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General Marginal-Free Association Indices for Contingency Tables:

From the Altham Index to the Intrinsic Association Coefficient

Milan Bouchet-Valat∗

Abstract:
Notwithstanding a large body of literature on log-linear models and odds ratios, no general marginal-free

index of the association in a contingency table has gained a wide acceptance. Building on a framework
developed by L. A. Goodman, we put into light the direct links between odds ratios, the Altham index,
the intrinsic association coefficient and coefficients in log-multiplicative models including Unidiff and RC(M)
association models. We devise a normalized version of the latter coefficient varying between 0 and 1, which
offers a simpler interpretation than existing indices similar to the correlation coefficient. We illustrate with
the case of educational and socioeconomic homogamy among 149 European regions how this index can be
used either alone in a non- or semi-parametric approach or combined with models, and how it can protect
against incorrect conclusions based on models which rely on strong assumptions to summarize the strength
of association as a single parameter.

Keywords: association index; Altham index; intrinsic association coefficient; odds ratio; log-linear
model; homogamy; intergenerational mobility.

Despite the existence of a substantial and long-standing literature on odds ratios and log-linear models, it
is surprising that no general marginal-free index of the association between categorical variables has become
standard. While a number of indices based on Pearson contingencies (such as the mean square contingency
coefficient ϕ2 or Cramér’s V) are frequently used in various fields, no equivalent index exists for researchers
in need for the odds ratio’s essential property of margin-insensitivity (Bishop, Fienberg, and Holland [1975]
2007:11; Liebetrau 1983).

This lack is particularly striking in studies of intergenerational social mobility or homogamy, which rely
heavily on contingency table analysis. Indeed, in the recent years the economic literature on intergenerational
mobility has much developed, focusing on income rather than categorical measures like social class. One
of the strengths of this literature rests in its methodological unification, with the use of intergenerational
income elasticities or correlations as standard tools. We suggest that the lack of such a standard index is
a comparative disadvantage for sociology in this field. As Jo Blanden (2013:44) notes in her comparison of
the two approaches: “It is one of the disadvantages of the social class literature that there is not a more
intuitive summary measure of mobility; for the purpose of this summary we would benefit greatly from
a single mobility parameter for each nation and point in time, which could be easily compared with the
measures for income and education mobility.”

Yet, several marginal-free association indices have been proposed in the literature over the last fifty years.
The best known of them, the Altham index (Altham 1970) has not benefited from the attention it deserved,
although it has recently gained some popularity in historical studies (Ferrie 2005; Altham and Ferrie 2007;
Bourdieu, Ferrie, and Kesztenbaum 2009; Long and Ferrie 2013). As we will show below, a closely related
index has been developed under different names by different authors, both in theoretical (Goodman 1996)
and empirical (Hout, Brooks, and Manza 1995; Breen et al. 2009) works. Their lack of success may be
attributed to difficulty to give them an intuitive interpretation (Bishop et al. [1975] 2007:393).

The objective of the present article is twofold. First, we would like to highlight the value of several
related association indices based on the odds ratio. To this end, we will mobilize the framework established
in a major article by Leo Goodman (1996) that sought to reconcile two opposed traditions: on the one hand,
Pearson contingencies (χ2) and correspondence analysis; on the other hand, odds ratios and log-linear, log-
multiplicative and association models. Using this framework, we will show that the Altham index is very
directly related to the intrinsic association coefficient found in log-multiplicative association models. This
coefficient is in turn the equivalent in the odds ratio tradition of the mean square contingency coefficient
ϕ2 or of Cramér’s V in the Pearsonian tradition. Moreover, it has strong connections with classical log-
multiplicative models like the layer effect model also known as Unidiff (Xie 1992; Erikson and Goldthorpe
1992) and association models (Wong 2010): analyses carried out using either approach can therefore easily
be made comparable, and we will argue that combining them can equip researchers with the best of each
method.

As a second goal, we will try to help the adoption of odds ratio-based indices by making them easier to
use. Indeed, one possible reason for the lack of success of the Altham index may be difficulty in interpreting
it. In an attempt to alleviate this issue, we will first show that the intrinsic association coefficient and the
Altham index are equal (up to a multiplicative factor) to the logarithm of the (geometric) standard deviation
of all the odds ratios that can be computed from a table. Then, we will propose a new normalization of
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The author would like to thank Louis-André Vallet and Richard Breen for their comments.

1



the intrinsic association coefficient varying between 0 and 1, similar to the well-known Pearson correlation
coefficient, mean square contingency coefficient ϕ2 and Cramér’s V. This normalized index has a direct
relation with the correlation coefficient in the case of a bivariate normal distribution.

We begin by presenting the general framework as established by Goodman, unifying Pearson’s approach
and the odds ratio approach, so as to derive the intrinsic association coefficient, an index of the general
intensity of association insensitive to the table’s margins and dimensions. Then we show that this index is
directly related to the standard deviation of all log-odds ratios in a table, and therefore to the Altham index.
We then develop the strong relation between these indices derived from the odds ratio and standard log-
multiplicative models: Unidiff; RC(M) and RC(M)-L association models. Finally, we illustrate the interest
of these association indices for the analysis of the determinants of socioeconomic homogamy in 149 regions
of the European Union, using the R package logmult (Bouchet-Valat, 2018b) for the estimations.

1 General framework unifying the Pearson and odds ratios tradi-
tions

We begin by presenting the general framework established by Goodman (1996) for the analysis of the
association in a contingency table, using that article’s terminology and notation. The article systematizes
results the author gradually developed in a series of papers (in particular Goodman 1986, 1991). We then
briefly show how this framework can be used to revisit the Pearson approach from a new perspective, and
then we develop the elaboration of the intrinsic association coefficient as a general measure of the association
in a contingency table according to the odds ratio tradition.

1.1 Preliminary definitions

Let Pij be the proportions observed in the cell belonging to row i and column j in a table of dimensions
I × J . In this case the row and column marginal proportions are respectively

Pi+ =

I∑
i=1

Pij and P+j =

J∑
j=1

Pij (1)

Using this notation, let us define the Pearson ratio, also known “independence ratio”, “mobility ratio” or
“homogamy ratio” in the sociological literature:

ψij =
Pij

Pi+P+j
and a derived quantity: Rij = R[ψij ] (2)

with R[x] a monotonically increasing function called “interaction link”.
We may then define the unweighted interaction corresponding to a given cell as

λij = Rij −
1

I

I∑
i=1

Rij −
1

J

J∑
j=1

Rij +
1

IJ

I∑
i=1

J∑
j=1

Rij (3)

Similarly we may define the weighted interaction as

λ̃ij = Rij −
I∑

i=1

RijP+j −
J∑

j=1

RijPi+ +

I∑
i=1

J∑
j=1

RijPi+P+j (4)

Although for simplicity’s sake we use weighting equal to the table’s marginal proportions, any strictly positive
set of weights summing to unity may be used. This applies in particular to uniform weights equal respectively
to 1/I for rows and 1/J for columns, as we shall see below.

