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Convergence of reinforcement learning to Nash

equilibrium: A search-market experiment
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F-06560 Valbonne, France
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Since the introduction of Reinforcement Learning (RL) in Game Theory, a growing literature
is concerned with the theoretical convergence of RL-driven outcomes towards Nash
equilib rium. In this paper, we apply this issue to a search-theoretic framework (posted-price
market) where sellers are confronted with a population of imperfectly informed buyers and
take one decision per period (posted prices) with no direct interactions b etween sellers. We

focus on three different scenarios with varying b uyers’ characteristics. For each of these
scenarios, we quantitatively and qualitatively test whether the learned variable (price strategy)
converges to the Nash equilib rium. We also study the impact of the temperature parameter
(defining the exploitation/exploration trade off) on these results.
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1. Introduction

Since the seminal paper of Erev and Roth (see Ref. [1]) introducing Reinforcement

Learning (RL) as an efficient modeling tool to approach human actual behavior,

�Corresponding author.
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a growing literature tried to compare theoretically the properties of large multi-

agent systems driven by RL to that of the Nash outcome. One key issue is to

determine in which conditions these two may coincide. For example, Ref. [2]

considers this issue in a congestion game analogous to a market entry game.

Comparing two specifications of the RL algorithm, the author sketches two

situations: in the first one, she considers one isolated RL agent that plays against

the n� 1 other agents endowed with fixed mixed strategies and so do not react on

the RL-agent’s decisions. In this setting, it is shown that initial conditions play a

crucial role on the final strategy played by the RL agent. The case of n RL agents is

then examined. The main conclusion is that this second case exhibits more rapidly a

stable aggregate behavior and that the relative performance of one RL algorithm

depends on the type of considered environment (endogenous evolving versus

constant).

This paper provides an illustration of the convergence issue on a simple

decentralized market (see Refs. [3,4] for examples of RL applications to

decentralized markets). Such markets have been used to analyze price forma-

tion when the market is not ruled by an auctionner. Recently, these models

have been applied to e-commerce in order to explain the persistant price

dispersion despite consumers’ lower search costs (see Refs. [5,6]). In this respect,

Ref. [7] shows that the link between information and pricing is often mislead-

ing in the context of search theory models. Notably, better information may

lead to higher price dispersion and a more intensive search by shoppers may

lead to higher prices in symmetric mixed strategy equilibrium of the game. We

here consider a simple posted-price market of that type: imperfectly informed

buyers wish to buy an homogeneous item at the best price on one hand, and

sellers try to obtain the maximum profit by setting discrete prices within a bounded

range of potential prices on the other hand. There are two types of buyers:

(i) uninformed (visit randomly one seller period and shop if the proposed price is

less than their reservation price) and (ii) informed buyers (visit k sellers

per period and buy at the firm setting the lowest of the k prices if this price is

less than their reservation price). The repartition between the two types is governed

by an exogenous parameter a. Buyers’ behavior is then characterized by the

couple ða; kÞ. We can identify two polar cases namely Case I (‘‘competitive

setting’’) where there is only informed buyers and where k is equal to the number

of sellers and Case II (‘‘monopolistic competition’’) where there are only

uninformed buyers. For Case I, the Nash equilibrium is the Bertrand competi-

tive outcome, while in Case II, the Nash equilibrium is the monopoly outcome.

For intermediate cases, Ref. [7] already established the Nash equilibrium in

mixed strategies. For these three cases, we test whether the distribution of

learned prices converges qualitatively and quantitatively to the Nash mixed

equilibrium.

The remainder of this paper is divided as follows: Section 2 presents the simulation

model and the implementation of the RL algorithm. Section 3 summarizes the results

for the two polar cases (Cases I and II). Section 4 presents the results for one

representative intermediate case. Section 5 concludes.
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2. The model

We consider a posted-price market where S sellers (indexed by s) and B buyers,

respectively, produce and consume an indivisible and homogeneous item. The

timeline of a session t ðt ¼ 1; . . . ;TÞ is as follows: (i) sellers post prices; (ii) buyers

visit sellers and transact; (iii) sellers compute their profits and reward the pricing

rule.

