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The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate
uncertain input distributions through a computer code. However, it becomes prohibitively
expensive for problems with dimensions higher than 5. The main purpose of this paper
is to identify bottlenecks, and to improve upon this bad scalability. In order to do so,
we propose an alternative interpolation stencil technique based upon the Set-Covering
problem, and we integrate the SSC method in the High-Dimensional Model-Reduction
framework. In addition, we address the issue of ill-conditioned sample matrices, and we
present an analytical map to facilitate uniformly-distributed simplex sampling.

1. Introduction

In order to make reliable predictions of a physical system using a computer code it is necessary to understand what
effect the uncertainties in the inputs have on the output Quantity of Interest (QoI). Attempts to do so while keeping the 
computational cost low can be found in [30,22,14], which rely on Smolyak-type sparse-grid stochastic-collocation methods. 
Whereas traditional collocation-type methods [4,18] use full-tensor product formulas to extend a set of one-dimensional 
nodes to higher dimensions, sparse-grid methods build a sparse interpolant using a constrained linear combination of 
one-dimensional nodes. This can provide a grid with a potential reduction in support nodes of several orders of magnitude.

Although computationally more efficient than full-tensor approaches, sparse-grid methods add points equally in all di-
mensions, irrespective of whether the response surface is locally smooth or discontinuous. Therefore further gains can be 
achieved through adaptive stochastic-collocation schemes which have been developed in recent years. For instance Ma et al. 
[19] proposed an Adaptive Sparse-Grid (ASG) collocation method where the probabilistic space is spanned by linear finite-
element basis functions. During each iteration the probability space is refined locally through an error measure based upon 
the hierarchical surplus, defined as the difference between the interpolation of the previous level and the newly added code 
sample. Although the space is refined locally, unphysical oscillations can still occur due to the lack of sample points on 
some of the edges of the local support of the basis functions. The Simplex-Stochastic Collocation (SSC) method of Witteveen 
et al. [38] circumvents this problem by discretizing the domain into simplices by means of a Delaunay triangulation, and 
enforcing the so-called Local-Extremum Conserving limiter to suppress unphysical oscillations. Furthermore, it computes 
Essentially Non-Oscillatory (ENO) stencils [39] of the sample points which allows for high-order polynomial interpolation. 
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Further features include randomized sampling, the ability to deal with non-hypercube probability spaces and it can be 
extended to perform interpolation with sub-cell resolution [40].

Besides schemes which efficiently sample the probabilistic space, there are other means of dealing with the curse 
of dimensionality, i.e. the exponential increase in the amount of computational cost with increasing dimension. Physical 
systems often have a low effective dimension, meaning that only a few coefficients are influential, and only low-order 
correlations between these input coefficients have a significant impact on the output. To capitalize on this behavior, 
High-Dimensional Model-Reduction (HDMR) techniques can be applied [27]. In HDMR a d-dimensional function is exactly 
represented as a hierarchical sum of 2d component functions of increasing dimensionality. In the case of low effective 
dimension, the d-dimensional function can be approximated well by a truncated expansion. The main idea is to solve sev-
eral low-dimensional sub-problems instead of one high-dimensional one, which greatly reduces the computational cost. 
A well-known member of this class of decompositions is the analysis of variance (ANOVA) decomposition. In [12], Foo et 
al. successfully coupled their Multi-Element Probabilistic Collocation method [13] with a HDMR–ANOVA decomposition to 
problems with up to 600 dimensions. Although they achieved a significant reduction in the computational cost compared to 
approaches with full-tensor products, the number of points required to sufficiently sample these extremely high-dimensional 
spaces is still of the order of millions or even more. Furthermore, in [20] Ma et al. coupled their previously mentioned ASG 
method with the so-called cut-HDMR technique of [27]. This approach is computationally more efficient than ANOVA–
HDMR, as it does not require the evaluation of multi-dimensional integrals. Besides truncating the cut-HDMR expansion 
at a certain order, the authors of [20] also made their approach dimension adaptive through weights which identify the 
dimensions that contribute the most to the mean of the stochastic problem. They applied this approach to several easily-
evaluated test problems of very high dimensionality, i.e. up to a stochastic dimension of 500. Again, their results represent 
a significant reduction in the required number of code samples for a certain error level compared to full tensor grids, but 
in absolute terms the number of samples is still very high.

In our view, the interest of a surrogate modelling technique is to apply it to some complex simulation code which is 
too expensive to integrate by simple Monte Carlo techniques. In this setting it will be intractable to sufficiently sample a 
probabilistic space of dimension O(100), regardless of the surrogate modelling technique used. Therefore we will investigate 
means to efficiently create surrogate models with a moderate number of uncertain input parameters, under the assumption 
that the QoI is the output of a computationally expensive code. Of course, the term “moderate dimensionality” is system 
dependent. So to clarify, we consider the dimensionality moderate when the number of inputs parameters falls within 
the range of 5 to 10. Many problems of engineering interest are simulated using codes with similar dimensionality, e.g. 
turbulence models [11,15], groundwater models [28] or thermodynamic equations-of-state [8,21].

Due to its adaptivity, high polynomial order and Runge-phenomenon free interpolation, the SSC method requires a rel-
atively low number of code samples to attain a given convergence level for problems with moderate dimensionality. For 
example, the SSC method has been applied in [3] to optimization under uncertainty of a Formula 1 tire brake intake. After 
a one-dimensional perturbation analysis, 3 variables were selected for analysis. Furthermore, in [9,10] the SSC method is ef-
ficiently coupled with Downhill-Simplex optimization in a setting for robust design optimization. Several example problems 
are considered, but again the maximum number of uncertain variables is 3. We found that the SSC method itself, without 
considering the cost of sampling the code, can become prohibitively expensive when considering 5 uncertain parameters. 
Furthermore, due to excessive memory requirements we were unable to create surrogate models of dimension 6 or higher. 
In [38] the authors also note that the cost of the Delaunay triangulation becomes prohibitively large from a dimensionality 
of 5 onward. They suggested to replace the Delaunay triangulation with a scheme where simplices are formed by select-
ing the nearest points from randomly placed Monte Carlo (MC) samples. Using this approach the SSC method was applied 
to a continuous QoI with 15 uncertain parameters. However, in this case individual simplices can overlap and there is no 
guarantee that the entire probabilistic domain is covered.

This paper is aimed at identifying bottlenecks, and reducing the computational burden of the SSC method, while retaining 
the Delaunay triangulation. We investigate two separate techniques. First we propose the use of new alternative stencils 
based upon the set-covering problem [16]. The main idea is to use the fast increase in number of simplex elements with 
polynomial order to create a small set of stencils which covers the entire probabilistic domain. Afterwards, only this set 
is used for interpolation. This allows for a more efficient implementation of the SSC method. Our results show that these 
stencils are capable of reducing the computational cost up to 8 dimensions. We furthermore present a new method for 
avoiding problems with the ill-conditioning of the sample matrix, and we provide a new formula for placing uniformly 
distributed samples in a simplex of arbitrary dimension. Secondly, inspired by the work of Ma et al. [20], we integrate the 
SSC method into the cut-HDMR framework. This approach combines the advantages of SSC and cut-HDMR, and avoids the 
disadvantages related to the ASG method such as linear interpolation and the possible occurrence of the Runge phenomenon. 
Unlike the authors of [20], we apply our method to a complex computer code for which obtaining samples is expensive. For 
both proposed techniques we perform a detailed analysis of the error and we give a discussion on computational cost as a 
function of the number of input parameters.

This paper is organized as follows: in Section 2 we present the baseline SSC method as developed by Witteveen et 
al. Next, in Section 3 we describe the Set-Covering stencils, our method for avoiding singular sample matrices and the 
analytic mapping for uniformly-distributed simplex sampling. The following section describes the cut-HDMR approach and 
in Section 5 we present the obtained results and the discussion. Finally, we give our conclusions in Section 6.



2. Simplex-stochastic collocation method

In this section we give a general outline of the Simplex-Stochastic Collocation (SSC) method as developed by Witteveen 
et al. For a more detailed description we refer to [41,38,39,37].

2.1. General outline baseline SSC method

The SSC method was introduced as a non-intrusive method intended for robust and efficient propagation of uncertainty 
through computer models. It differs from traditional collocation methods, e.g. [4,18], in two main ways. First, for multi-
dimensional problems it employs the Delaunay triangulation to discretize the probability space into simplex elements, 
rather than relying on the more common tensor product of one-dimensional abscissas [24]. Using a multi-element tech-
nique has the advantage that mesh adaptation can be performed, such that only regions of interest are refined. Secondly, 
the SSC method is capable of handling non-hypercube probability spaces [38].

The response surface of the QoI u(ξ ) is denoted by w(ξ ) and it is constructed using a set of ns samples from the com-
putational model, v = {v1, · · · , vns }. Here, ξ is a vector of d random input parameters ξ (ω) = (ξ1(ω1), · · · , ξd(ωd)) ∈ � ⊂ Rd . 
Furthermore, we define � to be the parameter space and ω = (ω1, · · · ,ωd) ∈ � ⊂ Rd is a vector containing realizations 
of the probability space (�, F , P ) with F the σ -algebra of events and P a probability measure. The variables in ω are 
distributed uniformly as U(0, 1), and the input parameters can have any distribution fξ , although for the sake of simplicity 
we restrict ourselves in this paper to fξ = U(ξa

i , ξ
b
i ), with the bounds ξa

i and ξb
i . We perform all our analysis on the unit 

hypercube Kd := [0, 1]d , and we use a linear map in order to go from Kd to the parameter domain ξ . Our goal is to propa-
gate fξ through the computational model in order to assess the effect of fξ on the m-th statistical moment of u (ξ(ω)), i.e. 
we wish to compute

μ
(m)
u :=

∫
�

u (ξ)m fξ (ξ)dξ . (1)

Note that u can also be a function of a physical coordinate x or other deterministic explanatory variables, but for brevity 
we omit x from the notation. Since the SSC method discretizes the parameter space � into ne disjoint simplices � =
�1 ∪ · · · ∪ �ne , the mth statistical moment is approximated as

μ
(m)
u =

∫
�

u (ξ)m fξ (ξ)dξ ≈ μ
(m)
w :=

ne∑
j=1

∫
� j

w j (ξ)m fξ (ξ) dξ . (2)

Here, w j is a local polynomial function of order p j associated with the j-th simplex � j such that

w(ξ) = w j(ξ), for ξ ∈ � j, (3)

and the interpolation condition requires

w j(ξk j,l
) = vk j,l . (4)

The subscript k j,l ∈ {1, · · · , ns} is a global index which refers to the k-th added computational sample, while j refers to a 
certain simplex element. Furthermore, l = 0, · · · , N j is a local index used to count the number of samples from v involved 
in the construction of w j . The N j + 1 number of points needed for d-dimensional interpolation of order p j is given by

N j + 1 = (d + p j)!
d!p j! , (5)

and the local interpolation function w j itself is given by the expansion

w j(ξ) =
N j∑

l=0

c j,l� j,l(ξ). (6)

The choice of basis polynomials � j,l , and the determination of the interpolation coefficients c j,l is dealt with in Section 2.2.1. 
Note that for a given d, the maximum allowable order p j based on the number of samples ns can be inferred from (5). 
The particular choice of p j will depend on the smoothness of the response, with the objective of avoiding the Runge 
phenomenon.