In order to obtain a general measure of the intensity of association within a table, Goodman (1996:7)
proposed a generalized index of nonindependence. In its unweighted version, denoted λ, it is equal to the
Euclidean norm of the λij :

λ =

√√√√ I∑
i=1

J∑
j=1

λ2ij (5)

And in its weighted version, denoted λ̃, equal to the weighted standard deviation of the λ̃ij
1:

λ̃ =

√√√√ I∑
i=1

J∑
j=1

λ̃2ijPi+P+j (6)

Instead of marginal weighting, the uniform weighting already mentioned above provides a third often-used
version of the coefficient, denoted λ†, which is equal to the standard deviation of the λij :

λ† =

√√√√ 1

IJ

I∑
i=1

J∑
j=1

λ2ij =
λ√
IJ

(7)

1 Since the weights sum to unity, the weighted version corresponds to a mean, and the unweighted version to a sum.
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An interesting property of the various versions of the nonindependence index is that the square of the index,
defined as a sum of contributions per cell, can also be broken down into contributions per row and column.

We first show that the weighted version of the index, denoted λ̃, is a generalization of Pearson’s mean
square contingency coefficient ϕ2, and then explain at greater length how a version of this index derived
from odds ratios (called the intrinsic association coefficient) can be devised within this framework2.

1.2 Pearson’s mean square contingency coefficient

If we define R as the identity function, that is R[x] = x, then Equation (4) implies that

λ̃ij = Rij − 1− 1 + 1 = ψij − 1 =
Pij − Pi+P+j

Pi+P+j
(8)

In this case, we find that the values, using Goodman’s terminology, are the Pearson contingencies, or the
square roots of the Pearson residuals. The general index of nonindependence defined in Equation (6) as λ̃ is
thus equal to the square root of Pearson’s mean square contingency coefficient ϕ2:

λ̃2 =

I∑
i=1

J∑
j=1

(Pij − Pi+P+j)
2

Pi+P+j
= ϕ2 =

χ2

N
(9)

where N is the sum of counts in the table.

1.3 Intrinsic association coefficient

If we instead define R as the natural logarithm, that is R[x] = log x, we find:

λij = logPij −
1

J

J∑
j=1

logPij −
1

I

I∑
i=1

logPij +
1

IJ

I∑
i=1

J∑
j=1

logPij (10)

It can be shown that the λij are in that case equal to the interaction coefficients of the saturated log-linear
model (justifying the notation chosen), which are more often presented (Bishop et al. [1975] 2007:2; Agresti
2002:5) in the form logPij = λ0 + λIi + λJj + λij .

Therefore, the odds ratio contrasting rows i and i′ and columns j and j′ is equal to:

θij,i′j′ = exp [λij + λi′j′ − λi′j − λij′ ] (11)

Like the odds ratio, the λij possess the property of margin-insensitivity that is central to log-linear modeling:
they are not affected by the rows and columns being multiplied by arbitrary values. Therefore, the index of
intensity of association λ defined in Equation (5) is also marginal-free.

We obtain a similar equation for the weighted interaction:

λ̃ij = logPij −
J∑

j=1

P+j logPij −
I∑

i=1

Pi+ logPij +

I∑
i=1

J∑
j=1

Pi+P+j logPij (12)

However, in that case, the λ̃ij coefficients are not equivalent to the log-linear interaction coefficients. These

coefficients, and therefore the weighted index λ̃ defined in Equation (6), are marginal-free only if the weights
themselves do not depend on the margins. A case in point is when uniform weights are used, as in Equation
(7), for the version of the index denoted λ†. The relationship with the odds ratio contrasting rows i and i′

and columns j and j′ is still direct:

θij,i′j′ = exp
[
λ̃ij + λ̃i′j′ − λ̃i′j − λ̃ij′

]
(13)

It is also interesting to note that the marginal-weighted version of the index does not change if two rows
(respectively, columns) with the same conditional distributions are combined (Goodman 1996:425). This
property is also possessed by Pearson’s mean square contingency coefficient ϕ2.

We call the index derived in this section the intrinsic association coefficient3, following the terminology
introduced by Goodman (1981a, 1985, 1986, 1991) for association models. The link between the definition of
the index presented above and log-linear and log-multiplicative models, justifying this terminology, will be
developed below. Let us note, however, that an application of this index to logistic regression has previously
been called κ index (Hout et al. 1995; Breen et al. 2009).

1.4 Normalized intrinsic association coefficient

The intrinsic association coefficient is expressed on the scale of the logarithm of odds ratios: it equals zero
when independence holds, and has no upper limit. Therefore, although it possesses the desired marginal-
independence property and is thus a useful tool, it does not make it easy to assess the strength of the
association, given that the log-odds ratio scale is not familiar to a wide audience. We propose normalizing
the coefficient so that it follows the well-known scale from 0 to 1 used by the Pearson correlation coefficient,
the mean square contingency coefficient ϕ2 and Cramér’s V.

This transformation of the intrinsic association coefficient from a scale from 0 to infinity to a scale from
0 to 1 is not just an artificial device to make the index appear more familiar. Indeed, it has been shown

2 We shall not demonstrate here the links with Yule’s Y and Q coefficients, less often used, which display properties similar
to those of odds ratios.

3Despite the notation, this index has no relationship with Goodman and Kruskal’s λ coefficient.
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that there exists a direct relationship between the marginal-weighted intrinsic association coefficient and the
correlation coefficient in the special case when frequencies in a contingency table are distributed according
to a discretized bivariate normal distribution (Goodman 1981b, 1985; Becker and Clogg 1988; Becker 1989).
We can therefore define a normalized version of the intrinsic association coefficient with uniform weighting
τ † as:

τ † =
√

1 + 1/(2λ†)2 − 1/(2λ†) or equivalently λ† = τ †/(1− τ †2) (14)

and with arbitrary weighting τ̃ as:

τ̃ =

√
1 + 1/(2λ̃)2 − 1/(2λ̃) or equivalently λ̃ = τ̃ /(1− τ̃2) (15)

The normalized and non-normalized versions of the intrinsic association coefficient are very close for values
below 0.3: a normalized intrinsic association coefficient of 0.3 corresponds to a (non-normalized) intrinsic
association coefficient of 0.33. The difference then increases quickly beyond that limit: 0.5 corresponds to
0.67, 0.7 to 1.37, and 0.9 to 4.74. For the special case of the complete absence of association, we define in
accordance with the limit that τ † = λ† = 0 and τ̃ = λ̃ = 0.

In practical use, the normalized index can be preferred when reporting results to ease interpretation.
However, the non-normalized index is more appropriate in contexts where the absence of an upper bound
is an advantage, notably when the strength of the association is used as the dependent variable in a linear
model, as we will illustrate below.

2 A derivation of the intrinsic association coefficient from odds
ratios

We have shown in the previous section that the intrinsic association coefficient could be considered as the
odds ratio-based equivalent of the Pearson mean square contingency coefficient ϕ2 or of Cramér’s V. In this
section, we would like to give a more straightforward interpretation of this index by showing that it can be
derived in a quite direct way from all the odds ratios in a contingency table. This derivation will also show
that the intrinsic association coefficient and the Altham index are actually very close quantities which can
easily be translated from one another.

For the purposes of the demonstration, let us define the standard odds ratio (SOR) as the geometric
standard deviation of all the odds ratios that can be calculated for a table. Just as the intrinsic association
coefficient defined at Equations (6) and (7) equals the standard deviation of interaction coefficients λij or

λ̃ij , so the aim here is to measure the distance between the odds ratio and its reference value (in this case 1),
but on a multiplicative rather than linear scale. Indeed, the geometric standard deviation is the equivalent
on a multiplicative scale of the arithmetic standard deviation, i.e. the exponential of the standard deviation
of the log-odds ratios.