On the demand side, B buyers need to purchase one unit of an indivisible good at

each period. Their reservation price (v) is identical and will further be equal to 100.

We distinguish two types of buyers: (i) informed buyers (in proportion a of the total

population of buyers with a 2 ½0; 1�) who systematically visit k sellers per session

(fixed sample search strategy) and buy at the lowest proposed price; and (ii)

uniformed buyers who visit only one seller per session and buy at that price (since

this price not higher than v). We deal with non-repeated purchases, so that the

identity of the sampled sellers is randomized at each session (no recall effect).

On the supply side, sellers post price simultaneously and hence independently

of the other sellers (no direct imitation). Prices are posted at the beginning

of the session (no bargaining). Since sellers know buyers’ reservation price v,

posted prices cannot be higher than v. Besides, we suppose that sellers incur a

constant and identical per unit cost (c) that will be further set without loss of

generality to 0. Consequently, possible prices can range from 0 to 100. We will

suppose that posted prices ðptÞ are discrete within that range with a 1%-step, hence

the set of potential prices pt is the set of integers f0; 1; 2; . . . ; 100g. We can hence

consider each possible price as an independent rule ({Rule #0: Set price 1}, {Rule #1:

Set price 1}, etc.) that can be further modeled by a RL. In this setting, rules have no

condition part and are then fully determined by a couple {action, fitness}. Let us note

F i
t;s the fitness of the pricing rule i of Seller s at period t. RL processes are controlled

by two elements: (i) a selection mode that governs which rule should be activated at

the current period; and (ii) an updating mode that governs how the agent records its

experiences.


 Selection mode: The selection mode is usually expressed as a tradeoff between

exploration (of new rules) and exploitation (of past ones). Such a tradeoff can be

reproduced through a stochastic selection mode using Boltzmann distribution.

Each rule is then selected with the following probability:

probfSelect Rule ig ¼
e

~F
i
t;s
t

P
j e

~F
j
t;s
t

ð8i; 8s;8tX1Þ , (1)

where t40 and where ~F i;s are the fitnesses normalized between 0 and 1. Parameter

t (‘temperature’) sets the tradeoff between exploration and exploitation: higher t

lead to a more frequent exploration of all possible pricing rules.


 Updating mode: Rules are rewarded by the actual profit generated as they are used

(pt;s :¼ðpt;s � cÞðnt;sÞ where nt;s is the number of actual transactions of seller s at
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period t). The updating mode is the following:

F i
tþ1;s ¼ F i

t;s þ aðpt;s � F i
t;sÞ with pt;s :¼ðpt;s � cÞðnt;sÞ ð8i;8s; 8tX1Þ . (2)

With this formulation, the fitness of a rule is a weighted average of its past payoffs.

As parameter a (with a 2�0; 1�) increases, sellers’ memory decreases i.e. past

experiences have a less important weight in his current decisions.

At the first period, sellers have uniform expectations about the potential profit

generated by all pricing rules. The initial fitness F0 is then identical for every seller

and every rule. Coefficient F 0 can also be interpreted as sellers’ expected belief about

market profitability. Bðv� cÞ is the maximum potential profit on this market (case of

a single seller selling at the monopoly price v). When parameter d decreases, sellers’

initial beliefs are less and less enthusiastic.

F i
t¼0;s ¼ F 0 ¼ dBðv� cÞ ð8i;8s; d 2 ½0; 1�Þ . (3)

We implemented a JAVA multi-agent model to simulate the model. The whole

material (source code, classes and an executable interface) are available on request

to the corresponding author or at the following URL: http://e.darmon.free.fr/

fssmarket/. Due to lack of space, we could not report all the related charts and report

the reader to [8].