Which N j + 1 points are used in (6) is determined by the interpolation stencil S j . The stencil can be constructed based 
on the nearest-neighbor principle [38]. In this case the first d + 1 points are the vertices {ξk j,0

, · · · , ξk j,d
} of the simplex � j ,



Fig. 1. Delaunay triangulation for two stencil types with a discontinuity running along the dotted line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

which would suffice for p j = 1. For higher degree interpolation, neighboring points ξk are added based on their proximity 
to the center of simplex � j , i.e. based on their ranking according to

‖ξk − ξ center, j‖2, (7)

where those ξk of the current simplex � j are excluded. The simplex center ξ center, j is defined as

ξ center, j := 1

d + 1

d∑
l=0

ξk j,l
. (8)

The nearest neighbor stencil (7) leads to a p j distribution that can increase quite slowly when moving away from 
a discontinuity. An example of this behavior can be found in Fig. 1(a), which shows the Delaunay triangulation with a 
discontinuity running through the domain. An alternative to nearest-neighbor stencils are stencils created according to the 
Essentially Non-Oscillatory (ENO) principle [39]. The idea behind ENO stencils is to have higher degree interpolation stencils 
up to a thin layer of simplices containing the discontinuity. For a given simplex � j , its ENO stencil is created by locating 
all the nearest-neighbor stencils that contain � j , and subsequently selecting the one with the highest p j . This leads to a 
Delaunay triangulation which captures the discontinuity better than its nearest-neighbor counterpart. An example can be 
found in Fig. 1(b). Unless otherwise stated, for all subsequent baseline SSC surrogate models we will use ENO-type stencils.

The initial samples, at least in the case of hypercube probability spaces, are located at the 2d corners of the hypercube 
Kd . Furthermore, one sample is placed in the middle of the hypercube. Next, the initial grid is adaptively refined based on 
an appropriate error measure. This error measure can either be based on the hierarchical surplus between the response 
surface of the previous iteration and new a sample vk , or on the geometrical properties of the simplices. The latter option is 
more reliable in multiple stochastic dimensions as it is not based on the hierarchical surplus in a single discrete point [37]. 
The geometrical refinement measure is given by

ē j := �̄ j�̄
2O j

j . (9)

It contains the probability and the volume of simplex � j , i.e.

�̄ j =
∫
� j

fξ (ξ)dξ and �̄ j =
∫
� j

dξ , (10)

where �̄ = ∑ne
j=1 �̄ j . The probability �̄ j can be computed by Monte-Carlo sampling and �̄ j via the relation

�̄ j = 1

d! |det (D) |, D =
[
ξk j,1

− ξk j,0
ξk j,2

− ξk j,0
· · · ξk j,d+1

− ξk j,0

]
∈Rd×d. (11)

Finally, the order of convergence O j is given by [37]

O j = p j + 1

d
. (12)

The simplex with the highest ē j is selected for refinement. To ensure a good spread of the sample points, only randomly-
selected points inside a simplex sub-element �sub j are allowed. The vertices of this sub-element are defined as



Fig. 2. The sub simplex (dotted line) of a two-dimensional simplex. Upon refinement one sample is placed at a randomly selected location inside the sub
simplex in order to avoid clustering of points.

ξ sub j,l
:= 1

d

d∑
l∗=0
l∗ �=l

ξk j,l∗ , (13)

see Fig. 2 for a two-dimensional example. In order to place random samples uniformly in an arbitrary simplex we derive 
an analytical map Md : Knξ → � j , see Section 2.2.2. The SSC algorithm can be parallelized by selecting the N < ne simplices 
with the N largest ē j for refinement.

Note that by using (13) only simplex interiors will be refined (see again Fig. 2), and the boundaries of the hypercube 
will never be sampled outside the initial 2d points. As a consequence, discontinuities that cross a hypercube border cannot 
be captured accurately at that border. To avoid this, we do not use (13) if a simplex element located at the boundary is 
selected for refinement. Instead, we randomly place samples at the longest simplex edge which is at the boundary, ±10%
from the edge center.

Note that (9) is probabilistically weighted through � j and that it assigns high ē j to those simplices with low p j since 
in general �̄ j 
 1. Effectively this means that (9) is a solution-dependent refinement measure which refines simplices near 
discontinuities since the SSC method automatically reduces the polynomial order if a stencil S j crosses a discontinuity. It 
achieves this by enforcing the so-called Local Extremum Conserving (LEC) limiter to all simplices � j in all S j . The LEC 
condition is given by

min
ξ∈� j

w j(ξ) = min v j ∧ max
ξ∈� j

w j(ξ) = max v j, (14)

where v j = {vk j,0 , · · · , vk j,d } are the samples at the vertices of � j . If w j violates (14) in one of its � j ∈ S j , the polynomial 
order p j of that stencil is reduced, usually by 1. Since polynomial overshoots occur when trying to interpolate a disconti-
nuity, p j is reduced the most in discontinuous regions. Interpolating a function on a simplex with p j = 1 and v j located 
at its vertices always satisfies (14) [37]. This ensures that w(ξ ) is able to represent discontinuities without suffering from 
the Runge phenomenon. In practice, (14) is enforced for all � j in all S j via random sampling of the w j . If for a given w j
(14) is violated for any of the randomly placed samples ξ j , the polynomial order of the corresponding stencil is reduced. 
Again, how we sample the d-dimensional simplices is described in Section 2.2.2. The computational cost of enforcing (14)
is investigated in Section 5.

The procedure of enforcing the LEC condition, computing a refinement measure and subsequently refining certain se-
lected simplices is either repeated for a maximum of I iterations, nsmax samples or halted when a sufficient level of accuracy 
is obtained. This level of accuracy can be estimated through an error measure based upon the hierarchical surplus [37]. 
As mentioned, this is the difference between the response surface w j and the newly added code sample vk j,ref

at the 
refinement location ξk j,ref

, i.e.

ε(ξk j,ref
) := w j(ξk j,ref

) − vk j,ref
. (15)

This is a point estimate of the error, located at what will be a vertex in the new refined Delaunay grid. To assign error 
estimates to the simplices rather than to vertices, the error ε̃ j is introduced. For each � j , ε̃ j is simply the absolute value of 
(15) of its most recently added vertex ξk∗ . Since adding vertices will change the Delaunay discretization we relate the error 
of the previous simplex to the new one via

ε̂ j ≈ ε̃ j

(
�̄ j

�̄k∗,ref

)O j

(16)

[38]. The ratio �̄i/�̄k∗,ref represents the change in volume from its old size �̄k∗,ref , i.e. the volume of the simplex which 
was refined by ξk∗ , to its new size �̄ j . Finally, each individual ε̂ j is combined in a global error estimate via the following 
root mean square (RMS) error norm



ε̂rms =
√√√√ ne∑

j=1

� j ε̂
2
j . (17)

The complete baseline SSC method is given in pseudo code in Appendix A.

2.2. Improvements on the baseline SSC method

Before discussing our new stencil selection technique in Section 3.1, we introduce two improvements to the baseline SSC 
method not discussed in the original references [41,38,39,37].

2.2.1. Poised sample sequence
The authors of [35] write (6) in matrix form, constraining � j,l to the class of monomials, and subsequently solve explic-

itly for the coefficients c j,l . They note that although they had no difficulties in solving this system, the matrix could have 
a high condition number. This poses no real problem for d ≤ 3, but for higher dimensions it can become problematic. To 
cope with this we impose an additional condition on the construction of the stencils S j such that the interpolation problem 
is poised, meaning that the sample matrix is non-singular [23]. In the following discussion we drop the subscript j until 
further notice to make the notation more concise.

To construct the interpolating monomials, let us define the collection consisting of N + 1 d-dimensional multi-indices 
ī := (i1, · · · , ik, · · · , id), where for all ī we have |ī| := i1 +· · ·+ id ≤ p j and each ik is an integer between 0 and d. Furthermore, 
for a given vertex ξ l = (ξ1,l, · · · , ξd,l) belonging to stencil S , let us define its ī-th power to be ξ
ī

l := ξ
i1
1,l × · · · × ξ

id
d,l . The 

sample matrix � , a multi-dimensional Vandermonde matrix, can then be written as

� =

⎡
⎢⎢⎢⎣

ξ
0̄
0 ξ
1̄

0 · · · ξ
N̄
0

ξ
0̄
1 ξ
1̄

1 · · · ξ
N̄
1

...
...

...

ξ
0̄
N ξ
1̄

N · · · ξ
N̄
N

⎤
⎥⎥⎥⎦ ∈R(N+1)×(N+1). (18)

As an example, the l-th row of (18) in lexicographical order for p j = 2 will look like [ 1 ξ1,l ξ2,l ξ2
1,l ξ1,lξ2,l ξ2

2,l ]. The 
coefficients cl in (6) can now be obtained by solving the system⎡

⎢⎢⎢⎣
ξ
0̄

0 ξ
1̄
0 · · · ξ
N̄

0

ξ
0̄
1 ξ
1̄

1 · · · ξ
N̄
1

...
...

...

ξ
0̄
N ξ
1̄

N · · · ξ
N̄
N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

c0
c1
...

cN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

v0
v1
...

v N

⎤
⎥⎥⎦ , (19)

where {v0, · · · , v N} are the code samples belonging to stencil S . Once the cl are known, we can interpolate to any point ξ
in the domain spanned by S .

We define 	 ≡ det (�), and note that the whole approach hinges on the well-poisedness condition 	 �= 0. This condition 
is relatively easy violated during the SSC procedure in higher dimensions. For instance, if for d = 4 we determine the 
maximum allowable p using (5) on the initial Delaunay grid we obtain pmax = 2. However, many stencils in this case will 
have 	 = 0. Also situations where a stencil has too many vertices located in the same plane (e.g. due to edge refinement 
at the boundary of Kd), can lead to a zero determinant of (18). Thus, for d > 1 the poisedness condition 	 �= 0 imposes 
constraints on the geometrical distribution of the ξ l . From [23,7] we know

Theorem 1. The N + 1 vertices ξ0, · · · , ξ N ∈ Rd are polynomially poised iff they are not a subset of any algebraic hypersurface of 
degree ≤ p.

