence to r-ary trees with n internal vertices, whose cardinality is well-known to be

1
1+(r−1)n

(
rn
n

)
. Therefore,

S irr
τ,1(x) =

∑
n∈N

1

1 + (r − 1)n

(
rn

n

)
xn, S irr

τ,0(x) =
∑
n∈N

(
rn

n

)
xn.

Applying Lagrange inversion formula [14, Corollary 5.4.3] (details omitted), we are able to find the
coefficients of logarithms of the above two generating functions and obtain:

logS irr
τ,1(x) =

∑
n∈N

1

rn

(
rn

n

)
xn, logS irr

τ,0(x) =
∑
n∈N

(
1

rn

(
rn

n

)
+

1

n

n−1∑
i=0

(
rn

i

)
(r − 1)n−1−i

)
xn.

Therefore, by Lemma 4.10,

Φ(Gτ (n), β) =
(−1)n+1

n

(
1

r

(
rn

n

)
β −

n−1∑
i=0

(
rn

i

)
(r − 1)n−1−i

)
.

Furthermore, if we let r = 2 and n = 2, Gτ (n) is the fourth template appearing in Table 1. The above

formula gives Φ(Gτ (n), β) = −1

2
(3β − 5), agreeing with the table.
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