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ABSTRACT

The morphological dynamics, instabilities and transitions of elastic filaments in viscous flows un-

derlie a wealth of biophysical processes from flagellar propulsion to intracellular streaming, and are

also key to deciphering the rheological behavior of many complex fluids and soft materials. Here, we

combine experiments and computational modeling to elucidate the dynamical regimes and morpho-

logical transitions of elastic Brownian filaments in a simple shear flow. Actin filaments are employed

as an experimental model system and their conformations are investigated through fluorescence

microscopy in microfluidic channels. Simulations matching the experimental conditions are also per-

formed using inextensible Euler-Bernoulli beam theory and non-local slender-body hydrodynamics

in the presence of thermal fluctuations, and agree quantitatively with observations. We demonstrate

that filament dynamics in this system is primarily governed by a dimensionless elasto-viscous num-

ber comparing viscous drag forces to elastic bending forces, with thermal fluctuations only playing

a secondary role. While short and rigid filaments perform quasi-periodic tumbling motions, a buck-

ling instability arises above a critical flow strength. A second transition to strongly-deformed shapes

occurs at a yet larger value of the elasto-viscous number and is characterized by the appearance of

localized high-curvature bends that propagate along the filaments in apparent “snaking” motions.

A theoretical model for the so far unexplored onset of snaking accurately predicts the transition and

explains the observed dynamics. We present a complete characterization of filament morphologies

and transitions as a function of elasto-viscous number and scaled persistence length and demonstrate

excellent agreement between theory, experiments and simulations.

I. Introduction

The dynamics and conformational transitions of elas-

tic filaments and semiflexible polymers in viscous fluids

underlie the complex non-Newtonian behavior of their

suspensions [1], and also play a role in many small-scale

biophysical processes from ciliary and flagellar propul-

sion [2, 3] to intracellular streaming [4, 5]. The striking

rheological properties of polymer solutions hinge on the

microscopic dynamics of individual polymers, and par-

ticularly on their rotation, stretching and deformation

under flow in the presence of thermal fluctuations. Ex-

amples of these dynamics include the coil-stretch [6, 7]

and stretch-coil [8, 9] transitions in pure straining flows,
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and the quasi-periodic tumbling and stretching of elas-

tic fibers and polymers in shear flows [10, 11]. Elucidat-

ing the physics behind these microstructural instabili-

ties and transitions is key to unraveling the mechanisms

for their complex rheological behaviors [12], from shear

thinning and normal stress differences [13] to viscoelas-

tic instabilities [14] and turbulence [15].

The case of long-chain polymers such as DNA [16], for

which the persistence length `p is much smaller than

the contour length L, has been characterized exten-

sively in experiments [7, 17] as well as numerical simu-

lations [18] and mean-field models [19]. The dynamics

in this case is governed by the competition between

thermal entropic forces favoring coiled configurations

and viscous stresses that tend to stretch the polymer

in strain-dominated flows. The interplay between these

two effects is responsible for the coil-stretch transition

in elongational flows and tumbling and stretching mo-

tions in shear flows, both of which are well captured by

classic entropic bead-spring models [20–22].
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On the contrary, the dynamics of shorter polymers such

as actin filaments [23], for which L ∼ `p, has been much

less investigated and is still not fully understood. Here,

it is the subtle interplay of bending forces, thermal fluc-

tuations and internal tension under viscous loading that

instead dictates the dynamics. Indeed, bending energy

and thermal fluctuations are now of comparable mag-

nitudes, while the energy associated with stretching is

typically much larger due to the small diameter of the

molecular filaments [1]. This distinguishes these fila-

ments from long entropy-dominated polymers such as

DNA in which chain bending plays little role.

The classical case of a rigid rod-like particle in a linear

flow is well understood since the work of Jeffery [24],

who first described the periodic tumbling now known

as Jeffery orbits occurring in shear flow. When flexibil-

ity becomes significant, viscous stresses applied on the

filament can overcome bending resistance and lead to

structural instabilities reminiscent of Euler buckling of

elastic beams [8–10, 25–28]. On the other hand, Brow-

nian orientational diffusion has been shown to control

the characteristic period of tumbling [23, 29]. In shear

flow, the combination of rotation and deformation leads

to particularly rich dynamics [23, 30–35], which have

yet to be fully characterized and understood.

In this work, we elucidate these dynamics in a simple

shear flow by combining numerical simulations, theo-

retical modeling and model experiments using actin fil-

aments. The filaments we consider here have a contour

length L in the range of 4 − 40µm and a diameter of

d ∼ 8 nm. By analyzing the fluctuating shapes of the

filaments, we measured the persistence length, as shown

in [36], to be `p = 17±1µm independent of the solvent

viscosity. We combine fluorescent labeling techniques,

microfluidic flow devices and an automated-stage mi-

croscopy apparatus to systematically identify deforma-

tion modes and conformational transitions. Our experi-

mental results are confronted against Brownian dynam-

ics simulations and theoretical models that describe

actin filaments as thermal inextensible Euler-Bernoulli

beams whose hydrodynamics follow slender-body the-

ory [10]. By varying contour length as well as applied

shear rates in the range of γ̇ ∼ 0.5 − 10 s−1, we iden-

tify and characterize transitions from Jeffery-like tum-

bling dynamics of stiff filaments to buckled and finally

strongly bent configurations for longer filaments.

II. Results and discussion

A. Governing parameters and filament dynamics

In this problem, the filament dynamics results from

the interplay of three physical effects – elastic bending

forces, thermal fluctuations and viscous stresses, and is

governed by three independent dimensionless groups.

First, the ratio of the filament persistence length `p
to the contour length L characterizes the amplitude

of transverse fluctuations due to thermal motion, with

the limit of `p/L→∞ describing rigid Brownian fibers.

Second, the elasto-viscous number µ̄ compares the char-

acteristic time scale for elastic relaxation of a bend-

ing mode to the time scale of the imposed flow, and

is defined in terms of the solvent viscosity µ, applied

shear rate γ̇, filament length L and bending rigidity B

as µ̄ = 8πµγ̇L4/B. Note that B and `p are related

as B = kBT`p. Third, the anisotropic drag coeffi-

cients along the filament involve a geometric parameter

c = − ln(ε2e) capturing the effect of slenderness, where

ε = d/L.