An algebraic hypersurface in Rd is a d − 1 dimensional surface embedded in a d-dimensional space constrained to satisfy 
an equation f (ξ1, · · · , ξd) = 0. The degree is given by f .

The authors of [7] devised a Geometric Characterization (GC) condition which allows us to detect if a set of vertices is 
poised, i.e.:

Definition 1. GC condition: For each ξ l in a set of N +1 vertices in Rd , there exists p distinct hyperplanes G1,l, · · · , G p,l such 
that i) ξ l does not lie on any of these planes, and ii) all other ξk , k = {0, · · · , N}\{l} lie on at least one of these hyperplanes. 
Mathematically speaking i) and ii) amount to

ξ i ∈
p⋃

k=0

Gk,l if i �= l, ∀i = 1,2, · · · , N. (20)



Fig. 3. When selecting node ξ1, there exists one (p = 1) plane which contains all other points except ξ1. This is true for all nodes in the simplex.

Theorem 2. Let {ξ l} be a set of N + 1 vertices in Rd. If {ξ l} satisfies the GC condition, then {ξ l} admits a unique interpolation of degree 
≤ p [7].

Due to its geometrical configuration, a single simplex � j in Rd always satisfies the GC condition for p = 1, see Fig. 3 for 
a three-dimensional example. For a given vertex ξ l ∈ � j , we always have one hyperplane containing the face of the simplex 
made up by all vertices except ξ l . Thus, Theorem 2 implies that simplex � j will lead to a � with 	 �= 0 and p j = 1.

We use this result to obtain a set of well-poised ENO stencils S j ∀ j = 1, · · · , ne , in a way that is similar to the construction 
of the ENO-stencils as described in [39]. Only if during the enforcement of the LEC condition (14) we encounter a stencil 
S j for which 	 = 0, we collect a set of k candidate nearest-neighbor stencils {S j,i}k

i=1 which all contain simplex � j . We 
then select the S j which has the highest p j and 	 �= 0. In the worst case scenario we get p j = 1, where S j contains only 
the vertices of � j itself and for which 	 �= 0 is guaranteed by Theorem 2. If we have multiple S j with p j > 1 which satisfy 
these conditions, we select the one with the smallest average Euclidean distance to the cell-center ξ center, j .

2.2.2. Simplex sampling
Simplices are refined by randomly placing a point inside the sub-simplex (13). Also, to randomly sample the w j during 

the LEC enforcement we need to place random points inside d-dimensional simplices. If we would like to uniformly sample 
a line section with the end points [ξ0, ξ1] we would use the mapping

M1 = ξ0 + r1(ξ1 − ξ0), (21)

where r1 ∼ U [0, 1]. Generating points inside a triangle can be done with

M2 = ξ0 + r1/2
2 (ξ1 − ξ0) + r1/2

2 r1(ξ2 − ξ1) (22)

which maps points {r1, r2} inside the unit square K2 to points inside a triangle described by the vertices {ξ0, ξ1, ξ2} [33]. 
The working principle of (22) is shown in Fig. 4(a). The parameter r1/2

2 selects a line segment parallel to the edge [ξ0, ξ1],
while r1 selects a point along the chosen line segment. The exponent 1/2 ensures that uniformly distributed points in the 
square yield uniformly distributed points in the triangle. This can be shown by considering the length of the chosen line 
segment, which increases linearly when r1/2

2 moves from ξ0 to ξ1. Since we require a uniform distribution of points, and

considering r1 ∼ U [0, 1], the pdf of r1/2
2 should be linear as well. If we have the random variable X = r1/τ with r ∼ U [0, 1]

and τ ∈N>0, we find the cumulative distribution function (cdf) of X as

F X (x) = P(X ≤ x) = P
(

r1/τ ≤ x
)

= P
(
r ≤ xτ

) = xτ . (23)

And thus we have the pdf f X (x) = dF X/dx = τ xτ−1 ∼ Beta(τ , 1). Therefore, in order to have a linear pdf for r1/τ , we must 
set τ = 2.

It is suggested in [33] that (22) can be extended to higher dimensions, although no specific formulas are given. Hence, 
we use the same principle to select uniformly distributed points inside a tetrahedron, see Fig. 4(b). Here, the parameter 
r1/3

3 selects a triangle parallel to the base of the tetrahedron. From there we use r1/2
2 and r1 as before to select a point on

this triangle. The exponent 1/3 again ensures that the point distribution will be uniform. Note that the area of the selected 
triangles increases quadratically as r1/3

3 moves from ξ0 to ξ1. Hence, it must be distributed as Beta(3, 1). We can now derive
an expression for M3 using the geometrical similarities between the base triangle and the selected parallel triangle, which 
gives us

M3 = ξ0 + r1/3
3 (ξ1 − ξ0) + r1/3

3 r1/2
2 (ξ2 − ξ1) + r1/3

3 r1/2
2 r1(ξ3 − ξ2). (24)

When comparing (21), (22) and (24) we see a pattern emerge which suggests that the map from a d-dimensional 
hypercube to a d-dimensional simplex with vertices {ξ 0, · · · , ξd} in Rd and uniform point distribution is



Fig. 4. Selecting a point inside a triangle and tetrahedron.

Fig. 5. An example of the map (25) for d = 2,3 and 1000 samples.

Md = ξ0 +
d∑

i=1

i∏
j=1

r
1

d− j+1

d− j+1(ξ i − ξ i−1), (25)

where again the rq are distributed as U [0, 1]. Our proof that (25) produces uniformly distributed samples in the simplex 
can be found in Appendix D.

To numerically test (25) in 2 and 3 dimensions we can simply plot samples points, an example of which can be found 
in Fig. 5. We have performed similar tests up to 8 dimensions.

3. SSC Set-Covering method

In this section we describe alternative interpolation stencils, which results in a computational speed up in higher dimen-
sions.

3.1. Set covering stencils

Section 5 will show that the enforcement of the LEC condition can become computationally expensive for high d and 
p j . This is especially true for smooth response surfaces of the QoI. For many stencils of our discontinuous problem, the 
LEC condition is violated and p j is reduced which in turn significantly lowers the total required number of surrogate 
model evaluations (nw ) needed to check (14). This does not happen very often when the response surface is smooth. As 
a consequence of the exponential nature of nw (see Section 5.1.1), we also see an exponential increase in the computation 
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Fig. 6. Two stencils which overlap each other. The dark simplices are shared by both stencils.

time needed to construct the surrogate model. Note that this increase is due to the SSC procedure, and thus is additional to 
the time needed to sample the computer code.

However, the problem lies not only with the exponential increase of nw , but also in the extremely large overlap of the 
stencils S j . Note that the baseline SSC method enforces the LEC condition for all simplices � j in all stencils S j . Hence, in each 
simplex � j , w j is evaluated the same number of times as � j appears in all stencils S j . For a two-dimensional example see 
Fig. 6. There are two stencils, denote them Sr and Sq , associated to two different simplices �r and �q . The dark colored
simplices are the ones which appear in both stencils. Thus, when the LEC condition is checked for both stencils, wr but also 
wq is evaluated in the dark simplices. Moreover, since there are ne stencils, the overlap will be large, and many different 
w j will be evaluated in the same simplex element. This is no bottleneck for problems of low-dimensionality, but if the 
dimension increases this overlap will make the LEC condition very costly to enforce, see Section 5.1.1.

We propose an alternative technique for problems with higher d, using Set-Covering (SC) stencils based on the well-know 
set-covering problem [16], stated as follows in SSC terminology:

Set Covering problem. Let X j = {� j,0, · · · , � j,K } be the set of all simplices that are inside the domain spanned by the vertices of 
stencil S j . Then, given the set X = {X1, · · · , Xne }, and the set of all simplices U = {�1, · · · , �ne }, find the smallest subset C ⊆ X that 
covers U , i.e. for which

U ⊆
⋃

X j∈C
X j

holds.

It is shown in [16] that the set-covering problem is NP-complete, and thus no fast solution is known. We could approxi-
mate C by the greedy algorithm, which at each step simply selects the X j with the largest number of uncovered simplices. 
We then would have to check the LEC condition for all stencils in Ssc , defined as the set of S j corresponding to the X j ∈ C . 
For (high-dimensional) problems with a maximum polynomial order pmax > 1, the number of stencils in Ssc will be sig-
nificantly lower than ne . However, this approach would still require to construct all X j ∈ X . Also, many of the X j could 
potentially cross a discontinuity, leading to a violation of the LEC condition and the subsequent reduction in size of X j . 
When this happens the SC property of C can no longer be guaranteed. Thus, an iterative approach would be necessary 
which runs until Ssc satisfies both the SC and LEC property.

For reasons of computational efficiency, we want to avoid this iterative approach as much as possible, and thus not rely 
completely on the LEC condition to turn a set of nearest-neighbor stencils into a set of ENO stencils. Hence we will use the 
information contained in v regarding the discontinuity location to create a small set of SC stencils that also resemble ENO 
stencils, i.e. which do not cross a discontinuity. We will denote these stencils as SCENO stencils. Although more sophisticated 
approaches are available [40], for reasons of simplicity we identify the � j through which the discontinuity runs by simply 
imposing a threshold vt on the maximum jump observed in v at each simplex. Then, the set of discontinuous simplices can 
be defined as

D = {� j | |max vk j,l − min vk j,l | ≥ vt, l = 0, · · · ,d, j = 1, · · · ,ne} (26)

For the nozzle flow case we set the threshold value to vt = 1.0. A two and three-dimensional visualization of the � j ∈ D
can be found in Fig. 7. We furthermore redefine the set C as the set containing all the simplices � j that are currently 
covered by a stencil S j , rather than the true smallest subset C ⊆X of the SC problem.