One way of enumerating all the odds ratios that can be constructed from an I × J table is to take as
reference each cell in the table in turn and calculate for that cell all the IJ odds ratios involving that cell
and all the cells in the table including those on the same row or column, for which the odds ratio is equal
to unity. This amounts to constructing (IJ)2 odds ratios, most of which are redundant, since the “basic
set” (Goodman 1969; Rudas 1998) of (I − 1)(J − 1) spanning cell odds ratios corresponding to any cell is
sufficient to recalculate all the others. Furthermore, this series of odds ratios contains exactly 4 times each
of the (IJ)2/4 distinct square log-odds ratios that can be constructed from the table. These redundancies
are not a problem, because the standard deviation is not affected by the repetition of all the values the same
number of times.

2.1 Using uniform weighting

We can now define the SOR with uniform weighting4, and then in the next section generalize it for arbitrary
weights:

SOR = exp

√√√√ 1

(IJ)2

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(log θij,i′j′)2

= exp

√√√√ 1

(IJ)2

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λij + λi′j′ − λi′j − λij′)2 (16)

It appears that the quadruple sum in Equation (16) is actually equal to the square of the Altham index
measuring the distance of a two-way table from independence (Altham 1970; Altham and Ferrie 2007). We
will return to this below.

The uniform-weighted SOR can also be expressed in terms of the intrinsic association coefficient. Indeed,
since the λij have null sums in rows and columns, Equation (16) simplifies as follows:

4An unweighted version may also be defined, equivalent to the unweighted intrinsic association coefficient presented above.
However, it is not a standard deviation strictly speaking.
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(IJ)2 log2 SOR

=

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λij + λi′j′ − λi′j − λij′)2

=

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λ2ij + λ2i′j′ + λ2i′j + λ2ij′)

+ 2

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λijλi′j′ + λi′jλij′ − λijλi′j − λijλij′ − λi′j′λi′j − λi′j′λij′)

=

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λ2ij + λ2i′j′ + λ2i′j + λ2ij′)

= 4IJ

I∑
i=1

J∑
j=1

λ2ij (17)

So we find that the intrinsic association coefficient with uniform weighting, defined in Equation (7), is
equal to half5 the logarithm of the geometric standard deviation of all the table’s odds ratios (here expressed
as the standard deviation of the log-odds ratios):

λ† =

√√√√ 1

IJ

I∑
i=1

J∑
j=1

λ2ij =
1

2

√√√√ 1

(IJ)2

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(log θij,i′j′)2 (18)

This result also allows deriving the very direct relation between the Altham index d(P,Q), with P the
analyzed table and Q the table expected under independence, and the intrinsic association coefficient, in
both its unweighted and uniform-weighted versions:

d(P,Q) = 2
√
IJλ = 2IJλ† (19)

While being very close to the Altham index, the intrinsic association coefficient offers a significant advantage
over its competitor: it is insensitive to the dimension of the table, i.e. using a larger number of categories
does not mechanically increase the value of the index. In that regard, the intrinsic association coefficient
has a similar relationship to the Altham index as Cramér’s V to the mean square contingency coefficient
ϕ2. Apart from this, the two indices are equivalent: in particular, they will give the same conclusions when
comparing tables of the same dimension. However, the intrinsic association coefficient is superior in that it
allows comparing tables of different dimensions, as we will illustrate below.

2.2 Using arbitrary weighting

Following the approach used above, we now define the standard odds ratio with arbitrary weighting, which
generalizes the results of the previous section. For simplicity’s sake, as before, we present the specific case of
marginal weighting but the demonstrations hold, unless otherwise indicated, for any set of strictly positive
weights that sum to unity (on condition that the λ̃ interaction coefficients have been calculated with the
same weights). The value of this approach is not so much in making it possible to use marginal weightings
in a two-dimensional table – which would lose the property of margin insensitivity – but rather, as we shall
see, to use average-marginal weighting in a three-dimensional table.

This second version of the SOR, denoted S̃OR, is defined as the geometric weighted standard deviation
of all the odds ratios of an I × J table:

S̃OR = exp

√√√√∑I
i=1

∑J
j=1

∑I
i′=1

∑J
j′=1(log θij,i′j′)2Pi+P+jPi′+P+j′∑I

i=1

∑J
j=1

∑I
i′=1

∑J
j′=1 Pi+P+jPi′+P+j′

= exp

√√√√ I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λ̃ij + λ̃i′j′ − λ̃i′j − λ̃ij′)2Pi+P+jPi′+P+j′ (20)

Similar to the previous section, we observe that the quadruple sum is a weighted generalization of the square
of the Altham index. By replacing in Equation (20) all the Pi+ and P+j by unit weights, we obtain the
standard (uniform-weighted) version of the index presented above.

Using the same procedure as for the uniform-weighted index in Equation (17), we can establish the link
between the weighted geometric standard deviation of odds ratios and the weighted intrinsic association
coefficient. Indeed, since the weighted row and column sums of the λ̃ij are zero, Equation (20) simplifies to:

5 We can remark that the constant 2 corresponds to
√

4, and reflects the fact that each odds ratio is calculated from four
λij interaction coefficients, i.e. from 4 cells.
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log2S̃OR

=

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λ̃ij + λ̃i′j′ − λ̃i′j − λ̃ij′)2Pi+P+jPi′+P+j′

= 4

I∑
i=1

J∑
j=1

λ̃2ijPi+P+j

+ 2

I∑
i=1

J∑
j=1

I∑
i′=1

J∑
j′=1

(λ̃ij λ̃i′j′ + λ̃i′j λ̃ij′ + λ̃ij λ̃i′j + λ̃ij λ̃ij′ + λ̃i′j′ λ̃i′j + λ̃i′j′ λ̃ij′)Pi+P+jPi′+P+j′

= 4λ̃2 (21)

Again, we find that the weighted intrinsic association coefficient, defined at Equation (6), is equal to half
the logarithm of the weighted geometric standard deviation of all odds ratios that can be constructed from
a table:

λ̃ =

√√√√ I∑
i=1

J∑
j=1

λ̃2ijPi+P+j =
1

2

√√√√∑I
i=1

∑J
j=1

∑I
i′=1

∑J
j′=1(log θij,i′j′)2Pi+P+jPi′+P+j′∑I

i=1

∑J
j=1

∑I
i′=1

∑J
j′=1 Pi+P+jPi′+P+j′

(22)

As already indicated, we can see that by replacing, in Equations (21) and (22), Pi+ by 1/I and P+j by
1/J , we return to the formula for the uniform-weighted intrinsic association coefficient.

3 Relation to the Unidiff model

Replacing the Altham index and the intrinsic association coefficient in a common framework is particularly
useful as it allows unifying the descriptive approach of the Altham index and the parametric approach of log-
linear and log-multiplicative modeling. One area where the similarity is striking is the analysis of variations
in the overall strength of the association over the last dimension (layer) of a three-way table.