The elasto-viscous number can be viewed as a dimen-

sionless measure of flow strength and exhibits a strong

dependence on contour length. By varying L and γ̇,

we have systematically explored filament dynamics over

several decades of µ̄ and observed a variety of fila-

ment configurations, the most frequent of which we

illustrate in Fig. 1. In relatively weak flows, the fil-

aments are found to tumble without any significant de-

formation in a manner similar to rigid Brownian rods.

On increasing the elasto-viscous number, a first tran-

sition is observed whereby compressive viscous forces

overcome bending rigidity and drive a structural insta-

bility towards a characteristic C shaped configuration

during the tumbling motion. By analogy with Euler

beams, we term this deformation mode “global buck-

ling” as it occurs over the full length of the filament. In

stronger flows, this instability gives way to highly bent

configurations, which we call U turns and are akin to

the snaking motions previously observed with flexible

fibers [23, 32]. During those turns, the filament remains

roughly aligned with the flow direction while a curva-

ture wave initiates at one end and propagates towards

the other end. At yet higher values of µ̄, more complex

shapes can also emerge, including an S turn which is

similar to the U turn but involves two opposing curva-

ture waves emanating simultaneously from both ends

(see SI Appendix for movies). In all cases, excellent

agreement is observed between experimental measure-

ments and Brownian dynamics simulations. Our focus

here is in describing and explaining the first three de-
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FIG. 1. Temporal evolution of the filament shape in planar shear over one period of motion, showing three representative

cases corresponding to increasing elasto-viscous numbers. In each case, we compare fluorescence images from experiments

(E) to Brownian dynamics simulations (S). Movies of the dynamics are provided in the SI Appendix.

formation modes and corresponding transitions.

We characterize the temporal shape evolution more

quantitatively for each case in Fig. 2. In order to de-

scribe the overall shape and orientation of the filament,

we introduce the gyration tensor, or the second mass

moment, as

Gij(t) =
1

L

∫ L

0

[ri(s, t)− r̄i(t)][rj(s, t)− r̄j(t)] ds, (1)

where r(s, t) is a two-dimensional parametric represen-

FIG. 2. Evolution of the sphericity parameter ω, mean an-

gle χ with respect to the flow direction, bending energy E

and scaled end-to-end distance Lee/L over one period of

motion for (A) Jeffery-like tumbling, (B) C buckling, and

(C ) U turn. Symbols: experiments. Solid lines: simula-

tions. Parameter values are the same as in Fig. 1. The lack

of experimental data during the interval ∆γ̇t ∼ 30 in (A) is

due to a temporary loss of focus caused by tumbling of the

filament out of the flow-gradient plane.

tation of the filament centerline with arclength s ∈
[0, L] in the flow-gradient plane, and r̄(t) is the instan-

taneous center-of-mass position. The angle χ between

the mean filament orientation and the flow direction

is provided by the eigenvectors of Gij , while its eigen-

values (λ1, λ2) can be combined to define a spheric-

ity parameter ω = 1 − 4λ1λ2/(λ1 + λ2)2 quantifying

filament anisotropy: ω ≈ 0 for nearly isotropic con-

figurations (λ1 ≈ λ2), and ω ≈ 1 for nearly straight

shapes (λ1 � λ2 ≈ 0). Other relevant measures of

filament conformation are the scaled end-to-end dis-

tance Lee(t)/L = |r(L, t) − r(0, t)|/L, whose depar-

tures from its maximum value of 1 are indicative of

bent or folded shapes, and the total bending energy

E(t) = B
2

∫ L
0
κ2(s, t)ds, which is an integrated measure

of the filament curvature κ(s, t).

As is evident in Fig. 2, these different variables exhibit

distinctive signatures in each of the three regimes and

can be used to systematically differentiate between con-

figurations. During Jeffery-like tumbling, filaments re-

main nearly straight with ω ≈ 1, Lee ≈ L and E ≈ 0

while the angle χ quasi-periodically varies from −π/2
to π/2 over the course of each tumble. During a C

buckling event, the angle χ still reaches π/2, but the

other quantities now deviate from their baseline as the

filament bends and straightens again. This provides a

quantitative measure for distinguishing tumbling mo-

tion and C buckling. During a U turn, however, defor-

mations are also significant but χ only weakly deviates

from 0 as the filament remains roughly aligned with

the flow direction and executes a tank-treading motion

rather than an actual tumble. This feature provides a

simple test for distinguishing C and U turns in both ex-

periments and simulations. Other hallmarks of U turns

are the increased bending energy during the turn, which
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FIG. 3. Dependence on elasto-viscous number µ̄ of: (A) the maximum value of the bending energy E, (B) the minimum

value of the sphericity parameter ω, and (C ) the range ∆χ of the mean angle in the various tumbling and deformation

regimes. Full symbols: experiments; open symbols: simulations. For experimental data, the measurement error in µ̄ (due

to errors in contour length (±0.5µm) and in local shear rate (±0.1 s−1)) is comparable to the marker size.

exhibits a nearly constant plateau while the localized

bend in the filament shape travels from one end to the

other, and a strong minimum in the end-to-end distance

Lee(t), which reaches nearly zero halfway through the

turn when the filament is symmetrically folded.

B. Order parameters

This descriptive understanding of the dynamics al-

lows us to investigate transitions between deformation

regimes as the elasto-viscous number increases. The de-

pendence on µ̄ of the maximum bending energy E, min-

imum value of the sphericity parameter ω, and range

∆χ of the mean angle over one or several periods of mo-

tion is shown in Fig. 3. In the case of U turns, the max-

imum bending energy is calculated as an average over

the plateau seen in Fig. 2C. In the tumbling regime,

deformations are negligible beyond those induced by

thermal fluctuations, as evidenced by the nearly con-

stant values of max(E) ≈ 0 and min(ω) ≈ 1. After

the onset of buckling, however, the maximum bending

energy starts increasing monotonically with µ̄ as vis-

cous stresses cause increasingly stronger bending of the

filament. This increased bending is accompanied by a

decrease in ω as bending renders shapes increasingly

isotropic, finally reaching min(ω) ≈ 0. Interestingly,

the transition to U turns is marked by a plateau of the

bending energy, which subsequently only very weakly

increases with µ̄. This plateau is indicative of the emer-

gence of strongly bent configurations where the elastic

energy becomes localized in one sharp fold, and sug-

gests that the curvature of the folds during U turns

depends only weakly on flow strength. The parame-

ter ω also starts increasing again after the onset of U

turns, as the filaments adopt hairpin shapes that be-

come increasingly anisotropic. Figure 3AB also shows

a few data points for S turns at high values of µ̄: in

this regime, the maximum bending energy is approxi-

mately twice that of U turns, as bending deformations

now become localized in two sharp folds instead of one.

