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Abstract—Recently, coprime array has been proposed to es-
timate the direction of arrival (DoA) of O(MN) sources using
only O(M +N) physical sensors. In this paper, we investigate a
new method to achieve higher degrees of freedom for the coprime
array under the coexistence of K1 non-circular and K2 circular
sources. By exploiting the properties of the signal sources, a new
model is constructed based on a longer virtual uniform linear
array (ULA). Simulation results show that the proposed method
can identify more sources once the condition K1 +2K2 < 2MN
is satisfied.

Index Terms—DoA estimation, coprime array, MUSIC, non
circularity and circularity.

I. INTRODUCTION

Direction of arrival (DoA) estimation plays a significant
role in array signal processing. It has wide application in
many fields such as radar, sonar and wireless communication
systems [1] - [3]. During the past several decades, research in
DoA estimation of narrowband signals has achieved a huge
progress since the multiple signal classification (MUSIC) [4]
was proposed. Its mainstream is focused on half wave length
spaced uniform linear arrays (ULA). It is well known that
the resolution capability of a ULA is directly limited by the
number of its physical sensors. For example, with a ULA of
N sensors, the number of resolvable uncorrelated sources by
MUSIC-like algorithms is N − 1.

To overcome the above mentioned limitation, coprime
array has been recently proposed, which is a non-uniform
linear array constituted of two uniform linear subarrays with
large inter-element distances [5]. This new geometry shape
can increase the degrees of freedom of the array by exploiting
the covariance matrix of the received signals. A new system
model can be obtained by vectorizing the covariance matrix
of the received signals. It can be viewed as a virtual ULA
with a much wider aperture, which is able to detect O(MN)
sources using only O(M + N) physical sensors. The spatial
smoothing method is then used to overcome the correlation
effect [6]. Actually, this method has been widely applied in
many systems to get further improvements in sources’ DoA

finding [7] - [9].

Moreover, researchers are also interested in the exploitation
of the properties of incoming signals which can bring further
estimation improvement. When the incoming signals are
from non-circular sources, the DoA estimation accuracy and
the maximum number of detectable signals can be greatly
increased [10]. [11] developed an algorithm to cope with
more general scenarios, where the non-circular and circular
sources are mixed together. It can make use of the existing
non-circular signals to increase the maximum number of
detectable signals. It combines the received signal vector and
its complex conjugate counterpart to form a new signal vector
and exploits the covariance matrix of the new signal vector.
It also proposes different estimators for non-circular sources
and for circular sources to achieve higher accuracy.

For the coprime arrays, the property of non-circular signals
is exploited in [12] to enhance the DoA finding performance,
while the case of mixed signals including non-circular
and circular signals is still not investigated. Motivated by
this observation, in this paper, we make use of coprime
array and exploit the properties of real and complex circular
sources to increase the degrees of freedom in DoA estimation.

The rest of this paper is organized as follows: Section II
presents the MUSIC-based DoA estimation for a classical
ULA, then for a coprime array. The proposed method is
presented in Section III. Simulation results are provided in
section IV. Section V concludes the paper.

Notation: Capital letters of boldface are used for matrices.
Lowercase letters of boldface denote column vectors. (·)H and
(·)T denote the operations of Hermitian (complex conjugate
transpose) and transpose, respectively. The operation of com-
plex conjugate is denoted by (·)∗. E[·] denotes the expectation.
∥ · ∥ represents the Frobenius norm. ⊗ denotes the Kronecker
product. Diagonal matrices are denoted by diag(·). j is used
to represent the imaginary part of a complex number. IM is



the M × M identity matrix. 0 represents a zero matrix or
vector.