Indeed, the indices presented above are directly related to the association represented by the log-
multiplicative layer effect model (Xie 1992), better known as the Unidiff model (Erikson and Goldthorpe
1992)6. The proportions expected under this model follow the equation, with Fijk the number predicted by
the model for the cell at the intersection of row i, column j and layer k:

logFijk = λ0 + λIi + λJj + λKk + λIKik + λJKjk + φkψij (23)

For a given layer k, if the model applies, the interaction coefficients between rows and columns can be
written as λijk = φkψij , with ψij the interaction coefficients common to all layers and φk the layer coefficient
measuring the intensity of the association on layer k. According to Equation (5), the unweighted intrinsic
association coefficient for layer k thus equals:

λ2k =

I∑
i=1

J∑
j=1

(φkψij)
2 = φ2k

I∑
i=1

J∑
j=1

ψ2
ij (24)

It follows that the ratio between the intensities of the associations relating to layers k and k′ equals the ratio
between the respective intrinsic association coefficients of these layers:

λk′

λk
=
φk′

φk
(25)

Therefore, if we denote by index k = 0 the reference layer for which the layer effect coefficient is fixed by
convention at unity, that is φ0 = 1, we obtain:

λk = φkλ0 (26)

The same properties are verified for the Altham index (Zhou 2015), because of its direct relation with the
intrinsic association coefficient evidenced in Equation (19) above.

It is easy to verify with the same procedure that this property is verified when arbitrary weighting is
used, as long as the weights are independent of the layer under consideration. This holds in particular
for the weighting by margins of the whole table (average-marginal weighting, see Becker and Clogg 1989),
which is an interesting alternative to uniform weighting when one seeks to examine the variations between
layers in the intensity of the association independent of the table margins. Let us note that, extending a
result highlighted in the first section regarding two-dimensional tables, the values of the index computed
with average-marginal weights do not change when combining rows (respectively, columns) with identical
conditional distributions. This makes this weighting system particularly appealing.

Using intrinsic association coefficients or Altham indices corresponding to layers therefore allows compar-
ing them in the same way as by using the layer effect coefficients φk, and if necessary recomputing the latter

6 This relation with the intrinsic association coefficient has already been partly presented by Leo Goodman and Michael
Hout (2001), but with respect to models that, while more general in some ways, are in other ways much more restrictive than
Unidiff.
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coefficients. These indices have the further advantage that they provide a measure of the absolute extent of
the association, whereas layer effect coefficients can only be interpreted with respect to the reference layer.
This property is particularly useful to compare results across studies, or to compare the intensity of the
association between a variable and a series of other variables.

Finally, when the Unidiff model does not accurately fit the data, these three indices can be used to
measure the intensity of the association relating to the various layers without assuming that the structure
of this association is homogeneous between layers. In this sense, they are generalizations of the measure
provided by the layer effect coefficient of the Unidiff model. This approach can be carried out either by
calculating the value of these indices directly from the observed data, or by combining them with models
more complex than Unidiff, such as the regression-type model (Goodman and Hout 1998) or the row-column
association model with layer effect RC(M)-L that we describe in the next section.

4 Relation to row-column association models

4.1 RC(M) association model

The intrinsic association coefficient was devised by Goodman for association models (Goodman 1981a, 1985,
1986; Becker and Clogg 1989; Clogg and Shihadeh 1994; Wong 2010): it is thus directly related to these
models, and the Altham index inherits this close relation. With the log-multiplicative row-column association
model (also known as RC(M) or Goodman’s RC type II model) the expected proportions follow the equation,
with Fij the number predicted by the model for the cell at the intersection of row i and column j:

logFij = λ0 + λIi + λJj +

M∑
m=1

φmµimνjm (27)

In this equation, φm is the intrinsic association coefficient for dimension m, and µim and νjm are the scores
on dimension m for row i and column j. By convention, without loss of generality, φm is always chosen to be
positive (incurring if necessary a change of sign for the µim or the νjm scores). These coefficients are made
identifiable using the following constraints (of position, scale and orthogonality across dimensions):

I∑
i=1

µim =

J∑
j=1

νjm = 0,

I∑
i=1

µ2
im =

J∑
j=1

ν2jm = 1,

I∑
i=1

µimµim′ =

J∑
j=1

νjmνjm′ = 0 for all m 6= m′ (28)

In the weighted version, the equation of the model is:

logFij = λ̃0 + λ̃Ii + λ̃Jj +

M∑
m=1

φ̃mµ̃imν̃jm (29)

φ̃m, µim and ν̃jm are defined similarly, but with the following weighted identification constraints:

I∑
i=1

µ̃imPi+ =

J∑
j=1

ν̃jmP+j = 0,

I∑
i=1

µ̃2
imPi+ =

J∑
j=1

ν̃2jmP+j = 1,

I∑
i=1

µ̃imµ̃im′Pi+ =

J∑
j=1

ν̃jmν̃jm′P+j = 0 for all m 6= m′ (30)

In an association model, the significance of a dimension is measured by the corresponding intrinsic association
coefficient, generally denoted φm for dimension m. This coefficient is the direct equivalent of the coefficient
of the same name denoted λ above, but calculated from the component of total interaction between rows
and columns which can be attributed to the dimension under consideration. From Equation (27) it can be
seen that with the RC(M) model, the row-column interaction coefficient equals:

λij =

M∑
m=1

φmµimνjm (31)

So the contribution of each dimension to the interaction is φmµimνjm (a value that may be either negative
or positive for a given cell and dimension). Taking Equation (5) defining the overall intrinsic association
coefficient λ, but replacing the term λij by φmµimνjm so as only to account for the contribution from
dimension m, we obtain, in line with Equations (27) and (28):

λ2m =

I∑
i=1

J∑
j=1

(φmµimνjm)2 = φ2m

I∑
i=1

µ2
im

J∑
j=1

ν2jm = φ2m (32)
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And in the weighted version, using Equations (6), (29) and (30) this time:

λ̃2m =

I∑
i=1

J∑
j=1

(φ̃mµ̃imν̃jm)2Pi+P+j = φ̃2m

I∑
i=1

µ̃2
imPi+

J∑
j=1

ν̃2jmP+j = φ̃2m (33)

It can be seen that the intrinsic association coefficient φm (respectively φ̃m) is indeed the equivalent, applied
to a particular dimension, of the coefficient λ (respectively λ̃) of the same name defined in the first section
regarding total association. This relation goes beyond a mere analogy: the overall intrinsic association
coefficient equals the Euclidean norm of the coefficients corresponding to each dimension. This can be seen
from Equations (5) and (28):

λ2 =

I∑
i=1

J∑
j=1

(
M∑

m=1

φmµimνjm

)2

=

I∑
i=1

J∑
j=1

M∑
m=1

(φmµimνjm)2 +

I∑
i=1

J∑
j=1

M∑
m=1

∑
m′ 6=m

φmφm′µimµim′νjmνjm′

=

M∑
m=1

λ2m +

M∑
m=1

∑
m′ 6=m

φmφm′

I∑
i=1

µimµim′

J∑
j=1

νjmνjm′

=

M∑
m=1

λ2m (34)

Similarly, in the weighted version, by (6) and (30):