S shapes are, however, more compact than U shapes

and thus show lower values of ω.

Orientational dynamics are summarized in Fig. 3C,

showing the range ∆χ = χmax − χmin of the mean

angle χ over one period of motion. During a typical

Jeffery-like tumbling or C buckling event, the main fil-

ament orientation rotates continuously and as a result

∆χ = π. The scatter in the experimental data is the

result of the finite sampling rate during imaging. Dur-

ing U turns, the filament no longer performs tumbles

but instead remains globally aligned with the flow di-

rection as it undergoes its snaking motion, resulting in

∆χ < π. This explains the discontinuity in the data

of Fig. 3C, where C and U turns stand apart. As µ̄

increases beyond the transition, we find that ∆χ → 0

suggesting a nearly constant mean orientation for the

folded shapes characteristic of U turns.

While we have not studied the tumbling frequency ex-

tensively, data based on a limited number of simulations

and experiments recovers the classical 2/3 scaling of fre-

quency on flow strength [21, 23] for the explored range

of parameters, with a systematic deviation towards 3/4

in strong flows in agreement with results from Lang et

al. [29].

C. Transitions between regimes and phase

diagram

Our experiments and simulations have uncovered three

dynamical regimes with increasing values of µ̄, the tran-

sitions between which we now proceed to explain. A

summary of our results is provided in Fig. 4 as a phase

diagram in the (µ̄/c, `p/L) parameter space, where the

transitions are found to occur at fixed values of µ̄/c in-

dependent of `p/L. The first transition from tumbling

motion to C buckling has received much attention in
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FIG. 4. Phase chart indicating the different dynamical

regimes in the (µ̄/c, `p/L) parameter space. The dashed

black lines show the theoretical transitions from tumbling

motion to C buckling (µ̄
(1)
c /c ≈ 306.4), and from C buck-

ling to U turns (µ̄
(2)
c /c ≈ 1700). Full symbols: experiments;

open symbols: simulations.

the past, primarily in the case of non-Brownian fila-

ments [10, 13, 31]. This limit is amenable to a linear sta-

bility analysis [13], which predicts a supercritical pitch-

fork bifurcation whereby compressive viscous stresses

exerted along the filament as it rotates into the com-

pressional quadrant of the flow are sufficiently strong to

induce buckling. The stability analysis is based on local

slender-body theory, where the natural control parame-

ter arises as µ̄/c, and predicts buckling above a critical

value of µ̄
(1)
c /c ≈ 306.4 [13], in reasonable agreement

with our measurements (Fig. 4).

Thermal fluctuations do not significantly alter this

threshold, but instead result in a blurred transition

[9, 26, 37] with an increasingly broad transitional

regime where both tumbling and C buckling can be

observed for a given value of µ̄. When Brownian fluctu-

ations are strong, i.e., for low values of `p/L, it becomes

challenging to differentiate deformations caused by vis-

cous buckling vs fluctuations, and thus the distinction

between the two regimes becomes irrelevant.

Upon increasing µ̄/c, the second conformational transi-

tion from C shaped filaments to elongated hairpin-like

U turns undergoing snaking motions occurs. The ap-

pearance of U turns (shown in green in Fig. 4) occurs

above a critical value µ̄
(2)
c /c that is again largely inde-

pendent of `p/L. However, the transition is not sharp,

and near the critical value both shapes can be observed

simultaneously (as indicated by gray points). In fact, a

single filament in the transitional regime will typically

execute both types of turns, switching stochastically

between them (see SI Appendix, Fig. S6). This transi-

tion towards snaking dynamics has not previously been

characterized. Our attempt at understanding its mech-

anism focuses on the onset of a U turn, which always

involves the formation of a J shaped configuration as

visible in Fig. 1 and also illustrated in Fig. 5.

To elucidate the transition mechanism, we develop a

theoretical model for a J configuration, which can be

viewed as a precursor to the U turn. We neglect Brow-

nian fluctuations and idealize the J shape as a semi-

circle of radius R connected to a straight arm forming

an angle φ with the flow direction, with both sections

undergoing a snaking motion responsible for the U turn;

details of the model, which draws on analogies with the

tank-treading motion of vesicles [38, 39], can be found

in the SI Appendix. By satisfying filament inextensi-

bility as well as force and torque balances, and by bal-

ancing viscous dissipation in the fluid with the work of

elastic forces, we are able to solve for model parameters

such as R and φ without any fitting. A key aspect of

the model is that consistent solutions for these parame-

ters can only be obtained above a critical elasto-viscous

number, and this solvability criterion thus provides a

threshold µ̄
(2)
c /c ≈ 1700 below which the J shape ceases

to exist. This theoretical prediction is depicted by the

dashed line in the phase chart of Fig. 4 and coincides

perfectly with the onset of the transitional regime in

simulations and experiments.

We can now discuss the initiation of the J-shape, in

which two possible mechanisms may be at play. On the

one hand, it may be caused by the global buckling of

the filament in the presence of highly compressive vis-

cous forces, in a manner consistent with the sequence

of shapes of Fig. 5A. Under sufficiently strong shear,

compressive forces can induce a buckling instability on

a filament that has not yet aligned with the compres-

FIG. 5. (A) Numerical snapshots of filament shapes during

the formation of a J shape before the initiation of a U turn.