The general outline for constructing the SCENO stencils is now as follows. For the � j ∈ D we set p j = 1 and C = C ∪D, 
i.e. we add all discontinuous simplices to the set of covered simplices. Next, we specify the initial simplex �∗

j as the simplex
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Fig. 7. Discontinuous simplices identified by (26).

from the set U \ C with the largest volume. For the selected simplex we grow its stencil by adding neighboring � j which 
are not covered yet, i.e. which are not in C . This will yield a set C where every simplex appears only once, i.e. a set with 
zero overlap. Note that to relax this condition one can easily allow for the addition of neighboring simplices which are in 
C \D. In either case we continue growing the stencil until there are no more available neighbors or until S j is large enough 
to allow interpolation of order pmax . We then move to the next �∗

j and repeat until C covers the entire probabilistic space
U . For a graphical representation of the stencil construction we refer to Fig. 8. It is important to note that our main goal is 
to find a set C with a cardinality |C| significantly less that ne , which is an easier task than approximating the true minimal 
C of the SC problem as closely as possible. In Appendix B the algorithm for constructing the SCENO stencils is displayed in 
pseudo code.

This approach assures that we have a relatively small set Ssc for which: i) |Ssc| 
 ne , ii) that not all ne nearest-neighbor
Xi ∈ X need be calculated, iii) that no X j crosses a discontinuity, and iv) the � j ∈ D are interpolated linearly. The result 
is that the number of times the LEC condition needs to be checked is reduced significantly. Only for those S j associated to 
the X j ∈ C \D it is still necessary to check for interpolation overshoots, since the � j ∈ D are guaranteed to be LEC due to 
their linear interpolation. The property of SCENO stencils mentioned under iii) also means that the number of times the LEC 
condition is violated is reduced, although not always to zero due to reasons of ill conditioning of the sample matrix (18). 
This is especially true for high d. An approach as described in Section 2.2.1 would render some of the advantages mentioned 
under i)–iv) void. Reducing p j for ill-conditioned stencils will increase the cardinality of Ssc , and all X j ∈ X should be 
calculated in order to look for alternative stencils. Instead we directly solve an ill-conditioned system (19) in the non-null 
subspace of the solution as described in [17]. This method utilizes Gauss–Jordan elimination with complete pivoting to 
identify the null subspace of a singular matrix � , i.e. �nullcnull = 0. This partitions the linear system as depicted below,[

�range · · ·
· · · �null

][
crange

cnull

]
=

[
v′
...

]
, (27)

where �rangecrange = v′ is the non-null subspace in which we can obtain accurate solutions. In the case of an ill-conditioned 
system, the null subspace is closely approximated by a space where the pivots ψii are very small but not exactly equal to 
zero. The start of this ‘near-null’ subspace is identified by the first pivot ψii for which the condition |ψii/ηc | < ε holds, where 
ηc is the largest pivot of � and ε is a very small parameter, which we set equal to 10−14. In both the ill-conditioned and 
singular case the detrimental effect of �null on the solution is eliminated by a so-called zeroing operation, which basically 
replaces �null by an identity matrix of equal dimension and sets cnull = 0. Thus, effectively speaking those coefficients c j,l
which have been overwhelmed by round-off error are automatically cut out of the expansion (6). In our experiments we 
found that the dimension of �null , i.e. the nullity of � , is small compared to the dimension of the full � , see Table 1 for 
some typical examples at d = 6.

If the system of equations is well-posed, the algorithm amounts to regular Gauss–Jordan elimination with complete 
pivoting. In any case, the quality of the response surface is checked via the LEC condition.

4. High-Dimensional Model-Reduction

As will be shown in Section 5, the use of SCENO stencils makes the SSC method more computationally efficient within
the range of dimensions where a Delaunay triangulation can be made. For problems of higher dimensionality a different 



Fig. 8. A two-dimensional example of the SC stencil construction.

Table 1
Examples of ill-conditioned systems. We show the dimension d, the polynomial order of the
stencil, the nullity and condition number of the sample matrix � , and finally the condition
number of the non-null �range .

d p j Dimension � Nullity � Cond. � Cond. �range

6 2 28 × 28 1 1.36e+17 9.39e+3
6 3 82 × 82 1 1.31e+17 2.40e+4
6 3 84 × 84 2 2.85e+17 2.66e+3

approach is required. In physical systems it is often found that only a few parameters are influential, and only low-
order correlations between the input parameters have a significant impact on the output. To capitalize on this behavior, 
High-Dimensional Model-Reduction techniques can be applied, see the references of Rabitz and Aliş [27,26]. Our QoI is rep-
resented by a d-dimensional function f (ξ , x) defined on the hypercube Kd , where x is a possible physical coordinate which 
we will again omit from the notation for the sake of brevity. Then, the HDMR expansion is an exact and finite hierarchical 
expansion of component functions of increasing dimension, given by

f (ξ) = f0 +
∑

i

f i(ξi) +
∑

i1<i2

f i1i2(ξi1 , ξi2) + · · · +
∑

i1<···<il

f i1···il (ξi1 , · · · , ξil ) + · · · + f1···d(ξi1 , · · · , ξid ). (28)

Here, the i1, · · · , id are integers satisfying 1 ≤ i1 < i2 < · · · < id ≤ d. The zero-th order component function f0 is a constant 
and represents the mean effect. The first-order function f i(ξi) is a univariate function, generally nonlinear, which represents 
the effect of independently varying input parameter ξi . Higher order functions represent the cooperative effects of increasing 
number of variables acting together on the output. If high-order correlations are weak, the physical system f (ξ ) can be ef-



ficiently represented by a truncated L-th order expansion, where L < d. This a called a problem with low effective dimension, 
which occurs frequently in problems of physical nature [12]. Thus, the general idea is to solve multiple low-dimensional 
subproblems in place of a single high-dimensional one. The resultant computational effort to determine the component 
functions will scale polynomially, rather than the traditional exponential increase with d [26].

A measure μ for the measure space (Kd, B(Kn), μ), where B is the Borel σ -algebra on Kd , is defined as

dμ(ξ) := dμ(ξ1, · · · , ξd) =
d∏

i=1

dμi(ξi),

∫
K1

dμi(ξi) = 1,

dμ(ξ) = g(ξ)dξ =
d∏

i=1

gi(ξi)dξi . (29)

Here, g(ξi) is the marginal density of the input ξi . It is the particular form chosen for the gi(ξi) that will determine the 
form of the component functions. In order to compute these functions, let us also define unconditional and conditional 
mean with respect to a group of input variables as

M f (ξ) :=
∫
Kd

f (ξ)dμ, M(i1···il) f (ξ) :=
∫

Kd−l

f (ξ)

⎡
⎣ ∏

j /∈{i1···il}
dμ j(ξ j)

⎤
⎦ . (30)

Then, via a family of projection operators Pi1···il : Kd → Kl , the component functions are recursively defined as follows [26]:

f0 := P0 f (ξ) = M f (ξ)

f i(ξi) := Pi f (ξ) = M(i) f (ξ) − P0 f (ξ)

f i j(ξi, ξ j) := Pij f (ξ) = M(i j) f (ξ) − Pi f (ξ) − P j f (ξ) − P0 f (ξ)

...

f i1···il (ξ) := Pi1···il f (ξ) = M(i1···il) f (ξ) −
∑

j1<···< jl−1⊂{i1···il}
P j1··· jl−1 f (ξ) − · · · − P0 f (ξ) (31)

The component functions f i1,···il and f j1··· jk are independent and orthogonal, thus as long as one index between {i1, · · · il}
and { j1 · · · jk} differs we have∫

Kd

f i1,···il (ξi1 , · · · , ξil ) f j1··· jk (ξ j1 , · · · , ξ jk )dμ = 0 (32)

The correlation interpretation of f i1···il is associated with the chosen form of the measure μ. If gi = 1, i = 1, · · · , d, 
the Lebesgue measure (dμ = dξ1dξ2 · · ·dξd) is retrieved and (28) together with (31) becomes the well-know Analysis Of 
Variance (ANOVA) decomposition. Computing the component functions in the ANOVA decomposition involves evaluating 
multi-dimensional integrals, which can be done by for instance MC techniques [31]. An alternative which is more computa-
tionally tractable is the cut-HDMR decomposition proposed in [27,26]. In this case the measure is defined as

dμ =
d∏

i=1

δ(ξi − ηi)dξi, (33)

i.e. gi(ξi) = δ(ξi −ηi), a Dirac measure located at the ‘cut center’ η = (η1, η2, · · · , ηd). This choice removes the need for eval-
uating multi-dimensional integrals, and it expresses f (ξ) as a superposition of its values along lines, planes and hyperplanes 
passing through the cut center η. The component functions (31) now become

f0 := P0 f (ξ) = f (η)

f i(ξi) := Pi f (ξ) = f (i)(ξi) − P0 f (ξ)

f i j(ξi, ξ j) := Pij f (ξ) = f (i j)(ξi, ξ j) − Pi f (ξ) − P j f (ξ) − P0 f (ξ)

...

f i1···il (ξ) := Pi1···il f (ξ) = f (i1···il)(ξi1 , · · · , ξil ) −
∑

j1<···< jl−1⊂{i1···il}
P j1··· jl−1 f (ξ) − · · · − P0 f (ξ). (34)

Here, f (i1···il)(ξi1 , · · · , ξil ) is the conditional mean (30) taken with respect to measure (33), and thus it equals f with its 
inputs ξi set to ηi , except inputs ξi1 , · · · , ξil . As an example, consider the univariate function f (i)(ξi) = f (η1, · · · , ηi−1, ξi,

ηi+1, · · · , ηnξ ).



The authors of [20] used the cut-HDMR framework coupled with their Adaptive Sparse-Grid (ASG) collocation method 
[19], where they chose η as the mean of the random input vector. Besides truncating (28) at a certain order, they also made 
their approach dimension adaptive based on weights which identify the important dimensions. Although their ASG method 
uses only a linear finite-element basis, interpolation overshoots can still occur. Thus, motivated by their work in [20] we will 
also employ a dimension adaptive cut-HDMR approach, except we will couple it with the SSC method utilizing the SCENO 
stencils to avoid the mentioned downsides of ASG.

If we define K := {1, 2, · · · , d}, the HDMR expansion (28) can be written in short-hand notation as [20]

f (ξ) =
∑
u⊆K

fu(ξu) =
∑
u⊆K

∑
v⊆u

(−1)|u|−|v| f (v)(ξv), (35)

where in the first equality we sum over the powerset of K, i.e. over all possible subsets u ⊆ K. We furthermore set 
f∅ = f0. The second equality is obtained by expanding each component function fu(ξu) as indicated in (34). Notation wise, 
if for instance v = {1, 4, 6}, then f (v)(ξv) = f (146)(ξ1, ξ4, ξ6). Each individual |v|-dimensional subproblem f (v)(ξv) can be 
approximated by a SSC surrogate (6). In that case (35) becomes

f (ξ) ≈ w(ξ) =
∑
u⊆K

∑
v⊆u

(−1)|u|−|v|
ne∑

j=1

N j∑
l=0

c jl� jl(ξv). (36)

In order to assess the convergence of each individual f (v)(ξv), the authors of [20] use the hierarchical surplus. This is also 
possible in the case of the SSC method, see (15). Alternatively, the RMS error estimate (17) can used for this purpose. Since 
(17) is a global error estimate and it also includes information from the distribution of the input parameters, we use the 
RMS error to assess the convergence.