λ̃2 =

I∑
i=1

J∑
j=1

(
M∑

m=1

φ̃mµ̃imν̃jm

)2

Pi+P+j

=

I∑
i=1

J∑
j=1

M∑
m=1

(φ̃mµ̃imν̃jm)2Pi+P+j +

I∑
i=1

J∑
j=1

M∑
m=1

∑
m′ 6=m

φ̃mφ̃m′ µ̃imµ̃im′ ν̃jmν̃jm′Pi+P+j

=

M∑
m=1

λ̃2m +

M∑
m=1

∑
m′ 6=m

φ̃mφ̃m′

I∑
i=1

µ̃imµ̃im′Pi+

J∑
j=1

ν̃jmν̃jm′P+j

=

M∑
m=1

λ̃2m (35)

So the overall intrinsic association coefficient (weighted or otherwise) equals the Euclidean norm of the
intrinsic association coefficients corresponding to each dimension of the model. An association model is
thus a way of decomposing the total association in the table into a series of dimensions of diminishing
significance. This decomposition is valid whether the model is saturated or not, as long as it fits the data
properly. Association models therefore stand in the same relation to the odds ratio tradition as correlation or
correspondence analysis do to the Pearson tradition (Goodman 1985, 1986, 1991, 1996; Gilula and Haberman
1986). Once again, the Altham index is also tightly linked to this approach, though this relation is less direct
than for the intrinsic association coefficient.

4.2 Extension to RC(M)-L association model

RC(M)-L models (Clogg 1982; Wong 2010) are an extension of RC(M) models to three-dimensional tables:
the intrinsic association coefficient and/or scores can vary from one layer to another. One version of this
model postulates that the association is identical for all layers (homogeneous scores and intrinsic association
coefficients); another, that it differs entirely between layers (heterogeneous scores and intrinsic association
coefficients): these two versions can be reduced either in the first case to the scores of a single RC(M) model
(but with layer-specific marginal parameters) or to those of as many RC(M) models are there are layers.

Only the third version of the RC(M)-L model requires an extension of the approach presented so far.
This version of the model assumes that the scores are homogeneous between layers but that the intrinsic
association coefficients are heterogeneous. Its equation, with Fijk the frequency predicted by the model in
the cell at the intersection of row i, column j and layer k, is as follows:

logFijk = λ0 + λIi + λJj + λKk + λIKik + λJKjk +

M∑
m=1

φmkµimνjm (36)

or, in its weighted version,

logFijk = λ0 + λ̃Ii + λ̃Jj + λ̃Kk + λ̃IKik + λ̃JKjk +

M∑
m=1

φ̃mkµ̃imν̃jm (37)

Only the first two constraints of Equations (28) and (30), applying to the scores, are required: cross-
dimensional constraints can no longer be applied and there is generally a non-zero correlation between the
scores in different dimensions. Consequently, the reasoning followed in Equations (34) and (35) cannot

8



be used. The relation between the intrinsic association coefficients for each dimension and the overall
intrinsic association coefficient is not a simple summation: it must take into account the correlation between
dimensions. In Equations (34) and (35), the respective terms:

M∑
m=1

∑
m′ 6=m

φmφm′

I∑
i=1

µimµim′

J∑
j=1

νjmνjm′ (38)

and

M∑
m=1

∑
m′ 6=m

φ̃mφ̃m′

I∑
i=1

µ̃imµ̃im′Pi+

J∑
j=1

ν̃jmν̃jm′P+j (39)

corresponding to the sum of the products of the intrinsic association coefficients and the correlations between
(respectively) the row and column scores of the dimensions taken two at a time do not generally equal zero.
For example, the intensity of association on a given layer depends on the positive, negative or zero correlation
between the scores and the intensities of the different dimensions. Intuitively, one dimension may offset the
association represented by another if it is strong enough and the two dimensions have sufficiently different
scores. Note too that the intrinsic association coefficients here may be negative, which amounts in practice
to inverting the sign of the row or column scores and thus inverting the direction of the link compared to
layers where the coefficient was positive.

Despite this greater complexity, which is due to the richness of the RC(M)-L model, both the intrinsic
association coefficient and the Altham index can always be calculated separately, for the overall association
and for each dimension. The analysis of the correlation between dimensions can also be of interest to better
understand the variations of the overall association.

In conclusion, note that, as with the Unidiff model, analysis of the differences in association independently
of marginal variations between layers can be achieved by adopting either uniform weighting or weighting by
the average row and column margins of the table (rather than by the margins of each layer).

5 Application: Educational and Socioeconomic Homogamy Among
European Regions

This section illustrates the interest of the association indices presented above to analyze the spatial variations
of educational and socioeconomic homogamy among European regions (see Bouchet-Valat 2018a for a more
complete analysis). Like intergenerational social mobility, homogamy has typically been studied in the
literature using marginal-free methods such as log-linear models and other odds-ratio-based techniques (for
international comparisons see Smits, Ultee, and Lammers 1998, 1999; Raymo and Xie 2000; Smits, Ultee, and
Lammers 2000; Smits 2003; Park and Smits 2005; Katrňák, Martin Kreidl, and Fónadová 2006; Domański
and Przybysz 2007; Katrňák, Fuč́ık, and Luijkx 2012). Multiple families of log-linear and log-multiplicative
models have been used by different authors, so that no straightforward comparison of the results is possible.
The association indices presented in this article would allow summarizing the model results in a single figure
given the overall strength of homogamy in each studied society, despite the variety of the chosen modeling
strategies.

The example presented here will also highlight a risk which researchers may run when trying to use models
to obtain a single measure of the strength of the association. Often, only relatively restrictive models will
provide such a summary parameter: the log-multiplicative layer effect (Unidiff) estimates a layer coefficient;
the log-multiplicative row-column association model (RC-L) estimates an intrinsic association coefficient;
the distance log-linear model estimates a step parameter. When these simple models do not fit the data
adequately, more complex models may be more appropriate, like the regression-type log-multiplicative model
(Goodman and Hout 1998), or multidimensional association models (like RC(M)-L models). Even more
frequently, cell-specific parameters will have to be introduced for the main diagonal of the homogamy table
in order to account for the varying intensity of homogamy between groups; these parameters may also be
country-specific. In these cases, no single measure of the strength of homogamy in a given country can be
obtained. Researchers may then be tempted either to analyze the determinants of one of the components of
the association, and ignore the others (as did Domański and Przybysz 2007 by regressing step parameters
and leaving aside diagonal parameters); or to use simpler models which may not give a completely accurate
description of the data. In what follows, we illustrate this risk using the Unidiff model.

The illustration is based on the analysis of educational and socioeconomic homogamy tables for 149
infra-national regions of the European Union (NUTS1 and NUTS2 levels, regrouping between 800,000 an
7 million people) for years 2014 to 2016. These tables have been computed from the corresponding waves
of the European Union Labour Force Survey, covering 26 European Union member States7: Austria (AT),
Belgium (BE), Bulgaria (BG), Croatia (HR), Czech Republic (CH), Cyprus (CY), Estonia (EE), France
(FR), Germany (DE), Greece (GR), Hungary (HU), Ireland (IE), Italy (IT), Latvia (LV), Lithuania (LT),
Luxembourg (LU), the Netherlands (NL), Norway (NO), Poland (PO), Portugal (PT), Romania (RO),
Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE) and the United Kingdom (UK). Cohabiting couples
(both married and unmarried) have been identified within each household using partner identifiers. To ensure
the reliability of the information on occupations and stability of the rate of individuals in a relationship,
only couples in which both partners are aged 30 to 59 years are considered. The sample is made of 1,400,000

7Norway is included as an associated country. On the other hand, the data for Denmark, Finland and Malta could not be
used.
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couples for educational homogamy and of 1,100,000 couples for socioeconomic homogamy (with regional
samples ranging from 1,000 to 55,000)8.