(B) The J shape can be approximated by a semicircle of

radius R connected to a straight arm forming a tilt angle

of φ with the flow direction. During snaking, the filament

translates tangentially with an axial velocity Vsnake.
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FIG. 6. (A) Dependence on µ̄ of the tilt angle φ formed by J shapes with respect to the flow direction in experiments,

simulations and in our theoretical model. (B) Fraction δs/L of the filament length that is bent during a U turn (see Fig. S4

for the detailed definition of δs). The theoretical predictions are based on the J shape at the start of the turn. Since the

bending energy during a U turn is concentrated in the fold, an estimate for δs/L is also provided by Bπ2/2〈E〉L where 〈E〉
is the average bending energy during the turn, and good agreement is found between both measures. (C ) Snaking velocity

Vsnake rescaled with γ̇Rth and plotted against µ̄ from experiments, simulations and theory; here, Rth is the theoretically

predicted fold radius.

sional axis and forms only a small angle with the flow

direction. Alignment of the deformed filament with the

flow then results in differential tension (compression vs

tension) near its two ends, thus allowing one end to

bend while the other remains straight. A second po-

tential mechanism proposed in [29] is of a local buck-

ling occurring on the typical length scale of transverse

thermal fluctuations. Our data, however, clearly show

that the transition to U turns is independent of ther-

mal fluctuations, allowing us to discard this hypoth-

esis. Thermal fluctuations are nonetheless responsible

for the existence of the transitional regime above µ̄
(2)
c /c,

where they can destabilize J shapes towards C shapes

and thus prevent the occurrence of U turns. This in-

terpretation is consistent with the increasing extent of

the transitional regime with decreasing `p/L.

D. Dynamics of U -turns

We further characterize the dynamics during U turns,

for which our theoretical model also provides predic-

tions. The filament orientation at the onset of a turn is

plotted in Fig. 6A, showing the tilt angle φ formed by

the straight arm of the J shape with respect to the flow

direction as a function of µ̄. Our theoretical model for

dynamics of the J shape also provides the value of φ, in

excellent agreement with experiments. In both cases,

the tilt angle decreases with increasing flow strength

due to increased alignment by the flow. For very long

filaments (limit of large µ̄), accurate measurements of

the tilt angle become challenging due to shape fluctua-

tions, hence the increased scatter in the data.

After a J shape is initiated as discussed above, the cur-

vature of the folded region remains nearly constant in

time as suggested by the plateau in the bending energy

(Fig. 3C ). This provides a strong basis for approximat-

ing the bent part of the filament as a semi-circle of

radius R in our model. The theoretical prediction Rth
and measurements of the radius on J shapes from ex-

periments and simulations agree quite well in Fig. 6B

(see SI Appendix for details). The radius of the bend is

seen to decrease with µ̄, as compressive viscous stresses

in strong flows allow increasingly tighter folding of the

filament.

The rotation of the end-to-end vector during the U

turn results primarily from tank-treading of the fila-

ment along its arclength, unlike the global rotation that

dominates the tumbling and C buckling regimes. While

the snaking velocity is not constant during a turn, its

average value can be quantitatively measured through

the time derivative of the end-to-end distance, yielding

the approximation Vsnake ≈ L̇ee/2. The relevant dy-

namic length and time scales during this snaking mo-

tion are the radius of curvature R of the bent segment

and shear rate γ̇. This is supported by our theory,

where rescaling Vsnake by γ̇Rth collapses the predicted

velocities over a range of filament lengths (SI Appendix,

Fig. S3). The same rescaling applied to the experimen-

tal and numerical data and using the theoretical radius

Rth also provides a good collapse in Fig. 6C.

Harasim et al. [23] previously proposed a simplified

theory of the U turn, which shares similarities with

ours but assumes that the filament is aligned with the

flow direction and neglects elastic stresses inside the

fold. Their predictions are in partial agreement with

our results in the limit of very long filaments and strong

shear (see SI Appendix). Their theory is unable to

predict and explain the transition from buckling to U

turns.
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III. Concluding remarks

Using stabilized actin filaments as a model polymer, we

have systematically studied and analyzed the conforma-

tional transitions of elastic Brownian filaments in sim-

ple shear flow as the elasto-viscous number is increased.

Our experimental measurements were shown to be in

excellent agreement with a computational model de-

scribing the filaments as fluctuating elastic rods with

slender-body hydrodynamics. By varying filament con-

tour length and applied shear rate, we performed a

broad exploration of the parameter space and confirmed

the existence of a sequence of transitions, from rod-

like tumbling to elastic buckling to snaking motions.

While snaking motions had been previously observed

in a number of experimental configurations, the exis-

tence of a C buckling regime had not been confirmed

clearly. This is due to the fact that C buckling is only

visible over a limited range of elasto-viscous numbers

and occurs only in simple shear flow, challenging to re-

alize experimentally. We showed that both transitions

are primarily governed by µ̄/c. Brownian fluctuations

do not modify the thresholds but tend to blur the tran-

sitions by allowing distinct dynamics to coexist over

certain ranges of µ̄.

While the first transition from tumbling to buckling

had been previously described as a supercritical linear

buckling instability [13], the transition from buckling

to snaking was heretofore unexplained. Using a sim-

ple analytical model for the dynamics of the J shape

that is the precursor to snaking turns, we were able to

obtain a theoretical prediction for the threshold elasto-

viscous number above which snake turns become possi-

ble. The model did not take thermal noise into account,

but highlighted the subtle role played by tension and

compression during the onset of the turn. Our anal-

ysis and model lay the groundwork for illuminating a

wide range of other complex phenomena in polymer

solutions, from their rheological response in flow and

dynamics in semi-dilute solutions [40, 41] to migration

under confinement and microfluidic control of filament

dynamics.
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Appendix

A. Experimental Methods

The protocol for assembly of the actin filaments is well

controlled and reproducible. Concentrated G-actin,

which is obtained from rabbit muscle and purified ac-

cording to the protocol described in [42], is placed

into F-Buffer (10 mM Tris-Hcl pH=7.8, 0.2 mM ATP,

0.2 mM CaCl2, 1 mM DTT, 1 mM MgCl2, 100 mM

KCl, 0.2 mM EGTA and 0.145 mM DABCO) at a final

concentration of 1µM. At the same time, Alexa488-

fluorescent phalloidin in the same molarity as G-actin

is added to prevent depolymerization and thus to sta-

bilize as well as to visualize the filaments. After 1

hour of polymerization in the dark at room temper-

ature, concentrated F-actin is stored at 4◦C for fol-

lowing experiments. To avoid interactions between fil-

aments, F-actin used in experiments has a final con-

centration of 0.1 nM obtained by diluting the previous

solution with F-buffer. 1 mM ascorbic acid is added

to decrease photo-bleaching effects and 45.5%(w/v) su-

crose to match the refractive index of the PDMS chan-

nel (n = 1.41). The viscosity of the dilute filament

suspension is 5.6 mPa·s at 20◦C, measured on an An-

ton Paar MCR 501 rheometer.