II. PROBLEM FORMULATION

A. Classical model

Consider a ULA of M sensors with d the distance between
two adjacent sensors. Suppose K uncorrelated narrowband
sources impinging on this array from directions θk, k =
1, . . . , K. The used snapshots number is denoted by N . The
received signal at the array sensors is the superposition of
these signals, which can be expressed as:

x(t) = As(t) + n(t) (1)

where A = [a(θ1), . . . ,a(θK)]; s(t) = [s1(t), . . . , sK(t)]T ;
n(t) represents the spatially and temporally white noise; sk(t)
denotes the k-th signal received at the first sensor; n(t) and
s(t) are assumed to be uncorrelated and a(θk) is the steering
vector corresponding to sk(t), given by

a(θk) = [1, ej
2π
λ dsinθk , . . . , ej(M−1) 2π

λ dsinθk ]T

λ is the wavelength of the impinging narrowband signals, and
d is usually set to be λ/2.

B. MUSIC algorithm

The correlation matrix of the received signal in (1) can be
expressed as

Rxx = E[x(t)xH(t)]

= AE[s(t)sH(t)]AH + σ2
nIM

= ARssA
H + σ2

nIM

= UΛUH +GΓGH

(2)

where the columns of U generate the signal-subspace, formed
by the eigenvectors corresponding to the K largest eigenvalues
and the columns of G span the noise-subspace, formed by the
eigenvectors corresponding to the M−K smallest eigenvalues.
Since the signal-subspace and noise-subspace are orthogonal,
the actual source steering vector a(θk) and the noise-subspace
are orthogonal.

a(θk)
HG = 0, for k = 1, 2, . . . ,K (3)

Therefore, the spatial pseudo-spectrum can be expressed as

p(θ) =
1

a(θ)HGGHa(θ)
(4)

C. Coprime array

Assume N and M are two coprime numbers. Consider a
linear array with N + 2M − 1 non-uniformly located sensors
along the X-axis, whose positions are given by the following
set in terms of X-coordinate:

S = {Mnd, 0 ≤ n ≤ N − 1}
∪

{Nmd, 1 ≤ m ≤ 2M − 1}

0 Md 2Md (N-1)Md 

Nd 2Nd (2M-1)Nd 

 

 

Fig. 1. Coprime array.

where, d is the fundamental spacing.
Similar to model (1), the received signal is denoted by

x(t) = As(t) + n(t) (5)

where a(θ) is the (N + 2M − 1) × 1 steering vector whose
elements are given by

ej
2π
λ lsinθ, l ∈ S

The correlation matrix of the received signal is given by:

Rxx = E[x(t)xH(t)]

= ARssA
H + σ2

nIN+2M−1

=

K∑
i=1

σ2
i a(θi)a

H(θi) + σ2
nIN+2M−1

(6)

Since the sources are temporally uncorrelated, Rss is a di-
agonal matrix with diagonal elements σ2

1 , σ
2
2 , . . . , σ

2
K which

are equal to the actual sources powers. By vectorizing the
correlation matrix Rxx. The following vector is obtained:

z = vec(Rxx)

= vec[
K∑
i=1

σ2
i a(θi)a

H(θi)] + σ2
n l̃n

= B(θ1, . . . , θK)p+ σ2
n l̃n

(7)

where B(θ1, . . . , θK) = [a∗(θ1)⊗a(θ1), . . . ,a
∗(θK)⊗a(θK)],

p = [σ2
1 , σ

2
2 , . . . , σ

2
K ]

T , and l̃n = [eT1 , e
T
2 , . . . , e

T
N+2M−1]

T

with ei a column vector of all zeros, except the one at the
i-th position, which is equal to one. Comparing (7) with (1),
z behaves like a signal vector received by a longer virtual
array and B acts as the manifold matrix. The equivalent
source signal vector is represented by p and the noise becomes
a deterministic vector given by σ2

n l̃n. According to B, the
locations of the virtual sensor array are given by the values
in the following set including the subset of cross differences
{±(Mn − Nm)d, 0 ≤ n ≤ N − 1, 1 ≤ m ≤ 2M − 1} and
the subset of self-differences {(Mn1 −Mn2)d, 0 ≤ n1, n2 ≤
N−1}, {(Nm1−Nm2)d, 1 ≤ m1,m2 ≤ 2M−1}. It includes
2MN +1 consecutive differences from −MNd to MNd [5].
By extracting and sorting those rows corresponding to the
2MN + 1 consecutive differences, a new model is obtained
as follows:

z̃ = B̃p+ σ2
nẽ

′ (8)



where ẽ′ is a vector of all zeros except a ”1” at the (MN+1)-
th position. (8) is equivalent to a ULA receiving K coherent
sources p with deterministic noise term σ2

nẽ
′. By applying

MUSIC with spatial smoothing, it can identify MN sources.