The educational levels of the partners is measured in the International Standard Classification of Ed-
ucation (ISCED) 2011, in four categories: lower secondary or less (ISCED 0-2, including short vocational
education); upper secondary (ISCED 3); lower tertiary (ISCED 4-6: up to and including Bachelor’s); upper
tertiary (ISCED 7-8: Master’s and beyond). The socioeconomic groups of the partners are measured using
the European Socio-economic Groups classification (ESeG, see Meron and Amar 2014) in seven categories:
Managers; Professionals; Technicians and associated professionals; Small entrepreneurs; Clerks and skilled
service employees; Industrial skilled employees; Less skilled employees. For individuals not employed at the
time of the survey, we use information on the last occupation (available only for those who worked within
eight years before the survey).

One major question in the comparative literature on homogamy concerns its relationship with the level
of economic development. Studies have sought to test the empirical validity of the inverted U curve hy-
pothesis (Smits et al. 1998), according to which educational homogamy would increase in the first stage of
development, but then decrease in a later stage. A variation of this hypothesis posits that a stabilization
will be observed at the highest levels of development (saturation hypothesis). We will only deal with the
part of the curve concerning advanced economies, to which European Union countries belong. To this end,
two independent variables will be used. First, the average disposable income per inhabitant (in purchasing
power parity) as computed by Eurostat for NUTS1 and NUTS2 regions in 2006 is used to measure economic
development at the regional level. Second, we classify regions according to whether they contain the capital
city of their countries, or a large metropolis9. This second variable will allow us to distinguish the role of
economic development per se and that of the peculiarities of very dense regions which are generally richer,
but also present higher inequality levels and are large enough so that inter-group contacts may not be as
developed as in less populated regions (meeting opportunity effect).

5.1 Measuring Homogamy

Multiple approaches can be used to measure the strength of relative homogamy (i.e. controlling for the
population structure in each region). We may opt for a fully non parametric approach by computing the
intrinsic association coefficient (or equivalently the Altham index) directly on the observed data. We may
also retain a semi-parametric estimator of the intrinsic association coefficient, like the Bayesian shrinkage
method proposed by Zhou (2015) for the Altham index, whose principle is to estimate log-odds ratios for a
given region more accurately by “borrowing strength” from the tables for other regions. Finally, we may also
fit several models to the data and choose the one which provides the most accurate description according to
classical criteria; the indices can then be computed on the fitted tables. We illustrate all three approaches
in order to compare their results below. In all cases, we use average-marginal weighting.

As usual, we start with the conditional independence model, which only controls for the marginal dis-
tribution of men and women among the seven socioeconomic groups or the four educational categories
(respectively) in each region, but does not allow for any tendency to relative homogamy. The equation of
this model is:

logFijk = λ0 + λIi + λJj + λKk + λIKik + λJKjk (40)

Fit statistics confirm that this model does not describe accurately the data (Table 1), with respectively 23%
and 21% of misclassified couples (dissimilarity index) for education and socioeconomic group. The second
model, called stability model, extends the first one by allowing for a common association to all regions once
margins have been controlled. Its equation is:

logFijk = λ0 + λIi + λJj + λKk + λIKik + λJKjk + λIJij (41)

This model improves the fit significantly, with only 5.3% and 6.2% of misclassified couples and a clear
reduction in both the BIC and AIC.

To measure geographic variations in the strength of relative homogamy, we have to find models which fit
the data better than the stability baseline. Since the socioeconomic groups cannot be unequivocally ordered,
the log-multiplicative layer effect model or Unidiff (Erikson and Goldthorpe 1992; Xie 1992) is a natural
choice10. As mentioned above, this model is a good candidate for our purpose since it provides a single
coefficient for each region, measuring the intensity of relative homogamy assuming that the structure of the
row-column interaction is the same in all regions. This model follows the equation:

logFijk = λ0 + λIi + λJj + λKk + λIKik + λJKjk + φkψij (42)

The Unidiff model reveals significant variations of relative homogamy between regions, as both the AIC and
the BIC decrease very clearly. However, the improvement to the description of the data is modest: the
proportion of misclassified couples goes down by only two percentage points for education, and by less than
one percentage point for socioeconomic group.

Does the assumption that the pattern of the association is the same in all regions on which rests the
Unidiff model hold? Clearly not, as a fourth model including one additional parameter for each cell on the

8Survey weights are used in all analyses. For log-linear models, weighted tables are normalized for each region to sum to the
actual sample size (Skinner and Vallet 2010). For linear regression models, regions are weighted using the population size in the
30-59 age range. This allows taking into account the large variations in population size across regions (Ebbinghaus 2005:136),
which frequently result from arbitrary data availability issues.

9The list of metropolitan regions corresponds to Dijkstra’s (2009) “second-tier metropolitan areas”. See Bouchet-Valat
(2018a) for details.

10For ordered variables like education, the distance model would also be a common choice (Smits, Ultee, and Lammers 1998;
Domański and Przybysz 2007), but we do not explore it here for simplicity.
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Table 1: Fit statistics for log-linear and log-multiplicative models

D. F. Deviance ∆ (%) BIC AIC

Education

Independence 1,341 553,924 23.2 534,930 551,242

Stability 1,332 42,983 5.3 24,116 40,319

Unidiff 1,184 19,221 3.2 2,451 16,853

Unidiff + diagonal parameters 592 3,012 0.8 -5,373 1,828

Socioeconomic group

Independence 5,364 342,606 21.1 267,857 331,878

Stability 5,328 38,566 6.2 -35,681 27,910

Unidiff 5,180 31,228 5.6 -40,957 20,868

Unidiff + diagonal parameters 4,144 20,390 3.8 -37,358 12,102

D. F.: Degrees of Freedom. ∆: Dissimilarity Index.

Table 2: Correlations Between the Indices Estimated via Four Different Methods

Non-parametric Shrinkage Unidiff Unidiff + diagonal

Education

Non-parametric 1.00 0.97 0.82 0.97

Shrinkage 0.97 1.00 0.89 0.97

Unidiff 0.82 0.89 1.00 0.85

Unidiff + diagonal 0.97 0.97 0.85 1.00

Socioeconomic group

Non-parametric 1.00 0.97 0.87 0.93

Shrinkage 0.97 1.00 0.92 0.95

Unidiff 0.87 0.92 1.00 0.91

Unidiff + diagonal 0.93 0.95 0.91 1.00

Correlations are weighted using the population size of each region.

main diagonal of the table for each region allows reducing the share of misclassified couples by about two
percentage points, and improves the fit both according to the BIC and the AIC for education, and according
to the AIC for socioeconomic homogamy. The equation of this model is:

logFijk = λ0 + λIi + λJj + λKk + λIKik + λJKjk + φkψij + δik1i=j (43)

Even this more complex model fails to fit the data according to the AIC (as the strongly positive value shows
that the saturated model should be preferred), which indicates that more statistically significant deviations
remain. We will not try to find better models here since our goal is precisely to evaluate how close are
relatively classic models to the non-parametric and semi-parametric estimators.