Furthermore, the mean of each component function, defined as Ju , can also be computed from the surrogate model

Ju =
∑
v⊆u

(−1)|u|−|v|
ne∑
j=1

N j∑
l=0

c jlE
[
� jl(ξv)

]
. (37)

We compute (37) via random sampling, which can be performed quickly since it requires only sampling the surrogate 
model.

In order to identify the important dimensions, all first order component functions f i(ξi) are computed. Again, these are 
one-dimensional functions which measure the impact of a single independent input parameter on the output. Next, a weight 
is defined

αi = ‖ J i‖2

‖ f0‖2
, (38)

which measures the contribution of each individual ξi on the mean of all first order component functions [20]. We al-
ways take the L2 norm ‖ · ‖2 over the spatial domain. Equation (38) can be considered as a sensitivity index, and only 
those dimensions for which (38) is larger than a user-prescribed error threshold ε1 are considered important. All higher 
order fv(ξv) where v contains indices of dimensions which did not make the cut will not be computed. Consider e.g. a 
d-dimensional problem on Kd , where only v = {1} and v = {2} satisfy αi > ε1. The only higher-order component function 
that will be computed in this case is f12(ξ1, ξ2), regardless of the value of d.

The downside of (38) is that it is hard to choose ε1 beforehand. One should first create the first-order HDMR expansion 
and decide on an appropriate value a posteriori. An alternative is to use a weight measuring the relative contribution of J i
with respect to the sum of all first-order means, i.e.

αi = ‖ J i‖2∑d
k=1 ‖ Jk‖2

. (39)

Now one can a priori choose a ε1 ∈ [0,1], and select the smallest set of important dimensions for which the sum of their αi
is greater than ε1.

Dimension adaptivity is extended to higher dimensions as well by defining a weight for |u| > 1 as [20]

αu = ‖ Ju‖2

‖∑
v∈Vcomp,|v|<|u−1| Jv‖2

. (40)

Here, the set Vcomp simply holds all the indices v that were computed. Furthermore, all subsets v of component functions 
which are important are added to a set Vimp . That way, a higher-order important u is admissible if all v ⊂ u required to 
compute (35) are also in Vimp . This is the so-called admissibility condition, which is given by

u ∈ Vimp and v ⊂ u ⇒ v ∈ Vimp. (41)



Fig. 9. Mout as function of p and pt obtained by MC sampling, with the geometrical constants fixed to their nominal value.

Similar to the first-order case, we can define a relative counterpart of (40) as

αu = ‖ Ju‖2∑
v∈Vcomp,|v|=|u| ‖ Jv‖2

, (42)

such that the αu sum to one and we can choose a ε1 ∈ [0, 1] a priori.
Finally, a relative error measure between two HDMR expansions of consecutive orders p − 1 and p is defined as

αp = ‖∑
|u|≤p Ju − ∑

|u|≤p−1 Ju‖2

‖∑
|u|≤p−1 Ju‖2

. (43)

The algorithm stops when αp becomes smaller than another used-defined threshold ε2. An overview of the HDMR algorithm 
is depicted in Appendix C.

5. Results and discussion

5.1. Comparison ENO–SCENO stencils

We present the results obtained with the baseline SSC method with ENO stencils, versus the SSC method with the SCENO 
stencils. As a test case we use a quasi-1D nozzle case up to 5 dimensions and an algebraic test function up to d = 8.

5.1.1. Nozzle flow
As a test case we use the solver from [25], which computes the flow through a quasi-1D diverging nozzle. We prescribe 

the flow to be sonic at the nozzle inlet, i.e. Min = 1. From fluid mechanics we know that the flow is driven by the pressure 
ratio, i.e. by the ratio between the total pressure pt at the inlet and the static pressure p of the surroundings at the nozzle 
exit. Depending on the value of pt/p, the flow can show very different behavior. If pt/p exactly equals the adaptation 
value, the flow reaches the static pressure of the surroundings at the nozzle exit and the jet exhausts smoothly into the 
atmosphere. A stronger pt/p will result in smooth flow through the nozzle, which is supersonic at the nozzle exit. In order 
to match the outside pressure p, the flow undergoes a supersonic expansion attached to the nozzle exit (under-expanded 
nozzle). A smaller pt/p, but still above a threshold that depends on the ratio of the exit to the throat area, still results 
in smooth flow through the nozzle, but this is now over-expanded and is compressed to the outside pressure through an 
oblique shock attached to the nozzle exit. When pt/p is equal to the threshold value, the flow is characterized by a normal 
shock located at the nozzle exit: upstream of the shock, the flow is smooth, and verifies adaptation conditions in the exit 
section; immediately downstream of it, the flow is subsonic and matches the outside pressure. Finally, when pt/p is below 
the threshold value, a normal shock wave is formed somewhere inside the nozzle. This results in subsonic flow at the exit, 
and an exit pressure that is equal to p [2].

Given the pressure ratio, the flow is completely characterized by the shape of the nozzle [2]. As in [25], we consider the 
following hyperbolic tangent for the nozzle shape

f (x) = a + b tanh (cx − d) . (44)

To test the SSC method, we specify two different ranges for the uncertain parameters such that two radically different 
response surfaces have to be created. First, we prescribe a wider range for p such that the QoI is highly discontinuous, see 
Fig. 9. In the second case we restrict p to a more narrow interval such that the QoI is smooth. More specifically, we prescribe 
the uniform input distributions for the 6 uncertain parameters described in Table 2. Furthermore, we choose Mout (the 
Mach numbers at the nozzle exit) as our quantity of interest, as it allows us to easy calculate other flow quantities via the 



Table 2
Uncertain input parameters of the discontinuous (D) and smooth (S) case.

d Parameter Mean (D) Range (D) Mean (S) Range (S)

1 p [bar] 0.55 [0.5, 0.6] 0.625 [0.60, 0.65]
2 pt [bar] 1.0 [0.9, 1.1] 1.0 [0.9, 1.1]
3 a [–] 1.75 [1.575, 1.925] 1.75 [1.575, 1.925]
4 b [–] 0.7 [0.63, 0.77] 0.7 [0.63, 0.77]
5 c [–] 0.8 [0.72, 0.88] 0.8 [0.72, 0.88]
6 d [–] 4.0 [3.6, 4.4] 4.0 [3.6, 4.4]

Table 3
The computational cost of the discontinuous QoI.

Type d [–] ns [–] T [min] LEC [%T] S j [%T] v [%T]

Baseline 2 50 0.56 3.56 3.16 87.3
3 100 2.09 24.39 11.46 39.32
4 150 10.95 73.42 15.37 6.22
5 200 119.29 85.21 11.26 0.58

SCC-SC 2 50 0.54 1.45 1.24 82.46
3 100 1.33 1.2 2.33 54.75
4 150 1.37 5.56 12.34 42.99
5 200 4.75 4.88 17.2 11.47

Table 4
The computational cost of the smooth QoI.

Type d [–] ns [–] T [min] LEC [%T] S j [%T] v [%T]

Baseline 2 50 0.73 2.28 2.87 89.9
3 100 2.52 20.37 16.42 42.07
4 150 22.86 62.18 30.87 3.95
5 200 731.5 58.31 40.99 0.13

SCC-SC 2 50 0.7 1.28 0.31 85.64
3 100 1.65 4.0 0.43 61.14
4 150 1.63 16.76 1.26 49.01
5 200 4.68 13.62 1.41 15.45

isentropic relations once Mout is known [2]. When constructing the surrogate models, we will use a linear transformation 
for each input to map points from [0, 1] in the stochastic domain to points in the physical domain with the range as 
specified in Table 2. This simplifies the construction of the surrogate models as it allows us to always work in the standard 
d-dimensional hypercube Kd .

For now, we will consider just the first 5 uncertain parameters of Table 2. In Tables 3 and 4 we show the computation 
time T in minutes versus the dimension d, in case of the discontinuous and smooth QoI for both the baseline and the 
method based on SCENO stencils. This is of course dependent upon the available computational resources, in our case a 
24 core workstation. We use these cores to parallelize the LEC condition, code sampling and ENO stencils. Our algorithm 
for the construction of the SCENO stencils is not implemented in parallel, and uses just 1 core. We can see that T rises 
very quickly as d increases in the case of the baseline method, especially in the case of the smooth QoI. To explain which 
element is responsible for the high computation time, we also show the percentage of T that is spent on the LEC condition, 
construction of the stencils S j , and QoI calculation.

Since the nozzle code is just a cheap test problem, Tables 3 and 4 show that computing the QoI samples v only takes 
up a significant portion of T for low d. For the baseline SSC method the construction of ENO-type stencils makes up a 
significant part of the computational cost, but the enforcement of the LEC condition is the most expensive component in 
higher dimensions. Thus, for the baseline method, most of the computational effort is put into enforcing the LEC condition. 
For that reason the computational cost of the LEC condition is investigated in more detail.

As explained in Section 2.1, the LEC condition (14) is enforced by a MC approach, for all simplices in S j at all j =
1, · · · , ne . Thus, for the baseline SSC method the number of times the surrogate model is evaluated in each iteration i is 
bounded by

nwi = ne × ne,S j , i = 1, · · · , I (45)

where ne,S j is the number of simplices in a single stencil S j with p = pmax , and I is the total number or of iterations of 
the SSC algorithm. Here we assumed that per S j , one sample is placed in each simplex using (25). The number of points in 
the Delaunay grid is given simply by (5), but estimating ne for arbitrary d is not trivial. The worst-case number of simplices 
in a Delaunay triangulation is bounded by the so-called Upper-Bound theorem, which states that ne is at most of O(nd/2

s ). 
In the best-case scenario (points distributed uniformly at random inside the unit sphere) ne scales as O(ns) for any d, with 



Fig. 10. ne as function of ns for the smooth QoI. The discontinuous QoI gives a similar figure. The slope dne/dns is computed via a least-square regression
line.

Fig. 11. Examples of the exponential growth of SSC components.

a constant factor that is exponential with the dimension [1]. To find out where in between these two bounds our specific 
problem resides, we plot ne versus ns in Fig. 10 for d ∈ {3, 4, 5}. These results indicate that we are close to the O(ns) bound, 
since the ne(ns) are described quite well by the linear regression also shown in Fig. 10. However, the exponential increase 
of dne/dns means that for a moderate number of samples we can still have a large number of simplices if d is high enough. 
Note that other than limiting the number of samples ns , we have no means of controlling the magnitude of ne .