A micro PDMS channel is designed as a vertical Hele-

Shaw cell, with length L = 30 mm, height H = 500µm

and width W = 150µm. In this geometry the fila-

ment dynamics can be directly observed in the horizon-

tal shear plane whereas shear in the vertical direction

can be neglected at a sufficient distance from the bot-

tom wall (see SI Appendix for more details). To con-

sider pure shear flow, filament and flow scales should be

properly separated, and we thus chose a width (150 µm)

much larger than the typical dimension of the deformed

filament (≈ 10µm). An objective with long working-

distance is required to observe in a plane far enough

from the bottom; the objective should also have a large

numerical aperture to collect as much light as possible

from the fluorescent actin filaments. To combine both

of these requirements, we have used a water immersion

objective from Zeiss (63X C-Apochromat /1.2NA) with

WD≈ 280µm.

Stable flow is driven by a syringe pump (Cellix Ex-

iGo) and particle tracking velocimetry has been used

to check the agreement of the velocity profile with the-



8

oretical predictions [43]. We impose flow rates Q in the

range of 5− 7.5 nL/s, leading to typical filament veloc-

ities ux ∼ 20− 150µm/s in the observation area in the

plane z = 150µm. The filament Reynolds number is of

the order Re ∼ 10−4. To follow the filaments during

their transport in the channel we use a motorized stage

programmed to accurately follow the flow and also to

correct for small changes in the z plane, occuring due to

slight bending of the channel. This step is necessary as

the focal depth of the objective is only of a few microns

and streamlines need to be followed with high precision

over distances of several mm.

Images are captured by a s-CMOS camera (HAMA-

MATSU ORCA flash 4.0LT, 16 bits) with an exposure

time of ∆t = 65 ms and are synchronized with the stage

displacement. They are processed by Image J to ob-

tain the position of the center of mass and the filament

shape. The center of mass is used to calculate the local

shear rate experienced by the filament. The shape is ex-

tracted through Gaussian blur, threshold, noise reduc-

tion and skeletonize procedures. A custom MATLAB

code is then used to reconstruct the filament centerline

as a sequence of discrete points along the arclength s

and to calculate the parameters plotted in Fig. 2.

B. Modeling and Simulations

We model the filaments as inextensible Euler-Bernoulli

beams and use non-local slender-body hydrodynamics

to capture drag anisotropy and hydrodynamic interac-

tions [10, 25]. Simulations without hydrodynamic in-

teractions (free-draining model) were also performed

but did not compare well with experiments. Brownian

fluctuations are included and satisfy the fluctuation-

dissipation theorem. As experiments only consider

quasi-2D trajectories involving dynamics in the focal

plane, we perform all simulations in 2D and indeed

found better agreement compared to 3D simulations.

Details of the governing equations and numerical meth-

ods are provided in the SI Appendix. The simulation

code is available upon request to the authors.
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Supporting Information

A. Microfluidic channel geometry

The microfluidic channel used in experiments is a vertical Hele-Shaw cell in which we drive a horizontal flow as

illustrated in figure S1A. The channel dimensions are designed based on two factors: (1) The aspect ratio between

height and width should be large enough to provide a velocity plateau in the z direction near the channel center

as soon as z &W ; in this region, the flow is nearly two-dimensional and the filaments are mainly deformed by the

imposed shear rate γ̇y in the xOy plane; (2) The width of the channel is much larger than the typical transverse

length scale ∆y of the deformed filaments, so that the shear can be approximated as constant over that length

scale. To avoid wall-interaction effects and artefacts due to the change in sign of γ̇y near the centerline, we focus on

trajectories of filaments flowing in the blue region in figure S1B. Figure S1C shows raw images and reconstructed

filaments for two different configurations as well as corresponding parameters: Lee (red) is the end-to-end vector,

t(s) (black) is the tangential vector, ξmax (blue) is the eigenvector corresponding to the largest eigenvalue of the

gyration tensor of the filament, and χ is the angle between ξmax and the flow direction.

63X Objective

H=500μm

Z=W

W=150μm

Observation plane

x

y

O

z

Motorized stage

FlowA

B

C

xO

y Δy

Δy ≤ 5µm<<W

u(y) y

t(s)

Lee

t(s)

Lee

Raw Images Flow

Reconstructed Images

FIG. S1. (A) Sketch of the experimental setup. (B) Velocity profile in the observation plane. Measurements take place in

the blue regions, where the profile can be approximated as linear on the typical transverse scale ∆y of a filament. (C ) Raw

images and reconstructed images of two configurations with corresponding parameters.

B. Computational model and methods

Actin filaments considered in this work have a characteristic diameter d ∼ 8 nm and typical lengths in the range of

L ∼ 4− 40µm. Due to the slenderness of these filaments (aspect ratio ε ≡ d/L� 1), we opt to describe them as

space curves parameterized by arc length s ∈ [0, L], with Lagrangian marker r(s, t) denoting the position of any

point along the centerline. Under over-damped conditions typical of microscale flows, seeking a balance between

forces due to stretching and viscous drag provides the characteristic time scale for relaxation of a stretching

mode as τs ∼ µ(L/d)2/Y , where Y denotes Young’s modulus [46]. A similar balance between bending forces

and viscous drag provides the relaxation time of bending modes as τb ∼ µ(L/d)4/Y . The ratio of these two

time scales is τs/τb ∼ (L/d)−2 ∼ O(10−6), which implies that stretching modes relax much faster than bending

modes. Consequently, we can approximate the filaments as inextensible, which results in a metric constraint on

the Lagrangian marker: rs · rs = 1, where indices denote partial differentiation and rs = t̂ is the local tangent
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vector. The bending energy of a filament with contour length L is given by:

E =
B

2

∫ L

0

|rss|2ds, (S1)

where B is the bending rigidity of the filament, which also defines its persistence length `p = B/kBT . The

phalloidin-stabilized actin filaments considered here have a persistence length of `p = 17 ± 1µm [36, 44]. We

model these filaments as inextensible fluctuating Euler-Bernoulli beams whose hydrodynamics in an imposed flow

U0(r) = γ̇y are described by non-local slender-body theory [10, 45] as

8πµ(rt −U0(r)) = −Λ[f ](s)−K[f ](s), (S2)

with

Λ[f ] = [−c(I + rsrs) + 2(I − rsrs)] · f(s), (S3)

K[f ] =

∫ L

0

(
I + R̂R̂

|R̂|
f(s′)− I + rsrs

|s− s′|
f(s)

)
ds′. (S4)

Here, µ is the suspending fluid viscosity, R̂ = r(s) − r(s′), and c = − ln(eε2) is a geometric parameter. Λ is

a local mobility operator that accounts for drag anisotropy, while the integral operator K captures the effect of

hydrodynamic interactions between different parts of the filament. The force per unit length f(s) has contributions

from bending and tension forces as well as Brownian fluctuations:

f(s, t) = Brssss − (σ(s)rs)s + f br, (S5)

where σ(s) is the Lagrange multiplier that enforces the constraint of inextensibility and can be interpreted as

internal tension. The Brownian force density f br obeys the fluctuation-dissipation theorem [25, 30]:

〈f br(s, t)〉 = 0, (S6)

〈f br(s, t)f br(s′, t′)〉 = 2kBTΛ−1δ(s− s′)δ(t− t′). (S7)

Since the filament is freely suspended, we apply force- and moment-free boundary conditions at both filament

ends, which translate to: rsss = rss = σ = 0.

We non-dimensionalize the governing equations by scaling spatial variables with L, time by the characteristic

relaxation time 8πµL4/B, the external flow by Lγ̇, deterministic forces by the bending force scale B/L2 and

Brownian fluctuations by
√
L/`pB/L

2 [25, 30]. The dimensionless equations are given as follows:

rt = µ̄U0(r(s, t))− Λ[f ](s)−K[f ](s), (S8)

f = rssss − (σ(s)rs)s +
√
L/`p ζ, (S9)

where two-dimensionless groups govern the dynamics: the elasto-viscous number µ̄ = 8πµγ̇L4/B is the ratio of

the characteristic flow time scale to the time scale for elastic relaxation of a bending mode, while L/`p compares

the filament contour length to its persistence length and measures the magnitude of thermal fluctuations. The

random vector ζ is uncorrelated in space and time and drawn from a Gaussian distribution with zero mean and

unit variance. Eqs. (S8)–(S9) are numerically integrated in time using an implicit-explicit time-stepping method

that treats the stiff linear terms coming from bending elasticity implicitly and non-linear terms explicitly. At every

time step, the unknown tensions are obtained by solution of an auxillary dense linear system that can be derived

from the intextensibility condition: rts · rs = 0. Further details of the numerical method can be found in [10, 25].

All simulations presented here were carried out in two dimensions using N = 64 points along the arc length of the

filament. Typical time steps for the simulations were in the order of ∆t ∼ 10−10 − 10−12.

C. Theoretical model

Dynamics of the J-shaped configuration

The initiation of a U turn in both experiments and simulations involves the formation of a J-shaped configuration

which is tilted with respect to the flow direction and is a precursor to the snaking motion. To understand the
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transition to U turns, we seek a simplified model of this configuration using the geometry shown in Fig. S2. We

approximate the bent portion of the filament by a semi-circle of yet unknown radius R and assume that the rest

of the filament is straight and has a tilt angle φ with respect to the flow direction. We also introduce the following

notations:

• T (1) ≡ velocity of the straight arm in the tangential direction t̂.

• vAO⊥ ≡ velocity of the straight arm in the normal direction n̂.

• T (θ) ≡ velocity of the semi-circle along êθ.

• vOB⊥ (θ) ≡ Velocity of the semi-circle in the êr direction.

• C(xc, yc) ≡ filament center of mass.

• (x, y) ≡ global coordinate axes centered at O.

• l ≡ length of the straight arm, also given by: l = L− πR where L is the filament contour length.

Note that the assumption of a semi-circular shape for the bend leads to some inconsistencies. In particular, it is

not possible to satisfy the force- and moment-free boundary conditions at point B. Adding a second straight arm

emanating from B would allow circumventing this issue, and the model we present here is justified in the limit

of the length of that second arm becoming zero. Additional inconsistencies also arise at point O, where not all

derivatives of the filament shape are continuous. These assumptions are necessary to make analytical progress,

and we will see a posteriori that the model produces results that are in good agreement with experimental and

simulation data. As we discuss later, the model does also satisfy a global energy balance that serves to make the

assumptions rigorous while neglecting the boundary layers that may arise at geometric discontinuities.

With the definitions above, the relative velocity between the fluid and the straight arm in the tangential and

normal directions can be expressed as:

vrel‖ = T (1) + γ̇ [(l − s0) sinφ− yc] cosφ, (S1)

vrel⊥ = vAO⊥ (s0)− γ̇ [(l − s0) sinφ− yc] sinφ. (S2)

As there are no forces acting in the normal direction inside the straight arm, we set vrel⊥ = 0 which yields

vAO⊥ (s0) = γ̇ [(l − s0) sinφ− yc] sinφ. (S3)

In the tangential direction, the internal tension σ(s) induces an elastic force density f(s) = σst̂. This force density

is balanced against viscous stresses using resistive force theory as −σs = c‖v
rel
‖ , which can be integrated using the

force-free boundary condition at point A to yield

σ(s0) =− c‖T (1)s0

+ c‖γ̇
[(
ls0 − 1

2s
2
0

)
sinφ− ycs0

]
cosφ.

(S4)

We have introduced the coefficient of resistance per unit length in the tangential direction, which is expressed as

c‖ ≈
2πµ

log(2L/d)
, (S5)

and we similarly define c⊥ ≈ 2c‖ as the resistance coefficient for transverse motion.