III. PROPOSED METHOD FOR MIXED SIGNALS

Recently, [12] proposed a method to enhance the DoA
finding performance for non-circular signals by using coprime
array. In this paper, we extend the discussion to the mixed
signals including non-circular and circular signals.

A. Data model

Consider the model in (5), assume K temporally uncorrelat-
ed narrowband signals are impinging on this array from direc-
tions {θi, i = 1, 2, . . . ,K} with powers {σ2

i , i = 1, 2, . . . ,K},
in which there are K1 non-circular signals and K2 circular
signals, respectively, K = K1 + K2. Equation (5) can be
rewritten as:

x(t) = As(t) + n(t) = A1snc(t) +A2sc(t) + n(t) (9)

where A = [A1,A2] with A1 = [a(θ1),a(θ2), . . . ,a(θK1)]
and A2 = [a(θK1+1),a(θK1+2), . . . ,a(θK1+K2)] denoting the
array manifold matrices, and snc(t) and sc(t) denoting the
non-circular real signals and complex circular signals respec-
tively. n(t) represents the spatially and temporally white noise,
which is uncorrelated with the sources. By combining the
original signal vector and its complex conjugate counterpart,
a new extended signal model can be formed:

x̃ =

[
x(t)
x∗(t)

]
=

[
A1

A∗
1

]
snc +

[
A2 0
0 A∗

2

][
sc(t)
s∗c(t)

]
+

[
n(t)
n∗(t)

]
(10)

B. Co-array model

Based on model (10), we get the correlation matrix of the
extended received signal:

Rx̃x̃ = E[x̃x̃H ]

=

[
E[x(t)xH(t)] E[x(t)xT (t)]
E[x∗(t)xH(t)] E[x∗(t)xT (t)]

]
(11)

Considering the fact that the signals are uncorrelated with
each other and with the noise, and that both the mean and
the elliptic covariance of a circular signal are equal to zero,
we have E[sis

T
i ] = E[s∗i s

H
i ] = 0, for K1+1 ≤ i ≤ K1+K2,

and the following equations hold:

E[x(t)xH(t)] =
K∑
i=1

σ2
i a(θi)a

H(θi) + σ2
nIN+2M−1 (12)

E[x(t)xT (t)] =

K1∑
i=1

σ2
i a(θi)a

T (θi) (13)

E[x∗(t)xH(t)] =

K1∑
i=1

σ2
i a

∗(θi)a
H(θi) (14)

E[x∗(t)xT (t)] =

K∑
i=1

σ2
i a

∗(θi)a
T (θi) + σ2

nIN+2M−1 (15)

Next, we vectorize these four parts of Rx̃x̃ to get the following
vectors:

z1 = vec(E[x(t)xH(t)])

= B1(θ1, . . . , θK1+K2)p1 + σ2
n l̃n

(16)

z2 = vec(E[x(t)xT (t)])

= B2(θ1, . . . , θK1+K2)p2

(17)

z3 = vec(E[x∗(t)xH(t)])

= B3(θ1, . . . , θK1+K2)p3

(18)

z4 = vec(E[x∗(t)xT (t)])

= B4(θ1, . . . , θK1+K2)p4 + σ2
n l̃n

(19)

The following extended model can be obtained by stacking
z1, z2, z3 and z4:

z = [zT1 , z
T
2 , z

T
3 , z

T
4 ]

T

= Bp∗ + σ2
nζ̃n

(20)

where B = [BT
1 ,B

T
2 ,B

T
3 ,B

T
4 ]