3. Case I- and Case II-results

3.1. Bertrand competitive setting (Case I)

In this setting, all buyers are informed and systematically visit the whole set of

sellers ðða; kÞ ¼ ð1;SÞÞ. Hence, the Nash-theoretical model predicts a degenerated

distribution of posted prices, i.e. an equilibrium in pure strategies where the unique

posted price is equal to the production cost c. In a discrete setting, one should then

expect posted prices to converge to the production cost incremented by one price

step, i.e. 1 here.

Fig. 1 shows a representative run of this particular situation.1 From these figures,

we can see that sellers learn to play the competitive outcome despite their initial

ignorance of buyers’ behavior and of the strategies of other sellers: after 800 time

steps, the average posted price converges to the unique competitive price and sellers

post this price with a 98% frequency. As expected, the price dispersion of accepted

prices is null unlike that of posted prices which decreases after convergence but does

not vanish. This can be easily explained: we assumed that the temperature coefficient

t is constant over time and we did not calibrate it arbitrarily to exogenously decrease

1It should, however, be noted that while the stationary positions of two different one-shot runs are

qualitatively identical, the dynamics leading to those stationary positions can vary from one run to

another. As we only deal with stationary outcomes in this paper, we cannot account for this last aspect but

some regularities (e.g. periodic movements of prices) can often be reported.
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when the system reaches a stationary position. For that reason, sellers never stop

exploring alternative strategies. Hence, there is always a non-vanishing fraction of

sellers (2% on average) that try other pricing strategies at each period.

The previous result has been obtained with a temperature t equal to 0.1. To test

the impact of the temperature, we ran another simulation with the same parameters

but with a higher temperature i.e. t ¼ 0:2 (see charts in Ref. [8]). Sellers here use

alternative price strategies more frequently. The competitive pricing strategy is

played only with a 55.85%-frequency (as compared to 98% previously). As expected,

higher temperature degrees lead to a more frequent use of alternative rules, i.e. rules

that do not have the maximum fitness at period t. However, it should be kept in mind

that these price experimentations do not yield better profits: in this setting, buyers

have a complete overview of the prices posted on the market, they can hence select

only the best price seller. This explains why the gap between the average posted price

and the average accepted price increases as the temperature t increases. From sellers’

point of view, deviating from the competitive strategy, leads to a decrease in profits

whenever the number of sellers is sufficiently high. In game-theoric terms, pricing

strategies other than the competitive outcome ðpt;s ¼ 1Þ are then strictly dominated

once prices have converged. Using a multi-shot analysis, we can generalize this

conclusion by repeating the previous simulation with different t parameters

discretely and randomly drawn in �0; 0:55½. For each simulation run, we record the

average and standard deviation of the prices posted once the processes have

converged (see Fig. 2).

As one can see, sellers play the Nash equilibrium more and more accurately as the

temperature decreases. On the contrary, as the temperature increases, average posted

prices increase. Considering the magnitude of payoffs normalized between 0 and 1,

temperature coefficients higher than 0.5 lead to random choices. When choices are

random, the distribution of posted prices converges to a uniform distribution over

½0; v� ¼ ½0; 100� which mean is hence 50. However, as previously noted, we can notice

that temperature variations have a weak impact on the average accepted price as an

increase in the temperature leads to an excessive experimentation. Because buyers

can perfectly switch to the most competitive seller, the average accepted price

remains low. If we consider the highest temperature degrees, we can notice a slight
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Fig. 1. Representative shot of Case I with a ¼ 0:8, t ¼ 0:1 and d ¼ 1. Over the last 100 periods, the

average posted (resp. accepted) price of the distribution is 2.04 (resp 0.99). The standard deviation of

proposed (resp. accepted) prices is 4.32 (resp. 0).
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increase in accepted prices. This can be easily explained: as choices are random, the

probability that one of the S sellers choose the competitive price decreases, thus

increasing the average accepted price. In fact, the expected value of the minimum of

20 prices drawn from a uniform distribution on ½0; 100� can be shown to be equal to

100/21.