The term ne,S j in (45) grows exponentially with p j for a given d. This can be seen in Fig. 11(a), where we plot ne,S j

versus the local polynomial order p j for d = 5. Unlike ne , we obviously have some control over the magnitude of ne,S j

through the inclusion of a maximum allowable cutoff value for p j . Note however that limiting p j will affect the order of 
convergence (12). The upper bound (45), added over iterations i is plotted as a function of ns in Fig. 11(b) for d = 2, · · · , 5. 
It shows a rapid increase with both d and p j .

By comparing the computational time T of the SSC method with that of the SSC-SC method (Tables 3–4), it is clear that 
the SSC-SC method is several orders of magnitude more efficient for the dimensions considered in this example. To clearly 
show why the SSC-SC method is computationally more efficient than the baseline method, consider Fig. 12. Here we display 
the fraction of the volume �̄ that is covered by SCENO stencils of different polynomial order p j , for the discontinuous and 
smooth case with d = 5. Also the number of stencils |S j | per order is shown. Note that for the discontinuous QoI, just 7 
high-order SCENO stencils (stencils with p j > 1) already cover 76.1% of the domain. In the case of the baseline method the 
number of stencils (and thereby LEC iterations) equals ne , which is 11 034 in this example. For the smooth QoI (Fig. 12(b)) 
we required 13 fourth-order stencils to cover the entire domain. With the baseline method we would have a set of 9451 
stencils, likely all of fourth order as well and therefore large and expensive.



Fig. 12. The volume coverage of SCENO stencils per polynomial order.

Table 5
The relative errors (46) of the discontinuous QoI for the baseline SSC and SSC-SC method.

Type d ns εμ εσ εw

Baseline 2 50 3.536e−02 3.669e−02 2.001e−01
3 100 5.271e−02 7.475e−02 2.408e−01
4 150 2.532e−02 1.425e−01 2.828e−01
5 200 2.006e−02 2.320e−01 3.253e−01

SCC-SC 2 50 1.590e−02 4.397e−02 1.597e−01
3 100 3.975e−03 7.452e−02 2.108e−01
4 150 1.199e−03 1.329e−01 2.547e−01
5 200 3.368e−03 1.803e−01 2.876e−01

Table 6
The relative errors (46) of the continuous QoI for the baseline SSC and SSC-SC method.

Type d ns εμ εσ εw

Baseline 2 50 1.131e−06 5.137e−06 1.088e−05
3 100 7.276e−07 1.572e−05 1.416e−05
4 150 1.015e−06 3.784e−06 2.566e−05
5 200 2.446e−05 3.376e−04 2.228e−03

SCC-SC 2 50 8.042e−07 1.952e−05 1.916e−05
3 100 8.734e−07 3.019e−07 7.075e−06
4 150 1.006e−06 2.234e−06 2.104e−05
5 200 3.034e−06 8.186e−06 8.218e−05

As stated in Section 2.1, our primary interest is computing the statistical moments of the QoI, in particular the mean and 
standard deviation. To assess the accuracy of the SSC method we used a reference solution for each considered dimension d. 
To compute the errors we define the following relative L2 error measures for the mean, standard deviation and interpolation 
surface

εμ = ‖μw − μref ‖2

‖μref ‖2
, εσ = ‖σw − σref ‖2

‖μref ‖2
, εw = ‖w(ξ ref ) − vref ‖2

‖vref ‖2
. (46)

Here, the subscript w denotes a quantity computed with the surrogate model, and ref is the exact value computed via 
random sampling. In the interpolation surface error, vref is a vector containing 104 MC code samples and w(ξ ref ) are the 
surrogate model outputs evaluated at the same MC locations ξ ref . The values of the error measures (46) for both QoIs 
and both surrogate models can be found in Tables 5–6. Note that the error levels are roughly the same for both surrogate 
models.

From Tables 5–6 we note that the errors of the discontinuous case are considerable higher than for the smooth case. This 
can be attributed to the smearing of discontinuities, i.e. the linear interpolation of a discontinuity over a simplex, which 
especially contributes to the error of the surrogate model in higher dimensions. See for instance Fig. 13, which depicts 2D 
projections of a 3D surrogate model along with reference data on an ordered uniform grid. Especially in Fig. 13(a) we can 
clearly identify regions where the smearing of the discontinuity contributes to the error. For this particular case, we plotted 



Fig. 13. 3D surrogate model displayed in 2 dimensions by fixing 1 dimension to a particular value. The green dots are reference data on an ordered uniform
grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the difference between the surrogate model and the reference data in Fig. 13(b), which also identifies sharp regions of high 
error. This situation gets progressively worse as d increases.

In [40,36] Witteveen et al. apply a sub-cell resolution approach to the SSC method for the case when the discontinuity 
in the probabilistic space is a function of a physical discontinuity with random location. Our results indicate that for high d
sub-cell resolution could prove to be beneficial, even if the physical location of the QoI is not random.

5.1.2. Computational cost at d = 5
Tables 3–4 show the computational cost at a fixed number of samples per dimension. In this section we investigate the 

cost of both the baseline and our SC approach as a function of the number of samples ns . Specifically, we consider the 
smooth nozzle flow case at d = 5, and add 50 code samples at each iteration until an imposed maximum of 500 samples.

The results are depicted in Fig. 14. In light of previous results (Tables 3–4), we limited the maximum polynomial order to 
4 in case of the baseline method in an attempt to suppress the cost. Still, it took 1734 minutes (roughly 29 hours) to create 
a surrogate model containing 333 code samples. Furthermore, attempts to create surrogates with more samples terminated 
prematurely due to the excessive memory requirements of the algorithm. With our SC approach we were able to reach the 
target of 500 samples in 20 minutes, without limiting the polynomial order.

5.2. Algebraic test function

To test the limitations of both the baseline and SSC-SC approach in dimensions higher than 5 we make use of the 
following algebraic test function from [38]

u(ξ) = arctan
(
ξ · ξ∗ + ξ∗

1

)
. (47)

Here, ξ is a d-dimensional vector of uniformly distributed random variables on [0, 1], and ξ ∗ = {0.5, · · · , 0.5} ∈ Rd .



Fig. 14. The computational time T in minutes versus ns at d = 5.

Table 7
The computational cost for the arctan test function. A ‘×’ signifies a failed attempt.

Type d [–] ns [–] T [min] LEC [%T] S j [%T] v [%T]

Baseline 2 50 0.12 14.77 20.83 26.57
3 100 1.7 24.77 24.09 4.03
4 150 15.99 61.54 33.67 0.3
5 200 473.87 57.95 41.04 0.01
6 × × × × ×
7 × × × × ×
8 × × × × ×

SCC-SC 2 50 0.07 13.14 3.26 35.34
3 100 0.62 10.47 0.98 6.63
4 150 0.84 39.3 2.7 3.63
5 200 3.88 19.42 2.0 0.57
6 250 11.58 70.28 4.03 0.14
7 300 15.75 73.64 19.81 0.15
8 350 186.11 51.51 45.17 0.02

The computational time is shown in Table 7. In the case of the baseline method we encountered the same behavior as 
in the preceding section, i.e. an exponential increase in the cost. Moreover, we were not able to create surrogates for d > 5
due to excessive memory requirements.

We were able to create surrogates up to d = 7 without difficulty with the SSC-SC approach. The limitations of the SSC-SC 
approach start to appear in the 8-dimensional case. Note that for the given number of samples in Table 7 we could still 
construct the surrogate in a reasonable amount of time, i.e. a run-time less than the expected cost of drawing 350 samples 
from some expensive simulation code. However, a sharp increase in the cost compared to the 7-dimensional case is still 
observed. The cause of this are the violations of the LEC limiter which occur despite the fact that (47) is a smooth QoI. As 
a consequence the SCENO stencils no longer cover the entire domain, and additional stencils must be computed for which 
the LEC limiter must also be enforced. Several iterations of the LEC and SCENO subroutines are required until the stencils 
are both LEC and set covering. A possible explanation for the LEC violations is that our monomial basis (18) is no longer 
suitable in these high-dimensional spaces, despite the fact that we solve our linear system as depicted in (27). Further 
research is required for spaces of 8 dimensions. Another bottleneck for higher dimensions is the ability to create Delaunay 
triangulations for d > 8, which is not supported by the Delaunay subroutines we used [5]. Moreover, the time complexity of 
the Delaunay triangulation in general for these dimensions is a known issue, see for instance [6] for a comparison between 
different triangulation algorithms up to a dimension of 6. The complexity bounds discussed in Section 5.1.1 and displayed 
in Fig. 10 will ultimately make the Delaunay triangulation unusable for our purpose, especially when considering problems 
of dimension O(10).

Thus, the use of the proposed set-covering approach is that it allows us to efficiently create SSC surrogate models, within 
the range of dimensions where we could construct the Delaunay triangulation. To apply the SSC method to higher dimensions, one 
option is to replace the Delaunay triangulation with a scheme where simplices are formed by selecting the nearest points 
from randomly placed MC samples as described in [38]. Another option is the use of a dimension adaptive approach such 
as cut-HDMR in order to avoid high-dimensional spaces altogether, the results of which are shown in the coming sections.



Fig. 15. The relative weights (39) and (42) for the discontinuous and smooth nozzle QoI. The green boxes are the dimensions which are added to V imp . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Relative error values vs the HDMR order p and ns in the case of the discontinuous QoI.

HDMR order p ε1 ns εμ εσ εw

1 0.9 57 4.514e−01 3.601e−01 7.434e−01
2 89 3.926e−02 8.830e−02 2.196e−01

Table 9
Relative error values vs the HDMR order p and ns in the case of the smooth QoI.

HDMR order p ε1 ns εμ εσ εw

1 0.9 37 4.933e−05 2.885e−04 5.035e−03
2 67 3.603e−05 6.457e−04 3.608e−03

5.3. cut-HMDR applied to nozzle flow

We now show the results obtained from using the cut-HDMR approach coupled with the SSC-SC method, applied to the 
nozzle flow case. Unlike in Section 5.1.1, we now consider all 6 uncertain coefficients from Table 2.

The first order weights αi (39) are used to determine the important dimensions. Fig. 15 shows αi with i = 1, · · · , 6
corresponding to the 6 parameters of Table 2, as well as the subsequent higher order αu . For the discontinuous QoI only the 
first 2 parameters are significant (p and pt ). Together they are responsible for 99.7% of the total first order mean. We have 
set ε1 = 0.9, such that those dimensions which make up 90% or more of the p-th order mean are added to Vimp . For the 
smooth QoI we need p and pt as well, but also the coefficient b in order to meet this constraint. All admissible subsequent 
dimensions are important as well.