T , with
B1(θ1, . . . , θK1+K2)
= [a∗(θ1)⊗ a(θ1), . . . ,a

∗(θK1+K2)⊗ a(θK1+K2)],
B2(θ1, . . . , θK1+K2)
= [a(θ1)⊗ a(θ1), . . . ,a(θK1+K2)⊗ a(θK1+K2)],
B3(θ1, . . . , θK1+K2)
= [a∗(θ1)⊗ a∗(θ1), . . . ,a

∗(θK1+K2)⊗ a∗(θK1+K2)],
B4(θ1, . . . , θK1+K2)
= [a(θ1)⊗ a∗(θ1), . . . ,a(θK1+K2)⊗ a∗(θK1+K2)];
p∗ = [pT

1 ,p
T
2 ,p

T
3 ,p

T
4 ]

T , with
p1 = p4 = [σ2

1 , σ
2
2 , . . . , σ

2
K1+K2

]
T ,

p2 = p3 = [σ2
1 , σ

2
2 , . . . , σ

2
K1

, 0, . . . , 0]
T in which there are

zeros for the last K2 elements; and ζ̃n = [̃lTn ,0
T ,0T , l̃Tn ]

T ,
l̃n = [eT1 , e

T
2 , . . . , e

T
N+2M−1]

T with ei denoting column
vector of all zeros, except the one at the i-th position, which
is equal to one, and 0 represents a zero column vector
with the same size as l̃n. Similar to Section II-C, Bi can
be regarded as a manifold matrix and the corresponding
equivalent source signal vector is represented by pi, while
the noise becomes a deterministic vector.

The distinct rows of B1 and B4 behave like the manifold of
a longer array whose sensor locations are given by the values
in the set including the subset of cross differences {±(Mn−
Nm)d, 0 ≤ n ≤ N − 1, 1 ≤ m ≤ 2M − 1} and that of self-
differences {(Mn1−Mn2)d, 0 ≤ n1, n2 ≤ N−1}, {(Nm1−



Nm2)d, 1 ≤ m1,m2 ≤ 2M − 1}. This set includes 2MN +
1 consecutive differences from −MN to MN . The sensor
positions represented by the rows of B2 and B3 are given by
the set including subset {±(Mn+Nm)d, 0 ≤ n ≤ N−1, 1 ≤
m ≤ 2M − 1}, {(Mn1 ±Mn2)d, 0 ≤ n1, n2 ≤ N − 1} and
subset {(Nm1 ±Nm2)d, 1 ≤ m1,m2 ≤ 2M − 1}.

The positions of the virtual sensors include more than
4MN + 1 consecutive differences. Hence from Bi, for
non-circular signals, we can extract a manifold matrix of
a much longer ULA with 2Mmax + 1 sensors located at
nd,−Mmax ≤ n ≤ Mmax, where Mmax > 2MN .

By extracting and sorting those rows from B which corre-
spond to the 2Mmax + 1 consecutive sequence, we construct
a new matrix M of size (2Mmax + 1) × K. The (n, i)−th
element of M is given by ej2nπdsinθi/λ, i = 1, 2, . . . ,K, n =
−Mmax,−Mmax + 1, . . . ,−1, 0, 1, . . . ,Mmax − 1, ,Mmax.
This is equivalent to extracting and sorting the corresponding
rows from the observation vector z to form a new vector z̃:

z̃ = Mp∗ + σ2
nẽ

′

where ẽ′ ∈ R(2Mmax+1)×1 is a vector of all zeros except a 1
at the (Mmax + 1)-th position. The vector ζ̃n consists of 0s
and 1s with the 1s occurring exactly at those rows where the
phase terms in B are equal to 0. Therefore, corresponding to
the center row, the (Mmax + 1)th element of ẽ′ is equal to
1. M is exactly identical to the manifold matrix of an ULA
with 2Mmax + 1 sensors located from −Mmaxd to Mmaxd.