In short, the temperature plays a more important role by defining the frequency

at which the Nash strategy is selected at equilibrium. However, the impact of

the temperature coefficient would be less important if this coefficient would be

controlled to decrease over time.

3.2. Monopolistic competition (Case 2)

We here consider a case where all buyers are uninformed ða ¼ 0; 8kÞ. In a Nash

setting, sellers are informed about this feature. Consequently, buyers are ‘‘captive’’

and sellers can exploit this local monopoly situation by setting the monopoly price v.

This leads again to an equilibrium in pure strategies and to a degenerated

distribution with no price dispersion (null price variance; average price equal to v).

As previously, this result only holds if buyers’ characteristics are common and

sellers’ behaviors are symmetric. Fig. 3 presents a representative run illustrating this

situation:

The learned distribution now has one peak located at the monopoly price. From

the previous figure, we can deduce that sellers partially learn to adapt to the

characteristics of the population of buyers. The average posted price, once the

process has converged to a stationary position is here 74.5 against v ¼ 100 if sellers

would have played the Nash equilibrium. In the same way, the learned standard

deviation of posted (accepted) prices is equal to 24.55 against 0 if sellers would have

played the Nash equilibrium. In this respect, Cases I and II are not symmetrical: as
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Fig. 2. Average posted and accepted prices with temperature parameters varying from 0.05 to 0.55

(a ¼ 0:8; t ¼ 0:1; d ¼ 1 and 100 iterations). Each point represents the average of the posted (or accepted)

prices over the last 100 periods.
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the temperature parameter t was set at 0.1, sellers played Nash equilibrium with a

98%-frequency in Case I. Here, with the same temperature parameter, sellers play

Nash with a 5%-frequency only. This cannot be accounted to a coordination

problem among sellers: as a ¼ 0, the payoffs of one particular seller is on average

independent from the payoffs of other sellers, since the population of buyers is

captive to one seller, and since the number of buyers received by one seller at each

period ðB=SÞ is on average constant. Cases I and II are asymmetric because the

payoff structure (not known by the sellers themselves) is different once a stationary

position is achieved. In Case I, a small deviation from the competitive pricing

strategy causes a sharp decrease in profits, because buyers can detect any difference

in posted prices and thus instantaneously switch to the most competitive seller. This

does not hold in Case II: as a seller experiments a strategy close to the monopoly

pricing strategy (e.g. v� 1), the decrease in profit is smooth and the two pricing rules

receives a comparable profit. Considering the stochastic selection mode, those

strategies continue being played with a positive probability.

Let us illustrate this by the following simplified numerical example. Consider the

two pricing rules fp ¼ vg and fp ¼ v� 1g. On average, any seller receives B=S ¼ 50

uninformed buyers at each period. Uninformed buyers conclude a transaction with

this seller whatever the posted price (once ppv). If seller sets p ¼ v (resp. p ¼ v� 1),

it receives p ¼ 20ð100Þ ¼ 2000 (resp. p ¼ 20ð99Þ ¼ 1980). Let us assume that this

seller just plays these two strategies: considering the stochastic selection mode

expressed by Eq. (1) and since t ¼ 0:1, Strategy fp ¼ vg is played with probability

0.512 while Strategy fp ¼ v� 1g is played with probability 0.488. As one can see, a

slight difference in the two payoffs leads the two strategies to be played with very

close probabilities. As we lower the temperature coefficient, these probabilities are

distorted and the probability of playing the monopoly price v increases. In Ref. [8],

we illustrate this argument for t ¼ 0:01. As we can note, the monopoly outcome is

played with a greater frequency (13.7%), as the temperature is lowered. The whole

posted-price distribution shifts left as revealed by its higher average (79.32). Iterating
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Fig. 3. Case II with a ¼ 0:8 and d ¼ 1. Over the last 100 periods, the average posted (and accepted) price

of the distribution is 74.11. The standard deviation of proposed (and accepted) prices is 24.55.
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the same experiment for a smaller t coefficient ðt ¼ 0:01Þ, we can see that the learned
distribution is slowly converging towards the Nash distribution.