We analyze the kinematics and force balance on the semi-circular arc in a similar fashion and first express the

relative velocities along the arc as

vrel‖ = T + vf cos(θ − φ)︸ ︷︷ ︸
vf‖

, (S6)

vrel⊥ = vOB⊥ + vf sin(θ − φ)︸ ︷︷ ︸
vf⊥

, (S7)
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FIG. S2. Theoretical model of the J configuration. The bent part is approximated by a semi-circle of radius R. There is

a snaking velocity Vsnake along the contour of the shape. The straight part of the configuration has a tilt angle of φ with

the direction of the flow.

where vf = γ̇R [cosφ− cos(θ − φ)] − γ̇yc. Seeking a balance between elastic and viscous forces in the tangential

and normal directions, we obtain:

− 1

R

dσ

dθ
= c‖v

rel
‖ , (S8)

σ

R
+

B

R3
= c⊥v

rel
⊥ . (S9)

The constraint of inextensibility introduces a kinematic relation between the Lagrangian velocities in the tangential

and perpendicular directions everywhere along OB, and provides the condition:

dT

dθ
+ vOB⊥ = 0. (S10)

Eqs. (S6)–(S10) can be combined to yield a second-order non-homogeneous ODE for vOB⊥ (θ):

2
d2vOB⊥
dθ2

− vOB⊥ = 2
d2vf⊥
dθ2

+
d2vf‖

dθ2
. (S11)

This ODE can be solved analytically subject to continuity of the velocity at point O and to the tension-free

boundary condition at point B:

vOB⊥ (θ) = C1 cosh(λθ) + C2 sinh(λθ)

+
∑
n=1,2

[αn cos(nθ) + βn sin(nθ)], (S12)

where λ = 1/
√

2 and

C1 =
γ̇R sin 2φ

18
, (S13)

C2 =
B

c⊥R3 sinh(πλ)
− γ̇R

18
sin 2φ tanh

(
πλ

2

)
, (S14)

α1 = γ̇(yc −R cosφ) sinφ, α2 = −5

9
γ̇R sin 2φ, (S15)

β1 = −γ̇(yc −R cosφ) cosφ, β2 =
5

9
γ̇R cos 2φ. (S16)

From vOB⊥ , the tangential velocity along the bend is easily inferred as

T = vf‖ − 2

(
dvOB⊥
dθ

−
dvf⊥
dθ

)
. (S17)
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Seeking continuity of tangential velocity and internal tension at point O, we obtain two distinct expressions for

the tangential velocity T (1) of the straight arm:

T (1) =− 2Bλ

c⊥R3 sinh(πλ)
+ γ̇yc cosφ

− 2

9
γ̇R cos 2φ+

γ̇Rλ

9
sin 2φ tanh

(
πλ

2

)
,

(S18)

T (1) =
B

c‖R2l
− γ̇l

4
sin 2φ+ γ̇yc cosφ. (S19)

Interestingly, (S19) can be shown to also satisfy the torque balance on the filament.

For consistency, we require that Eqs. (S18)–(S19) be equal. Note, however, that both R and φ remain unknown

at this point. We therefore seek a third condition based on dissipation arguments similar to those used to explain

the tank-treading motion of vesicles [39]. Over the course of an infinitesimal time interval δt during a U turn, a

length of δL ≡ Vsnakeδt that was initially straight becomes bent into the semi-circular curve of radius R, where

Vsnake is the snaking velocity. During that same time, the same small amount of length becomes straight on the

other side of the bend. The amount of work required to bend the straight part can be estimated as the change in

its elastic energy:

δE =
B

2

Vsnakeδt

R2
. (S20)

This expression provides an estimate for the rate of change Ė = δE/δt of bending energy due to the deforma-

tion of the filament at it undergoes snaking. An alternative expression can be obtained from first principles by

differentiating the bending energy as:

Ė = B

∫ L

0

rss · rtss ds. (S21)

Applying two integrations by parts and using the fact that tension forces do not perform any work leads to:

Ė = B

∫ L

0

rt · rssssds =

∫ L

0

rt · feds ≡ −
∫ L

0

rt · fhds. (S22)

where rt is the velocity of a material point along the filament, and fe = Brssss is the local elastic force density

whose work balances that of the hydrodynamic force density fh = −[c‖tt+c⊥(I−tt)]·vrel. The detailed expression

for the integral in Eq. (S22) is cumbersome and therefore omitted here. The above derivation involves integration

by parts and assumes continuity of derivatives. Equating (S22) with δE/δt from Eq. (S20), and identifying the

snaking velocity with the tangential velocity T (1) of the straight arm in the J shape, we obtain the additional

condition:

BT (1)

2R2
= −

∫ L

0

rt · fh ds. (S23)

The above relation is essentially an integral energy balance in the system where we have included the dominant

terms that come from the approximated J shape. In principle, there may be other terms arising from boundary

layers near the junctions of approximate straight and semi-circular arcs which are ignored here in an asymptotic

sense to facilitate analytical progress.

It is possible to recombine (S18), (S19) and (S23) to form two equations for the unknowns R and φ. These two

equations are then solved numerically using a Newton-search algorithm. The equations essentially specify two

curves in the φ − R plane, and a solution only exists when the curves intersect. For a given aspect ratio of the

filament, we find that there exists a critical value of µ̄ below which the curves do not intersect. This suggests that

below this value J-shapes can no longer form and therefore U turns cannot occur. The theoretically calculated

value of µ̄
(2)
c /c ≈ 1700 is plotted as a dashed line in Fig. 4 of the main article and indeed provides a very good

estimate for the onset of U turns.
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FIG. S3. Snaking velocity Vsnake scaled by γ̇R as a function of µ̄ as predicted by our theoretical model. Inset: same data

before rescaling by γ̇R.

The model also provides the theoretical snaking velocity for the straight segment OA. The snaking velocities

for different filaments with varying lengths are plotted in the inset of the Fig. S3 as a function of elasto-viscous

number. After rescaling with the product of the bend radius R and shear rate γ̇, all the data for different filament

lengths collapse onto a master curve that only depends weakly on µ̄ in Fig. S3. This collapse therefore confirms

that the relevant dynamic length and time scales during the snaking motion are R and γ̇−1, respectively.