C. Spatial smoothing

For z̃, it consists of the powers of the actual sources
behaving like fully coherent sources, spatial smoothing is
needed. We divide the virtual ULA with 2Mmax + 1 sensors
into Mmax + 1 overlapping subarrays, each with Mmax + 1
elements, where the i-th subarray corresponding to the i-
th to the (Mmax + i)-th rows of z̃ has sensors located at
{(n+i−Mmax)d, n = 0, 1, . . . ,Mmax}. We denote the signal
received by the i-th subarray as

z̃i = Mip∗ + σ2
ne

′
i (21)

where Mi is a (Mmax + 1) ×K matrix taking the elements
from the i-th to the (Mmax + i)-th rows of M and e′i is a
vector of all zeros except a ”1” at the (Mmax + 2 − i)-th
position. Define Ri = z̃iz̃

H
i . Taking the average of Ri over

all i, we get

Rs =
1

Mmax + 1

Mmax+1∑
i=1

Ri (22)

Since Mmax > 2MN , Rs is the spatially smoothed matrix
with which we are able to estimate the DoA of up to
2MN non-circular sources or MN circular sources. As for
mixed source signals, it can identify K1 + K2 sources once
K1 + 2K2 < 2MN is satisfied.

D. Estimating method

Rs is a full rank matrix and the eigendecomposition can be
applied as

Rs = UΛUH +GΓGH (23)

where the diagonal matrix Λ of (K1 + 2K2) × (K1 + 2K2)
contains the K1 + 2K2 eigenvalues of Rs and the diagonal
matrix Γ contains the Mmax −K1 − 2K2 eigenvalues of Rs.
According to [11], we partition G as G = [GT

1 ,G
T
2 ]

T where
G1 and G2 are two matrices with equal dimension. In general,
we can use (24) to estimate the DoA of each signal as follows:

f(θ) =
1

a(θ)HGGHa(θ)
(24)

To improve the estimation performance for circular signals,
(25) is employed as follows:

fc(θ) =
1

a(θ)HG1GH
1 a(θ)

(25)

IV. SIMULATION RESULTS

In this section, simulation is performed to examine the
performance of the proposed method in 3 different cases. In
the simulation, we assumed M = 5, N = 7, the fundamental
spacing d = λ/2.

A. Case I: circular signals

In this case, we consider D = 35 circular signals with DoAs
θ uniformly distributed from sin(θ) = −1 to sin(θ) = 1. The
SNR is set to be 0 dB using 3000 snapshots. With M = 5 and
N = 7, we can estimate up to MN = 35 sources from distinct
directions. Fig.2 shows the MUSIC spectrum. Apparently, it
can identify all the DoAs clearly.
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Fig. 2. Spectrum for DOA estimation of circular signals using proposed
method,M=5,N=7,SNR=0dB.



B. Case II: real signals

For the real signal case, we use D = 70 real signals with
DoAs θ uniformly distributed from sin(θ) = −1 to sin(θ) =
1. The SNR is set to be 0 dB. 1000 snapshots is used, M = 5
and N = 7. Fig.3 shows that the proposed method can identify
70 sources clearly, which is 2 times more than the traditional
MUSIC based on coprime array.
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Fig. 3. Spectrum for DOA estimation of real signals using proposed
method,M=5,N=7,SNR=0dB.

C. Case III: co-existence of circular and non-circular signals

As for the mixed signals, we consider K1 = 30 non-circular
signals and K2 = 10 circular signals with M = 5 and N = 7.
The SNR is set to be 0 dB. 3000 snapshots are used in
simulation. Fig.4 shows that the proposed estimator is able
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Fig. 4. Spectrum for mixed signals using proposed method.

to identify both non-circular signals and circular signals with
good accuracy.

V. CONCLUSIONS

In this paper, a new DOA estimation method is proposed
for the co-prime array in the context of K1 non-circular
and K2 circular sources. Simulation results shows that the
proposed method increases degrees of freedom greatly and
distinguish the circular signal and the non-circular signal
clearly once the condition K1 + 2K2 < 2MN is satisfied.
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