The association indices presented in this article make the comparison of the estimates of the strength of the
association provided by the above models very straightforward. Indeed, despite the different specifications,
we can simply compute the values of the indices based on the fitted counts of the models (i.e. the Fijk). We
illustrate this using the intrinsic association coefficient, with weights equal to the average marginal counts
for each row and column across all regions. For the standard Unidiff, this is strictly equivalent to applying E
quation (24) above. Since our sample size is sufficiently large for the number of cells in each region, we can
also compute the non-parametric estimator of the index11, and compare it with the semi-parametric Bayesian
shrinkage estimator (Zhou 2015) and the two Unidiff models. The model fitting and the computation of the
two estimators of the intrinsic association coefficient can be achieved easily using the R package logmult
(Bouchet-Valat 2018b)12.

The comparison shows that the results obtained using the different methods are very similar overall
(Table 2). For both types of homogamy, the weakest correlation across regions is observed between the non-
parametric estimator and the Unidiff model: 0.82 for education and 0.87 for socioeconomic group. This is
expected since these are respectively the least and the most restrictive estimation methods. This correlation
is already quite high, indicating that using the Unidiff model as an approximation would globally yield correct
results. The strongest correlations are observed between the non-parametric and the shrinkage estimators,
at 0.97 for both education and socioeconomic group. The Unidiff model with diagonal parameters also agrees
very closely with the non-parametric and shrinkage estimators (from 0.93 to 0.97).

11Since 26 cells (out of 7,301, i.e. 0.4%) for socioeconomic group and 36 (out of 2,384, i.e. 1.5%) for education contain zero
counts, we added 1/2 to all cells for the computation of the non-parametric and semi-parametric estimators (Agresti 2002:9.8.7).
The same operation was applied for education to two Slovakian regions (SK01 and SK03) to stabilize the Unidiff with diagonal
parameters model due to the presence of one and sometimes two empty cells in the corners of the tables.

12Tables and code to reproduce the analyses are available in the data supplement, on the author’s personal webpage at
http://bouchet-valat.site.ined.fr and upon request.
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Table 3: Average, Dispersion and Range of the Indices Estimated via Four Different Methods

Non-parametric Shrinkage Unidiff Unidiff + diagonal

Education

Mean 0.72 0.70 0.66 0.72

Standard deviation 0.21 0.16 0.16 0.19

Minimum 0.43 0.46 0.40 0.43

Maximum 1.50 1.17 1.24 1.46

Socioeconomic group

Mean 0.57 0.55 0.51 0.53

Standard deviation 0.09 0.07 0.09 0.08

Minimum 0.37 0.39 0.33 0.32

Maximum 0.86 0.77 0.87 0.78

Averages are weighted using the population size of each region.

For both types of homogamy, the average of the coefficients across all regions (Table 3) is the highest
with the non-parametric approach (0.72 for education and 0.57 for socioeconomic group), and the lowest
with the standard Unidiff (respectively 0.66 and 0.51). This is consistent with the correlation between these
two methods being the lowest. The Bayes shrinkage estimator is mid-way between the two extremes in both
cases, and the Unidiff with diagonal parameters is closer to one or the other indicator depending on the type
of homogamy considered.

One advantage of the intrinsic association coefficient is that the number of categories used to measure each
type of homogamy does not mechanically affect the level of the index, allowing for (cautious) comparisons
between different types of homogamy. Here, educational homogamy consistently appears as stronger than
socioeconomic homogamy, by 25% to 35% depending on the estimator13. This is also the case considering
each region separately, in 120 to 129 regions out of 149.

The standard deviation of association across regions and the difference between maximum and mini-
mum associations are the lowest for the shrinkage estimator, which is expected due to the definition of
the estimator, which brings log-odds ratios closer to their European average. They are quite higher for
the non-parametric estimator, which is again expected. It is more surprising to remark that the standard
Unidiff model estimator has the largest standard deviation and range for socioeconomic group. Contrary
to the Bayesian shrinkage estimator, it appears it is not always the case that the Unidiff model provides
conservative estimates of deviations from the average.

The normalized variant of the index varying between 0 and 1 presented at Equation (15) can be used
to ease the interpretation of these results. For the non-parametric approach, the average association of 0.72
for education gives a normalized coefficient of 0.52; the average association of 0.57 for socioeconomic group
gives a normalized coefficient of 0.45. Regional normalized coefficients range from 0.37 to 0.72 for education,
and from 0.33 to 0.58 for socioeconomic group. According to standard effect strength conventions for the
Pearson correlation and contingency coefficients, these associations would range from medium to very large
(Cohen 1988, ch. 7).

It is interesting to note that even though differences between estimation methods are limited, the standard
Unidiff model, which is the most common method method used in the literature to estimate overall the level
of association, tends to slightly underestimate the mean association, even if maximum values are in some
cases higher than with other methods. We can therefore conclude that while Unidiff remains a useful tool,
non- and semi-parametric estimators or more complex models should be preferred.

5.2 Accounting for Variations in Relative Socioeconomic Homogamy

In order to illustrate the fact that the relatively limited differences between estimators of the association
observed above can lead to substantively different conclusions, we now turn to the analysis of the macro
determinants of the intensity of relative socioeconomic homogamy. For simplicity we will not cover the case
of educational homogamy, since for this dimension differences between estimators are less marked. The full
analysis is available in a separate article (Bouchet-Valat 2018a).

We take the logarithm of the intrinsic association coefficient obtained by the four estimation methods as
the dependent variable in an ordinary least squares regression model. This is appropriate since the index
cannot take negative values. Variables therefore have a multiplicative effect on the association level. As
developed above, the model includes as independent variables the disposable income per inhabitant and its
square (variable was standardized so that its mean is zero and its standard deviation is one) and whether
the region includes a capital city or a second-tier metropolitan area. Finally, we introduce country fixed
effects (i.e. one dummy variable for each country) so that the coefficient estimates reflect the deviation in
the strength of relative homogamy with reference to the country average.

The comparison of the R2 for the four models (Table 4) shows that proportions of explained variance
are similar, from 0.82 to 0.88. This very high figure is due to the inclusion of country fixed effects. The
within-country R2 (that is, the share of the variance not explained by country fixed effects which is explained
by the full model) varies more significantly, from 0.15 for the non-parametric estimator down to 0.10–0.11
for the other three estimators.

13This difference persists when using a more aggregated socioeconomic classification.
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Table 4: Linear Regression Results for Relative Socioeconomic Homogamy

Non-parametric Shrinkage Unidiff Unidiff + diagonal

Disposable income* 0.94 0.97 0.98 0.96

(0.89–0.99) (0.93–1.00) (0.94–1.03) (0.92–0.99)

Disposable income2* 1.05 1.04 1.04 1.05

(1.02–1.09) (1.02–1.05) (1.01–1.07) (1.02–1.09)

Other Region (Ref.) 1.00 1.00 1.00 1.00

Capital Region 1.10 1.07 1.08 1.13

(1.04–1.16) (1.03–1.11) (1.03–1.13) (1.08–1.18)

Second-Tier Metro Region 1.04 1.04 1.04 1.05

(1.01–1.07) (1.02–1.06) (1.01–1.07) (1.03–1.08)

Intercept 0.53 0.53 0.49 0.50

(0.50–0.56) (0.51–0.55) (0.47–0.51) (0.47–0.52)

Country fixed effects x x x x

Observations (regions) 146 146 146 146

R2 0.85 0.90 0.89 0.90

Adjusted R2 0.82 0.87 0.87 0.88

Within-country R2 0.15 0.10 0.11 0.10

95% normal bootstrap confidence intervals in parentheses.
* Standardized variable (zero mean and unit standard deviation).
The model is fitted on 146 regions out of 149 due to the non-availability of independent variables.