The computational time for both QoIs, due to the fact that the nozzle code is quickly evaluated, is in the order of several 
minutes. Note that in the case of the baseline method we were unable to create a surrogate in a six-dimensional space.

The values of error measures (46) for the discontinuous and smooth case are given in Tables 8–9. Notice that a first-
order HDMR expansion is not sufficient for the discontinuous QoI, but already for p = 2 the relative errors in the statistical 
moments are of O(10−2). Table 9 shows the results for the smooth QoI. The errors, even for a first-order expansion, are of 
O(10−3) or below. Again, the higher errors in the discontinuous case can be attributed to the linear smearing of disconti-
nuities in the response surface.

Compare the relative errors from Table 5 with those of Table 8, and likewise for Tables 6 and 9. The errors are of 
a similar order of magnitude, even though the HDMR method doesn’t sample the full six-dimensional space. At the same 
time we gain information about the correlation between the input parameters, in the sense of their combined impact on the 
code output. Also, the cut-HDMR method could be applied to even higher dimensional spaces, provided that the effective 
dimension is low.

These results demonstrate the power of the cut-HDMR technique in terms of computational efficiency for problems 
with low effective dimension. The cost of computing 6 one-dimensional and 1–3 two-dimensional surrogate models is 
significantly less than computing 1 six-dimensional problem. Also, in the case of the SSC method, it can avoid problems 
with the bad scalability of the Delaunay triangulation with increasing d.



Fig. 16. The symmetrical NACA0012 airfoil.

Table 10
Uniformly distributed closure coefficients of the SA model.

Parameter Mean Range

Cb1 0.1355 [0.0949,0.1762]
Cb2 0.622 [0.435,0.809]
C v1 7.1 [4.97,9.10]
σ 2/3 [0.467,0.867]
C w2 0.3 [0.210,0.390]
C w3 2 [1.40,2.60]
κ 0.41 [0.287,0.455]

5.4. cut-HDMR applied to airfoil flow

In this section we present the results of the cut-HDMR approach (again coupled to the SSC-SC method), when applied to 
a computationally expensive problem, i.e. the turbulent flow over a NACA0012 airfoil, see Fig. 16(a). The free-stream Mach 
number is 0.5 and the angle of attack is set to 5◦ . The Reynolds number based on the chord length is 1.2 · 107. The grid is 
a C-grid with 70.085 nodes and the first node is located at a distance of 10−6 from the wall in order to provide sufficient 
resolution, see Fig. 16(b). The computation time for one flow-field was roughly 50 minutes.

The governing equations are the Reynolds–Averaged Navier–Stokes (RANS) equations, coupled to the Spalart–Allmaras 
(SA) turbulence model [32]. This model contains 7 empirically determined closure coefficients [34], whose best-fit values 
are unknown a-priori [11]. Therefore, we treat all 7 inputs as uniformly distributed variables with the end points set at 
±30% of their nominal values, see Table 10. The chosen QoI is the lift coefficient, defined as cl = L′/(ρ∞V 2∞/2), where ρ∞
and V∞ are the free-stream density and velocity respectively. The term L′ is the two-dimensional lift force.

The values of the relative weights αi and αu , i.e. equations (39) and (42), are depicted in Fig. 17. The value of ε1 was 
again set to 0.9. For the first-order HDMR expansion we need three coefficients, namely κ , Cb1 and Cb2, to capture more 
than 90% of the total first-order mean. Further note that the constants C w2 and C w3 are completely unimportant for the 
computation of our QoI, as their weights are of O(10−14). For the second-order expansion, we only need the interactions 
of (Cb1, κ) and (Cb2, κ) to represent more than 90% of the second-order mean component functions. Although (Cb1, Cb2) 
is not added to Vimp , the third-order interaction (Cb1, Cb2, κ ) is still admissible according to the admissibility condition 
(41). However, in this particular simulation a second order expansion was enough to satisfy the error measure between two 
HDMR expansions of consecutive orders (43), which was set to ε2 = 10−3. Hence, no third order interaction was computed.

Since emulating the RANS code itself is our objective, no reference solution is available. We therefore plot the con-
vergence of the mean and standard deviation of cl in Table 11. As can be expected from the weights in Fig. 17, there is 
little difference between the statistics of first and second order HDMR expansion. In this particular case even a first order 
expansion could be considered as converged.

Note that if we would have applied either the baseline or the SSC-SC approach to a full 7-dimensional space, the initial 
Delaunay grid alone would be comprised of 129 samples. As can be seen from Table 11, the HDMR approach requires signif-
icantly less samples. This difference can be expected to increase as the dimensionality increases, provided that the problem 
is one of low effective dimension. It should be noted however, that Witteveen and Iaccarino suggested a method in which 
the initial 2d samples can be avoided [38], but this approach requires extrapolation towards the hypercube boundaries. In 



Fig. 17. The relative weights (39) and (42) for the NACA 0012 test case. The value of ε1 was set to 0.9. The green boxes indicate the dimensions which are
important. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 11
The convergence of the statistical moments of cl as a function of the HDMR
order.

HDMR order p ns μ σ

1 49 6.385509e−01 3.729915e−03
2 62 6.381699e−01 3.746544e−03

Table 12
The rankings from largest (1st) to smallest (7th) αi for QoIs other than cl . Below each coefficient its corresponding value of αi is written.

QoI 1st 2nd 3rd 4th 5th 6th 7th

cp Cb1 κ Cb2 σ C v1 C w2 C w3

2.604e−03 1.339e−03 8.784e−04 5.510e−04 6.866e−05 3.674e−08 3.655e−08

c f κ Cb1 Cb2 σ C v1 C w2 C w3

1.764e−01 8.835e−02 8.676e−02 2.072e−02 6.819e−03 9.976e−07 9.875e−07

M κ Cb1 Cb2 σ C v1 C w2 C w3

3.658e−03 1.951e−03 1.498e−03 6.591e−04 1.233e−04 3.958e−08 3.951e−08

k Cb1 κ σ Cb2 C v1 C w2 C w3

8.708e−02 2.982e−02 2.726e−02 2.529e−02 5.735e−04 2.650e−05 2.591e−05

this case there is no guarantee that the LEC limiter is respected in the simplices where the extrapolation takes place, and 
only in the limit ne → ∞ full extremum-diminishing robustness is recovered for the entire domain �.

Finally, for each code run we saved the results for a range of different physical quantities. Thus, we can a posteriori
construct a surrogate model for each of these quantities. However, the samples were adaptively placed based on our chosen 
QoI cl , and therefore might not be optimally distributed for another QoI. Moreover, the dimension adaptivity might cut out 
dimensions that are important for a QoI other than cl . To perform a qualitative investigation, we therefore constructed a 
first-order HDMR expansion for the pressure coefficient cp , skin-friction coefficient c f , Mach number M and the turbulent 
kinetic energy k, all defined below.

cp := p − p∞
1
2ρ∞V 2∞

, c f := τw
1
2ρ∞V 2∞

, M := u

a
, k := 1

2

(
u′ 2

1 + u′ 2
2 + u′ 2

3

)
(48)

Here, p and p∞ are the static and free-stream pressure respectively. Furthermore, ρ∞ and V∞ are defined as before in cl . 
The quantity τw is the wall shear stress, and in the expression for M , u is the local velocity, and a is the speed of sound. 
Finally, u′ 2

i is the mean squared normal Reynolds stress in xi direction [34].
In Table 12 we show the coefficients of the SA model sorted according to their value of the (non-relative) weight αi (38)

for all the QoIs of (48). Note that which coefficients are most influential does not change much from one QoI to another. For 
cp , c f and M the three most important coefficients are κ , Cb1 and Cb1. In the case of the turbulent kinetic energy k, σ has 
taken third place, with again Cb1 and κ as the most influential. Still, σ ’s value of αi is close to the weight corresponding 
to Cb2. The ranking of the bottom three coefficients remains unchanged for all considered QoIs.



6. Conclusion

We have examined means to improve upon the scalability of the Simplex-Stochastic Collocation (SSC) method [39] for
uncertainty quantification problems of moderate dimensionality, such that sampling an expensive simulation code will still 
be feasible. We found that creating a surrogate model using the baseline SSC method becomes restrictively expensive at 5 
dimensions, and practically impossible at d = 6. To reduce this bad scalability, we needed to add some new features. First, 
for higher d we run the risk of obtaining a singular sample matrix. This can be circumvented by a method similar to the 
method used to construct the ENO stencils. If we encounter a stencil S j for which the sample matrix is singular, we collect 
a set of candidate nearest-neighbor stencils which all contain the simplex � j associated to the j-th stencil S j . We then 
select the stencil which has the highest polynomial order and which is non-singular. In the worst-case scenario we get a 
linear stencil, which is guaranteed to be non-singular irrespective of the dimension d.

Due to the exponential increase in the number of simplex elements with increasing dimension, enforcing the LEC condi-
tion becomes quickly very expensive for d ≥ 5. As a first measure to combat this sharp increase in the computational burden, 
we have proposed an alternative technique for the stencil construction, based on the Set-Covering (SC) problem [16]. Unlike 
in the SSC method we do not construct a stencil for every simplex. Since ne increases exponentially fast with d, we aim to 
find a relatively small set of stencils that covers all simplices in the probability domain. Due to the fact that the stencil size 
rises also exponentially, only a few high-order stencils are required to achieve this. We furthermore use the information 
contained in the code samples about the location of a possible discontinuity in the construction of the stencils. Using a 
simple measure based upon the maximum jump in code samples, we mark those simplices which contain a discontinuity 
and manually set their respective stencils to first order. Using only the remaining simplices as admissible candidates, we 
grow stencils by adding neighboring simplices. This approach assures that the number of stencils is significantly lower than 
ne , and hence the number of times the LEC condition must be checked is reduced equally. Also, since the discontinuous 
simplices are removed as admissible candidates a priori, no stencil crosses a discontinuity. As a consequence the SC stencils 
resemble the ENO stencils in shape.