As previously, we used a multi-shot analysis to determine qualitatively the impact

of the temperature coefficient on the stationary position (cf. Fig. 4).

Fig. 4 shows that the convergence to the Nash equilibrium is better achieved if the

temperature coefficient decreases. However, as indicated by the first representative

shots, this convergence is less perfect than that observed in Case I, as a consequence

of the payoff structure. Comparing Cases I and II yields to the following conclusion:

in this search experiment, the ability of RL sellers to converge to a Nash equilibrium

in pure strategies (such as Cases I and II) highly depends on the payoff function once

a stationary position has been reached. A non-continuous payoff structure favors

here the convergence to the pure equilibrium while a continuous payoff structure

makes agents continue playing mixed strategies. The payoff structure would be

neutral if sellers would only select the ‘‘greedy action’’ at equilibrium. Again, this

could be achieved trough an exogenous decrease in the temperature over time.

4. One illustrative intermediate case

Between the two polar cases presented in the previous sections, many intermediate

situations could be considered. In all these intermediate situations, the Nash profit-

maximizing strategy can be expressed as a balance between a ‘‘high price–low sales’’

and a ‘‘high sales–low price’’ strategies (see Ref. [7] for a proof). In the first case,

sellers target the captive (uninformed) population of buyers while they target the

informed fraction of buyers in the second case. As previously, in order to implement

such a strategy, sellers would need to know (i) how buyers’ types are distributed (i.e.

parameters a and k) and (ii) that other sellers will exhibit the same behavior

(symmetric equilibrium). Again, we ask to what outcome the final distribution of

posted prices converges if both conditions are not filled ex ante.
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Fig. 4. Average posted price with temperature parameters varying from 0.05 to 0.55 (a ¼ 0:8; d ¼ 1 and

100 iterations). Each point represents the average of the posted prices over the last 100 periods.
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To illustrate this situation, let us consider a particular case2 where a ¼ 0:6 and

k ¼ 4. Fig. 5 presents the Nash distribution of posted prices (see Ref. [7] for a proof).

This distribution can be computed and exhibits the following characteristics: (i)

inverted U-shaped bimodal distribution with one peak located at the monopoly price

v and a second peak located at the minimum bound of the distribution pmin ¼

ð1� aÞv=ððk � 1Þaþ 1Þ ’ 14:3 strictly superior to the competitive price as aa1); (ii)

mean (resp. standard deviation) of posted prices is equal to 59.3 (resp. 30.6).

The following chart plots the simulated and the theoretical distribution of posted

prices. To obtain the simulated distribution, we recorded the prices stored by all

sellers in the last 100 market sessions (i.e. once the process has converged).

We can reject3 the assumption that the learned distribution converges to the Nash

distribution. As previously, we decreased the temperature parameter to determine

whether the non-convergence result was caused by an excessive exploration of

less-preferred strategies. We ran different runs with the same set of parameters (see

Ref. [8]) and noted that despite initial identical parameters, the learned distributions

of posted prices still exhibit more variability than what we observed in Cases I and

II. However, these differences do weakly impact on the average and standard

deviation of posted prices. By plotting the two distributions together, we can identify

the origin of the differences between the Nash and the learned distributions: first,

sellers continue playing with a positive probability prices inferior to pmin. Without

knowing buyers characteristics ða; kÞ, sellers fail to coordinate efficiently on the

minimum price, and hence play more competitive prices more frequently. Second,

Posted prices
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12

14

prices

Nash

Simulated

Fig. 5. Learned posted-price distribution (with a ¼ 0:6, k ¼ 4 and t ¼ 0:05).

2Due to lack of space, we cannot report the results of the simulation model for all ða; kÞ configurations.