This result is consistent with the fact that estimated coefficients are generally farther away from 1
(indicating no effect) for the non-parametric estimator. The effect of level of metropolization varies in a
non-negligible way across estimating methods. Capital regions are characterized by a higher socioeconomic
homogamy than regions with no metropolis by 7% according to the shrinkage and standard Unidiff estimators,
by 10% according to the non-parametric estimator, and by 13% according to the Unidiff with diagonal
parameters estimator. This effect is statistically significant at the 5% level for all estimators. Regions with
a second-tier metropolitan area also show a higher homogamy by 4% to 5%.

Differences between estimators are even more visible regarding the effect of the level of development.
Using the non-parametric estimator, the coefficients for disposable income (0.94, significant at the 5% level)
and its square (1.05, also significant) imply that moving from a disposable income two standard deviations
below the average to a value equal to the average decreases relative homogamy by 27%, and that moving
from the average to two standard deviations above average slightly increases relative homogamy (by 7%)14.
Socioeconomic homogamy therefore tends to decline with economic development, but stabilizes above the
average level of development. A similar, though weaker effect (and borderline significant at the 5% level) is
observed using the shrinkage (respectively -20% and +10%) and Unidiff with diagonal parameter (-24% and
+12%) estimators. On the contrary, when the association is measured using the standard Unidiff model, the
effect of disposable income is so small (0.98) that it is no longer statistically significant at the 10% level15.
Only its square has a significant positive effect, implying that socioeconomic homogamy is the highest for
both the least and the most developed regions within a country, but that no decreasing trend is detected.

These results illustrate the impact small inaccuracies in the model-based measurement of the association
can have on the results of subsequent analyses. Even if the overall correlation between the association
measures obtained using the three different methods are quite high (over 0.8), the assumption of a common
pattern of the association across all European regions does not really hold, which becomes more visible
when considering within-country differences. This problem is likely to be more severe in cases where the
standard Unidiff model does not fit the data as accurately as it does in the present study (dissimilarity
index of 5.6%). Using the standard Unidiff model, we would have (incorrectly) concluded that a U-shaped
relationship exists between level of development and relative socioeconomic homogamy, while the comparison
with other estimators of the association shows that homogamy actually stabilizes rather than increases at
higher levels of development. This result is consistent with that obtained for educational homogamy with
all four estimating methods (Bouchet-Valat 2018a).

We have shown how a general-purpose marginal-free index of the association like the intrinsic association
coefficient could be used to compare the results obtained using various model specifications, as well as using
a semi- or non-parametric approach. This can be particularly useful to carry out a sensitivity analysis testing
multiple modeling assumptions. Depending on the researcher’s needs, this index can be used as a way of
summarizing the strength of the association described by a chosen model whose coefficients are commented
in detail, or as a way to measure the strength of the association without fitting any model to the data.
Association indices offer a summary measure of the level of the association, while models are most useful to
describe its patterns in a more fine-grained way or to test specific hypotheses.

14These figures are computed respectively via (1− 0.94−2 × 1.054)/(0.94−2 × 1.054) and 0.942 × 1.054 − 1.
15We should note that the Unidiff and the shrinkage estimators may not be completely appropriate methods for a within-

country analysis, since they tend to make the estimates closer to the European average, rather than to national averages which
are the reference in the fixed-effects model. The disturbance thus introduced could explain at least in part why the estimated
effects are smaller than with the non-parametric method.
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6 Conclusion

We have presented three closely related marginal-free indices of the association in a contingency table: the
Altham index, the intrinsic association coefficient, and a normalized variant of the latter index. The Altham
index has been used several times in recent empirical works, but its relationship to odds ratios, log-linear
and log-multiplicative models (in particular association models) had not been developed systematically until
now. On the contrary, the intrinsic association coefficient was originally proposed by Goodman in the context
of row-column (RC) association models, and later identified by him as a fundamental quantity, equivalent in
the odds ratio framework to the Pearson mean square contingency coefficient ϕ2 or to Cramér’s V. Yet, it
has not been used in empirical applications. We have shown that this index is actually equal to the standard
deviation of all the log-odds ratios that can be constructed from a table, and that it is directly related to
the layer coefficient estimated by the Unidiff model. Finally, we have proposed a normalized variant of the
intrinsic association coefficient varying between 0 and 1 which is equivalent to the correlation coefficient
under a bivariate normal distribution, in order to make the interpretation and the presentation of results
more intuitive.

Despite the very strong links between the three indices, it seems that the intrinsic association coefficient
should be preferred to the Altham index. Indeed, the Altham index mechanically increases with the number
of rows and columns of the table, making its scale somewhat arbitrary and its interpretation difficult. This is
not the case of the two variants of the intrinsic association coefficient, which on the contrary allow for (careful)
comparisons across different classifications, for example between different socioeconomic classifications, or
even between socioeconomic and educational dimensions of homogamy or social mobility. Other advantages
can be highlighted: the intrinsic association coefficient fits very well in the framework of association models,
since it appears directly in their equations; the normalized version varying between 0 and 1 is measured on
a more easily interpretable scale.

We hope that these indices can be useful for empirical research regarding at least three aspects. First,
they allow comparing the overall strength of the association as predicted by several, possibly very different
log-linear or log-multiplicative models. This is particularly useful for models which do not provide a single
parameter summarizing the strength of the association. As we have shown above regarding educational and
socioeconomic homogamy among European regions, these indices therefore make it easy to test multiple
specifications and check whether results are robust, which can in some cases prevent drawing incorrect
conclusions.

Second, using one of the indices proposed in the present article will make it possible to compare results of
several studies after the fact (as in a meta-analysis). This is currently hindered by the diversity of models used
in the literature, even when the research questions and methods are very similar (as in the case of homogamy
and intergenerational mobility). To this end, the insensitivity of the intrinsic association coefficient to the
dimensions of the table is essential.

Third, the standardization of the measurement of the association on a single quantity should help estab-
lishing the credibility of the sociological approach to phenomena such as intergenerational mobility, notably
in comparison with economic approaches based on the intergenerational elasticity or correlation coefficient.
Any of the indices described here can be used for this purpose, since one index can easily be translated into
the other just from published tables.

Finally, let us note that extensions of the intrinsic association coefficient can be devised to decompose
the overall association into a symmetric component and a skew-symmetric component. The index can
very naturally be combined with various quasi-symmetric specifications and with the skew-symmetric log-
multiplicative association model proposed by Peter van der Heijden and Ab Mooijaart (1995). Further work
would also be in order to derive confidence intervals for the non-parametric and semi-parametric estimators
of the indices.
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