For dimensions 5 through 8 our SSC-SC method is significantly more computationally efficient as the baseline SSC 
method. However, at higher dimensions discretizing the probabilistic space using a Delaunay triangulation becomes a seri-
ous bottleneck. The SSC-SC method can therefore be viewed as a more efficient version of the baseline method within the 
range of dimensions where a Delaunay triangulation can be reasonably made. We examined another alternative, where we 
adapted the cut-HDMR method of [20] to the SSC method. Given a problem with low effective dimension, this approach 
circumvents the bad scalability of the Delaunay triangulation, while at the same time obtaining error estimates of similar 
order of magnitude compared to the full-dimensional baseline or SSC-SC method. Thus, this method is adaptive in both 
the stochastic domain as well as in the dimensions themselves, while retaining the advantages of the SSC method such as 
Runge-phenomenon free interpolation. We applied it to a computationally expensive flow case, i.e. the turbulent flow over 
an airfoil modeled with the Spalart–Allmaras eddy-viscosity model, which contains 7 imperfectly known closure coefficients. 
Instead of fully sampling a 7 dimensional space, and enforcing the LEC condition in this space, we could obtain a converged 
surrogate model with a second order HDMR expansion and 62 code samples.
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Appendix A. Baseline SSC algorithm

This appendix provides the general pseudo code of the baseline SSC algorithm with ENO stencils.

Compute initial d-dimensional Delaunay grid
Compute initial compute code samples v = (v0, · · · , vk, · · · , vd) at the 2d + 1 grid points
Set initial hierarchical surplus errors to εk = −vk
i ← 0, choose max iterations I
while i ≤ I and ε̂rms > user-defined threshold do

Determine pmax via (5)
Compute nearest-neighbor stencils via (7)
% Check (in parallel) the LEC condition:
for j = 1 · · · , ne do

† Sample all � j ∈ S j via (25)
At sample locations: compute w j
if (14) is violated in one or more sample locations then

p j ← p j − 1
Update S j and goto †

end if
end for
% Compute (in parallel) ENO stencils
for j = 1 · · · , ne do

Collect the r nearest neighbor S j that contain � j
From these r stencils, select S∗

j := the S j with the largest p j

if more than 1 S∗
j exists then

Select the S∗
j with the smallest average Euclidean distance to the cell center of � j

end if
end for
Compute probabilities � j and volumes �̄ j via (10)
Compute refinement measures ē j via (9)
Sample the sub-simplices (13) of the N simplices with the largest ē j via (25)
Evaluate (in parallel) computer code at the N new sample locations, add code samples to v
Compute the N new hierarchical surplus values via (15)
Refine the Delaunay grid by adding the N new sample locations

end while
Compute ENO stencils and check LEC condition from final iteration



Appendix B. SSC-SC algorithm

Below we give the detailed construction of SCENO stencils in pseudo code, and we repeat some definitions for conve-
nience.

• C is the set of simplices which are currently covered by a stencil S j .
• C j is the set of simplices currently under construction which will be added to C .
• N j is the set of all neighboring simplices �k of simplex � j .
• NC j is the set of all neighboring simplices �k of all simplices in C j .
• {ξk} is the set of d + 1 vertices ξk j,l

that make up simplex �k .

% for each iteration of the SSC-SC algorithm do
compute D via (26)

C ← C ∪D
%select the largest simplex in terms of volume or size
�∗

j ← arg max� j
�̄ j

�% loop while C does not cover U
while U �

⋃
X j∈C X j do

% initialize all sets
C j ← {�∗

j }
S j ← {ξk j,l

| � j ∈ C j}
NC j ← {�k | |{ξk} ∩ {ξ j}| = d; ∀ � j ∈ C j ∧ k = {1, 2, · · · , ne} \ { j}}

% loop until no more uncovered neighbors are available or S j is full
while NC j \ {C ∪ C j} �= ∅ and |S j | < N j + 1 do

% update all sets

C j ← C j ∪ {NC j \ {C ∪ C j}}
S j ← {ξk j,l

| � j ∈ C j}
NC j ← {�k | |{ξk} ∩ {ξ j}| = d; ∀ � j ∈ C j ∧ k = {1, 2, · · · , ne} \ { j}}

end while

sort C j and S j according to ‖ξ centerk
− ξ center j

‖2

if |S j | < N j + 1 then
reduce p j and S j to new maximum as allowed by (5)

end if

C ← C ∪ C j
Ssc ← Ssc ∪ S j

end while

%check LEC condition for all S j ∈ Ssc

if LEC is violated in any S j then
p j ← p j − 1
update C j, S j
update C, Ssc

goto �
end if



Appendix C. HDMR algorithm

The dimension-adaptive cut-HDMR of [20] coupled with the SSC method.

%Initialize sets
Vimp = {∅}, Vcomp = {∅}, R = {∅}, p = 1

%Compute the component functions of order p = 0 and p = 1
Compute all sub problems f (v) in (36) using the SSC method. Stop when global RMS error measure (17) < ε . Add 
all computed u to Vcomp .

Compute all first-order weights (38) αi

if αi > ε1 then
Vimp ← Vimp ∪ {i}

end if

Add u with |u| = p and which satisfy admissibility condition to R

while R �= {∅} and αp > ε2 do
p ← p + 1

Add u with |u| = p and which satisfy admissibility condition (41) to R
∀u ∈R, compute f (v) in (36) using SSC, stop when (17) < ε , add all computed u to Vcomp .

Compute weights αu (40)

if αu > ε1 then
Vimp ← Vimp ∪ {u}

end if

R = {∅}, add u with |u| = p and which satisfy admissibility condition to R
Compute relative error measure αp (43)

end while

Appendix D. Proof of uniform distribution

Equation (25), repeated below for convenience, is used to map points from the hypercube Kd := [0,1]d to an arbitrary 
simplex � described by the (unique) points ξ i ∈ Rd , i = 1, · · · , d + 1. The R j ∈ R are d scalar i.i.d. random variables (r.v.’s) 
distributed uniformly as U [0, 1], and describe a randomly picked point in Kd . This appendix contains the proof that (D.1) is 
distributed uniformly as well.

Md = ξ0 +
d∑

i=1

i∏
j=1

r
1

d− j+1

d− j+1(ξ i − ξ i−1). (D.1)

From [29] we have the following theorem regarding the distribution of a transformation of random variables:

Theorem 3. Consider the r.v.’s R1, · · · , Rd with joint pdf f R1···Rd positive and continuous on the set A ⊆ Rd, and let h1, · · · , hd be 
real-valued transformations defined on A; that is, h1, · · · , hd → R, and let B be the image of A under transformations (h1, · · · , hd). 
Suppose that (h1, · · · , hd) is one-to-one from A onto B. Thus, if we set yi = hi(r1, · · · , rd), we can uniquely solve for ri , i = 1, · · · , d :
ri = h−1

i (y1, · · · , yd), i = 1, · · · , d. Suppose further that the partial derivatives ∂
∂ y j

h−1
i , i, j = 1, · · · , d exist and are continuous for 

(y1, · · · , yd) ∈ B. Finally, suppose that the Jacobian

J (y1, · · · , yd) =

⎡
⎢⎢⎣

∂h−1
1

∂ y1
· · · ∂h−1

d
∂ y1

...
. . .

...
∂h−1

1
∂ yd

· · · ∂h−1
d

∂ yd

⎤
⎥⎥⎦ (D.2)

is �= 0 on B. Then the joint pdf of the r.v.’s Yi = hi(R1, · · · , Rd), i = 1, · · · , d, fY1···Yd , is given by:

fY1···Yd =
{

|det J (y1, · · · , yd)| · f R1···Rd

(
h−1

1 (y1, · · · , yd), · · · ,h−1
d (y1, · · · , yd)

)
, (y1, · · · , yd) ∈ B

0 otherwise
(D.3)



Table D.13
The absolute value of the determinant of J as a function of d.

d 1 2 3 4 5 6 7 8
|det J | 1 2 6 24 120 720 5040 40 320

In our case A is the hypercube Kd and B is the target simplex �. Also, we have uniform i.i.d. R j such that f R1···Rd =
f R1 f R2 · · · f Rd = 1. Thus, in order for fY1···Yd to be uniform we need to show that | J (y1, · · · , yd)| is a constant. Furthermore, 
since (D.1) maps to a simplex this constant must be equal to the reciprocal of the volume of the simplex.

To simplify the analysis we will consider the standard simplex with nodes ξ0 = (0, 0, · · · , 0), ξ1 = (1, 0, · · · , 0), ξ2 =
(0, 1, · · · , 0) etc. To demonstrate the structure of (D.1), we provide a four-dimensional example here:

M4 =

⎡
⎢⎢⎣

4
√

r4 − 4
√

r4
3
√

r3
4
√

r4
3
√

r3 − 4
√

r4
3
√

r3
√

r2
4
√

r4
3
√

r3
√

r2 − 4
√

r4
3
√

r3
√

r2r1
4
√

r4
3
√

r3
√

r2r1

⎤
⎥⎥⎦ . (D.4)

Each individual row of M4 is a transformation function yi = hi(r1, · · · , r4), for which we can find the following inverse 
functions:

r1 = y4

y4 + y3
, r2 = (y4 + y3)

2

(y4 + y3 + y2)
2
, r3 = (y4 + y3 + y2)

3

(y1 + y4 + y3 + y2)
3
, r4 = (y1 + y4 + y3 + y2)

4 . (D.5)

Now we can compute the Jacobian matrix (D.2) as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − y4

(y4+y3)2
y3

(y4+y3)2

0 −2 (y4+y3)2

(y4+y3+y2)3 2 (y4+y3)y2

(y4+y3+y2)3 2 (y4+y3)y2

(y4+y3+y2)3

−3 (y4+y3+y2)3

(y1+y4+y3+y2)4 3 (y4+y3+y2)2 y1

(y1+y4+y3+y2)4 3 (y4+y3+y2)2 y1

(y1+y4+y3+y2)4 3 (y4+y3+y2)2 y1

(y1+y4+y3+y2)4

4 (y1 + y4 + y3 + y2)
3 4 (y1 + y4 + y3 + y2)

3 4 (y1 + y4 + y3 + y2)
3 4 (y1 + y4 + y3 + y2)

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(D.6)

When we compute the determinant of J all the yi terms drop out and we end up with | det J | = 24. The values of | det J |
for d = 1, · · · , 8 can be found in Table D.13. From these results it becomes clear that fY1···Yd = | det J | = d!. The volume �̄ of 
a simplex � can be computed by

�̄ = 1

d! |det (D) |, D = [
ξ1 − ξ0 ξ2 − ξ0 · · · ξd+1 − ξ0

]
, (D.7)

which for the standard simplex reduces to �̄ = 1
d! . And thus we have∫

· · ·
∫
�

fY1···Yd dY1 · · · dYd = fY1···Yd

∫
· · ·

∫
�

dY1 · · ·dYd = d! · 1

d! = 1, (D.8)

which completes the proof.
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