The reader can refer to Ref. [9].
3We performed a Kolmogorov-Smirnoff adequation test and tested the hypothesis that the learned and

the Nash distributions are equal. With a 5% significance level, such tests systematically rejected the

equality assumption.
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the monopoly pricing strategy does not emerge solely but sellers just learn to play

‘‘high-price’’ strategies (p480) more frequently.

In this intermediate case, increasing or decreasing the temperature does not enable

sellers to better approximate the Nash equilibrium. We computed a multi-shot

analysis with varying temperature degrees (cf. Fig. 6): Unlike Cases I and II, the

temperature has no direct impact on the convergence towards the Nash mixed

equilibrium. Again, as t increases, choices are more and more randomized so that the

average posted price tends to 0.5.

5. Conclusions

This aim of this paper was to illustrate the convergence of RL system to a Nash

equilibrium within a simple search-market framework. We studied three cases: two

polar cases (Nash equilibrium in pure strategy) and one intermediate case (Nash

equilibrium in mixed strategies). Inferring from these three cases, we cannot

formulate any definite acceptance/reject conclusion regarding the convergence of the

RL-based distribution of posted prices towards the Nash one. Considering the

competitive outcome case, we showed that sellers learn quite perfectly the Nash

distribution whatever the RL coefficients. We showed the role of the temperature

(exploration/exploitation parameter) on the final outcome: a decrease in temperature

makes choices converge to the ‘‘greedy action’’ (competitive outcome). In Case II

(monopolistic competition) it has been shown that sellers learn (although less

perfectly) to adapt to buyers’ characteristics, by setting prices close to the monopoly

price. Comparing Case I with Case II, we noted that sellers endowed with the same

exploration/exploitation parameter play the Nash equilibrium in Case II less

frequently than what they do in Case I. This illustrates the potential role of the

payoff structure in the convergence towards the Nash equilibrium. Finally, we

considered one intermediate case where the Nash equilibrium is to play mixed

strategies (tradeoff between high sales-low margins and low sales-high margins).
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Fig. 6. Average posted price with temperature parameters varying from 0.05 to 0.55 (a ¼ 0:8; d ¼ 1

and 100 iterations). Each point represents the average of the posted prices over the last 100 periods

(with a ¼ 0:6, k ¼ 4).
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We showed that, whatever the temperature coefficient, sellers were not able to learn

such refined pricing strategies. Hence, the system does not converge to the Nash

equilibrium. Such a conclusion confirms [10]. In Ref. [10], it has been shown that in

normal form games with a unique mixed strategy equilibrium, reinforcement

learning, of the type used in [1], does not converge to this type of equilibrium.

Moreover, the expected motion of reinforcement learning is given by the

evolutionary replicator dynamics and so inherits from the same stability properties.

This failure can be analyzed as a coordination problem: to implement such refined

strategies, sellers would need (i) to anticipate buyers’ behaviors first and then (ii) to

anticipate the strategies of other sellers. The first requirement is imperfectly filled:

comparing the three situations sketched in this article, we see that sellers learn to

adapt to various buyers’ behaviors over time despite their initial ignorance. The

second requirement is hard to achieve as no communication, neither direct nor

indirect, through e.g. imitation is possible.

This finally leads us to a double conclusion: on the one hand, sellers are able to

guess an approximate Nash equilibrium in the two polar cases but not in the

intermediate one. On the other hand, even if, they are not able to implement a Nash

pricing strategy, sellers are able to indirectly infer the characteristics of buyers’

behaviors so that the learned distribution of prices self-adjusts to variations in

buyers’ characteristics. Even if the Nash and the learned distribution of posted prices

are different, future work is needed to precisely study the impact of a and k on the

characteristics (mean, average) of the price distribution. Another interesting

extension would be use alternative learning algorithms (imitation of most successful

sellers, refined learning algorithm such as a one-parameter self-tuning EWA, see

Ref. [9]).
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