D. Measurement of the bend radius

Our theoretical model approximates the J shape by a straight segment and a semi-circular arc. In this idealized

configuration, the curvature is zero along the straight segment and then constant at 1/R over a length of δs = πR.

In experiments and simulations, however, the curvature varies smoothly and must reach zero at s = L due to the

boundary conditions. A typical curvature profile from a simulation is shown in Fig. S4. In order to estimate the

radius R in a way that is consistent with the model, we measure the arclength δs over which the curvature, which

increases from zero at s = L, decreases again to reach nearly zero. This measured length from simulations and

experiments is shown in Fig. 6B of the main article and is in good agreement with the predictions from our model.

FIG. S4. Variation of curvature κ along the filament centerline for a typical J shape chosen from a simulation. The length

marked as δs provides an estimate for the arclength of the bent portion.

An alternative measure of the radius can also be obtained from the plateau of the bending energy during a snaking

turn as seen in Fig. 2C of the main text. Since the majority of the energetic contribution comes from the sharp
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fold, we can get an estimate of the radius as

R =
δs
π
≈ Bπ

2〈E〉
, (S1)

where 〈E〉 is the average bending energy over the plateau. This measure is also plotted against the theoretical

predictions in Fig. 6B and follows similar trends.

In previous work, Harasim et al. [23] provided an expression for the bend radius that was independent of the length

of the filament. For the parameter space explored in their study, they estimated R ≈ 1µm. Our results partially

agree with their finding in the limit of long filaments and strong shear. In our model, experiments and simulations,

we find that the value of δs decreases weakly with flow strength and is in the range of R ∼ 0.7− 1.5µm.

R =
δs
π
≈ Bπ

2〈E〉
, (S2)

where 〈E〉 is the average bending energy over the plateau. This measure is also plotted against the theoretical

predictions in Fig. 6B and follows similar trends.

In previous work, Harasim et al. [23] provided an expression for the bend radius that was independent of the length

of the filament. For the parameter space explored in their study, they estimated R ≈ 1µm. Our results partially

agree with their finding in the limit of long filaments and strong shear. In our model, experiments and simulations,

we find that the value of δs decreases weakly with flow strength and is in the range of R ∼ 0.7− 1.5µm.

E. Onset of J shape by global buckling

While our theoretical model for the J shape provides quantitative predictions for the onset of U turns and

parameters characterizing the shape and dynamics, the detailed mechanism for the formation of a J shape from

a nearly straight filament remains unclear. One mechanism, proposed by Lang et al. [29], hypothesizes that

the filament buckles locally over the characteristic length scale of transverse thermal fluctuations. However, the

threshold derived from this local buckling hypothesis is inconsistent with the transition from C buckling to U turn

found in our simulations and experiments.

Another potential mechanism, which we elaborate on here, consists in global buckling of the filament at a small

angle. To illustrate this mechanism, we show in Fig. S5 typical snapshots of filament configurations during the

formation of the J shape from a simulation. From these images, we see that the mean filament orientation enters

the compressional quadrant of the flow before significant deformations arise (configurations iii and iv). As the

filament starts to buckle under compressional viscous stresses (configurations iv and v), its changed shape causes

portions of it to become aligned with the direction of extension, even though the mean orientation remains in

the compressional quadrant. This results in a tension profile that changes sign along the filament, which in turn

causes differential bending and migration of the high-curvature region from the filament center towards one of the

ends (configurations vii and viii), thus giving rise to a J shape (configuration ix). These findings are qualitatively

different from C buckling, where the entire filament experiences compression as it buckles during global rotation.

FIG. S5. Numerical simulation showing the onset of a J shape, which appears to result from buckling of the filament at a

small angle.

F. Characterization of the transition regime

Brownian fluctuations are responsible for three effects: diffusion of the filament center of mass, rotational diffusion,

and transverse shape fluctuations. In the present work, the effect of center-of-mass diffusion on the dynamics we
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observe can be neglected due to the large size of filaments. Orientational diffusion is well known to control the

characteristic period of rotation in shear flow [29], and the length scales of polymer extension and transverse

thickness resulting from the balance between shear viscous forces and fluctuations are also directly linked to bulk

shear viscosities [11]. Our results suggest, however, that Brownian fluctuations do not play a significant role in

determining the onset of the buckling instability and the transition between C and U dynamics. Nonetheless,

fluctuations tend to smooth the transitions between regimes, with transitional regions that become broader with

decreasing `p/L.

Near the transition from C buckling to U turns, we have noted that both types of dynamics can occur over multiple

tumblings of the end-to-end vector. This resulted in the gray area in Fig. 4 of the main article. This stochastic

transitional regime can be characterized more precisely by the probability of observing either shape, which we can

estimate in simulations and is shown in Fig. S6 as a function of µ̄ for a fixed value of `p/L = 1.2. As expected, we

find that the probability of U turns continuously increases from 0 to 1 as µ̄ is varied across the transition. Similar

stochastic transitions have been reported for the onset of buckling in compressional flows [9, 26].

FIG. S6. Percentage of C buckling events as a function of µ̄ near the transition from C buckling to U turns in numerical

simulations. The probability was estimated over a minimum of 10 distinct turns. The results shown are for `p/L = 1.2.

G. Supplementary movie information

Movie 1 – Jeffery tumbling experiments: Movies from experiments are shown in rod-experiments.mov.

The relevant parameters are `p/L = 3.75 and µ̄ = 2.9× 103.

Movie 2 – Jeffery tumbling simulations: Movies from simulations are shown in rod-simulation.mov. The

relevant parameters are same as above mentioned experiments.

Movie 3 – C buckling experiments: Movies from experiments are shown in C-experiments.mov. The relevant

parameters are `p/L = 2.9 and µ̄ = 3.9× 103.

Movie 4 – C buckling simulations: Movies from simulations are shown in C-simulation.mov. The relevant

parameters are same as above mentioned experiments.

Movie 5 – U turn experiments: Movies from experiments are shown in U-experiments.mov. The relevant

parameters are `p/L = 0.84 and µ̄ = 2.1× 106.

Movie 6 – U turn simulations: Movies from simulations are shown in U-simulation.mov. The relevant

parameters are same as above mentioned experiments. Over the multiple tumbling events shown in these movies

we also observe an occasional S turn.
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